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Abstract

This paper describes a finite volume method for modeling electrical activation in

a sample of cardiac tissue using the bidomain equations. Microstructural features

to the level of cleavage planes between sheets of myocardial fibres in the tissue

are explicitly represented. The key features of this implementation compared to

previous modeling are that it is designed to represent physical discontinuities with

no volume in the intracellular domain and to provide linear systems of equations

that are computationally efficient to construct and solve. Results obtained using

this method highlight how the understanding of discontinuous activation in car-

diac tissue can form a basis for better understanding defibrillation processes and

experimental recordings.

Key Terms

Bidomain Equations, Numerical Simulation, Computational Efficiency, Tissue

Microstructure, Cleavage Planes, Shock, Bipolar Stimulus, Activation Times.



3

1 Introduction

Most computer models of cardiac electrical activation have assumed that the my-

ocardium is a continuum, and that activation propagates most rapidly in the direc-

tion of the local myofiber axis and with equal velocity in the plane transverse to it.

These assumptions of structural continuity and electrical transverse isotropy are

at odds with observations of myocardial architecture over a period of more than

twenty years. Microscopic studies3, 23 have shown that ventricular myocytes are

arranged in discrete bundles separated by cleavage planes or collagenous septae.

It has also been demonstrated that ventricular myocardium should be viewed as

an ordered network of interconnected muscle layers23, 7, 12, 18 that have a predomi-

nantly radial orientation in apex-base transmural sections.7, 12, 18, 41, 4

There is strong evidence that discontinous myocyte organization significantly

affects propagation velocity and the safety of conduction in two-dimensional tis-

sue preparations.30, 25, 16 Moreover, it acknowledged that defibrillating shocks would

not produce cardioversion if the myocardium behaved as a continuum and struc-

tural discontinuity has also been evoked to explain the myocardial response to

high voltage shocks.15, 37, 6, 38, 20 These issues were addressed in a computational

study in which a bidomain model of electrical propagation was solved in a dis-

continuous domain that accurately represented the transmural microstructure of

the left ventricular free wall.11 It was concluded that the laminar architecture of

the myocardium would give rise to orthotropic electrical properties uniquely de-

termined by local microstructure, and that interlaminar clefts between layers of

myocytes could provide a substrate for bulk activation of the ventricles during

defibrillation.
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A number of limitations can be identified in relation to the finite element based

modeling study presented by Hooks and co-workers.11 The simulation was carried

out using a tissue segment of relatively small dimensions. In order to investigate

the extent to which structural discontinuity may contribute to re-entrant electrical

activation it will be necessary to solve a full ionic current model in an extended

discontinuous domain. This would impose substantial computational overheads

if the finite element formulation used initially were to be preserved. A further

concern is that this formulation potentially overstates the volume occupied by

cleavage planes and it is uncertain whether this impacts on the results that have

been obtained using this method.

Finite volume methods have been developed and used by Harrild et al.8, 9 and

Penland et al.21 to solve the bidomain equations in complex three dimensional

structures. In this paper we report on the development of a new finite volume

method for modeling electrical activation in discontinuous cardiac tissue.

The finite volume paradigm in the context of explicit modeling of cleavage

planes will be shown to have an advantage over the previously used finite ele-

ment formuation in that cleavage planes can be represented as no-volume enti-

ties in the finite volume discretisation. A finite volume formulation also allows

the resistance of the intercellular clefts to intracellular current flux to be varied.

The method developed here has computational advantages over a traditional fi-

nite element method and other finite volume methods when modeling anisotropic

conduction of electrical activation. The utility of this new finite volume approach

has been assessed by comparing modeling results with those already obtained by

Hooks and colleagues11 using the finite element method and Buist and colleagues2

using a finite difference based method. This provides an objective basis for vali-
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dating results obtained using both approaches and for quantifying the advantages

of the finite volume method.

2 Methods

2.1 Continuous and Discrete Forms of the Bidomain Equations

The bidomain model is conceptualised as two co-existent intracellular and extra-

cellular domains.10 The potential in the intracellular domain is denoted as �i and

the potential in the extracellular domain is denoted as �e. The transmembrane

potential difference, Vm, is given by:

Vm � �i � �e� (1)

It is assumed that there are negligible capacitive, inductive and electromagnetic

propagative effects within each of the two domains. The current across the mem-

brane separating the domains is comprised of an ionic current flux, Iion, a capac-

itive component including the rate of change of the transmembrane potential and

a transmembrane stimulation current flux, Im. The transmembrane stimulation

current flux represents an intracellular anode and an extracellular cathode and so

is a depolarising current flow across the membrane into the intracellular domain.

Assuming that the currents obey Ohm’s Law, conservation of current within the

two domains leads to a system of two coupled reaction-diffusion equations. The

intracellular potential variable may be eliminated in favour of the transmembrane

potential dependent variable and the equations rearranged. This results in a cou-

pled system comprised of a parabolic reaction-diffusion equation and an elliptic

equation. These equations are referred to in their various forms as the bidomain
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equations.2

AmCm

�Vm

�t
�r � ��irVm� � r � ��ir�e�� Am �Iion � Im� � ii (2)

r � ���e � �i�r�e� � �r � ��irVm�� ii � ie (3)

Am is the surface to volume ratio of the representative cell membrane between

the domains and Cm is the specific membrane capacitance. �i and �e are the

symmetric intra- and extra-cellular conductivity tensors respectively. These ten-

sors may be anisotropic and spatially non-homogeneous. The terms ii and ie are

current injections per unit volume into the intra- and extra-cellular spaces respec-

tively. Equation (2) describes the conservation of current per unit volume in the

intracellular domain and Eq. (3) describes the instantaneous distribution of cur-

rent between the two domains. The bidomain equations are subject to intra- and

extra-cellular potential flux boundary conditions.

It is assumed that there is no current flow from the intracellular domain to the

extramyocardial domain. The boundary condition on the intracellular domain is

thus:

r�i � ��
T
i n� � �

� r�Vm � �e� � ��in� � �� (4)

Note that the conductivity tensors are symmetric, i.e., � i � �T
i . Current flow

from the extracellular domain is matched by the extramyocardial domain so that

the boundary condition on the extracellular domain is:

r�e � ��en� � r�o � ��on� � (5)
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Here �o is an extramyocardial potential and�o is an extramyocardial conductivity.

These values can represent a bath solution or the influence of a “torso”. If neither

of these regions is modeled the right hand side is zero.

Given a discretisation of the solution domain, Eq. (2) can be approximated

by an algebraic system of ordinary differential equations in time and Eq. (3) by a

stationary algebraic system, i.e.,

M
dV m�t�

dt
�KV m�t� �K�e�t� �M

�
�

�

Cm

�I ion�V �� Im�t��

�
�

M

�
�

AmCm

ii�t�

�
(6)

L�e�t� � �KV �t��M

�
�

AmCm

�ii�t� � ie�t��

�
� (7)

Here it is assumed that the capacitance of the membrane between the intra- and

the extracellular domains is spatially homogeneous. The systemM is commonly

referred to as the mass matrix and the systems K and L are commonly referred

to as the stiffness matrices. These systems have as many rows as there are finite

volumes in the computational mesh. Mass and stiffness matrices for the bido-

main equations have been constructed in previous studies using all of the classic

spatial discretisation techniques such as finite difference methods,17, 27, 29, 2 finite

element methods,11, 39, 33 finite volume methods8, 9, 21 and collocation methods.24 If

excitation-contraction processes are not being modeled then the mass and stiffness

matrices are stationary.

The system of ordinary differential equations given by Eq. (6) is integrated
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over a discrete period of time from tn to tn�� to give:

M

Z tn��

tn

dV m

dt
dt�K

Z tn��

tn
V mdt �

K

Z tn��

tn
�edt�M

Z tn��

tn
�
I ion � Im

Cm

dt�M

Z tn��

tn

�
�

AmCm

ii�t�

�
dt� (8)

An important issue in performing this temporal integration is that the time scale

of the ionic membrane current processes, denoted by I ion, is much smaller than

that of the intracellular diffusion processes. A fractional step operator splitting

process22, 42, 2 is used where an auxiliary problem for the membrane processes is

solved first, followed by the intracellular diffusion problem.

The auxiliary term arises from:

�V
n��

m �

Z tn��

tn
�
I ion � Im

Cm

dt (9)

where �V
n��

m is a predictor membrane potential and �V
n

m � �. The auxiliary equa-

tion that must be solved for the predictor membrane potential, �V m, is:

d �V m

dt
� �

I ion � Im

Cm

(10)

This equation may be solved using an ordinary differential equation solver appro-

priate to the nature of the cell model that will be used.42, 34, 35 Not only does the

time scale of the ionic membrane process as a whole differ greatly from the time

scale of the intracellular diffusion process, but the time scales of the processes

within the ionic membrane currents also differ widely. This is referred to as the

stiffness of the system of ordinary differential equations.

The time integration of Eq. (8) can be performed in various ways. The results

presented in this paper have been calculated using an identical split-step uncou-
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pling to that of Buist et al.2 For an implicit discretisation in time, the linear systems

to be solved are:

�M ��tK�V n��
m �MV n

m ��tK�n
e ��tM �V

n��

m �

�t

AmCm

Mii�t� �
�t

AmCm

�S �V n
m� � S ��n

e �	 (11)

L�n��
e � �KV n��

m �
�

AmCm

M �ii�t� � ie�t�	�

�

AmCm

�S� ��
n
e � � S �V n

m�	 (12)

where S and S� are vector sources representing the contributions from secondary

current flux arising from fibre coordinates that are not oriented with the spatial

discretisation.

An implicit temporal discretisation is chosen for Eqs. (11) and (12) to maintain

a broad computational stability region. This is important since the computational

meshes that are used must be highly resolved to represent the cleavage planes.

This imposes a severe time step restriction if an explicit temporal discretisation

is used. The resulting linear systems are solved using a preconditioned conjugate

gradient method or generalised minimum residual method. The majority of the

computational expense arises from the linear solution of Eq. (12). This Poisson

equation with predominantly Neumann boundary conditions is poorly conditioned

and it is both difficult and computationally expensive to construct a good precon-

ditioner that significantly accelerates the iterative solution. Developing methods

for improving the linear solution of Eq. (12) continues to be an ongoing field of

research.
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2.2 A Finite Volume Discretisation

We now introduce a finite volume method for constructing the stiffness and mass

matrices. To derive the spatial discretisation we return to the bidomain equations

given in Eqs. (2) and (3). The solution domain is formed from the union of

unique non-interpenetrating finite volumes. The current conservation equations

are enforced over each finite volume and hence over the entire solution domain.

For a single finite volume, 
j , an integral expression of the bidomain equations,

rearranged using the divergence theorem, is:

Z
�j

AmCm

�Vm

�t
d
�

Z
�j

rVm � ��in� d� �

Z
�j

r�e � ��in� d��

Z
�j

�Am �Iion � Im� � ii� d
 (13)

Z
�j

r�e � ���e � �i�n� d� � �

Z
�j

rVm � ��in� d��

Z
�j

�ii � ie� d
 (14)

where �j is the boundary of 
j . These equations describe the balance of current

fluxes through the finite volume faces, with current injected into or transferred

through the membrane into the volume.

As is appropriate for the interpenetrating domains model of the bidomain

equations, the intracellular and extracellular finite volumes share the same vol-

ume and faces. The volume of 
j is Vj and the boundary of the finite volume is

expressed as a sum of discrete faces �jk, each with area Fjk. A finite volume 
j

has nj faces internal to the domain and noj faces external to the domain. The faces

in intracellular, extracellular and extramyocardial space are weighted byW i
jk, W e

jk

and W o
jk respectively. These weights allow for the imposition of variable fluxes
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from volume to volume. In the limiting case of an intracellular face representing

a cleavage plane, W i
jk � �. External faces are subject to the boundary conditions

given in Eqs. (4) and (5). Approximations to Eqs. (13) and (14) are thus given by:

AmjCmjVj
dVmj

dt
�

njX
k��

�rVm�jk � ��in�jkW
i
jkFjk

�

njX
k��

�r�e�jk � ��in�jkW
i
jkFjk �

�
Amj �Iion � Im�j � ii

�
Vj

(15)

njX
k��

�r�e�jk �
��
W e

jk�e �W i
jk�i

�
n
�
jk
Fjk �

nojX
k��

�r�o�jk � ��on�jkW
o
jkFjk �

�

njX
k��

�rVm�jk � ��in�jkW
i
jkFjk �ii � ie�j Vj�

(16)

The finite volume discretisations used in evaluating Eqs. (15) and (16) are

shown in Fig. 1(a).

[Figure 1 near here.]

2.3 Secondary Current Flux

Integrals over the finite volume faces can be expressed as the sum of primary and

secondary flux terms.14 The primary flux is the current flux normal to the volume

face and the secondary flux is the flux in the plane of the face. Fig. 1(b) shows a

face normal vector, n, the unit vector connecting two adjacent volume centroids,

v, and the two unit in-face vectors, u and w � u � n. The decomposition of a
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generic flux term on the face �jk is:

r� � ��n� � �r� � v � �r� � u� �r� �w� (17)

The final two terms are often referred to as the secondary flux and the first term as

the primary flux. The secondary flux will be zero when v andn are coincident and

� has principal directions coincident with n, u and w. Practically, this condition

is met when the computational mesh of finite volumes is orthogonal and the car-

diac muscle fibers are oriented along the mesh coordinate directions, or when the

mesh is curvilinearly oriented along the fibers. Hence, secondary flux on the in-

ternal faces of volumes must be accounted for in orthogonal grids if the fibre field

is not aligned with the coordinate directions and the conductivity is anisotropic.

This is usually the case in practice.

The weights on the primary and secondary flux are determined by vector al-

gebra as:

� �
��n� � n

v � n
(18)

� � ��n� � u� ��n� � n
v � u

v � n
(19)

� � ��n� �w � ��n� � n
v �w

v � n
� (20)

If the distance between the centroids of the finite volumes 
j and 
k (lying on

the opposite side of the jk face) is �jk, then the flux term can be approximated

as:

r� � ��n� � �
��k � �j�

�jk

� �r� � u� �r� �w (21)

If the vectors v and n are coincident (as is the case for an orthogonal computa-
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tional mesh), then the expression for primary and secondary flux becomes:

r� � ��n� � ���n� � n�
��k � �j�

�
� ���n� � u��r� � u� � ���n� �w��r� �w�

(22)

The approximation of r� on the cell volume faces results in extra compu-

tational costs for non-orthogonal computational meshes. The applications of the

finite volume method described is this paper are made on orthogonal meshes.

Hence, second order finite differences are used to evaluate potential gradients at

finite volume centres and these are linearly interpolated onto the finite volume

faces. Fig. 2 shows examples of this.

[Figure 2 near here.]

When the mesh is not orthogonal there are a number of possible approaches

to computing an approximation to r� on the finite volume faces. For example:

radial basis functions (also used in mesh free methods19), least-squares gradient

reconstruction (LSGR) (also used in mesh free methods19 and generalised finite

difference methods36), least-squares polynomial reconstruction (LSPR) and linear

shape functions (LSF)14 can all be used as interpolating functions for computing

approximations to r� on non-orthogonal meshes.
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The secondary flux functions are:

Sj ��
n� �

njX
k��

wi
jkFjk

h
���in� � u�jk �r�

n � u�jk�

���in� �w�jk �r�
n �w�jk

i
(23)

S�j ��
n� �

njX
k��

we
jkFjk

h
���en� � u�jk �r�

n � u�jk�

���en� �w�jk �r�
n �w�jk

i
� Sj ��

n� � (24)

These contributions are added to Eqs. (11) and (12) as source terms.

2.4 Discrete Representations of Cleavage Planes

Cleavage planes, which are visible in fresh transmural segments of left-ventricular

wall tissue (Fig. 3(a)) and even more visible in lightly fixed tissue, are clearly

seen in the dehydrated embedded tissue required for three-dimensional imaging

and reconstruction. The reconstructed images of dehydrated embedded tissue of

Fig. 3(b) is part of the image set obtained by Young et al.41

[Figure 3 near here.]

A discrete representation of cleavage planes from the tissue sample of Fig.

3(b) has been obtained previously.11 The planes were manually segmented from

images slices and described as bilinear finite element patches. Measurements of

fiber orientations were also made and their transmural variation described linearly.

The bilinear finite element representations of the cleavage planes together with the

fiber orientations are shown in Fig. 4(a).
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For the work presented in this paper a simple algorithm was designed and im-

plemented in computer code that determined which finite volume faces of a given

finite volume mesh intersected the cleavage plane finite element representations.

This process identified the finite volume cleavage faces. An example of the re-

sulting discrete representation of the cleavage planes is shown in Fig. 4(b). This

approach allowed discrete finite volume representations of cleavage planes to be

easily constructed for varying mesh resolutions.

[Figure 4 near here.]

2.5 Tissue Models and Finite Volume Meshes

Structured, orthogonal finite volume meshes were used in the modeling described
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and (12). The sparsity of these systems and the performance of a conjugate gra-

dient solution for a test load vector was compared between the methods. The

domain was a three-dimensional cube with equal mesh resolution along all axes.

No ionic current models were defined and a test load vector with a L2 norm of one

was used to drive the solution process. The minimum, mean and maximum CPU

times required to perform 17 non-preconditioned iterations of a conjugate gradi-

ent solver on the finite volume and finite element systems were gathered from 12

solution runs for each level of mesh discretisation. Calculations were performed

using one 1.3 GHz Power 4 processor on an IBM Regatta P690.

The second model was a two-dimensional �� mm � �� mm sample of tissue

with equal mesh discretisation in both directions. This model was used to com-

pare conduction velocity in the fiber and cross fiber directions between the finite

volume method, the finite element method11 and the finite difference method as

described by Buist et al.2 The tissue was stimulated at the midpoint by a trans-

membrane current injection and the spreading activation wave modeled using the

bidomain equations and a simple cubic ionic model.13 The fibre direction was set

to be at �� to the horizontal over the entire domain. Anisotropic fiber and cross-

fiber conductivities were specified in the intracellular space of ���mS mm�� and

����mS mm�� and in the extracellular space of ���mS mm�� and ���mS mm��

following previously suggested physiological ratios.26 This fibre orientation was

chosen to provide the most extreme test of the secondary flux calculations in the

finite volume method. The local conduction speeds in the fibre and cross fibre

directions were determined at two sample points where these directions were nor-

mal to the activation wavefront. The local conduction speeds were calculated by

interpolation from the local activation time field, specified as the time of maxi-
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mum upstroke gradient in the transmembrane potential. The problem set-up and

sample point locations are shown in Fig. 6(b). Six levels of spatial discretisation

from �mm to �������mm were defined and a time discretisation of ����ms was

used.

2.5.2 Extracellular Shock Simulation Models

A three dimensional discontinuous model of the tissue sample of Fig. 3(b) was

constructed using the bilinear finite element description of the cleavage planes

projected onto the finite volume mesh. An indentical continuous model without

cleavage planes was utilised for comparison. Both models were activated by a

constant extracellular transmural potential gradient of ��� V cm��, i.e., ����mV

across the ���mm sample, representing a shock stimulus. The Drouhard-Roberge

modified5 Beeler-Reuter1 ionic current model with additional revisions29 was used.

Mesh boundary conditions were imposed that connected together computational

points on opposing transmural faces, resulting in no explicit external transmural

boundaries. This is shown in Fig. 5(a). This type of boundary condition was used

to minimise the effects of sudden no-flux boundaries and was appropriate as the

shock stimuli were applied over the entire epi- and endocardial faces.

A computational mesh with a resolution of ���� mm in all directions was

defined together with a time step of ����� ms. Both the discontinuous and con-

tinuous models utilised the same extracellular conductivities of �����, ������ and

������mS mm�� in the fibre, sheet and sheet-normal directions respectively. The

intracellular conductivities in the discontinuous model were specified as �����,

������ and ������ and those of the continuous model as �����, ������ and ����

mS mm�� in the fibre, sheet and sheet-normal directions respectively. The low
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sheet-normal value in the continuous model was chosen to implicitly represent

cleavage plane influence and follows the value determined by Hooks et al.11

2.5.3 Extracellular Bipolar Midwall Stimulation Models

A bipolar extracellular midwall stimulus in the tissue sample of Fig. 3(b) was

modeled using a mesh with ���� mm resolution and a time step of ��� ms. The

anode and cathode were placed adjacent on either side of the midwall plane. A

cubic ionic current model was used. Solutions were generated in a discontinuous

(with explicit cleavage planes) and a continuous (without cleavage planes) model

with conductivities identical to those described for the shock models. The solution

domain was padded with continuous tissue along the transmural faces as shown

in Fig. 5(b). This padding removed the immediate boundary influence from the

region of interest (the tissue sample being modeled) and placed it in the far-field.

The mesh resolution was cubically graded in the padding region to minimise the

number of unknowns.

[Figure 5 near here.]

3 Results

3.1 Validation of the Finite Volume Method and Computational
Comparison with other Methods

The finite volume systems have approximately 75% fewer non-zero entries com-

pared to the finite element system entries for a given mesh. Fig. 6(a) shows the

comparative mean, minimum and maximum CPU times taken to perform the 17

non-preconditioned iterations of a conjugate gradient solver on the finite volume
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and finite element systems.

[Figure 6 near here.]

The variation of conduction speed with mesh resolution in the two-dimensional

model is shown in the fiber direction at sample point 1 in Fig. 6(c) and in the

cross-fibre direction at sample point 2 in Fig. 6(d).

3.2 Extracellular Shock Stimulation

[Figure 7 near here.]

Aspects of solutions from the extracellular shock simulation models are shown

in Figs. 7 and 8. In Fig. 7 transmembrane potential maps show depolarisation

occuring on the anodal side of the cleavage planes. These sources lead to a more

rapid transmural depolarisation compared to the continuous model. Also shown

is the map of regions throughout the discontinuous model which exhibit an early

onset of activation.

The centerline traces in Fig. 8 show solutions generated for discontinuous

and continuous tissue models by the finite volume method and a finite element

method at two different mesh resolutions. Also included are solutions generated

using the finite volume method with a thickness of ���� mm attributed to the

cleavage planes.

[Figure 8 near here.]
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3.3 Extracellular Bipolar Midwall Stimulation

Figs. 9(a) and 9(b) show the positions of the activation wavefront at a sequence of

instances in time for the continuous and discontinuous bipolar stimulus models.

Fig. 9(c) shows the activation time fields for the continuous and discontinuous

solutions on a selection of transmural planes. Activation times above ��ms have

been contoured.

4 Discussion

In this paper we have presented a finite volume method developed for large-scale

bidomain modeling of electrical activation in cardiac tissue. Our principal goal has

been to suppliment the finite element method previously used for this purpose11

with a method that was computationally cheaper and in which the volume of

physical discontinuities in the intracellular domain was not overstated. We have

assessed the method through comparative solutions in an idealised test problem

and by modeling similar problems in discontinuous domains to those performed

previously.11

Our finite volume method is deliberately designed to be as simple and as ef-

ficient as possible. To this end, modelling is only undertaken in a rectangular

block of tissue with an orthogonal, regular computational mesh. The method we

present is extendible to non-orthogonal, arbitrary and unstructured meshes, albeit

with an associated loss in computational performance due to additional geometric

calculations and increased non-zero entries in each row of the linear system of

discrete equations. The systems of equations can be easily constructed in parallel

and the number of non-zero entries per row in the linear systems of equations are
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small (� � in three-dimensions as opposed to traditional finite element11 or recent

bidomain finite volume21 methods with up to �� non-zero entries per row). Not

only are these sparse matrices beneficial from the perspective of memory usage,

but the inner products required to perform, for example, a conjugate gradient so-

lution can be evaluated more efficiently. This is shown in Fig. 6(a). No distinction

between the system arising from the parabolic Eq. (11) and the elliptic Eq. (12) is

necessary since the test is looking at the inner product cost which is related to the

sparsity pattern and this is identical for both systems in the absence of cleavage

planes. The systems of equations arising from the finite difference method are not

symmetric due to the explicit representation of Neumann boundary conditions.2

Hence, they cannot be solved using the conjugate gradient method and other itera-

tive methods must be used. Given that there are approximately 19 non-zero entries

per row in the finite difference system of equations,2 the curve representing CPU

solution times for a symmetric system with an equivalent sparsity would lie be-

tween the finite volume and the finite element curves of Fig. 6(a). The emphasis

on storage and computational efficiency has been motivated by the fact that the

mesh resolution required to geometrically capture the cleavage planes is typically

greater than what would be required to adequately cature activation wavefronts in

continuous tissue.10, 34

The results of Fig. 6 show that the secondary flux approximations used by

the finite volume method do not appear to be detrimental to its accuracy when

modeling using physiological parameters. The finite element method with lin-

ear interpolation will have a smaller truncation error for a given mesh resolution

compared to the lower order finite volume method and so will converge with dis-

cretisation faster (this can be observed in Figs. 6(c) and 6(d)). However, the rate
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of increase of iterative solver cost is greater for the finite element method and at

approximately 1.7 million degrees of freedom it is well over twice as expensive as

the finite volume solutions. For the results shown in Fig. 7 there are over 1.9 mil-

lion degrees of freedom in each system. The gains in computational performance

of the finite volume method compared to other methods appear to outweigh any

possible detrimental accuracy effects due to representing the secondary flux as

explicit source terms.

The shock solutions of Fig. 7 reinforce the observations make by Hooks and

co-workers.11 Among the principal differences between the solutions and these

finite volume solutions is that the tissue is not depolarised to the same extent in

the region of the cleavage planes closest to the endocardial surface. A source

of this difference may be elucidated from the spatial traces shown in Fig. 8. It

can be observed that increasing the volume associated with the cleavage breaks

in the finite volume solution results in the activation wave better resembling the

finite element solution. In addition to the cleavage plane volume, the numerical

boundary conditions applied to the shock stimulation model in this work differ

from the previous work.

Recent experimental results provide evidence for transmural virtual source

formation in a wedge preparation with transmurally applied shocks of a similar

magnitude to those used in this work.28 Although it is unclear what effect the cut

surface will have on the formation of these virtual sources, the authors discuss the

possibility that they arise due to microscopic discontinuities in the tissue structure.

We have presented bipolar extracellular stimulation results (Fig. 9) since this

protocol is usually used in experiments undertaken in our laboratory. The gross

characteristics of the activation wavefronts of the bipolar extracellular stimulation
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differ only slightly between the continuous model and the discontinuous model as

seen in Figs. 9(a) and 9(b). However, the maps of activation times for the dis-

continuous model clearly show regions of early activation surrounded by regions

of later activation in Fig. 9(c). The xy-midplane maps (which are in the mid-

wall fibre plane) of activation times show the virtual anodes associated with the

stimulating cathode and the virtual cathodes associated with the stimulating an-

ode. The classic dog-bone shape around the cathode and anode make stimulation

regions is also observed, albeit more clearly in the continuous tissue case. Both

these behaviors have been illustrated experimentally for unipolar stimulation.40

The differences between the early and late activations in these isolated regions is

around � ms. This time-frame for discontinuous activation could easily be reg-

istered by fortuitously placed extracellular electrodes in an experimental prepa-

ration sampling at � kHz. We have also generated solutions in a model with

a transmembrane midwall stimulus similar to that presented in previous work.11

These additional solutions show activation behavior away from the stimulus site

that is almost identical to the bipolar results, including regions of isolated early

activation. The combination of the bipolar extracellular stimulus results presented

here and the transmembrane results further reinforce the conclusions of the studies

of Hooks and co-workers.11

Our finite volume method has enabled us to solve larger problems more effi-

ciently that had been the case with previous explicit cleavage plane bidomain ac-

tivation modeling. Ongoing work in our laboratory is now considering questions

of reentrant activation in larger tissue samples. This will require an extensive de-

scription of cardiac tissue structure in a much larger tissue sample than what has

been used as the basis for the results presented here. We have also addressed the
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modeling issue in previous work of non-negligible volume being attributed to the

cleavage planes and introduced new capabilities in terms of boundary conditions.

Ongoing work also includes investigating the feature of the model where the in-

tracellular current flow across cleavage planes is modified from impermeable to

fully permeable. Such modeling would enable studies of the validity of coarser

models of cleavage planes to be carried out. It would also enable the investiga-

tion of the effects of small current leakage across cleavage planes, arising perhaps

from inter-myocyte electric field interactions.32, 31

5 Conclusions

In this paper we have described a finite volume discretisation of the bidomain

equations that has been designed to enable the modelling of a discontinuous intra-

cellular domain, notably with the explicit inclusion of electrically non-conducting

cleavage planes. The use of a method that does not assign volume to the cleavage

planes has been shown to quantitatively affect the depolarisation of the discon-

tinuous tissue under extreme extracellular potential gradients. The finite volume

method, as presented here, had a lower computational cost compared to other

methods and this made it amenable for solving the large systems of equations that

resulted from the spatial resolution required to capture the essential features of the

cleavage planes.

The results presented here added further modelling validation to the conclu-

sions of Hooks et al.11 that cleavage plane discontinuities were likely to contribute

significantly to a discontinuous propagation of electrical activation. As such, the

provide a mechanism for explaining the bulk activation of myocardium in the
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presence of large extracellular potential gradients. Clearly this has important im-

plications for the defibrillation of cardiac tissue.

Further work is being conducted to use the finite volume method described

here for better understanding the implications of discontinuous activation for both

normal and abnormal cardiac excitation. This includes modeling defibrillation in

larger tissue samples where there are pre-existing reentrant activation waves.
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Figure Legends

Fig. 1 A finite volume mesh and components. (a) A volume j within the finite

volume mesh. The lower face is a no-flux intracellular face modelling a

cleavage plane. An adjacent volume to the right is denoted as volume k.

(b) Primary and secondary flux through a finite volume face. The primary

flux is normal to the face and the secondary flux lies in the plane of the

face. u and w are two in-face vectors that are orthogonal to each other and

the vector normal to the face, n. In the results presented in this paper, v is

coincident to n and the secondary flux arises due to the anisotropy of the

intra- and extra-cellular conductivities.

Fig. 2 Finite difference templates for computing derivative approximations for sec-

ondary flux calculations on an orthogonal finite volume mesh. (a) Standard

second-order finite difference approximations for a finite volume with full

flux intracellular faces. (b) Second order finite difference approximations

for a finite volume with a no-flux intracellular face.

Fig. 3 Illustrations of cleavage planes between sheets of cardiac myocytes. (a)

Porcine cardiac left-ventricular tissue that has been perfusion fixed with

formalin and stained by brushing the surface with Evans blue dye. (b)

A confocal microscope scan of dried and resin embedded rat cardiac left-

ventricular tissue in two- and three-dimensional views. Further details may

be found in LeGrice et al.18 The physical dimensions of the sample are

�mm� ���mm� ���mm.



Fig. 4 Discrete representations of cleavage planes. (a) The segmented cleavage

breaks and fibre and sheet directions of the block of rat cardiac tissue shown

in Fig. 3(b). The cleavage breaks are represented as bilinear surfaces. (b)

The cleavage planes projected onto an orthogonal finite volume mesh.

Fig. 5 Finite volume meshes. (a) Continuous boundary wrapping on a regular

mesh. (b) An example of the mesh grading used to extend the rat cardiac

tissue sample. This view is of the epicardial face.

Fig. 6 Finite volume method validation and timing results. (a) Mean CPU times,

over 12 samples, required to perform 17 unpreconditioned steps of a con-

jugate gradient solver on the systems arising from finite element and finite

volume discretisations of the bidomain equations. Error bars indicate the

minimum and maximum CPU times. (b-d) Validation results comparing the

convergence of derived conduction speeds in fibre and cross fibre directions

at two sample points for finite element, finite volume and finite difference

methods.

Fig. 7 Activation resulting from a transmural shock of ��� V cm�� in the rat car-

diac sample of figures 3(b) and 4. Panels (a) and (b) show how in a model

with cleavage breaks explicitly modeled, virtual sources on the anodal side

of the cleavage planes act to rapidly depolarise across the wall. In contrast,

panel (c) shows that transmural activation is slower for a model with con-

tinuous conductivities. Panel (d) shows, for a set of regularly spaced sample

points throughout the volume, the points with activation times less than or



equal to � ms. This panel indicates that there are significant and disjoint

regions across the wall that are quickly activated following the application

of an extracellular shock stimulus.

Fig. 8 A comparison between finite element and finite volume transmembrane po-

tential solutions along the centreline of the rat tissue sample of Fig. 3(b).

Solutions are shown at varying grid resolutions and are given for continuous

as well as discontinuous models. The continuous and discontinuous results

show similar characteristics between the two solution methods. A key result

here is that the finite volume results with an artificial cleavage volume more

closely resemble the finite element results than with zero cleavage volume.

This underscores the importance of the finite volume method developed in

this paper with its ability to assign no modelling volume to cleavage breaks.

Fig. 9 Activation times and wavefronts for a bipolar extracellular midwall stim-

ulus. (a) The position of the activation wavefront at selected times in the

continuous tissue model. (b) The position of the activation wavefront at se-

lected times in the discontinuous tissue model. (c) The activation times on

a set of sample planes through the midwall. Although the activation wave-

fronts of (a) and (b) resemble one another, the activation times clearly show

adjacent regions of discontinuous activation.
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