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Abstract

An anatomically based computational model of the cardiac ventricles was developed.
The model is based upon the pig ventricles, as the pig is now the principal large animal
used experimentally. The model includes concise mathematical descriptions of the left
and right ventricular walls and the basal skeleton geometries in rectangular cartesian
coordinates. The non-homogeneous fibre and sheet microstructure is also incorporated.
The finite element method for finite deformation elasticity was used to simulate the
cardiac cycle and to investigate the global and regional mechanics. The deformation
response showed good agreement with reported observations. For the physiological
loading conditions chosen an ejection fraction of 48% was predicted with an apex-base
shortening of approximately 4%. The large ejection fraction was achieved through an
apex-base twist of 22.8 degrees and wall thickening of 33%. Predictions of the distribu-
tions of stress and strain in the ventricular myocardium are presented.

A finite element model was used to interpret the results from a published experimental
study of myocardial infarction. A nonlinear optimisation problem was solved to deter-
mine the parameters for a published proposal for an exponential constitutive law for in-
farcted myocardium. The suitability of the “pole-zero” constitutive law for myocardium
to model infarcted myocardium was also investigated. The pole-zero formulation, which
incorporates structural details of the myocardium, yielded strain distributions more sim-
ilar to those measured experimentally. The effect of infarction upon the regional and
global mechanics of the new porcine ventricular model was then examined.

In order to accurately and efficiently represent the ventricular anatomy and the large
spatial variations in the material properties and solution fields associated with myocar-
dial infarction, several new techniques were developed. The hanging node method for
high order cubic Hermite finite elements was developed to enable the use of localised
mesh refinement. Mapping constraints, to enforce C°-continuity between high order



elements with inconsistent parametric coordinates, were implemented to allow irregular
mesh topology. Texture map evaluations were used to provide a method of prescribing
the spatially varying constitutive parameters independent of mesh resolution . The new
technigques and models have provided initial insights into the behaviour of infarcted my-
ocardium, and a framework has been developed that can now be used for future studies
of both physiologically normal and infarcted porcine hearts.



Acknowledgements

There are many people to thank for the work presented in this thesis. Without the collec-
tive knowledge and expertise offered to me by many talented researchers both in New
Zealand and abroad, I simply could not have completed this body of work.

In particular, Dr lan LeGrice for his expertise who, along with his group at the School
of Medicine, performed the experimental work and provided the data upon which the
porcine ventricular model was developed.

Dr Jeffrey Holmes now in the Cardiac Biomechanics Group at the University of Columbia
who kindly provided the infarct remodelling data from his PhD thesis in collaboration
with Dr. James Covell and Dr. Andrew McCulloch at the University of San Diego. The
infarction modelling study presented here was very much a collaborative effort with Dr
Holmes contributing significantly to discussions and analysis of results.

I would like to thank Drs. Marytn Nash and Chris Bradley who patiently answered my
questions day and night and taught me the ropes of CMISS programming. The CMGUI
team of Dr David Bullivant, Dr Richard Christie and Shane Blackett who provide and
support the visualisation tools.

A big thanks to my friends and colleagues who make the Bioengineering Institute such
an interesting and fun place to work. Many great people have been part of the research
group over the years, but a | would like to specially mention a few of those that have
shared the social side with me and provided countless hours of distraction; David Nick-
erson, Martin Buist, Leo Cheng, Richard Boyes, Ben Wright, Autumn Cuellar, Duane
Malcolm, Merryn Tawhai, Karl Tomlinson, Alan Garny and Warren Hedley.

I am extremely grateful to my supervisor Professor Peter Hunter for his enthusiasm,
patience and assistance. Peter was always approachable, helpful and encouraging which
went a long way towards keeping me motivated. He has also contributed enormously

\Y



Vi

to the field of bioengineering, and continuously shares the benefits to seek the best for
every one in the Bioengineering Research Group. As a result | have been fortunate to
have visited several research groups and attended conferences abroad during this thesis.

I would also like to thank my family for always supporting whatever | have decided to
do. Finally, to Deanna, my loving wife, who has always patiently supported me. Thanks
again for all your encouragement and distraction.



Contents

Abstract . . . . . . e iii
Acknowledgements . . . . . . . .. %
Listof Figures . . . . . . . . Xi
Listof Tables . . . . . . . . . . . . e XX
Glossaryof Symbols . . . . . . . . ... XXiii
Notation . . . . . . . e XXVil
1 Introduction . ... . . . . . . ... 1
1.1 Cardiac Anatomy and Function . . . . . . ... ... ... ....... 2
1.1.1 GrossStructure . . . . . . ... 2

1.1.2 Microstructure . . . . . . . ... 4

1.1.3 CardiacFunction . . . . . ... ... ... ... . ... 8

1.2 Myocardial Infarction . . . . ... ... ... 9
1.3 CMISS . . . . e 11
1.4 Experimental Work . . . . ... ... ... ... oo 12



viii CONTENTS
2 Finite Deformation Elasticity . . . . . ... ... ... ... ........ 13
2.1 Kinematicrelations . . . . ... ... ... ... ... . . 14
2.1.1 Material versus spatial coordinates . . . . ... ... ...... 14

2.1.2 Deformationandstrain . . . . ... ............... 15

2.2 Stressequilibrium . . . . ..o oo o o 18
221 Stresstensors . . . . ... 19

2.2.2 Conservation laws and the principle of virtual work . . . . . . . 20

2.3 Constitutiverelations . . . . ... ... . 24
2.4 Boundary constraints and surface tractions . . . . . . . ... ... ... 27

2.5 Curvilinear coordinatesystems . . . . . .. ... ... ... ... 28
2.5.1 Base vectors and metrictensors . . . . . ... ... L 29

2.5.2 Measures of strain and stress in curvilinear coordinates . . . . . 32

2.5.3 Equilibrium equations in curvilinear coordinates . . . . . . . . 35

2.5.4 Surface tractions in curvilinear coordinates . . . . . . ... .. 37

3 The Finite Element Method For Finite Elasticity . . . . . ... ... ... 39
3.1 Interpolation using basis functions . . . . .. ... ... ... .. ... 40
3.1.1 Linear Lagrange basis functions . . . . ... ... .. ... .. 41

3.1.2 Cubic Hermite basis functions . . . . ... ... ........ 43

3.1.3 Interpolation in two- and three-dimensions . . . . . . ... .. 44

3.1.4 lrregular Meshes - Hanging Nodes . . . . . ... ... .. ... 49

3.1.5 Finite element material coordinates . . . . ... ... ... .. 50

3.2 Gaussianquadrature . . . . . .. ... 52
3.2.1 Integrationinone-dimension . . . . . ... ... ... ... .. 52

3.2.2 Integration in two- and three-dimensions . . . . . . . ... .. 54

3.3 Galerkin finite element equations for finite elasticity . . . . . . ... .. 55

3.3.1 Galerkin equilibriumequations. . . . . ... ... ... ..., 55



CONTENTS IX

3.3.2 Galerkin incompressibility constraint . . . . . ... ... ... 57

3.3.3  Explicit pressure boundary constraints for the finite element equa-

3.4 Solving the nonlinear finite element equations using Newton’s method . 60

4 Previous Mathematical Modelling of Cardiac Ventricular Mechanics . . 63
41 ThinWalledModels. . . . ... ... ... ... .. .. ... ..., 64
4.2 Axisymmetric Cylinder Models . . . . ... ... ... ........ 64
4.3 Axisymmetric Prolate-Spheroidal Models . . . . . ... ... ... .. 66
4.4 Anatomical Prolate-Spheroidal Models . . . . . ... ... .. .... 67

441 GeometryandFibres . . . . . ... ... ... L. 67
442 Sheets. . . ... . . . ... 68
443 Mechanical Simulation . . . . ... ... ... ... . . ... 69
444 SUMMANY . . . . o e e 74

5 A Finite Element Model of the Porcine Ventricles . . ... ........ 75

51 DataAcquisition . . . . . . . . ... 75
5.1.1 Ventricular Geometry and Myocardial Fibre Angle Measure-

MENt . . . . . 76

5.1.2 Myocardial Sheet Angle Measurement. . . . . . .. ... ... 80

52 ModelCreation . . . . ... . . ... . . e 82

5.2.1 Coordinate System . . . . . ... ... L 82

5.2.2 Geometric and Field Fitting With Finite Elements . . . . . . . . 83

523 MValveRings . . . . . . . . . 87

5.2.4 Left Ventricular Endocardium . . . ... ... ... ... ... 88

5.25 Right Ventricular Endocardium . . . . . ... ... ...... 90

526 Epicardium . . . . ... 94



X CONTENTS

5.2.7 From Surfacestoa Volume Model . . . . . ... ... ..... 97
5.2.8 Myocardial Fibre Structure . . . . . .. .. ... ... ... .. 100
5.2.9 Myocardial Sheet Structure . . . . . .. .. ... ... ... 103

6 Simulating Ventricular Mechanics using the Finite Element Model of Porcine

Ventricles . . . . . . 113
6.1 SolutionFields . .. ... ... ... ... ... ... .. .. .. ... 113
6.2 Displacement Boundary Conditions . . . . .. ... ... ....... 114
6.3 Material Properties . . . . . . . . .. .. . ... 117
6.3.1 ConstitutiveLaw . . . . . . ... ... 117

6.3.2 Residual Stressand Strain . . . . ... .. ... ........ 120

6.4 Computational Techniques . . . . . . ... ... ... ... ...... 122
6.5 Passivelnflation . . . .. .. ... ... .. 124
6.5.1 Cardiac Coordinate Strains . . . . . . .. ... ... ...... 125

6.5.2 Microstructure Coordinate Strains . . . . . ... ... ... .. 126

6.6 Active Contraction . . . . ... ... .. ... ... 130
6.6.1 Isovolumic Contraction. . . . ... ... ... .. ....... 132

6.6.2 Ejection . . . ... ... 133

6.7 Numerical Verification . . . . .. ... ... ... .. ... ...... 137
6.8 Summaryand Discussion . . . . . ... 139
6.8.1 Limitationsofthe Model . . . . .. ... ... ... ...... 140

7 A Finite Element Model of Myocardial Infarction . . ... ... ... .. 143
7.1 Constitutive Laws for Infarcted Myocardium. . . . . . ... ... ... 144
7.1.1 Holmes Passive Infarction Mechanics Study Review . . . . .. 144

7.1.2 Validating the Holmes Constitutive Relationship for Infarcted
Myocardium . . . . ... 150



CONTENTS Xi

D

7.1.3 A Pole-Zero Constitutive Relationship for Infarcted Myocardium 163

7.1.4 Discussionand Conclusions . . . . .. ... .......... 168
7.2 The Anatomical Ventricular Porcine Model and Infarction . . . . . .. 171
7.2.1 Material Properties . . . . . . ... ... ... .. . 171
7.2.2 Localised Ventricular Mesh Refinement . . . . . ... ... .. 172
723 Results . ... ... 172
7.3 DISCUSSION . . . . . . e 174
74 FutureWork . . . . . . e 175
Fibre Distribution Model for Cardiac Tissue . . . ... .. ... ..... 177

The CMISS Command File for the Anatomical Porcine Ventricular Model 185

The CMISS Command File for the Infarction Models . . . . . . ... .. 195

Ventricular Mechanics: Material Parameter Sensitivity . . . . . .. . .. 201

References . . . . . . . . 202






List of Figures

11

1.2

1.3

14

1.5

2.1
2.2

3.1

A cross-section of the heart taken though the four major chambers. Re-
produced from Netter (1997). . . . . . . . ... ... ... ... ...

Top: SEM of ventricular myocardium sectioned parallel to the epicar-
dial surface. Bottom: SEM of ventricular myocardium sectioned trans-
verse to the myocyte axis. Capillaries and perimysial collagen can also
beseen. . . . ...

Schematic of myocardial microstructure illustrating the bundling of mus-
cle fibres into sheets (Modified from LeGrice 1995).. . . . . . . . . ..

Typical nonlinear stress-strain response of ventricular myocardium. Note
the highly nonlinear behaviour as the elastic limits are approached. . . .

Wiggers diagram illustrating the eight primary phases of the cardiac cy-
cle. The top three traces show the pressure in the aorta, LV and atria
in millimetres of mercury. The following trace represents the LV vol-
ume. The lower two traces indicate the relative timings of the sounds
heard via a stethoscope, and an ECG trace. The Wiggers diagram illus-
trates the relationship between the electrical wave in the myocardium,
the resultant mechanical deformation and the consequential change in
pressure in the heart chambers. Reproduced from Katz (1992). . . . . .

The deformation gradient tensor, F carries line segment dX into dx. . .

Coordinate systems used in a kinematic analysis of large deformation
elasticity. . . . . . . .

Linear Lagrange basis functions . . . . . ... .. ... ... .....

10

16



Xiv LIST OF FIGURES
3.2 Thescalar field, u, may be approximated over an entire domain by using
piecewise polynomials over a set of smaller domains. . . . . . ... .. 42
3.3 Cubic Hermite basis functions . . . . ... ... . ... ... ..... 44
3.4 Two-dimensional bilinear basis functions. . . . . . ... ... ... .. 45
3.5 A Hanging node in a linear Lagrange domain mesh. The nodal pa-
rameter « at the constrained node is constrained to be the value of u
interpolated from the proper nodes inelement1. . ... ... ... .. 50
3.6 The finite element material coordinate system (£1,£2,&3). . . . . . . .. 51
4.1 Axisymmetric cylinder model of an incompressible, isotropic and lin-
early elastic material (Table 4.1). The application of torsion reduces the
transmural gradient of circumferential stress. . . . . ... ... .. .. 65
4.2 Anaxisymmetric prolate-spheroidal model. . . . . . .. .. ... ... 66
4.3 The first anatomically accurate continuum ventricular model (Nielsen
1987). Left: Prolate-spheroidal mesh. Right: Fitted epicardial fibre field. 67
4.4 Longitudinal-transmural ventricular sections from a canine LV free wall,
Left: Before drying. Right: After drying (LeGrice 1992). . . . . . . .. 68
4.5 The anatomical prolate-spheroidal canine ventricular model. . . . . . . 69
4.6 Schematic of the boundary conditions applied to the anatomical prolate
model. . . . ... 73
5.1 The ventricular geometry and myocardial fibre angle acquisition rig
(loaded with a plastic anatomical model). . . . ... ... . ... ... 77
5.2 The FaroArm used to digitise the valve ring geometry . . . . . . . . .. 78
5.3 Combined epicardial data sets and reference points from the rig and the

FaroArm. The rig data is plotted using crosses and the FaroArm data
using spheres. The mitral valve data is red, the aortic brown, tricuspid
blue, and the pulmonary valve data is purple. The green data are epicar-
dial surface points that were unreachable in the rig, between the valves
and the top of the pulmonary outflow tract. . . . . . ... ... ... .. 79



LIST OF FIGURES XV

5.4

5.5

5.6

5.7

5.8

5.9
5.10

5.11
5.12
5.13
5.14

5.15

5.16

5.17
5.18

Longitudinal-transmural ventricular section after drying, with sheet ori-
entation vectors. To the left is the inter-ventricular septum and the RV
free wall isshownontheright. . . . ... ... ... ... ....... 81

Schematic of orthogonal data point projections. The dashed lines show
the projections onto a mesh, and their positions in parametric coordi-
nates &, are illustrated within each element. . . . . . .. ... ... .. 84

Fitted valve orifice geometries with raw data and error projections. The
four valves are plotted using the same scale. . . . .. ... ....... 88

A projected view from the basal short-axis plane of the fitted valve ring
geometries. The mitral valve is red, the aortic brown, tricuspid blue, and
the pulmonary valveispurple. . . . .. .. .. ... .. ... .. ... 89

Fitted left ventricular endocardial surface geometry with raw data and
eITOr Projections. . . . . . . . o . 91

The fitted left ventricular endocardial surface. . . . . . . .. ... ... 92

Fitted right ventricular endocardial surface geometry with raw data and
eIrOr Projections. . . . . . . . . . 93

The fitted right ventricular endocardial surface. . . . .. ... ... .. 94
Fitted epicardial surface geometry with raw data and error projections. . 95
The fitted epicardial surface. . . . . .. ... ... ... ... ..... 96

Connection of fitted surfaces to form the volume mesh. Two-dimensional
projections of the mesh topology at the inter-element locations are plot-
tedontheright. . . . ... ... ... . .. ... .. 97

A plan view of the transmural element connectivity and parametric co-
ordinates. . . . .. .. 98

Apical cross sections from a porcine heart and the model. The model
endocardial and top surfaces are red, the transmural cut face is yellow. . 99

Fibre angle correction for non-circumferential &£; direction. . . . . . . . 101

A bilinear Lagrange-cubic Hermite fibre field would require the LV, sep-
tum and RV connection elements to use cubic Hermite-linear Lagrange-
cubic Hermite for a consistent cubic Hermite interpolation of the trans-
mural fibre parameters. . . . . . . ... L 103



XVi

LIST OF FIGURES

5.19

5.20
5.21
5.22

5.23

5.24

6.1

6.2

Fibre direction vectors projected onto a two-dimensional cross-section
of the pig heart model. All fibres are drawn as vectors with the same
length, so the more axially aligned fibres in the subepicardium and
subendocardium have a smaller projection onto this plane than the more
circumferentially aligned midwall fibres. The apparent inward orienta-
tion of some of the subepicardial and subendocardial fibres reflects the
taper of the wall (out of the plane of this projection) and does not indi-
cate a non-zero imbrication angle. Notice the flow of fibres around the
margins where the right ventricle joins the septum. . . . . ... .. ..

LV endocardial fitted fibre field. . . . . . . .. ... ... ... .. ..
RV endocardial fitted fibre field. . . . . . . .. .. ... ... .. ...
Epicardial fitted fibre field. . . . . ... ... ... ... ... .....

Plots of the model geometries for the initial mesh and the fitted sheet
data specimen. The sheet specimen geometry is used in the post pro-
cessing of the recorded sheet orientation data. (a) The initial mesh of
the specimen from which the geometry and fibre data was obtained. (b)
The fitted mesh geometry of the specimen from which the sheet orienta-
tion data was measured. Both plots are to the same scale. The specimens
were very similarinsizeand shape. . . .. .. ... ... .......

Fitted sheet orientations, shown in three longitudinal sections through
the heart. The sheets are predominantly radially aligned. The apparent
discontinuities are actually only an artifact of the rendering technique at
the element boundaries. . . . . . . ... ... ... L

Displacement boundary conditions. The cubes represent nodes at which
all the degrees of freedom are fixed, both location and curvature. The
spheres represent nodes at which only the derivatives are fixed. . . . . .

An experimental heart preparation for examining passive ventricular de-
formation. The ventricles are attached to the rig via tubes that also sup-
ply fluid to the cavities to apply pressure. MRI techniques are then
used to examine the ventricular deformation under various loading con-
ditions. (Presented with permission, K. Augenstein, thesis in progress) .

106

116



LIST OF FIGURES

XVii

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Regional variation of material parameters. Material properties in the
sheet and sheet-normal directions are set equivalent to the fibre direction
in the shaded elements. The modified elements are in the lower RV free
wall, baseandapex. . . . . ... .. ... ...

Applied initial residual fibre strain field. Red diamonds mark the nodes
at which an initial fibre extension is applied, blue diamonds mark nodes
with an applied initial fibore compression. No initial residual strains are
applied at unmarked nodes. The green crosses indicate the regions in
which the reference state stresses and strains are plotted in Figure 6.5.

Residual fibre strains and stresses in the unloaded, reference state, lat-
eral LV free wall. (a), (c) and (e) show the strains, (b), (d) and (f) the
stresses in the material coordinate system. The sampling locations are
plotted in Figure 6.4 . . . . . . . . . ...

Cardiac coordinate strains in the equatorial lateral LV free wall at end-
diastole, an LV cavity pressure of 1 kPa. The sampling locations are
plotted in Figure 6.4. The predicted strains are approximately the same
magnitude and exhibit similar trends to the experimental pressure-strain
data of Holmes (1995), shown in blue with the same symbols for each
strain component. . . . .. ...

Anterior view of the fibre and sheet orientations in the equatorial region
of the lateral LV free wall. The fibres are directed into the page with the
sheet orientations plotted at their origin. The sheets are radially aligned
in the outer third of the wall and become more longitudinally aligned
towards the endocardium. . . . . . .. ... ... L

Fibre strains and stresses in the lateral LV free wall at end-diastole. (a),
(c) and (e) show the strains, (b), (d) and (f) the stresses in the material
coordinate system. The sampling locations are plotted in Figure 6.4. . .

Circumferential distribution of fibre, sheet and sheet-normal stretch at
equatorial midwall locations shown on the right. The numbers on the
horizontal axis refer to Gauss point locations in the sequence around the
heart shown by the figure on the right. Note that strain components at
locations 1,2,17,18 are omitted from the plot because the fibre orienta-
tions are not in the circumferential direction. . . . . . .. .. ... ...

. 121

127



XViii

LIST OF FIGURES

6.10

6.11

6.12

6.13

6.14

6.15

7.1

7.2

7.3

Base-apex distribution of fibre stretch in the subepicardium, midwall
and subendocardium. The stretch in the basal elements is influenced by
the applied boundary conditions, and the apical deformation is limited
by the stiff isotropic material and the apical derivative boundary condition.128

Plots of the model deformation at the end of each phase in the simulated
cardiaccycle. . . . . .. 135

Circumferential distribution of fibre, sheet and sheet-normal stretch at
equatorial midwall locations shown on the right at end-systole. The
numbers on the horizontal axis refer to Gauss point locations in the se-
quence around the heart shown by the figure on the right. Note that
strain components at locations 1,2,17,18 are omitted from the plot be-
cause the fibre orientations are not in the circumferential direction. . . . 136

Base-apex distribution of fibre stretch in the subepicardium, midwall
and subendocardium at end-systole. . . . . .. ... .. ... .. ... 136

Transmural local refinement of the LV freewall. . . . . . . . ... ... 138

Gauss point fibre strains the equatorial lateral LV free wall at end-diastole.
Refinement of the mesh yields little change in the predicted strains. (The
sampling locations are connected linearly to clarify the data; the strains

do not vary linearly between the Gauss points). . . . .. ... ... .. 139

Diagram of the isolated arrested heart preparation used to study passive
mechanics of the infarcted left ventricle. . . . . . ... ... ... ... 145

The fitted finite element model of the infarcted LV of specimen scp04
and the meshed infarction. The infarct mesh protrudes from the ventric-
ular mesh slightly because each surface was fitted independently. The
specimen is 62.25 mm from apextobase. . . .. ... ... ... ... 151

The material parameter texture fields for the spatially varying param-
eters Cy4, C5 and Cs. The texture fields are defined from 0 to 1, zero
being at the endocardium and 1 at the epicardium. The parameter value
texture field is scaled to span the extent of the model to which it applies
and can span multipleelements. . . . . ... ... ... ... ..., . 153



LIST OF FIGURES XiX

7.4

7.5

7.6

7.7

7.8

7.9

7.10

711

7.12

7.13

7.14

Material parameter fields are represented as textures that are scaled across
the heart wall. The material parameter texture fields are evaluated at the
embedded grid points then interpolated to the Gauss points. . . . . . . . 154

Grid point specification of material properties. The constitutive param-
eter C, is plotted on the grid points. The points within the infarct are
plotted slightly larger. . . . . . . .. .. .. ... .. .. ........ 156

Strains in the noninfarcted myocardium using the parameters listed in
Table 7.1 along with the experimentally measured strains. The normal
strain components predicted by the model agree reasonably well with
the experimental data, with the exception of the longitudinal strain com-
ponent. . . . .. 158

Sensitivity of model infarct strains to variation of the normal myocardium
properties via the C; constant. The percentage transmural depth is mea-
suredontheabscissa. . . . . .. .. ... ... ... 160

Sensitivity of model infarct strains to variation of the normal myocardium
properties via the Cy constant. The percentage transmural depth is mea-
suredontheabscissa. . . . . ... ... . ... ... ... . ... ... 161

Optimised model and experimental pressure strain relationships within
theinfarct. . . . . . . . . . ... 162

Generated sheet field for use with the pole-zero constitutive law, +45
degrees at the epicardial surface to -45 degrees at the endocardial surface
with respectto theradial axes. . . . . . ... ... ... ... ..... 164

Experimental strains for normal myocardium and the predicted strains
using the pole-zero constitutive law. . . . . .. .. ... ... ..... 165

The stress strain relationships of the fibre axis term in the pole-zero law
for normal and infarcted myocardium. . . . . ... ... ... ... .. 167

Transmural sheet-normal axis pole position distribution, 0.7 in the subepi-
cardium and 1.0 at the midwall 0.9 at the subendocardium. . . . . . .. 168

Predicted and experimental strains within the infarct with increasing
CaVILY PreSSUIE. . . . v v o o o e e e e e e 169



XX

LIST OF FIGURES

7.15 The anatomical porcine model with an infarcted region and localised
refinement. . . . . . .. 173

7.16 Circumferential distribution of fibre, sheet and sheet-normal stretch at
equatorial midwall locations shown on the right for the healthy and in-
farcted models. The infarct element is shaded in the diagram on the

A.1 The fibre distribution model: orientation of each fibre family about its
mean orientation. . . . . .. ... 178

A.2 Kinematic analysis of a typical deforming fibre. . . . . . .. ... ... 179

A.3 Kinematic analysis of a fibre during simple shear. . . . . ... ... .. 182



List of Tables

4.1

4.2

4.3

5.1
5.2
5.3
5.4

6.1

6.2

7.1
7.2

Model parameters for the closed form and FE analyses presented in Fig-
ure 4.1. The material is Mooney-Rivlin. . . ... ... ... ......

Material properties of myocardium for the pole-zero constitutive law
used in the canine model. Note that the poles, a,g, and curvatures, b,g,
are dimensionless, but the coefficients, k., have units of stress.

Initial fibre extension ratios applied to model residual strain in the pas-
sivemyocardium. . . . . ...

Summary of valve orifice fitting results. . . . . . . ... ... ... ..
Geometric degrees of freedom . . . . . . ... ... L.
Fibre field fit RMSerrors. . . . . . . . . . . .. .. .. ... ... ...

RMS errors of sheet specimen geometricfit. . . . . ... ... ... ..

Material properties of myocardium for the pole-zero constitutive law
used inthe porcinemodel. . . . . ... .. ... . ... ... ...

Initial fibre extension ratios applied applied to model residual strain in
the passive myocardium. . . . . . . . ... ...

Structural constants for normal myocardium. . . . . . ... ... ...

Material properties of myocardium for the pole-zero constitutive law
used inthe porcinemodel. . . . ... ... ... ... L.

XXi

71



XXii LIST OF TABLES




Glossary of Symbols

{Y;}

i) e} {87}

By, B

x, {zi}

X, {Xnm}
F, {Fy}
R, {R1}
U, {U}
C, {Cun}
{Ai}

L, I, I
E, {Eun}
Eun)

¥, {0}
e

S, {ij}
T, {7V}
J

Py Po

t, {t'}
b, {v'}
v, {v'}
f,{/'}
f, {7}

Global rectangular cartesian coordinate system
Base vectors for the rectangular cartesian coordinate system

Undeformed and deformed configurations, respectively
Rectangular cartesian coordinates of a point in B
Material coordinates of the point x in By
Deformation gradient tensor

Orthogonal rotation tensor

Right stretch tensor

Right Cauchy-Green or Green deformation tensor
Principal extension ratios (eigenvalues of U)
Principal invariants of C

Lagrangian or Green strain tensor

Physical Green strain components

Cauchy stress tensor

Physical Cauchy stress components
First Piola-Kirchhoff stress tensor
Second Piola-Kirchhoff stress tensor
Jacobian for coordinate transformations
Material densities for deformed and undeformed configurations, respec-
tively

Internal stress or traction vector
External body force vector

Velocity vector

Acceleration vector

Unit normal vector to a given surface

xXxiii



XXIV GLOSSARY OF SYMBOLS
ov, {ov;} Virtual displacement vector
s, {s'} External stress vector
w.W Strain energy function
SMN §M 5y Kronecker delta (1 for M = N; 0 otherwise)
P Hydrostatic pressure (scalar) field
C1, Co Mooney-Rivlin constitutive paramters
D(appl) Applied surface pressure (physical stress)
r Position vector of a point p (x) in B
R Position vector the same material point P (X) in By

Displacement vector (u = r — R)

Spatial curvilinear reference coordinates

Covariant and contravariant base vectors for the 8, -reference coordinate
system

Covariant and contravariant metric tensors for the 6,-reference coordi-
nate system

Microstructural material coordinates with respect to anatomically rele-
vant axes

Covariant and contravariant base vectors for undeformed v,-material
coordinates

Covariant and contravariant base vectors for deformed v,-material co-
ordinates

Covariant and contravariant metric tensors for undeformed v,-material
coordinates

Covariant and contravariant metric tensors for deformed v, -material co-
ordinates

Covariant derivative of « with respect to the v,-material coordinate
Christoffel symbol of the second kind

Finite element material coordinates 0 < &3, < 1

Covariant and contravariant base vectors for undeformed &,,-material
coordinates

Covariant and contravariant base vectors for deformed &,,-material co-
ordinates
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{G( )N}, { MN} Covariant and contravariant metric tensors for undeformed &,,-material

{9 } {9@ }

A

v,

w

(%),
d

H

a, B,y
aiy, G22, (33
a12, A13, Q23

kaogp

bags

Fg' {FQNM}
A%, A0 N0

[Ca™]
Ty
Tref

C50

[C aactn]

coordinates

Covariant and contravariant metric tensors for deformed &,,-material
coordinates

Lagrange basis function

Hermite basis function

Scale factor between the arc-length, s;, and the finite element coordi-
nate, &;, at element node n (no sum on 7)

Harmonic mean

Gaussian guadrature points and weights, respectively

Virtual nodal displacements

Hydrostatic pressure interpolation functions

Element parameters for the hydrostatic pressure field

Jacobian of derivatives of residuals with respect to the solution variables

Fibre, imbrication and sheet angles, respectively

Limiting strains or poles for axial modes of deformation

Limiting strains or poles for shear modes of deformation

Linear weighting coefficients for terms of the pole-zero strain energy
function

Curvature parameters for terms of the pole-zero strain energy function
Growth tensor used to define the residually stressed state

Initial extension ratios for the fibre, sheet and sheet-normal axes, re-
spectively

Active tension developed by myocardial fibres

Intracellular calcium concentration

Actively developed isometric tension

Isometric tension at resting length and saturating [Ca®*],

Slope of the A-T, relation, normalised by the resting isometric tension
(Tol5=1)

[Ca”"] . at which T; is 50% of its maximum

Hill coefficient for the sigmoidal dose-response relation

[Ca®"], at which activation is maximal

activation parameter to determine [Ca®*].



XXVi GLOSSARY OF SYMBOLS

Eys, E.., E,, fibre, cross-fibre and radial axial Green strains, respectively
Ey., Ey,, E..  Fibrelcross-fibre, fibre/radial and cross-fibre/radial shear Green strains respectively

C; fibre, cross-fibre and radial axial Green strains, respectively



Notation

e This thesis uses the Einstein summation convention, where repeated indices im-
plies summation over the individual components. For example a vector dot prod-
uct, in N dimensions, may be written:

N
aibi =a-b= Zazb,
i=1
If an index is in parenthesis then summation is not implied. For example:

Clel ifi=1
aibiy = .
a2b2 ifi=2

e Mathematical variables represented by bold lowercase letters generally refer to
vector quantities, while bold uppercase letters refer to tensor quantities, except
where noted.

e In general, this thesis uses lowercase indices when dealing with coordinates in
the deformed state and uppercase for coordinates in the undeformed reference
state. Moreover, Roman letters generally refer to spatial coordinates, while Greek
characters refer to material coordinates.

XXVii
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Chapter 1
| ntroduction

The heart is a complex four chambered organ whose role is to pump blood throughout
the body. In a typical person’s life of 75 years their heart will beat over 3 billion times,
pumping over 200 million litres of blood to supply the body’s nutrient needs. Heart
failure is the leading cause of non-accidental death in the industrially developed world
and by 2010 the same will be true in developing countries (American Heart Association
2002).

Although vast resources have been dedicated to heart research for many years, our
knowledge of normal cardiac function is far from complete. The quantity and com-
plexity of data being acquired both clinically and in research laboratory environments is
increasing as instruments become more sophisticated. Computer models are becoming
necessary to filter, present and interpret the data. But more importantly computer mod-
els can be also be used to simulate cardiac behaviour and predict quantities that cannot
be measured, such as mechanical stress in the beating muscle.

The heart continuously remodels itself in order to meet the demands upon it. The me-
chanical loading and deformation behaviour of an unhealthy heart varies from that of
a normal heart. The remodelling responses vary depending upon the loads and are not
well understood. One of the most common heart problems is myocardial infarction
(described in detail below). The onset of myocardial infarction starts a remodelling re-
sponse that changes the mechanical properties of the heart wall. The response is often
not successful. The mechanical rupture of myocardial infarcts is the leading cause of
in-hospital cardiac related deaths in the United States. Knowledge of the remodelling
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response is essential to diagnosis and prescription of the optimal treatment.

In this thesis a new porcine heart model is developed along with tools to investigate the
mechanical behaviour of infarcted myocardium and its effect on ventricular function.

The ventricular models developed and presented in this thesis build upon a solid and ex-
tensive foundation of mathematical principles and computational techniques contributed
to by many researchers in the Auckland Bioengineering Research Group. The follow-
ing two chapters, 2 and 3, present those techniques. Chapter 4 provides a review of the
cardiac models developed to date and is the starting point for the modelling work com-
pleted in this thesis. A new model of the porcine ventricles is developed in Chapter 5
followed by its use to simulate the cardiac cycle in Chapter 6. Finally, Chapter 7 devel-
ops the techniques for investigating the effect of myocardial infarction upon ventricular
mechanics and applies them to the new porcine ventricular model.

Appendix D includes an article accepted for publication that stems from the work com-
pleted for this thesis.

This chapter provides an overview of cardiac anatomy and function along with a de-
scription of myocardial infarction.

1.1 Cardiac Anatomy and Function

1.1.1 Gross Structure

Figure 1.1 shows the anatomy of the four heart chambers of a human heart. The two
large lower chambers are the left ventricle (LV) and right ventricle (RV). The two
smaller upper chambers are the left atrium (LA) and right atrium (RA). The thin-walled
atria act as low pressure blood reservoirs for the ventricles which are the predominant
pumping mechanisms.

The atria are connected to their respective ventricle via the atrioventricular valves which
ensure blood flows from the atria into the ventricles and not the reverse. The left atrial
valve is called the mitral valve and is composed of two leaflets (bicuspid). The valve
from the right atrium, the tricuspid valve, has three leaflets. The outflow tracts to the
great arteries are connected to the ventricles via the other two semilunar valves. The
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left ventricle pumps blood up the aorta though the aortic valve which prevents it re-
turning. Similarly the right ventricle pumps blood out the pulmonary artery though the
one way pulmonary valve. Although the semilunar and atrioventricular valves perform
similar functions, their mechanisms are quite different. The free edges of the atrioven-
tricular valve cusps are connected by fibrous attachments (chordae tendineae) to finger
like projections of muscle from the heart wall called papillary muscles. The aortic and
pulmonary valve cusps have thick tendinous fibres along their free edges.

Heart muscle tissue is called myocardium. Atrial and ventricular myocardium is sepa-
rated by the basal skeleton (also known as cardiac skeleton, base or basal ring). The
basal skeleton is a fibrous framework formed by the rings of the four valves and sur-
rounding connective tissue.
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FIGURE 1.1: A cross-section of the heart taken though the four major chambers. Repro-
duced from Netter (1997).
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1.1.2 Microstructure

The myocardium is largely comprised of a framework of connective tissue and cells, the
surrounding extracellular space is fluid-filled. Cardiac muscle cells, called myocytes, are
typically cylindrical with lengths between 80 to 100 m and diameters ranging from 10
to 20 xm. At the turn of the century the heart was viewed as an assembly of discrete fibre
bundles originating at the base and spiraling towards the apex (MacCallum 1900, Mall
1911). This qualitative description was generally accepted until Hort (1957) and Streeter
& Bassett (1966) made the first quantitative measurements of the fibre angle throughout
the heart wall. They found a smooth transmural variation of myocyte orientation, which
led to the predominant view that the myocardium is a single muscle mass that is more
appropriately described as a continuum than as discrete muscle bundles. Subsequently,
more detailed studies (Streeter, Spotnitz, Patel, Ross & Sonnenblick 1969, Armour &
Randall 1970) have confirmed this view for multiple spieces, including human hearts
(Fox & Hutchins 1972, Greenbaum, Ho, Gibson, Becker & Anderson 1981). However,
none of these studies sampled at more than eight sites on a single heart, nor did they
refer the muscle fibre architecture to the ventricular geometry, so the data only provided
a limited and essentially qualitative description of the ventricular fibre orientation.

The most thorough quantitative study to date of myocardial microstructure is that of
LeGrice (1992), who progressively removed fine layers of myocardium from a mounted
intact canine heart preparation. Muscle fibre orientation was measured together with
the absolute coordinates at a large number of sites through successive layers. LeGrice
also developed a method of drying thin transmural segments that exposed a transmural
laminar organisation of the cardiac myocytes. These techniques are described in further
detail in Sections 5.1.1 and 5.1.2 where they were used again to acquire data for this the-
sis. More recently the use of scanning electron microscopy (SEM) to image ventricular
specimens has shown myocardial sheets are formed by layers of myocytes tightly cou-
pled by endomysial collagen and about 4 cells thick; see Figure 1.2 (LeGrice, Smaill,
Chai, Edgar, Gavin & Hunter 1995). The sheets are separated by cleavage planes and
coupled via an extensive perimysial extracellular connective tissue network. There is
also branching between layers with muscle bridges one to two cells thick. On the basis
of these and other observations the conceptual model of myocardial architecture shown
in Figure 1.3 has been developed.

Biaxial tension tests on thin sections of ventricular myocardium (Smaill & Hunter 1991)
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FIGURE 1.2: Top: SEM of ventricular myocardium sectioned parallel to the epicardial
surface. Bottom: SEM of ventricular myocardium sectioned transverse to
the myocyte axis. Capillaries and perimysial collagen can also be seen.
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muscle fibre

Collagen

FIGURE 1.3: Schematic of myocardial microstructure illustrating the bundling of mus-
cle fibres into sheets (Modified from LeGrice 1995).
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have revealed highly nonlinear, anisotropic stress-strain behaviour which is typical of
most soft biological tissues. The stress-strain properties along each of the microstruc-
turally relevant directions are quite different, reflecting in part the organisation of colla-
gen relative to these three axis. Figure 1.4 schematically summarises the typical stress-
strain behaviour of myocardium when stretched along each of the three microstructural
axes. The important feature of the response is the different limiting strain for elastic
behaviour between each of the three axes.

axial tension fibre sheet sheet-normal
axis  axis axis

axial strain

a1 a2 as

FIGURE 1.4: Typical nonlinear stress-strain response of ventricular myocardium. Note
the highly nonlinear behaviour as the elastic limits are approached.

When the tissue is stretched along the fibre direction the limiting extension ratio is about
1.3, relative to a resting sarcomere length of approximately 1.95 pm for the unloaded
muscle. The limiting extension ratio for the sheet axis is approximately 1.5. When
stretched in the sheet normal direction very little tension is developed below an exten-
sion ratio of 1.5, but increases rapidly above this and irreversible damage is occurs when
this ratio exceeds about 1.7 (Hunter, Nash & Sands 1997).

Variations in the axial limiting strains can be explained by the organisation of the extra-
cellular connective tissue matrix. The high fibre stiffness is probably due to intracellular
titin protein together with the tightly bound endomysial collagen coils that surround in-
dividual myocytes (Robinson, Geraci, Sonnenblick & Factor 1988a). As the tissue is
stretched along the fibre axis, these coils straighten and it is the taut length of the colla-
gen that determines the limiting strain (MacKenna, Omens & Covell 1996, MacKenna,
Omens, McCulloch & Covell 1994). In contrast the relatively low sheet-normal stiff-
ness is most likely to be due to the sparse array of perimysial collagen links in the
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cleavage planes between myocardial sheets (LeGrice, Smaill, Chai, Edgar, Gavin &
Hunter 1995).

Residual Strain and Stress in the Ventricular Wall

The ventricular wall in the absence of external loads is not completely stress free. Omens
& Fung (1990) demonstrated this by radially cutting an equatorial cross-sectional ring,
and observing how it sprang open into an arc when the so-called residual stress was
relieved. Several studies suggest that the residual stresses give rise to more uniform
transmural distributions of end-diastolic myocardial stress (Guccione, McCulloch &
Waldman 1991, Nevo & Lanir 1994, Rodriguez, Omens, Waldman & McCulloch 1993).
Although, during systole, Guccione, Costa & McCulloch (1995) found that the resid-
ual stresses were negligible compared to the large stresses produced by the contraction
mechanisms, Rodriguez et al. (1993) concluded that residual stress may significantly
impact systolic function by affecting end-diastolic sarcomere length and the subsequent
force of active contraction.

1.1.3 Cardiac Function

The heart contains a unique electrical conduction system which provides a coordinated
rhythmical electrical wavefront though the myocardium. At the wavefront each muscle
cell is excited in turn, generating contractile forces. Activation normally begins spon-
taneously in the pacemaker cells of the sinoatrial (SA) node, which lies between the
vena cava and the right atrium (see Figure 1.1). From the SA node, the activation wave
spreads firstly though the RA followed by the LA causing them to contract and pump
blood into their respective ventricles, before collecting at the atrioventricular (AV) node.
The AV node is the only electrical pathway between the atria and the ventricles, it con-
ducts slowly allowing enough time for the atrial blood to be pumped into the ventricles
prior to ventricular contraction. The ventricular myocardium is activated via the AV bun-
dle (otherwise known as the common bundle, or bundle of His), which bifurcates into
left and right bundle branches at the top of the interventricular septum. Both branches
travel down the septum and curl around the apical regions of their respective ventricles.
From there the bundles divide into networks of fast conducting Pukinje fibres, which
spread over and deliver the electrical impulse to the inner surface of the ventricles, the
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endocardium. The activation wavefront then travels to the outer myocardium, the epi-
cardium.

In terms of mechanical function the cardiac cycle has two major phases, ventricular
systole which is the period of contraction, and ventricular diastole in which the heart
relaxes and fills again ready for the next cycle. The Wiggers diagram in Figure 1.5
illustrates the relationship between the activation wavefront and the phases of the car-
diac cycle. At the start of systole the ventricular pressure begins to rise due to atrial
contraction. Following atrial contraction the mitral and aortic valves close, prevent-
ing any change in blood volume in the ventricles. The activation wavefront propagates
though the ventricular myocardium causing the cells to produce contractile force which
increases the ventricular pressure. This phase is referred to the as the isovolumic con-
traction phase and ends when the ventricular pressure exceeds that in the arteries and the
aortic and pulmonary valves open. The following sytolic phase is called rapid ejection
as the blood surges with an abrupt decrease in ventricular volume. After the rapid ejec-
tion phase there is a longer period of reduced ejection as the aortic pressure declines.
The remaining systolic interval is called protodiastole which ends with the closure of
the semilunar valves.

Following systole, the diastolic phase begins with a period of isovolumic relaxation,
during which ventricular pressure decreases. The atrioventricular valves open when
the ventricular pressure falls below the atrial pressure, and results in the rapid filling
phase during which the ventricular walls rebound elastically from their contracted and
compressed state. This is closely followed by the slow filling phase known as diastasis,
corresponding to a gradual increase in atrial and ventricular pressures. The final phase
of ventricular diastole coincides with atrial systole, which gives a final surge of blood
into the ventricles before the atrioventricular valves close.

1.2 Myocardial Infarction

The heart also requires its own continuous supply of blood for oxygen and metabolic
fuel (West 1985), which is delivered by the coronary arteries. Occlusion or obstruc-
tion of a coronary artery causes impaired function in the region supplied by that vessel
within seconds. Occlusion is often caused by coronary artery disease in which choles-
terol forms deposits inside the arteries of the heart (Menotti & Lanti 2003). After 15
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FIGURE 1.5: Wiggers diagram illustrating the eight primary phases of the cardiac cy-
cle. The top three traces show the pressure in the aorta, LV and atria in
millimetres of mercury. The following trace represents the LV volume.
The lower two traces indicate the relative timings of the sounds heard via
a stethoscope, and an ECG trace. The Wiggers diagram illustrates the re-
lationship between the electrical wave in the myocardium, the resultant
mechanical deformation and the consequential change in pressure in the
heart chambers. Reproduced from Katz (1992).
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minutes permanent damage, or myocardial infarction begins. Approximately 1.5 mil-
lion people experience myocardial infarction in the Unites States each year (American
Heart Association 2002). Of those, more than a third die, accounting for one quarter
of all deaths in that country. Sixty percent of patients die within the first hour, usually
before reaching hospital. Their deaths are usually because the myocardial infarct has
interrupted the normal coordinated electrical activation of the heart muscle. The un-
coordinated electrical activations, called arrhythmias, can generally be controlled once
the patient is hospitalised. Mechanical rupture of the wound is the leading cause of
in-hospital mortality.

If the patient is fortunate enough to survive the initial event, their long term chances of
survival depend on the healing of the infarct and the remodelling of both the infarct and
the remaining myocardium.

In the days and weeks following myocardial infarction the damaged area undergoes
necrosis, the death and removal of muscle cells, followed by fibrosis, the building of
collagen fibres. The collagen content increases steadily for six weeks or more. During
the remodelling process the size of the infarct may increase or decrease. Local stretching
and thinning of an infarct increases the surface area of the wound contributing to both
cardiac rupture and to overall dilation of the left ventricle. Progressive decreases in
the size of infarcts have also been reported, indicating that scar contraction may occur
similar to that observed in healing skin(Fishbein, Maclean & Maroko 1978).

Once the myocardial tissue is damaged, the contractile function is permanently impaired
(Akaishi, Weintraub, Schneider, Klein, Agarwal & Helfant 1986). The key structural
component of the infarcted region, collagen, is a very stiff protein(Fung 1981). Hence
the increase of collagen within an infarct results in the infarct being passively stiffer
along the collagen fibre directions than the surrounding myocardium (Holmes 1995).

1.3 CMISS

The numerical methods developed for this thesis were implemented within the CMISS
software package. CMISS is the product of 30 years of collective work by bioengineer-
ing researchers and their graduate students at the University of Auckland. CMISS is a
modular mathematical modelling environment that includes finite element, boundary el-
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ement, collocation methods and visualisation modules. The name CMISS is an acronym
for Continuum Mechanics, Image analysis, Signal processing and System identification.

The computational kernel of CMISS is written primarily in Fortran and the visualisa-
tion module in C. The CMISS command language module is a Perl interpreter. CMISS
currently runs on many platforms including SGI’s Irix, IBM’s Aix, Sun’s Solaris, HP/-
Compaq’s Tru64 and Linux on the x86 and ARMA41 architectures. The development
work for this thesis was completed on an SGI 02, the computational work was carried
out on SGI Origin 3400 and IBM pSeries 690 multiprocessor supercomputers. Exam-
ples of the CMISS command and input files are included in Appendices B and C. CMISS
is currently available free for academic use from www. cm ss. or g. The data and in-
put files required to complete the simulations performed in this thesis are also available
from that site.

Within the period of this work, simulations were performed on several generations of
computers from different vendors. Since these machines are not directly comparable,
neither are the computational times taken for different tasks completed on different ma-
chines. Therefore the timing information within this thesis is presented together with
the machine used to indicate the computational magnitude of the task.

1.4 Experimental Work

The Auckland University Bioengineering Institute includes members of, and works
closely with, the Department of Physiology at the University of Auckland’s School of
Medicine. The surgical and experimental work detailed here was performed in the De-
partment of Physiology by Dr lan LeGrice and co-workers with the approval of the
University of Auckland Animal Ethics Committee.



Chapter 2

Finite Defor mation Elasticity

Continuum mechanics deals with the movement of materials when subjected to applied
forces. The motion of a continuous and deformable solid can be described by a continu-
ous displacement field resulting from a set of forces acting on the solid body. In general,
the displacements and forces may vary continuously with time, but for the present pur-
pose a two-state quasi-static analysis will be discussed. The initial unloaded state of
the material is referred to as the reference or undeformed state as the displacements are
zero everywhere. The material then reconfigures due to applied loads and reaches an
equilibrium state referred to as the deformed state. The concepts of strain, a measure
of length change or displacement gradient, and stress, the force per unit area on an in-
finitesimally small plane surface within the material, are of fundamental importance for
finite deformation elasticity theory.

The equations that govern the motion of deformable materials can be derived in the
following four steps.

1. Kinematic relations, which define the components of the strain tensor in terms
of displacement gradients, and, for incompressible materials, define the incom-
pressibility constraint.

2. Stress equilibrium, or equations of motion derived from the laws of conservation
of linear momentum and conservation of angular momentum

3. Constitutive relations, which express the relationship between stress and strain

13
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and must be established from experimental measurement, subject to certain theo-
retical restrictions.

4. Boundary conditions, which specify the external loads or displacement con-
straints acting on the deforming body.

The first two steps define relationships which hold for all materials and will be detailed
in Sections 2.1 and 2.2, respectively. The third step is concerned with relations de-
termined experimentally for a particular material and is explained in Section 2.3. The
application of boundary constraints is introduced in Section 2.4 and will be dealt with
further in Chapter 3, which describes the solution of the governing equations. In the first
instance equations and quantities of interest are referred to rectangular cartesian coordi-
nates. It is often convenient, however, to utilise other systems of coordinates. Section
2.5 extends the theory to refer to general curvilinear coordinates.

2.1 Kinematic relations

The key to analysing strain in a material undergoing large displacements and deforma-
tion is to establish two coordinate systems and the relationship between them. The first
is a material coordinate system to effectively tag individual particles in the body. The
second is a fixed spatial coordinate system. Deformation is quantified by expressing
the spatial coordinates of a material particle in the deformed state, as a function of the
coordinates of the same particle in the undeformed state. Length changes of material
segments can then be determined from the known deformation fields and thus strain
tensors may be calculated.

2.1.1 Material versus spatial coordinates

Deformation is defined by the movement of material particles, which can be thought
of as small non-overlapping quantities of material that occupy unique points within the
undeformed body. For this reason a method of labelling the particles is required. One
convenient method is to define each material particle, X, by a set of rectangular cartesian
coordinates, (X; X2 X3), in the undeformed body. As the body deforms the coordinate
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axes deform with it and so orthogonal coordinate axes in the undeformed state will not in
general be orthogonal in the deformed configuration. These coordinates are referred to
as material (or Lagrangian) coordinates because as the body deforms, a unique material
particle is always identified by the same coordinate values.

Each point in space may be defined by a set of spatial (or Eulerian) coordinates relative
to a fixed reference cartesian coordinate system. A particular spatial point, x, with
coordinates, (xzizox3), may identify different material particles as they pass through
the point, x, during the deformation. Conversely, a fixed material particle, X, may
move to several spatial positions during the deformation. It should be noted that the
material coordinates, X, may be chosen to coincide with the rectangular cartesian spatial
coordinates, x, in the undeformed state.

2.1.2 Deformation and strain

To quantify the deformation of a material it is necessary to consider the change in length
of material segments, or sets of adjacent material particles within the body. In Figure
2.1, an infinitesimal material line segment, dX, in the undeformed body, By, has com-
ponents dX !, dX? and dX? with respect to global rectangular cartesian coordinates
(Y1, Y5,Y3). In the deformed body, B, the same material particles that constituted dX
have reconfigured (due to applied loads) into dx, which has components dz*, dz? and
dx? with respect to (Y1, Y5, Y3). The deformation is quantified by the deformation gra-
dient tensor, which carries the line segment, dX, into dx = FdX, or in component
form,

dz® = Fi,dX™. The deformation gradients are defined in Equation 2.1.

= ox (2.1)

Any deformation can be split into two parts: a rigid body rotation and a stretch. This
polar decomposition can be represented mathematically by considering the deformation
gradient tensor to be a product, F = RU, of an orthogonal rotation tensor, R, and
a symmetric positive definite stretch tensor, U. Thus the undeformed line segment
components d X are stretched into dy” = UL dX™ before being rotated into dz® =
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FIGURE 2.1: The deformation gradient tensor, F' carries line segment dX into dx.

Rt dy”. Equivalently the line segment could be rotated first and then stretched, but
for the present purpose it is more convenient to interpret the stretch in terms of material
coordinates and then relate the stretched material lines to the spatial coordinates through
the rotation tensor, R. For further details on polar decomposition refer to (Atkin &
Fox 1980, Sec. 1.4) or (Spencer 1980, Sec. 2.5). It is important to note here that the
stretch tensor, U, contains a complete description of the material strain, independent of
any rigid body motion.

Strain in a deforming body is determined by measuring segment length changes. Equa-
tion 2.2 uses Pythagoras to determine the arc length of the deformed segment dx.

ds* = dr'ds’ = dx"dx = (FdX)'FdX = dX"F'FdX = dX'CdX (2.2)

where

C:FTF:{aCUk 6xk}

2.
00Xy 0Xy (23)

Equation 2.3 defines Green’s deformation tensor or the right Cauchy-Green deforma-
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tion tensor? (Atkin & Fox 1980, p. 12), which indicates how each component of the
undeformed line segment dX contributes to the squared length of the deformed line
segment dx. The deformation tensor C is related to the stretch tensor U in Equation 2.4
using the polar decomposition theorem.

C =F'F = (RU)’RU = U'R'RU = UTU = U? (2.4)

since R is orthogonal (R” = R™') and U is symmetric. Note that like U, C is sym-
metric and positive definite and that both Uand C are expressed in terms of material
coordinates.

One method for computing the stretch tensor U from the deformation gradient tensor F
is to first calculate C = FTF, then calculate the eigenvalues ();)%, (\2)” and (X3)?, and
orthogonal eigenvectors s;, s, and s3 of C using a similarity transformation (Fox 1967,
p. 239). U may then be constructed using 2.5.

(M) 0 0 A 000

C=QAQ"=Q| 0 () 0 |[QF U=0A0"=Q| 0 X 0 |QF
0 0 (As)? 0 0 Xs

(2.5)

where the columns of €2 are the orthonormal eigenvectors of C and are the principal
axes of stretch, and \; are the principal stretches (there are no shear terms when the de-
formation is referred to the principal axes). Note that since C is a real symmetric matrix,
the eigenvectors are orthogonal and therefore €2 is an orthogonal matrix, (QTQ = I). In
essence, the similarity transformation diagonalises C and the positive square root of the
resulting diagonal matrix is used to compute the stretch tensor U.

The two orthogonal tensors R and €2, derived from F, have quite different physical
interpretations. R. describes the rigid body rotation component of the deformation with
no information about the material stretching. On the other hand, the columns of (2 are
the orientations of the principal stretch axes relative to the material coordinates.

In three-dimensions the deformation tensor is a 3 x 3 matrix. There are three invariants
(scalar combinations of the components of C, which remain unchanged under coordi-

1The left Cauchy-Green deformation tensor B = FF 7 is also defined, but is not useful here since it is
not independent of rigid body rotation.
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nate rotations at a given state of deformation. These principal invariants are given in
Equation 2.6 (see (Atkin & Fox 1980, Sec. 1.4)).

L=taC L=:[tC)’—txC?  Iy=detC (2.6)

N —

where the trace of C, denoted by trC, is the sum of the diagonal terms, C,,;,, and the
determinant of C, detC, is a measure of volume change.

The similarity transformation of 2.5 may be used to express the invariants of C in terms
of the principal stretch ratios as in Equation 2.7.

I, = ()\1)2 + ()\1)2 + ()‘3)2
L = (A)2 (M) + (M) (Xs)? + (As)? (A1)?
I = (M) (M) (2.7)

Equation 2.8 is the additional kinematic constraint that must be imposed on the defor-
mation field for incompressible materials. This is discussed further in Section 2.3.

detC = Iy = (M AA3)” =1 (2.8)

Equation 2.9 shows how the Lagrangian Green’s strain tensor, with respect to rect-
angular cartesian coordinates, is related to the right Cauchy-Green deformation tensor
(Spencer 1980, p. 72).

E=-(C-1) (2.9)

N =

2.2 Stress equilibrium

Having established the kinematic framework for finite deformation analysis, the next
step is to consider the governing force and momentum balances which follow from
Newton’s laws of motion. In order to apply these equations to materials which undergo
large deformations, it is necessary to define stress tensors and the way they enter into
the governing equations.
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2.2.1 Stress tensors

Stress is defined as the force per unit area acting on an infinitesimally small plane sur-
face. If the line of action of the force is normal to the plane then a normal or axial stress
results, whereas a shear stress arises when the line of action of the force is tangential to
the plane. The quantities of force and area can be referred either to the reference (unde-
formed) or deformed configurations, which leads to three important ways of represent-
ing stress in a deforming body, namely using the Cauchy, first or second Piola-Kirchoff
stress tensors. Refer to Malvern (1969, p. 220) for a more complete explanation.

1. The Cauchy stress tensor, denoted o/, represents the force measured per unit
deformed area acting on an element of surface in the deformed configuration. The
first index indicates the direction of the normal to the surface on which o% acts
and the second index indicates the direction of the stress component. It should be
noted that the Cauchy stress tensor is symmetric for non-polar materials (see Sec-
tion 2.2.2) and that in rectangular cartesian coordinates, o/ are also the physical
components of stress.

2. The first Piola-Kirchhoff stress tensor, denoted s*7, represents the force acting
on an element of surface in the deformed configuration but measured per unit
undeformed area. The first index is written in uppercase as it refers to the normal
of the surface in the undeformed state, and is thus a material coordinate index. The
second index denotes the direction of the force acting on the deformed material,
and is a spatial coordinate index. For this reason the first Piola-Kirchhoff stress
tensor is generally not symmetric. It is sometimes referred to as the Lagrangian
stress tensor and is often used in experimental testing where force is measured in
the deformed tissue, but the area over which it acts is measured in the undeformed
tissue.

3. The second Piola-Kirchhoff stress tensor, denoted 7% represents the force
measured per unit undeformed area, P, acting on an element of surface in the
undeformed configuration. This force may be determined from the actual force,
p, in the same way that the undeformed material vector, dX, is determined from
the deformed material vector, dx. Specifically P = F~!p just as dX = F~ldx
(Malvern 1969, p. 222). The primary use of the second Piola-Kirchhoff stress
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tensor is for representing material behaviour at a point, independent of rigid body
motion. This is discussed further in Section 2.3, which describes relationships
between stress and strain tensors at a point. The main idea here is that the second
Piola-Kirchhoff stress tensor is defined solely in terms of material coordinates,
just as for Green’s strain tensor. Note that the second Piola-Kirchhoff stresses
must be transformed into first Piola-Kirchhoff stresses for use in the equilibrium
equations, which require a spatial frame of reference.

Equations 2.10 and 2.11 define the relationships between the second Piola-Kirchhoff,
first Piola-Kirchhoff and Cauchy stress tensors.

S=JF'Y T=S(F") " =JFr's(F")"

oMi— gO%Xn i _ i OXn 0N 0Ky (2.10)
0z; 0z; 0x; 0z;
or inversely
S =TF" ¥ =IFS = %FTFT
Mi — TMNaaXLjV ol = %%SMJ — %ai?;/[TMN aa;jv (2.11)

where J is the Jacobian of the transformation from reference to deformed coordinates,
defined in Equation 2.12. Note from Equation 2.12 that the second Piola-Kirchhoff
stress tensor is symmetric whenever the Cauchy stress tensor is symmetric.-

J = detF = /T; = M\ Ao (2.12)

2.2.2 Conservation laws and the principle of virtual work

Conservation of mass

The conservation of mass principle relates the mass densities in the undeformed and
deformed bodies (denoted by p, and p, respectively) given in Equation 2.13 (Oden 1972,
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p. 15).

/podVO:/pdV: /deVo (2.13)
Vo v

Vo

Thus for arbitrary volumes, mass density for the undeformed and deformed bodies are
related using Equation 2.14.

po=dJp=1+/Isp (2.14)

Conservation of linear momentum

Following Malvern (1969, Sec. 5.3), for a given set of particles, the time rate of change
of the total linear momentum equates to the vector sum of all the external forces acting
on the particles of the set. This is expressed mathematically in Equation 2.15, where t
Is the traction vector (external surface forces per unit area), b represents the body forces
(per unit mass), and the rate of change of momentum is written in terms of the material
derivative (d/dt) and the velocity vector v.

/ tdS + / pbdV :% pvdV (2.15)
S Vv Vv

Cauchy’s formula, defined in Equation 2.16, projects the components of a stress vector t
(the force per unit area acting on some deformed surface d.S, with unit normal i = 7;i;)
onto the set of orthogonal base vectors for the rectangular cartesian reference coordinate
system, i;.

tdS = o%in;i;dS (2.16)

where o/ are components of the Cauchy stress tensor and are physical stresses, since i,
are unit vectors.

Cauchy’s formula is substituted into Equation 2.15 to form Equation 2.17, which is
appropriate for a material with constant density. Note that Equation 2.17 is written in
component form where the body force and velocity vectors have components b = b7i;
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and v = v7i;, respectively.

o - do?
S |4

Applying the divergence theorem to Equation 2.17 yields Equation 2.18.

6o

/ [a" Tl — pr] dV =0 (2.18)
8@3

J

where f7 = % are components of the acceleration vector.

If Equation 2.18 is to be valid for arbitrary volumes the integrand must vanish (it is as-
sumed here that the integrand is continuous). This results in Equation 2.19, which is the
component form of Cauchy’s first law of motion for rectangular cartesian coordinates.

0o
(%:Z-

+pb = pf? (2.19)

It is often convenient to express Cauchy’s first law of motion in terms of the second
Piola-Kirchhoff stress components as in Equation 2.20. This can be determined by
substituting Equations 2.11 and 2.14 into Equation 2.19 and assuming that there are no
spatial gradients of density. Note that the term in parenthesis is simply the first Piola-
Kirchhoff stress, s™7.

0 0z

MN i _ j
5 (T GXN) + pob? = pof (2.20)

For static equilibrium of the material, important in solid mechanics, the right-hand-side
acceleration term in Equation 2.19 vanishes, and in the absence of body forces this
relation reduces to the statement of stress equilibrium in Equation 2.21 for rectangular
cartesian coordinates.

o' 0 uy 015\
oz, 0 or X (T —aXN> =0 (2.21)
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Conservation of angular momentum

The conservation of angular momentum equates the time rate of change of the total
angular momentum for a set of particles to the vector sum of the moments of the external
forces acting on the system. For stress equilibrium of non-polar materials, this principle
is equivalent to the symmetry condition on the Cauchy stress tensor, namely ¢/ = o7
(see Malvern (1969, Sec. 5.3) or Spencer (1980, Sec. 7.5) for a full derivation). Note
that if the Cauchy stress tensor is symmetric (as is the case for the non-polar materials
being considered here), the second Piola-Kirchhoff stress tensor is also symmetric as a
direct consequence of Equation 2.10. This implies that there are only six independent
components of stress — three normal components and three shear components.

Principle of virtual work

Now consider a body of volume V" and surface S loaded by a surface traction s which is
in equilibrium with the internal stress vector t. If the body is subjected to an arbitrarily
small displacement §v, which satisfies compatibility and any displacement boundary
conditions specified on S (where v must be zero), then the principle of virtual work
can be expressed in the form of Equation 2.22 (see Malvern (1969, Sec. 5.5) or Marsden
& Hughes (1983, p. 168)).

/&&w=/t&w (2.22)

So S
where S, is the portion of the boundary that is not subjected to displacement boundary
conditions.

The virtual displacements may be resolved into components év = ¢v,i;. Cauchy’s
formula (Equation 2.16) is then substituted into the virtual work equation (Equation
2.22) to yield Equation 2.23.

/yhﬁ:/ﬂmmw (2.23)

Sa S

The right-hand-side surface integral in Equation 2.23 is transformed into a volume inte-
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gral using Gauss’ theorem (Fung 1965, p. 117) to give Equation 2.24.

] » )
/s SovdS = / ai&)j + oY 90, dv (2.24)
v a.'L'Z (3xz

Sa

Cauchy’s first law of motion (Equation 2.19) is substituted into the volume integral in
Equation 2.24 to give Equation 2.25. Moreover, Equation 2.11 is used to express Equa-
tion 2.25 in terms of the second Piola-Kirchhoff stress tensor, as written in Equation
2.26.

/Gij‘%”jdv = /p(bj — 1) 5vjdv+/s-5vd5 (2.25)

ij
\%4 14 Sa
1 Oxz; 0dv; . _
TMN _ 7 LdvV = / o — {7 5v-dV+/s-(5vdS 2.26
V/ J 0X,y 0Xy J p (¥ = 17) v, y (2.26)

To solve the virtual work equations it is necessary to evaluate the surface integral on
the right-hand-side of Equation 2.26. This is outlined in Section 2.4. The next step,
however, is to express the stress components in terms of the deformation to characterise
the material behaviour. This is addressed in Section 2.3 through the use of constitutive
relations.

2.3 Constitutive relations

Unlike the previously described kinematic relations and stress equilibrium equations
that hold for most materials, constitutive relations characterise individual materials and
their response to external loads. In the context of finite deformation elasticity, constitu-
tive equations are used to represent the behaviour of a material through empirical rela-
tionships between experimentally observed stress and strain tensors. This section will
only treat constitutive equations concerned with the mechanical behaviour of materials.

There are several important considerations which should be addressed when formulating
constitutive laws. Perhaps the most important is that they are robust enough to predict
behaviour in various experimental situations using different samples of the same type
of material. It is unreasonable, however, to expect to simulate all aspects of a material’s
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behaviour with one set of constitutive equations. For this reason the most important and
relevant behavioural features should be identified for the particular application and it is
these features that the constitutive relations should approximate. The resulting equations
will be more concise, numerically efficient and thus more suitable for use in large scale
computer models.

It is essential that constitutive laws are based on experiments using real materials, but
certain theoretical restrictions must be observed. Firstly, constitutive equations must be
independent of the choice of coordinate system, since they characterise the constitution
of individual materials and not the frame of reference from which they are observed.
However, they can be expressed in terms of components relative to different coordinate
systems. Thus rigid-body motions should play no role in the constitutive law (this is
known as the axiom of objectivity, see Eringen (1980, p. 163)). Mathematically, this
is satisfied by postulating the existence of a strain energy function, W, to be a scalar
potential that depends on the components of either the right Cauchy-Green deformation
tensor or Green’s strain tensor (defined in Equations 2.3 and 2.9, respectively). Compo-
nents of the second Piola-Kirchhoff stress tensor are given by the derivatives of W (C)
or W (E) with respect to the components of C or E, respectively. Equation 2.27 defines
the components of the second Piola-Kirchhoff stress tensor when W is expressed in
terms of Green’s strain components, E,x, referred to X ;,-material coordinates (Green
& Adkins 1970, p. 6).

1L oW = oW
TN = 2.27
2 (aEMN * 8ENM> (2.27)

Material symmetry imposes further theoretical restrictions on the form of the consti-
tutive law. Certain types of material possess no preferred direction, exhibiting rota-
tional symmetry about all directions and reflectional symmetry with respect to all planes.
These materials are isotropic. For isotropic materials, the strain energy is constant for
all orientations of the coordinate axes, or mathematically W (C) = W(QCQ"), where
Q is any constant orthogonal tensor. Thus the strain energy is an invariant function of
C. It can be shown that any invariant function of C can be expressed as a function
of the three principal invariants of C, which are defined in Equation 2.6 (see Spencer
(1980, Sec. 10.2)). This reduces the functional form of the strain energy function to
W =W(l, s, 13).
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For incompressible materials a further restriction on the form of the constitutive law
can be imposed. In this case the additional kinematic constraint 73 = 1 ( Equation 2.8)
is applied. Spencer (1980, p. 141) notes that it is not sufficient to set I3 = 1 in the
constitutive equation, since certain derivatives of W tend to infinity in the limiting case
of an incompressible material. This problem is overcome by introducing an arbitrary
Lagrange multiplier X into the constitutive equation. The unspecified strain energy term
W is limited to be a function of I;, I, only. Thus for isotropic, incompressible materials,
Equation 2.28 shows the functional form of the strain energy function.

W =W (I,I)+ (I3 —1) (2.28)

The mechanical effect of the incompressibility condition is to give rise to a reaction
stress referred to as the hydrostatic pressure (denoted by p), which does not contribute
to the deformation of the body. In other words, the addition of a hydrostatic pressure to
an incompressible elastic body indeed alters the stress, but does not in any way affect the
strain energy of the material. Equation 2.28 may be substituted into Equation 2.27 and
rearranged to give the components of stress with respect to X ,,-material coordinates,
expressed in Equation 2.29 (Spencer 1980, Sec. 10.2). Note that mgﬁN = 20MN where
dM¥ is the Kronecker delta, which is equal to one if the indices M and N are the
same and zero otherwise. In addition, the arbitrary Lagrange multiplier is chosen to

be A = —%p in the constitutive equation (Equation 2.30) to ensure that the additional

component in the diagonal terms of the stress tensor is a true hydrostatic stress.

oy _ L ( oW ow

= — poMN 2.29
2 aEMN+8ENM> p (229)

where, for isotropic, incompressible materials

oW 0w oI N oW 0l
OFEyunx OI, 0Eyn  0OI, 0FEynN

(2.30)

A suitable form of W (I3, I) must then be chosen, based on experimental observations
of the material. Certain types of rubber exhibit almost isotropic behaviour and are re-
ferred to as Mooney-Rivlin materials. Equation 2.31 characterises this type of material
using material constants (mechanical properties) ¢; and c; which must be estimated ex-
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perimentally. A subset of the Mooney-Rivlin materials are the Neo-Hookean materials,
which are characterised by setting ¢, = 0 in Equation 2.31.

W (i, L) =c (i —3)+c(la—3) (2.31)

Note that the use of (I; — 3) and (I — 3) ensures that the strain energy is zero when the
strain, E, is zero. This is demonstrated by using Equation 2.9 to show that C = I for
zero strain, in which case Equation 2.6 reducesto I; = I, = 3 and I3 = 1.

Alternatively a transversely isotropic material possesses a single preferred direction at
every point. These materials exhibit rotational symmetry about the preferred axis and
reflectional symmetry with respect to all planes containing this axis. Green & Adkins
(1970, p. 28) have extended the above approach by allowing W to depend on the strain
invariants K; and K, associated with the plane of isotropy.

A major objection to the above approaches to the formulation of constitutive equations
is that the parameters bear no direct relation to the underlying structure of the material.
An approach which incorporated parameters that directly reflect mechanical or structural
properties of the material would potentially yield a more reliable constitutive relation.
In addition, variations in material properties could be more easily understood in terms
of the effect on the behaviour of the material. Section 4.4.3 details the development of
a microstructurally based constitutive law for passive heart tissue.

2.4 Boundary constraints and surface tractions

All terms in Equation 2.26 have now been defined apart from the right-hand-side integral
involving the surface traction vector s. If external surface pressures are applied, this
integral must be evaluated for those portions of the boundary that sustain the loads. In
the absence of boundary pressures this term vanishes.

Consider a deforming surface, with unit normal n = 7;i;. If the surface is loaded by
a pressure, p.,p) (@ physical stress), then the surface traction vector has components
S = Ppp)f;i; and the right-hand-side surface integral of Equation 2.26 is evaluated
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using Equation 2.32.

/S -ovdS = /p(appl)ﬁjévjds (232)
Sa

Sa

This surface integral is then substituted into Equation 2.26 to yield the governing equa-
tions for finite deformation elasticity with respect to rectangular cartesian coordinates
given in Equation 2.33.

1 O0x; 0dv; ; ; .
/TMNj(?XJ 8X1idv: /,o(lﬂ - f’) 5UjdV+/p(appl)”j5Ude (2.33)

1% 14 So

It then remains to solve Equation 2.33 in terms of the unknown virtual displacements
dv;, subject to any displacement boundary conditions. For geometrically simple bodies
with straight-forward material behaviour, Equation 2.33 can be used in its present form.
However, for more complex shapes and material laws it is often convenient to take
advantage of different coordinate systems. Section 2.5 details how the quantities and
governing equations that have been defined thus far may be generalised for curvilinear
coordinate systems.

2.5 Curvilinear coordinate systems

A material point may be represented by coordinates with respect to a general curvilinear
coordinate system. These coordinates are related to the reference rectangular cartesian
coordinates using a set of base vectors which are unique to the particular curvilinear
coordinate system. Tensor quantities such as strain and stress can be transformed to
refer to the new system of coordinates using metric tensors, which are defined by inner
products of base vectors and represent measures of the physical lengths of coordinate
increments. Base vectors and metric tensors can thus be used to express the governing
equilibrium equations with respect to a general set of curvilinear coordinates.
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Ys3

FIGURE 2.2: Coordinate systems used in a kinematic analysis of large deformation elas-
ticity.

2.5.1 Base vectors and metric tensors

In Figure 2.2 a set of reference rectangular cartesian coordinates (z', z?, z3) define
the position of a material point p, with position vector r = xigg‘”), in the deformed
body B. gz@ = 1i; are the unit base vectors for the rectangular cartesian coordinate
system (Y1, Y5, ¥3). In the undeformed configuration By, (X', X2, X3) are the refer-
ence rectangular cartesian coordinates of the same material point P with position vector
R = X"gz(”“'). The displacement vector u of the material point is defined in equation

Equation 2.34 .

r=R+u (2.34)

For convenience, a set of reference coordinates (8, 6%, 6°) may be defined to describe

the material point p in the deformed body with respect to a general curvilinear coordinate

system. The covariant base vectors for the curvilinear reference coordinate system, g,(f),
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are defined to be the derivatives of the position vector r with respect to each of the 6
coordinates, as written in Equation 2.35 . Thus the covariant base vectors for the 8-
coordinate system are parallel to 8,-coordinate lines.

o) _ 9%i ) 2.35
8k aekgz ( . )

The components of the covariant metric tensor, denoted by gi(j‘?'), with respect to the -
coordinate system are defined to be the inner products of the covariant base vectors. The
covariant metric tensor with respect to the 6,-coordinate system is defined in Equation

2.36.

©® _ (6 _(8) _ O Oz
g‘ L= . . 3 —_— -
(] gZ g] 801 80]

(2.36)

By definition, another set of vectors {gée)} are orthogonal to {g§0>} using the relations
given in Equation 2.37.

gy g =4d (2.37)
where 5;'. is the Kronecker delta.

These vectors are referred to as contravariant base vectors and are perpendicular to
fr-coordinate surfaces. For example g?e) is normal to a (#y, 6,)-surface since it is or-
thogonal to both gY’) and gée) from Equation 2.37.

The components of the contravariant metric tensor with respect to the 6,-coordinate
system are defined in Equation 2.38.

9o = 80 B0 = Bz, 0,

(2.38)

The contravariant metric tensor may be used to relate the contravariant and covariant
base vectors using Equation 2.39. For reference, the contravariant and covariant metric
tensors with respect to the 6,-coordinate system are related using Equation 2.40 (Green
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& Adkins 1970, p. 2).

g = 9inet” (2.39)
r 0 7
gine) = & (2.40)

Material axes for anisotropic materials

Anisotropic materials possess different material properties in different material direc-
tions. It is often convenient to identify the material coordinate axes with structurally
important directions. For example myocardial tissue has a fibrous-sheet structure (see
Section 1.1.2) and it is convenient to model it as an orthotropic material with one axis
aligned with the muscle fibre direction, another with the sheet axis and the third orthogo-
nal to these two axes. Non-homogeneous materials possess different material properties
at different locations in a body. For non-homogeneous, anisotropic materials the ori-
entation of the material axes may vary with location and so it is no longer convenient
to identify the material axes in the undeformed body with the reference coordinates
(X1, Xo, X3). Instead, a new material coordinate system (vy, vo, v3) is introduced which
is aligned with certain structural features of the material. For myocardium, a natural set
of material axes are formed by identifying »; with the muscle fibre direction, v, with
the sheet direction and 3 with the sheet-normal direction.

The base vectors for the v,-coordinate system may be chosen to be orthogonal in the
undeformed state. This is convenient in myocardium, for example, where the v,-
coordinates are chosen to line up with the fibre, sheet and sheet-normal directions, which
are orthogonal in the undeformed state. However, the ensuing deformation dictates that
they are not orthogonal, in general, in the deformed configuration. For this reason it is
necessary to define base vectors and metric tensors for the v,-coordinate system in both
the undeformed and deformed states. A", A{, and a), af,, denote the base vectors
in the undeformed and deformed configurations, respectively. The metric tensors are
denoted by Afl”ﬂ), A‘(J‘f) and ag;;, a'()‘f) in the undeformed and deformed configurations, re-
spectively. Recall that subscripted indices refer to covariant quantities and superscripted
indices refer to contravariant quantities, and note that Greek symbols are used to denote
individual v, material coordinates. They are computed in an analogous fashion to those
for the 6,-coordinate system defined in Equations 2.35 and 2.40. The base vectors and

metric tensors for the v,-coordinate system are listed in Equation 2.41. Note that the
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undeformed covariant base vectors, A%, can be defined to be unit vectors by choosing
the v,-coordinates to be a measure of physical arc-length in the undeformed state.

AY = Yag® al) = Zzgl®
A?V)‘A,(Hu) - 5(5 a?u) _a(V) - 5%
s A - A A B =
Apy = Al AL = axox, @) = A A4 = Gram,
A%, = APAY at, = afjay
A A = 5 aghaly = o8
(2.41)

2.5.2 Measures of strain and stress in curvilinear coordinates

Equations 2.9 and 2.29 express Green’s strain tensor and the second Piola-Kirchhoff
stress tensor, respectively, with respect to rectangular cartesian coordinates. The ma-
terial coordinates required in these relations were chosen to align with the rectangular
cartesian coordinates in the undeformed reference state. Alternatively, stress and strain
tensors may be referred to v,-material coordinates as in Equations 2.42 and 2.43, respec-
tively, using the metric tensors for the v,-material coordinate system (Equation 2.41).
Note that if the v,-material coordinates are chosen to coincide with the rectangular
cartesian coordinates, ag’ﬂ) reduces to C,s and both Ag’g and Azj/’; reduce to dup.

_lrw 4w
Eag = () - %) (2.42)
1(oW W
T = — — ) — pA*® 2.43
2<8Ea/3+Ega) PAw) (2.43)

Cauchy’s formula for rectangular cartesian coordinates ( Equation 2.16) is generalised
in Equation 2.44 to express the components of the stress vector t acting on a deformed
surface dS, with normal n = nigéa), in terms of the components of the Cauchy stress
tensor.

tdS = t'g\dS = oVn;g\"ds (2.44)

J

For this research the constitutive law is based on the material structure (see Section
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4.4.3) and so it is convenient to compute components of the second Piola-Kirchhoff
stress tensor with respect to the undeformed v,-material coordinates, as in Equation
2.43. It is therefore more appropriate to express the stress vector in terms of the second
Piola-Kirchhoff stress components.

Nanson’s theorem ( Equation 2.45) maps the deformed spatial (world) coordinate area,
dS, into the area of the same material surface in the undeformed state, dS,, with unit
normal N = N,af,, (Malvern 1969, p. 169).

1 .
jF;nids =N,dS, or  FTndS = JNdS, (2.45)

Substituting Nanson’s theorem and Equation 2.11 into Equation 2.44 results in an alter-
native form of Cauchy’s formula, written in Equation 2.46.

tdS = T*’ FiN,g" dS, (2.46)

Equation 2.46 defines the form of Cauchy’s formula used in Section 2.5.3 to generalise
the governing equations developed in Section 2.2.2 to curvilinear coordinates.

Physical components of stress and strain in curvilinear coordinates

The components of the Cauchy stress tensor (0% in Equation2.44 ) are in general not
physical stresses since the base vectors gj(.”) are not necessarily unit vectors. To obtain
physical stress components, these covariant base vectors must be normalised and the
components of the normal n must be referred to the unit contravariant base vectors as in

Equation 2.47.
n = n;gl, = Z \ 9ty g(—\/% (no implicit summation) (2.47)
i 9(o)

where gfg)
unit contravariant base vectors, written in parenthesis. Equation 2.47 is then substituted

n; are the covariant components of the unit normal vector, relative to the
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into Equation 2.44 to form Equation 2.48.

(9)
t:E o¥ = ( ggg)ni) g](?) g”(e) (no implicit summation) (2.48)
CARRVEL0) 9jj

g

where are unit covariant base vectors.

By comparing Equation 2.48 with Equation 2.16, the physical components of the Cauchy
stresses, denoted here as o), may be calculated using Equation 2.49. Note that the ma-
trix of physical stresses is symmetric since the Cauchy stress tensor is symmetric (see
Section 2.2.2), but () are not the components of a tensor.

o) =g X (no implicit summation) (2.49)

Components of physical Green’s strain are related to the tensor components of Equation
2.42 in a slightly different manner. The relation defined in Equation 2.50 and incorpo-
rates the undeformed covariant metric tensor for the v,-coordinate system, Ag’g. Note
that like the physical stresses, the physical strain components form a symmetric matrix,
but are not (in general) tensor components.

Ep) = Eam/Ag’ﬂ)A&’Q (no implicit summation) (2.50)

Recall that earlier the base vectors of the v,-coordinate system were chosen to be or-
thonormal. In this case, the undeformed metric tensor Ag’ﬂ) consists of the components
of the identity matrix, and the Green’s strain tensor is comprised of physical strain com-
ponents. If, however, strains were to be transformed to refer to reference 6,-coordinates
(for which the base vectors are generally not unit vectors), then the tensor components
would not be physical components of strain. In this situation, physical strain compo-
nents could be computed using a relation similar to Equation 2.50 with the covariant
metric tensor gg) substituted in place of Afl”ﬂ) in Equation 2.50.
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2.5.3 Equilibrium equations in curvilinear coordinates

Cauchy’s formula for curvilinear coordinates (Equation 2.46) may be substituted into
Equation 2.15 to yield a statement of conservation of linear momentum appropriate
for curvilinear coordinates. This is written in Equation 2.51 and has been expressed
in terms of the components of the second Piola-Kirchhoff stress tensor with respect to
v,-material coordinates.

, d
/T“ﬂFgNagga)dSo—F/podeO = &/povdVo (2.51)
So Vo Vo

where Equation 2.13 has been used to transform the volume integrals to be taken over
the undeformed volume instead of the deformed volume.

The next step is to transform the surface integral in Equation 2.51 into a volume integral
using the divergence theorem (Sokolnikoff 1964, p. 264). Equation 2.52 defines the
transformation.

/ T F)N,g\"dS, = / V- (TaﬂFgg§.">) dVy = / (T*°F})| g\"dVe  (252)
So Vo Vo

where “|,” denotes covariant differentiation with respect to the v,-material coordinate
(defined in Equation 2.57).

The resulting linear momentum balance is written in Equation 2.53.

/ [(TaﬂFg) | 8" + pob — pof | dVy =0 (2.53)
Vo
where f = %. Note that py, v and f are assumed to be continuous throughout V.
For arbitrary volumes, the integrand in Equation 2.53 vanishes resulting in Equation
2.54, which is a general form of Cauchy’s first law of motion appropriate for curvilinear
coordinates.

(T°°F3)| & +pb=pof  or  (TPFJ)| + pob = pof’ (2.54)

where the body force and acceleration vectors have components b = b’ g§.9) and f =
fjg§-0), respectively. Note that this reduces to Equation 2.20 if the v,-material coor-
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dinate are chosen to coincide with the rectangular cartesian reference coordinates in
the undeformed state and the 6,-coordinates are chosen to be the rectangular cartesian
coordinates.

Now, recalling the principle of virtual work in Equation 2.22, the virtual displacements
may be expressed in terms of covariant components év = (5ng{0) with respect to the
base vectors of the 8-reference coordinate system. Similarly, the surface traction vector
may be written in terms of its contravariant components using s = s/ gg.a). Substituting
these components together with the expression for the traction vector given in Equation
2.46, transforms the virtual work equations into Equation 2.55.

/ s76v;dS = / T? F]Nabv;dS, (2.55)

Sa So

Gauss’ theorem (Fung 1965, p. 117) is used to expand the right-hand-side surface inte-
gral in Equation 2.55 into the volume integral in Equation 2.56.

/ s76v;dS = / [(TaﬂFg)\aéijrTaﬂFg vjl,, | dVo (2.56)
S2 Vo

where dv;|, is the covariant derivative of the virtual displacement with respect to the
v,-material coordinate and is defined in Equation 2.57.

861)]'
OV,

v, = — T, 6v; (2.57)

where

Fja N a—l/a (gj ) g(a) N 8I/a (80]) 6xk (258)

are called Christoffel symbols of the second kind which are non-tensor quantities that
arise through partial differentiation of base vectors. As expressed here, they are not
symmetric with respect to the two lower indices since j is a spatial coordinate and « is
a material coordinate.

Cauchy’s first law of motion Equation 2.54 can be used to eliminate the second deriva-
tive terms in Equation 2.56 and reduce it to Equation 2.59. Notice that in this expression
of the virtual work principle, the stress components are referred to material v,-material
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coordinates, while the displacement components are referred to the 6,-reference coordi-
nates.

/ T FJ §v,|, dVy = / po (b — f7) 6v;dVy + / s16v;dS (2.59)

Vo Vo Sa

The final step is to evaluate the right-hand-side surface integral, as discussed in Section
2.5.4.

2.5.4 Surface tractions in curvilinear coordinates

The right-hand-side surface integral of Equation 2.59 is evaluated by expressing the
contravariant components of the traction vector, s7, in terms of the pressure loads acting
on the external surfaces of the deforming body. In the absence of boundary pressures
this integral vanishes.

At this stage, it is convenient to introduce one further system of material coordinates that
describe the geometry of the deforming body. They are referred to as the finite element
material coordinates,

(&1, &9, &3), and are described fully in Section 3.1.5. The base vectors and metric tensors
for the &,,-material coordinate system are defined in Equation 3.20.

Consider a pressure load, p(.,p) (@ physical stress), acting on the deforming (&1,&9)-

coordinate surface. The unit normal to this surface is given by n = (5) (since the
9
contravariant vectors for the &,,-coordinate system are not necessarily unit vectors).

The surface traction vector is expressed in Equation 2.60.

3 3M
g g 9 90;
= p(appl)i = Pagpy —2 )3 p(appl) (23 g\ = p(appl) (5)33 oErs gl = sigl!
Ve 9e)
(2.60)
where the contravariant components of the surface traction vector are given by
3M
Y 00,
@ 7 (2.61)

" = D(appl)
33 O
933 Obm
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The right-hand-side surface integral of Equation 2.59 may now be computed using
Equation 2.62.

: 9 06
Tov;dS = / a ——0v;dS 2.62
/5 Yj Plappl) —— /—3§M (2.62)

Sa

where the integral is performed over the portion of deformed surface that is subject to
pressure boundary constraints.

Finally, Equation 2.62 is incorporated into Equation 2.59 to yield the equilibrium equa-
tions that govern large deformation elasticity, written in Equation 2.63.

/ T8I 5v;|_ dVy = / po (b — f7) 6v;dVy + / Plap) Yo % 5, S (2.63)

gl 55M
Vo Vo Sa

Equation 2.63 is the starting point for the analysis of a body undergoing large elastic
deformations. To be useful for practical applications, the virtual displacements are ex-
pressed in terms of an interpolation of nodal parameters which may be determined using
a nonlinear Galerkin finite element method (see Chapter 3). Moreover, to be applica-
ble to the heart, the relationship between the stress and strain (Equation 2.43) must be
based on experimental observations of myocardium under physiological conditions (see
Section 4.4.3).



Chapter 3

The Finite Element Method For Finite
Elasticity

To analyse stress in an body undergoing large elastic deformations the equations that
govern finite deformation elasticity, developed in Chapter 2, must be solved. For materi-
als with regular geometries and simple material properties this may be done analytically
(an example of this is presented in Section 4.2). However, for most practical applica-
tions materials behave nonlinearly and assume complex shapes. Irregular domains may
be discretised into a number of smaller regular elements, over which guantities of inter-
est (for example the geometric coordinates of a point) are continuously approximated.
The two main types of interpolation functions used in this thesis are linear Lagrange and
cubic Hermite basis functions. Section 3.1 details these interpolation schemes and their
use in one, two and three spatial dimensions.

In order to accurately and efficiently resolve quantities of interest that vary dramati-
cally it is often necessary to vary the consistency of the discretisation. Section 3.1.4
describes a method to include irregular connections whilst maintaining continuity of the
approximation throughout the domain.

It is often convenient, if not necessary, to use several different coordinate systems for
the FEM for finite deformation elasticity. For example, stress components are most
conveniently expressed with respect to a system of material coordinates aligned with
structural features of the body, whereas the geometry best expressed using a system of
curvilinear reference coordinates. Section 3.1.5 defines FE material coordinate systems

39
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in terms of the global rectangular cartesian coordinate system.

For each element, the equations governing finite deformation elasticity are expressed
in terms of known material properties and the unknown displacements of the element
vertices (referred to as nodes). To formulate these equations many integrals must be
evaluated and often this cannot be done analytically. Gaussian quadrature (described in
Section 3.2) is a suitable numerical integration scheme for use with FE analysis.

Element contributions are assembled into a global system of equations to ensure that the
solution is compatible across element boundaries. The system of nonlinear equations
(defined in Section 3.3) are solved, subject to boundary constraints, to yield a set of
deformed nodal coordinates from which deformation patterns are approximated using
interpolation. Section 3.4 describes nonlinear techniques used to solve the equations.
To reduce solutions times, the computation of the element contributions to the global
equations is distributed across a number of processors, which may be a cluster of work-
stations or a high performance computer.

3.1 Interpolation using basis functions

Basis functions, also known as shape or interpolation functions, may be used to approx-
imate quantities of interest (for example geometric or solution variables) that vary over
a particular domain. They consist of sets of polynomials of different degrees, depend-
ing on the desired accuracy of the approximation (generally the higher the degree, the
better the approximation). This thesis uses two main types of interpolation functions —
namely the linear Lagrange and cubic Hermite basis functions. The higher order cubic
Hermite basis functions are used to approximate quantities of interest that possess large
spatial gradients, whereas linear Lagrange basis functions are used to approximate vari-
ables that do not vary appreciably. This section provides an overview of the properties
of each basis type and the way they can be combined to approximate field variables in
two- and three-dimensions. For further information see Zienkiewicz & Taylor (1994,
Chap. 7).
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FIGURE 3.1: Linear Lagrange basis functions

3.1.1 Linear Lagrange basis functions

Consider an arbitrary scalar function, u, with v = u; and v = u, at opposite ends of
a one-dimensional domain. A linear approximation of u, along the domain can then be
defined using Equation 3.1, by introducing a normalised measure of distance, &, with
& = 0 atone end (where u = u; say) and & = 1 at the other end of the domain (where

U = Us).
u(§) = (L = &ur + Euy (0<¢<T) (3.1)

The boundary points of the domain are variously referred to as element vertices, element
nodes or nodal points and the values of « at element nodes, namely u; and u,, are
referred to as nodal parameters. In Equation 3.1, a weighting function is associated
with each of the nodal parameters. These weighting functions are straight lines that vary
between 0 and 1 as shown in Figure 3.1. They are referred to as the linear Lagrange
basis functions and are defined in Equation 3.2.

V() =(1-8  Wa(§)=¢ 3.2)
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Global nodes node 1 node 2 node 3 node 4
U1 U2 U3 U4

Entire domain @ @ @ ® —» =

U1 U2 Uy U2 Uy U2
Elementnodess @—@ o—©O o—0

0—¢é»1 0—E¢»1 0—E¢é»1
Sub-domains element 1 element 2 element 3

FIGURE 3.2: The scalar field, u, may be approximated over an entire domain by using
piecewise polynomials over a set of smaller domains.

More complex variations of  (with larger spatial gradients, say) may be approximated
using piecewise linear polynomials over smaller domains, called elements. The union
of the set of smaller sub-domains must cover the entire domain of interest without over-
lapping. Adjacent elements share nodal parameters for their description of « as shown
in Figure 3.2, which ensures that the approximation of « is continuous throughout the
entire domain.

Equation 3.1 holds over each of the three elements in Figure 3.2. In the first element
uy = U; and uy = Us,, whereas in the second element u; = U, and uy = Us. This
ensures that the quantity « is implicitly continuous between elements since in the first
element (1) = U, and in the second element «(0) = U, using Equation 3.1. Similarly,
in the third element, u; = Us and uy = Uy, ensuring continuity between the second and
third elements with v = Us at the junction node.

It is now clear that » may be approximated by a continuous piecewise parametric de-
scription in terms of the normalised element coordinate, £&. In order to express u in
terms of the physical coordinate, z, the relationship between x and £ must be defined
for each element. It is convenient to define the spatial coordinate, x, as an interpolation
of the nodal values of x. Thus the dependence of u on x is defined by the parametric
expressions in Equation 3.3.

Note that in Equation 3.3, summation is implied over all element nodes (there are only
2 for this one-dimensional case) and that (&) provides the mapping between the math-
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ematical space, 0 < £ < 1 and the physical space z; < z < zs.

3.1.2 Cubic Hermite basis functions

Like the linear Lagrange basis functions, cubic Hermite interpolation functions provide
continuity of the variable of interest across element boundaries. In addition, they provide
continuity in the first derivative with respect to arc length, which is what makes them
different from cubic Lagrange basis functions. For this reason Hermite bases are ideal
for representing a smoothly varying curve or surface over some domain of interest.

To approximate the field quantity, u, using a one-dimensional cubic Hermite basis, two
element nodes are required, over which four nodal quantities must be defined. Two of
these are the values of u at the element nodes, namely u; and us, just as for the linear
Lagrange basis functions. The additional two quantities are the first derivatives of v with
respect to the normalised element coordinate, £. These two parameters are denoted by
(g—g) X and <§—g) X where the subscripts refer to the element node at which the derivative
is defined.

A one-dimensional cubic Hermite basis incorporates the four cubic polynomials listed
in Equation 3.4 and illustrated in Figure 3.3. Note that the subscripted indices on the
basis functions refer to the element node number and the superscripted indices signify
whether the basis function is associated with the value of « (superscript 0) or its deriva-
tive (superscript 1) at the node.

WE = 1-3+26° W) = £(3-2) (3.4

i) = &(E-1)? U6 = &(-1)
Equation 3.5 defines how u may be approximated in one-dimension using the four cubic
Hermite basis functions with their associated nodal parameters.

u(€) = V(E)us + B (€) (j—Z) - WR(E)us + WA(E) (j—Z) (35)

To make cubic Hermite basis functions useful in practice, one further modification is

necessary. Instead of using the nodal derivative (‘3—2‘) that depends on the local element
n
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FIGURE 3.3: Cubic Hermite basis functions

&-coordinate in the two adjacent elements, it is more useful to define a global node
derivative (%)N’ where s is the arc-length and N is the global node number. Equation
3.6 is then used to calculate the £-coordinate derivative.

du du ds
(%)= (%), (%), (39

where (j—;)n is an element scale factor which scales the arc-length derivative of global
node N to the &-coordinate derivative of element node n. Note that it is always con-
venient to associate the element node n in element e with the global node N using a
connectivity matrix A(n,e) = N. The result is that (%) is implicitly constrained to be

continuous across element boundaries rather than (j—g) :

3.1.3 Interpolation in two- and three-dimensions
Two- and three-dimensional basis functions can simply be constructed from tensor prod-
ucts of the one-dimensional bases described above.

To approximate u over a two-dimensional domain, the bilinear Lagrange interpolation
scheme may be used. This scheme consists of the four polynomials shown in Figure 3.4
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FIGURE 3.4: Two-dimensional bilinear basis functions.

, and is constructed by taking the tensor product of individual one-dimensional linear
Lagrange interpolations in the &; and &, directions as outlined in Equation 3.7.

Ui(6,&) = YP()UT(&) = (1-&)(1-&)

‘1’2(51,52) = ‘1’5(51)\1’%(52) = 51(1_52) (3.7)
Us(61,8) = P(6)P3(&L) = (1-&)&

Uy(61,&) = U3(&)¥5(&) = &&

where U[ (£) and ¥ (&) are the one-dimensional linear Lagrange basis functions de-
scribed in Section 3.1.1.

Four nodal parameters, u1, ..., u4, are associated with the two-dimensional basis func-

tions and are the values of « defined at the element vertices. The approximation of u is
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given in Equation 3.8.
u(§) = V1(&, &)ur + Vo (&, So)uz + U3(61, So)us + Wa(&r, &o)us (3.8)

As for the one-dimensional case, the geometry of the element is defined in terms of in-
terpolations of nodal positions (z™,y™) ,n = 1...4. Equation 3.9 is then used to provide
the mapping between the mathematical space (3, &2) and the physical space (z, y).

2(£,8) =) Uu(6,&)2"  y(&,6) =) V&, &)y (3.9)

Using a similar procedure, the eight polynomials that constitute a three-dimensional
trilinear Lagrange basis have been constructed in Equation 3.10 and used to approximate
u over a three-dimensional element in Equation 3.11.

Ui(61,82,8) = (1-86)1-&)(1=8&)  Pe(61,62,8) = &(1—&)(1-&)
U3(61,60, &) = (1-&)&(l—4&) Wa(&1,82,8) = &&a(l—&)
Us(61,60,83) = (1—&)(1—&)E3 We(61,60,83) = &(1—&)&s
U7(61,82,83) = (1—-£61)&E Ug(&1,60,83) = &3
(3.10)
and

U(fl, 52553) = Z wn(£1562563)un n=1..8

(3.11)
xi(§1a§2563) = Z‘yn(élaé-%éé)m? T € {xay: Z}

The construction of two- and three-dimensional basis functions involving cubic Hermite
interpolation can be achieved using the above procedure, with one modification for the
derivative terms. To approximate v using a two-dimensional bicubic Hermite basis, the
four quantities listed in Equation 3.12 must be defined at each element node, totalling
16 nodal parameters per element.

L o
T06 06T 06,0

(3.12)

The need for the second-order cross-derivative term can be explained as follows. Since
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w 1S cubic in both &; and &, independently, then the derivative g—g‘l IS quadratic in &; and

cubic in &. The cubic variation of u with &, is specified by the four nodal parame-

ters uq, (g—g) , u3, and <g—€“2> , defined at element vertices one and three respectively.
1 3

However, since g—g is cubic in &, as stated above, and is entirely independent of these

four parameters, four additional parameters are required to specify this cubic. Two of

these are specified by (;’—g‘l) and (3—5) , and the remaining two are the second-order
1 3

_ - - 82’(1, 62’11, - - - -
cross-derivative terms, (8&852)1 and (6&8&)3. Similar reasoning explains the need
8%u

for %5 to be defined at element vertices two and four.
1062

The bicubic Hermite interpolation of the field quantity « is written out in full form
in Equation 3.13 using the one-dimensional cubic Hermite basis functions defined in
Equation 3.4, and the 16 nodal parameters described above.

u(é, &) = V(6) PR (&)u + WH(&) P (E)us
+ V(&)W (6)us + WO(&) W5 (6)ua
+ WEWE) (2)  + BEnE (),
+ WEWE) (2),  + BEwE (),
+WEE) (&) + wE)viE) (2), G139
- WEWE) (&), + BEnE (&),
+ VU (2%), + BEIE (2%),
+ VEUE) (52%), + BENE) (5255),

To ensure derivative continuity throughout the spatial domain as well as the &£-coordinate
space, the global node derivatives need to be specified with respect to physical arc-
length. There are now two arc-lengths to consider. Arc-lengths along the &;- and &;-
coordinates are measured by s; and sq, respectively. Thus the one-dimensional scale
factors in Equation 3.6 are extended in Equation 3.14 for two-dimensional interpolation.

(3.14)
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with the additional cross-derivative scale factor

0u _( Pu (dst) | (dse (3.15)
08106, n B 051057 N d&; n dés n '
where ((‘%) and ((%) are element scale factors which scale the arc-length deriva-

tives of global node N to the &-coordinate derivatives of element node n, as for the
one-dimensional case. Again N is related to n using the connectivity mapping, A(n, e).

A further condition must governs the choice of scale factors to ensure that u is C*
continuous across element boundaries. A sufficient condition is that the scale factor at
a node in one element is the same as the scale factor at the same node in an adjacent
element (Bradley, Pullan & Hunter 1997). In other words the scale factors should be
nodally based so that the same scale factor is used for all elements in which a node lies.
Any choice of scale factor will provide C* continuity across element boundaries, but it
is convenient to choose the average of the two arc-lengths adjacent to the given global
node. This is because it is often computationally desirable to uniformly space the &
coordinate with respect to arc-length (for example to evenly space out the computational
points of a Gaussian quadrature scheme across elements). However if adjacent element
arc-lengths differ largely, average arc-length scale factors may cause the arc-length to
be too long in one element and too short in the other. Another choice of scale factor
Is the harmonic mean, given in Equation 3.16 for . The harmonic mean is smaller than
the arithmetic mean and is therefore more useful when the mesh contains neighbouring
elements of markedly different sizes.

Blr—‘

>

or for the case of interest when n = 2

21131(1)2

H(CU1, $2) - X1+ Xo

(3.16)

Three-dimensional tricubic Hermite basis functions may be constructed in a similar



3.1. INTERPOLATION USING BASIS FUNCTIONS 49

manner by introducing a triple cross derivative with respect to all three element co-
ordinates as in Equation 3.17.

().~ ) (). (). (2), ow
06106085, \ 060606 )y \d& /), \d& /), \d&)/, '
3.1.4 Irregular Meshes - Hanging Nodes

In this thesis some of the phenomena of interest vary dramatically over a relatively small
portion of the solution domain, for example, the properties of soft tissue surrounding an
infarct. In order to resolve those quantities accurately, the discretisation of the domain in
the area of interest must be sufficiently fine and the order of the polynomial interpolation
sufficiently high. Meeting that criterion and uniformly discretising the entire domain
is often computationally inefficient or infeasible. Hanging nodes also referred to as
improper, slave or constrained nodes provide a means of connecting regions of varying
discretisation.

Hanging nodes are proper nodes for an element which uses them as vertices* and their
field values contribute directly to these element stiffness matrices. However, their field
values are interpolated from neighbouring elements where they do not correspond to an
element vertex.

In the solution process the degrees of freedom of a hanging node are constrained to be
values interpolated from the neighbouring elements in order to enforce continuity of the
approximation across the inter-element boundaries. The constrained degrees of freedom
are eliminated from the discrete system of global equations. Figure 3.5 demonstrates the
use of a hanging node to create an irregular linear Lagrange mesh.

In the system of equations for the example presented in Figure 3.5, there are no equations
for the constrained node degrees of freedom. The equations for the proper nodes 5 and
6 are modified to include the coefficients associated with the hanging node, node 8.

For a hanging node in a cubic Hermite mesh, as in the linear Lagrange example, u is
interpolated from the adjacent element. The nodal arc length derivative value (3_:) is
also evaluated from the adjacent element.

1\ertex” here implies that the element node weights a corresponding element basis function (i.e. it
could be a mid side node for an element that directly used midside nodes).
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FIGURE 3.5: A Hanging node in a linear Lagrange domain mesh. The nodal parameter
u at the constrained node is constrained to be the value of u interpolated
from the proper nodes in element 1.

The scale factors (3_2) for the connected elements must be chosen to satisfy the condi-

du
tion that 45 is continuous across the element boundaries to ensure that the domain mesh
. d¢ . .
varies smoothly and is continuous.

Note this criterion does not maintain strict C'! continuity, that is continuity of g—*g, across
the element boundaries. In fact it is not possible with the FEM implementation used
in this thesis to create a C'' continuous irregular mesh using cubic Hermite elements.

However, although C! continuity is desirable it is not absolutely necessary.

3.1.5 Finite element material coordinates

When modelling the geometry of a deforming body using the FEM, it is convenient
to define a system of normalised element coordinates within each element, (&1, &, &3).
These coordinates are material coordinates because they are embedded in the body and
deform with the material as it deforms. Thus, in general the &,,-material coordinates
are not orthogonal. With reference to Figure 3.6, consider a material point P with rect-
angular cartesian coordinates (X, X», X3) in the undeformed body B,. Equation 3.18
may be used to map the &,,-material coordinates of P into the undeformed spatial coor-
dinates using the values (and derivatives, for high order interpolation) of the geometric
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Ys Y;

FIGURE 3.6: The finite element material coordinate system (£1, &2, &3).

coordinates for the n element parameters in the undeformed state, X .

Xi = ‘Ijn(é-laé-%&i)Xin (318)

where ¥, (&1, &, &) are the chosen three-dimensional basis functions (see Section 3.1).

A subsequent deformation causes the material point to undergo a displacement u. In
the deformed body B, the material point is labelled p and has rectangular cartesian
coordinates (1, o, z3). Again the &,,-material coordinates may be used to describe the
deformed geometry of the element using the mapping given in Equation3.19.

T, = \I’n(fl,&,fvia)x? (3.19)

where z7 are the element nodal values (and derivatives) of the -th geometric coordinate
in the deformed state.

The covariant base vectors and metric tensors for the &,,-coordinate system are defined
in Equation 3.20 for the undeformed and deformed states. Contravariant base vectors
and metric tensors for the &,,-coordinate system may be determined in an analogous
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fashion to those for the v,-coordinate system in Equation 2.41, and again the metric
tensors may be used to raise or lower indices.

_ Xy (@) € _ oy (@)
(s)G S o anen B S . G2)
Giun = Gy -Gy = ag—Mkﬁ MN = Bwm BN T agil\]f,agi,@

3.2 Gaussian quadrature

The calculation of surface and volume integrals is essential when using the FEM. Often
these integrals can not be determined analytically, especially when dealing with nonlin-
ear problems such as finite elastic deformations. For this reason an efficient and accurate
numerical method to determine the element integrals is required. The Gauss-Legendre
quadrature integration scheme (hereafter referred to as Gaussian quadrature) satisfies
these criteria by approximating an integral by a weighted sum of integrand evaluations
using specified sets of independent variables.

3.2.1 Integration in one-dimension

The one-dimensional integral given in Equation 3.21 is approximated by a weighted
sum of integrand evaluations, where w; are the weighting factors and £ are the points
at which the integrand, f(£), is evaluated. These sampling points are commonly termed
Gauss points. The error in the approximation is denoted by E;, where | is the order of
the quadrature scheme.

1

/ F(E)d = Y wif(E0) + By (3.21)

0

To exactly integrate a cubic polynomial, two Gauss points are required. This is proven as
follows. A general cubic polynomial incorporates four coefficients and may be written
in the form shown in Equation 3.22.

(&) = a+ b€+ € +de? (3.22)
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Substituting Equation 3.22 into the integral on the left-hand-side of Equation 3.21 yields
Equation 3.23.

1 1 1 1 1

/f(g)dg: a/1d§+b/§d§+c/§2d§+do/§3d§ (3.23)

0 0 0 0

This integral may be approximated using two Gauss points as shown in Equation 3.24.
1
[ 1€ = wis(€) + war(6) (3.24)
0

To determine the £ positions and associated w; weights, each integral on the right-
hand-side of Equation 3.23 is evaluated analytically. The same integrals are then ex-
panded using Equation 3.24, where the function f is chosen to be the corresponding
integrand. The result is a set of four equations in four unknowns, as detailed in Equa-
tions 3.25 - 3.28.

1

/1d§ =1 = w+w since f(§) =1 (3.25)
0

1

[ede= 5 = wie) + g since (6) =€ (3.26)
0

1
[ede= 5 —wn () +un (€)' sincefi =g @21

—
M
w
L
M~
I
| =

;=W (5(1))3 + wy (5(2))3 since f(¢&) = &3 (3.28)

The four Equations 3.25 - 3.28 are expressed in terms of the four unknowns, €1, £€@)
and w., and may be solved to determine the positions and weights (listed in Equation
3.29) unique to the quadrature scheme involving two Gauss points. Implicit in this
derivation is the fact that Equation 3.24 is exactly satisfied since the four integrals on the
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right-hand-side of Equation 3.23 are used in Equations 3.25 - 3.28 to calculate the Gauss
positions and weights. Thus a polynomial of degree three can be exactly integrated using
a Gaussian quadrature scheme with two Gauss points.

1 1 1 1
g() i_m w1 2 3.29
(2) 1 1 1 ( )

This idea is extended when treating higher order polynomials. A Gaussian quadrature
scheme with N sampling points (Gauss points) associated with N weights will exactly
integrate a polynomial of degree 2N — 1. Note that if there are more than N Gauss
points a polynomial of degree 2V — 1 will also be exactly integrated, although needless
calculations will be performed reducing the efficiency of this scheme. Conversely, if
the scheme incorporates less than N Gauss points (say M < N) then the error term in
Equation 3.21 will be of the order of £ to the 2M/*" power. For example three Gauss
points will exactly integrate a fifth order polynomial, but if only two Gauss points are
chosen for the integration scheme, then E; will be of the order of £*.

3.2.2 Integration in two- and three-dimensions

To approximate surface and volume integrals using Gaussian quadrature, one-dimensional
schemes are set up in each direction. Consider the function f (&1, &,) which depends on
the two variables &; and & defined to lie in the surface of interest. The surface integral
of f over its domain can be approximated by the two-dimensional Gaussian quadrature
scheme expressed in Equation 3.30.

i=1 j=1

11 1 I I J
/ / f(r, &) dodEs = / (Z wif (61, €57) + EI) der = 305wy f(€60) + By
0 0 0o \=l1

(3.30)
where a quadrature scheme with I Gauss points and weights is firstly employed in the

&, direction (52” and w;, respectively) followed by a scheme with .J Gauss points and
weights for the &; direction (59) and wj, respectively). Note that the error term depends



3.3. GALERKIN FINITE ELEMENT EQUATIONS FOR FINITE
ELASTICITY 55

on the choice of quadrature schemes in the &; and & directions separately which, in
general, may be different.

Similarly in three-dimensions, Equation 3.31 shows how to approximate a volume inte-
gral of f(&1, &, &) using Gaussian quadrature schemes with 7, J and K Gauss points
and weights in the &3, & and &; directions, respectively.

/ / / F(Enen E)dEsdede = 35S wiwgu (€9, 69, 60) + Eupe (331)
0 0

i=1 j=1 k=1

It should be noted that the limits on the integrals performed throughout this section
have purposely been chosen as 0 and 1 for the following reason. For FE calculations,
integrals are generally performed over the physical coordinate space of each element.
The basis functions described in Section 3.1 map the spatial coordinates into the math-
ematical £&-coordinate space and so the element integrals can also be transformed using
the appropriate Jacobian. Thus the integrals required are now performed over the &;-
coordinate space for which 0 < & < 1. Moreover, the integrands are polynomial-like,
hence Gaussian quadrature is an ideal integration scheme for FE analysis.

3.3 Galerkin finite element equations for finite elasticity

The equations that govern large elastic deformations of deformable materials have been
developed in Chapter 2. The framework has now been set to apply the Galerkin FEM
to the stress equilibrium equations developed in Section 2.5.3. Additional constraints
arise if the material is incompressible in nature, and if surface pressures are prescribed
on external faces.

3.3.1 Galerkin equilibrium equations

The virtual displacement fields év; in Equation 2.63 are approximated by a FE displace-
ment field in Equation 3.32 using interpolation functions ¥,, developed in Section 3.1.

=V, (&, &2, &3) 007 (3.32)
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where v} are arbitrary virtual nodal displacements.

Equation 3.32 is substituted into the equilibrium equations that govern finite deforma-
tion elasticity (Equation 2.63) and each component dv7 is considered in turn in Equation
3.33.

) . 9
/TO@BFB7 \I’n|a dVo = /,00 (bJ - f7 )\Il d%+/ appl)\/(ia&ij\ll 2dS  (3.33)

Vo Vo

To evaluate the integrals in Equation 3.33, they must first be transformed from the ref-
erence coordinate space to the &,,-coordinate space using the appropriate Jacobian. The
transformed integrals are written in Equation 3.34.

/V Z / TP F] W,|, VGE d&déde, = /V [ / po (b — 17) U VGO deydgade,

00
+ [ [ b S /g deads (334)
Sa

where VG det{G )} and /g® = ,/det{gg)} are the three-dimensional co-

ordinate transformation Jacobians with respect to the undeformed and deformed con-
figurations, respectively. Note that the surface integral is transformed by substituting
Jopd&adéy for dS, where the two-dimensional Jacobian with respect to deformed coor-
dinates is given by Jop = §)g(€) (Oden 1972, p. 245).

The three-dimensional integrals in Equation 3.34 are evaluated over the undeformed
volume and the two-dimensional integral is computed over the portion of the deformed
surface (denoted S) for which external pressure loads are applied. These integrals are
replaced by a sum of integrals over the collection of element domains which constitute
the FE model. Element integrals are evaluated numerically using Gaussian quadrature
(Section 3.2) and adjusted by the scale factors associated with the chosen interpolation
scheme (see the discussion on scale factors in Section 3.1.3). Components of the second
Piola-Kirchhoff stress tensor, 7%%, are evaluated at each Gauss point using the constitu-
tive equations (Equation 2.43) and the strain energy is calculated using the appropriate
form of the strain energy function (see Sections 2.3 and 4.4.3 for further details).
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Element integrals are then assembled back into Equation 3.34 to yield a global system
of equations, in which there are three equations for each node of the FE mesh (one for
each spatial coordinate direction). The unknown variables are the three coordinate dis-
placements (or equivalently locations) for each node of the FE mesh, thus forming a
square system. Note that this formulation is isoparametric, as it uses the same basis
functions for the deformed coordinates (solution variables) as for the undeformed ge-
ometry (independent variables) (Zienkiewicz & Taylor 1994, p. 160). Further equations
and unknowns arise if the material is incompressible (see Section 3.3.2) and pressure
constraints are applied to external surfaces (see Section 3.3.3).

3.3.2 Galerkin incompressibility constraint

Equation 3.34 is sufficient to solve for the unknown nodal geometric displacements
dvj. For incompressible materials, an additional scalar hydrostatic pressure field is in-
troduced into the constitutive equations (see Section 2.3). The extra constraint necessary
to determine the parameters of the hydrostatic pressure field arise from the requirement
that 73 = 1 for incompressible materials. To reflect volume changes, the additional
kinematic constraint /I3 — 1 = 0 is incorporated into the global system.

To be consistent when calculating stress components and to avoid numerical
ill-conditioning, Oden (1972, p. 239) suggests that the interpolation scheme chosen to
describe the deformed geometric coordinates should be of higher order than that cho-
sen to approximate the hydrostatic pressure field. This arises because the strain en-
ergy contribution to stress components is related to the first derivatives of the geometric
displacement fields, whereas the hydrostatic pressure directly contributes to the stress
components (Equation 2.43). To be compatible the two contributions should vary in a
similar manner.

For trilinear interpolation of the deformed geometric solution variables, the hydrostatic
pressure field must be approximated using a piecewise constant scalar field to satisfy
the compatibility condition. One auxiliary parameter is introduced per element and
is simply the hydrostatic pressure within the element. One kinematic incompressibil-
ity constraint per element is introduced to produce a square system of equations, with
matching numbers of unknowns and constraints. For a Galerkin formulation, the form
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of the incompressibility constraints is given in Equation 3.35.
/ / / (\/f3 _ 1) UV GO dedeyde, = 0 (3.35)
Ve

where V. denotes the domain of the element and W? are the basis functions used to ap-
proximate the three-dimensional hydrostatic pressure field (U? = 1 for constant element
based pressure interpolation). Note that the undeformed three-dimensional Jacobian,
VG@, is introduced since the integrals are evaluated with respect to the undeformed
configuration.

Alternatively, if cubic Hermite interpolation functions are used for the unknown geo-
metric displacements, the compatibility condition permits trilinear interpolation of the
hydrostatic pressure field. The desirable feature of this scheme is that the hydrostatic
pressure field is implicitly piecewise continuous across element interfaces, which is es-
sential for determining continuous stress distributions. The nodal hydrostatic pressure
variables are determined using Galerkin constraints of the form in Equation 3.35, ap-
plied at each vertex of the element. In this case, the weighting functions ¥? are chosen
to be the trilinear basis functions of Equation 3.10, and the hydrostatic pressure field is
implicitly piecewise continuous across element interfaces.

3.3.3 Explicit pressure boundary constraints for the finite element
equations

To ensure that the stress field on the external boundaries of the body exactly matches the
applied pressure loads, an extra constraint may be introduced for each applied surface
pressure. These ideas were originally introduced by McCulloch (1986) and have also
been described by Costa, Hunter, Rogers, Guccione, Waldman & McCulloch (1996b),
so a brief summary is included here.

For the case of element based interpolation of the hydrostatic pressure field, extra de-
grees of freedom are required to satisfy these constraints. The hydrostatic pressure field
is thus extended to vary quadratically across each element (for convenience this varia-
tion is chosen to be in the &;-direction), as in Equation 3.36.
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Pe&) =D PrUf (&) (3.36)
1=0
where
V(&) =1 Ul(&) =& U)(&) =25(&-1) (3.37)

The constant hydrostatic pressure element variables, p§, remain unchanged (see Section
3.3.2) and are determined using an element constraint of the form in Equation 3.35.
The two extra element parameters, p§ and p°, are determined by introducing the explicit
surface traction constraints in Equation 3.38 into the global system.

(33)

o wall + p(m) =0

woll) g, (3.38)
0(33)” + Plout)y = 0

(wall) &=1

where p(iny and p.¢) are the applied pressure loads at the centre of the {3 = 0and &3 = 1
faces, respectively, and a((i?”) is the physical component of Cauchy stress normal to the

centre of the deformed (&, &) face, which is defined in Equation 3.39.

(33) (T“ﬁl 8V7 31/,,) 3w3 3w3

_ 3.39
? (wall) J 0V, 0Vs ) ov, o, (3:39)

where V,, and v, denote the undeformed and deformed microstructural material coordi-
nates, respectively, and w3 denotes the (&;, &) wall normal coordinate.

In Equation 3.39, the physical component of stress normal to the (&1, &) surface is com-
puted using two coordinate transformations. Firstly, the term in parenthesis transforms
components of the second Piola-Kirchhoff stress tensor (referred to microstructural ma-
terial coordinates in the undeformed state) into physical components of Cauchy stress
referred to deformed microstructural material coordinates. This is achieved using the Ja-
cobian and the deformation gradients with respect to the v,-material coordinate system.
The second transformation computes the physical Cauchy stress component normal to
the deformed (&, &) surface using derivatives of the wall normal coordinate with re-
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spect to the v,-material coordinates.

For the case of trilinear Lagrange hydrostatic pressure interpolation, there are no ex-
plicit pressure boundary constraints and the applied boundary pressures contribute only
to the equilibrium equations for finite deformation elasticity (Equation 3.34). The nodal
hydrostatic pressure variables are determined using additional incompressibility con-
straints, of the form in Equation 3.35 (see Section 3.3.2).

The global nonlinear system is comprised of Equations 3.34 and 3.35, combined with
Equation 3.38 if explicit pressure boundary constraints are required. The final step in the
analysis is to solve the FE equations using a suitable nonlinear solution method. Section
3.4 briefly describes one common solution technique, known as Newton’s method.

3.4 Solving the nonlinear finite element equations using
Newton’s method

The FEM for finite deformation elasticity requires a system of nonlinear equations to be
solved over the domain of interest. It is convenient to rearrange the equations into a set
of residuals (with zeroes on the right-hand-side), which must be minimised with respect
to the set of solution variables. This set consists of the positions (or equivalently, the
displacements) and arc-length derivatives in each of the coordinate directions, at each
global node of the FE mesh. For incompressible problems additional variables arise
from the description of the hydrostatic pressure throughout the domain as discussed in
Section 3.3.2.

The residual equations are made up of rearranged forms of Equations 3.34 and 3.35.
Additional residuals of the form in Equation 3.38 arise if explicit pressure boundary
constraints are required to determine additional element based hydrostatic pressure vari-
ables. Equation 3.34 provides one equation for each coordinate direction (superscript
j) at each node of the FE mesh (subscript n), plus additional equations associated with
arc-length derivatives in each direction at each node. Further residuals arise from the
incompressibility constraint (Equation 3.35) and any explicit pressure boundary con-
straints (Equation 3.38). Note that in all cases there are the same number of residuals as
there are solution variables, comprising a square system of equations.
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The residuals can be minimised using a nonlinear optimisation technique, such as New-
ton’s method. As detailed below, this technique minimises a set of residuals using their
first derivatives with respect to each of the solution variables to determine the parameter
space search direction for the next solution iteration. For a more detailed description of
Newton’s method see Acton (1970, p. 367).

Consider the system of n nonlinear equations of the form f;(x) =0, (i = 1,...,n),
where x are the solution variables. With an initial estimate of the solution {z;} = {a;},
each function can be expanded about a in n-space using Taylor’s series. Retaining only
the linear terms in this expansion yields Equation 3.40, where {6;} represents the set of
deviations from a.

f) + SL@e + L@ + - + fi(a)s, =
fQFa) * o+ e " @h = ’ (3.40)
fn.(a) + k@ + @ + - + S2(a)s, = 6
or
J(a)d = —f(a) (3.41)

where J is the Jacobian of derivatives evaluated at a, and is defined in Equation 3.42 in
terms if the solution variables x.

On oK ... Ot
or1 oxa Oy,
8f2 Of2 ... Of
J(x)=| o o= oon (3.42)
Ofn Ofn ... Ofn
or1 oxa Oxp

Equation 3.41 is a system of linear equations that can be solved using direct solvers
such as the LU decomposition method (Press, Flannery, Teukolsky & Vetterling 1989,
Sec. 2.3), which is suitable for small systems, or iterative solvers such as the generalised
minimum residual (GMRES) method (Saad & Schultz 1986), which is more suitable for
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large systems of equations. The solutions to the linear system are the set of deviations
{4;}, which are used to calculate the new approximation to the solution variables of the
nonlinear system from the initial solutions a;, using Equation 3.43.

Convergence of Newton’s method is highly dependent on the nonlinearity of the func-
tions and the choice of the initial solution. For initial solutions sufficiently close to the
true solution, convergence is quadratic. However, for more distant initial solutions, con-
vergence of Newton’s method is not guaranteed, especially when the functions possess
large gradients with respect to the solution variables.

The initial solution for the FE equations for finite deformation analysis is chosen to be
the undeformed mesh. Thus for small loads, which produce small displacements, con-
vergence is likely. For larger loads the likelihood of convergence may be improved by
splitting up the applied loads into incremental load steps, and applying them sequen-
tially. This requires a nonlinear optimisation at each step, where the final solution from
the previous load step is used as the initial solution for the current load step.

Section 6.4 details the implementation of the finite element method for finite elasticity,
using Newton’s method to solve the nonlinear system of equations. These techniques are
used in Chapters 6 and 7 to analyse strain and stress in the deforming heart ventricles.



Chapter 4

Previous M athematical M odelling of
Cardiac Ventricular Mechanics

In comparison with typical engineering structures the mechanical behaviour of the heart
is extremely complex. In order to understand how the heart functions it is necessary to
use engineering mechanics techniques based upon mathematical models. Mathematical
models have contributed greatly to our understanding of ventricular cardiac mechanics
over the last few decades. They have evolved from simple axisymmetric shapes with
isotropic, homogeneous material properties (Wong & Rautaharju 1968) to geometrically
accurate models (Nielsen, Le Grice, Smaill & Hunter 1991) with detailed descriptions
of the fibrous sheet microstructure of the myocardium (LeGrice, Smaill & Hunter 1992)
and simulations of the cardiac cycle (Nash & Hunter 2001). With each improvement in
the models has come greater understanding of cardiac function. This chapter provides
a review of the significant steps in the evolution of cardiac ventricular modelling that
have led to the developments described in this work, more detailed reviews of cardiac
biomechanics modeling may be found in Yin (1981) and McCulloch (1995). Yin (1985)
also presents are good review of cardiac ventricular models based on the finite element
method.

To date most attention has been paid to the function of the the left ventricle because it
provides the vital function of pumping oxygenated (pulmonary) blood to the systemic
circulation. It was reported as early as 1915 (Starling 1915) that LV ejection rose with
increased cavity volume at the end of diastole. He also suggested that the end-diastolic
muscle fibre length was the most likely mechanism behind “The Law of the Heart”.

63
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More recent studies (ter Keurs, Rijnsburger, van Heuningen & Nagelsmit 1980) have
confirmed that the the force developed during isometric contraction increases with mus-
cle stretch. These findings indicate that mathematical models of ventricular function
must first predict physiologically realistic end-diastolic fibre strains in order to model
ejection.

4.1 Thin Walled Models

Models for determining the ventricular wall stress were proposed as early as the late
1800’s, but in the absence of computers they were based on analytical techniques.
Woods (1892) modeled the LV as a simple thin-walled sphere with uniform internal
pressure. The model approximated myocardial tension to be proportional to the product
of pressure and radius. Similar techniques were used by Sandler & Dodge (1963) to
model the ventricle as an axisymmetric ellipsoid, expressing the the wall stress in terms
of wall thickness, the principal radii of curvature and the cavity pressure. These mod-
els are limited by the assumption that the thickness of the wall is much less than the
radii of curvature, and by the omission of material properties. Nevertheless, estimates
of the principal wall stresses could be obtained with simple measurements of ventricular
pressure and geometry.

4.2 Axisymmetric Cylinder Models

A better first approximation of the LV’s diastolic behavior is to model it as a homo-
geneous thick-walled cylinder with an internal pressure loading, applied torsion and
extension. The myocardial tissue is assumed to be incompressible, isotropic and lin-
early elastic. Rivlin (1950, p.175) derived physical Cauchy stress components using the
theory of finite deformation elasticity (presented in Chapter 2) for this model. Stress
distributions based on Rivlin’s analysis are compared with those computed using the
Finite Element Method (Chapter 3) in Figure 4.1 for an example model (Table 4.1).
The FE model model incorporated a single element with tricubic Hermite interpolation
of the radial coordinate and trilinear Lagrange interpolation of the circumferential and
longitudinal coordinates. Whilst both analysis techniques yield similar solutions for the
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model presented, specialised analysis developed for simple geometries do not extend
well to more complex geometries and deformation patterns (McCulloch 1986, Costa,

Hunter, Rogers, Guccione, Waldman & McCulloch 1996a, Costa et al. 1996b).

| Parameter | Value |
External radius (cm) 1.5
Internal radius (cm) 1.0
Axial extension ratio 1.2
Cylinder length(cm) 1.0
Material Properties (kPa) | 2.0, 6.0
External Pressure (kPa) 0.0
Internal Pressure (kPa) 1.5

TABLE 4.1: Model parameters for the closed form and FE analyses presented in Figure

4.1. The material is Mooney-Rivlin.

Zero twist analytic —+—
Zerotwist FEM —<—
25° twist analytic —8— |

25° twist FEM —e—

Stress (kPa)

20 40 60 80 100

Undeformed Radia Position (% of wall thickness from inner surface)

FIGURE 4.1: Axisymmetric cylinder model of an incompressible, isotropic and linearly
elastic material (Table 4.1). The application of torsion reduces the trans-
mural gradient of circumferential stress.

Despite its over-simplification of the physiology, this model revealed that an applied
twist serves to reduce and balance the transmural distribution of circumferential stress.
The heart twists and untwists of its own accord throughout the cardiac cycle. This
alludes to the significance of the myocardium’s microstructure.

Axi-symetric models also served in the development of constitutive laws for myocardium.
Janz & Grimm (1973) developed a finite element model that characterised passive my-
ocardium by a nonlinear constitutive relation.
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The cylindrical models do not represent the geometry of the LV, and they are not closed
at one end, therefore physiological loading conditions are difficult to simulate on such a
simple model.

4.3 Axisymmetric Prolate-Spheroidal Models

Since the left ventricular geometry resembles a prolate spheroid, this can be taken ad-
vantage of. The prolate-spheroidal coordinate system, shown in Figure 4.2, is described
by a focus or focal length d, two angular coordinates 1,0 and a measure of distance
from the origin of the coordinate system A. By formulating the FE model in prolate-
spheroidal coordinates few degrees of freedom are required to model an axisymmetric
thick walled prolate.

FIGURE 4.2: An axisymmetric prolate-spheroidal model.

These models have been very successful in elucidating some of the mechanisms of car-
diac mechanics. McCulloch (1986) investigated the effects of the helical fibrous struc-
ture of the myocardium by comparing isotropic models with anisotropic models with
realistic fibre fields, and confirmed that experimental observations were consistent with
material anisotropy. It was also found in the anisotropic models that ventricular torsion
resulted which substantially reduced the unrealistically high transmural gradients of fi-
bre stress and strain that isotropic models had predicted. However, the axisymmetric
models do not fully represent the complex LV geometry nor the RV at all, thus their
usefulness is limited.
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4.4 Anatomical Prolate-Spheroidal Models

To further understand ventricular mechanics a geometrically and structurally more re-
alistic continuum model is necessary. The University of Auckland anatomical prolate-
spheroidal canine model was developed by many researchers with significant steps be-
ing achieved through a sequence of doctoral theses (Hunter 1975, Nielsen 1987, LeGrice
1992, Nash 1998).

4.4.1 Geometry and Fibres

Nielsen (1987) used a rig (described in detail in Section 5.1.1) to complete the first
detailed study of ventricular geometry and myocardial muscle fibre orientation. He then
fitted a prolate-spheroidal finite element model to the geometric data and another nodally
interpolated field to represent fibre data. The prolate-spheroidal coordinate system was
chosen in the original model for its ventricle-like shape in order to reduce the number
of degrees of freedom in the model. The canine ventricular continuum model shown in
Figure 4.3 has since served as the basis for numerous studies of ventricular behaviour,
both electrical and mechanical, by research groups around the world (Eason, Schmidt,
Dabasinskas, Siekas, Aguel & Trayanova 1998, Huiskamp 1998).

FIGURE 4.3: The first anatomically accurate continuum ventricular model (Nielsen
1987). Left: Prolate-spheroidal mesh. Right: Fitted epicardial fibre field.
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4.4.2 Sheets

At that time the myocardial fibres were thought to be a uniformly branching continuum
and material properties were therefore modelled as transversely isotropic. Then LeGrice
(1992) showed by drying thin apex-base transmural segments that the myocardial fibres
are in fact bound more tightly with some neighbouring fibres than others. The inter-
connections are arranged such that the fibres form a discrete laminar structure or sheets
(Section 1.1.2). In the transmural plane, myocardial sheets run from endocardium to
epicardium in a characteristic pattern which varies at different ventricular sites. Figure
4.4 shows an example specimen segment before and after drying to reveal the laminar
sheet structure.
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FIGURE 4.4: Longitudinal-transmural ventricular sections from a canine LV free wall,
Left: Before drying. Right: After drying (LeGrice 1992).

LeGrice extended the anatomical ventricular canine model to incorporate a field repre-
sentation of the laminar organisation of the myocardium. The techniques used to collect
the data and fit the sheet field are described in more detail in Section 5.1.2 where they
are repeated in the work for this thesis.
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4.4.3 Mechanical Simulation

Nash (1998) used the LeGrice model and the finite element method based on finite
elasticity theory to compute the ventricular deformation throughout the heart cycle. It is
this last model developed at the University of Auckland that provides the starting point
for the work completed in this thesis, and therefore this model is described in detail in
the following sections.

In directions tangential to the local endo- or epicardial surface, the interpolation was
cubic Hermite for the radial coordinate and linear Lagrange for the angular coordinates.
In the transmural direction, all coordinates were interpolated linearly. The local finite
element parametric coordinates were chosen to lie in the circumferential, longitudinal
(apex-to-base) and transmural (though-wall) directions, respectively (see Figure 4.5).

FIGURE 4.5: The anatomical prolate-spheroidal canine ventricular model.
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The “Pole-Zero” Constitutive law for Myocardium

The nonlinear viscoelastic and poroelastic nature of myocardial tissue has been mod-
elled before (Huyghe, Arts, van Campen & Reneman 1992, Yang & Taber 1991), but
for simplicity this aspect of the material properties was neglected and the myocardium
treated as an incompressible, elastic solid. For an incompressible material the com-
ponents of the second Piola-Kirchhoff stress tensor are given by the derivatives of the
strain energy function W (E) (Equation 2.29) with respect to the components of E and
a hydrostatic pressure, which does not contribute to the deformation, and hence strain
energy of the material.

The parameters of such a constitutive law can be obtained directly from experiment
without reference to the underlying tissue structure. But an approach which incorporates
parameters that directly reflect mechanical or structural properties of the material yields
a more useful constitutive relation. For example, observed spatial variation in collagen
distributions can be related to material constitutive parameters.

Based on the stress-strain properties of ventricular myocardium described in Section
1.1.2, a constitutive law which incorporates material properties that can be directly es-
timated from the tissue was developed (Nash & Hunter 2001). The pole-zero strain
energy function for myocardium is given by Equation 4.1.

k B} k E3, k By

W = + ~ +

1 |a11—E11f11 = |ags — Eag|°22 33 |a33—E334b33 (4.1)
E} E '

E
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where the constitutive parameters (a’s, b’s and k’s) have the following interpretations:

o the aqp are the limiting strains or poles for each mode of deformation. They are
physical properties of the tissue that may be measured directly from microstruc-
tural observations. In particular, MacKenna et al. (1994) used elastica theory on
the collagen helices aligned with the myofibres to determine the yield strain (pole)
of a;; = 0.52 along the fibre axis. Alternatively, these yield strains can be esti-
mated by fitting the model directly to experimental stress-strain data (Smaill &
Hunter 1991).
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e the b,z are related to the curvature of the uniaxial stress-strain relationships for
each mode of deformation. These have been estimated using the biaxial test re-
sults of Smaill & Hunter (1991).

o the k,5 weight the contribution of the corresponding mode of deformation to the
total strain energy of the material.

The terms in Equation 4.1 are naturally split into six groups, one for each mode of
deformation. These groups correspond to the six independent terms of the Green’s
strain tensor. The first three terms refer to the axial modes of deformation, fibre, sheet
and sheet-normal denoted 11, 22 and 33, respectively. The remaining terms relate to
modes of shear deformation between the microstructural axes, fibre/sheet, fibre/sheet-
normal and sheet/sheet-normal denoted by the subscripts 12, 13 and 23, respectively.
The parameters associated with the axial terms were estimated using a combination
of microstructural observations, biaxial tension tests and non-invasive magnetic reso-
nance imaging (MRI) data. The shear parameters were determined using a biophysical
model that assumes that certain shear deformations are strongly correlated to certain
axial modes of deformation (Appendix A). The parameters used are given in table 4.2.

| Type | Axial Properties | Shear Properties |
Coefficients (kPa) | k11 1.937 ki 1.0
koo 0.028 kiz 1.0
ksz 0.312 kos 1.0
Poles ay; 0.523 a;p 0.731
Q992 0.681 a3 0.731
as33 1.037 923 0.886
Curvatures by 1.351 by 2.0
b 5.991 bis 2.0
bsz 0.398 bas 2.0

TABLE 4.2: Material properties of myocardium for the pole-zero constitutive law used
in the canine model. Note that the poles, a,g, and curvatures, b,g, are
dimensionless, but the coefficients, kg, have units of stress.

Residual Strain and Stress in the Ventricular Wall

The concepts of residual stress and strain in the ventricular muscle were introduced
in Section 1.1.2. To accurately predict myocardial stress the pre-existing stress in
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the reference state of the model must be accounted for. The residual strains within
the myocardium may be approximated by introducing the concept of a growth tensor
(Rodriguez, Hoger & McCulloch 1994). The growth tensor, denoted F, modifies the
deformation gradient tensor of Equation 2.1 to account for the differences between the
no-load state and the stress-free state of the ventricular wall.

Fy = —aXN “Fynm 4.2)

The elements of the growth tensor express deformation gradients relating the unloaded
and stress-free states with respect to the microstructural material coordinates. The diag-
onal elements of F, define the initial extension ratios due to the residual strains for the
fibre, sheet and sheet-normal axes, respectively. The off-diagonal elements represent
the residual shear deformation gradients.

Applying the growth tensor to a body upsets the internal equilibrium, because the cre-
ated non-zero strain field is incompatible with the zero stress state. Therefore the resid-
ual stresses necessary for equilibrium with the modified strain field need to be deter-
mined. This is achieved by solving the model in the absence of external loads. This
requires a stress-free reference configuration to which the computed strains (and hence
stresses) are referred. However, the stress-free reference configuration is not available
and is therefore approximated by the unloaded, residually stressed state for this solution
procedure. This is reasonable since the displacements due to the residual stresses are
presumably small (the effect of cutting the wall radially, to examine the deformation
arising from these residual stresses, is discussed in Section 6.3.2).

The initial distribution of applied residual strain is listed in Table 4.3, the values were
derived from Rodriguez et al. (1993).

Boundary Conditions

The model was used to simulate passive inflation to physiologically realistic LV and RV
end-diastolic pressures of 1.0 kPa and 0.2 kPa, respectively.

The central RV epicardial node on the basal ring (shown by a min Figure 4.6) was fixed
in the circumferential direction to prevent rigid body rotations, and the three apical
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nodes (A) were constrained to lie on the long axis of the LV for compatibility.

It was found that in the absence of any radial constraints the model predicted exces-
sive radial expansion and wall thickening, and consequently the basal ring descended
towards the apex to maintain tissue incompressibility. To counter this non-physiological
behaviour a so called pericardial-constraint was applied by fixing the the radial (\) coor-
dinate of the epicardial nodes ( @). Katz (1992, p. 366) commented that the pericardial
sac plays an important role in limiting ventricular filling due to its low compliance.

G S

@ Fixedin A and all spatial
derivatives of \

B Sameas @ plusfixediné

€ Sameas @ plus fixedin p

A Fixedin ponly

FIGURE 4.6: Schematic of the boundary conditions applied to the anatomical prolate
model.

Ventricular region | Transmural location | Initial fibre extension ratio, )\‘}
Equator LV endocardium 0.95
LV/RV epicardium 1.05
RV endocardium 1.00
Base, Apex all 1.00

TABLE 4.3: Initial fibre extension ratios applied to model residual strain in the passive
myocardium.
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4.4.4 Summary

The previously developed model of the canine ventricles successfully incorporated an
anatomical description of the ventricular geometry and the non-homogeneous laminar
microstructure. A fully orthotropic pole-zero constitutive law based upon the three-
dimensional architecture of the myocardium was used to account for the nonlinear mate-
rial response of resting cardiac muscle. However the model has the following limitations
which prevent accurate representation of modes of deformation:

e The apical and basal anatomy is not accurately represented.

e The model is formulated in the prolate-spheroidal coordinates which constrains
the motion of the apex to the axis of the coordinate system.

e The pericardial constraint boundary condition is excessively rigid.

e Myocardial fibres that lie oblique to the ventricular wall surfaces such as occur
near the apex were not accounted for.

e The myocardial tissue is modelled as incompressible, but physiologically it is
slightly compressible particularly in the subendocardium.

e Regional variations in material properties were not modelled.

A new porcine model is presented in the next two chapters to overcome some of these
limitations.



Chapter 5

A Finite Element M odd of the Porcine
Ventricles

The pig is now the principal large animal used experimentally because the regional dis-
tribution of coronary vessels, extent of collateralisation and the heart to body weight
ratio are more similar to humans than dogs (Bloor, White & Lammers 1986). Animal
rights issues have also had an influence upon the which species can be used experimen-
tally. Therefore it is necessary to have a computational model of the porcine ventricles
to model and interpret experimental findings. The previous canine model made use of
several simplifications in order to ensure that it was computationally efficient, includ-
ing using the prolate-spheroidal coordinate system. Since the canine model was devel-
oped computer technology has improved dramatically rendering earlier simplifications
no longer necessary. The porcine ventricular model developed in this thesis also seeks
to address some of the deficiencies of the earlier model. It is developed in rectangular-
cartesian coordinates and includes an accurate description of the basal region geometry.

5.1 Data Acquisition

The heart specimens were obtained from anesthetised pigs via a median sternotomy
using the procedures detailed in Nielsen et al. (1991) with the exceptions that anesthesia
was induced with Zoletil and maintained with 2.5% halothane in oxygen. The heart
was then prepared for morphologic measurements which are detailed in the following

75



CHAPTER 5. AFINITE ELEMENT MODEL OF
76 THE PORCINE VENTRICLES

sections.

5.1.1 Ventricular Geometry and Myocardial Fibre Angle Measure-
ment

The ventricular geometry and myocardial fibre angles of a 24 kg pig heart were mea-
sured by LeGrice and coworkers in a manner similar to the earlier study performed on
the canine heart (LeGrice 1992).

To prepare the heart for measurement, the atria were removed and a stainless steel spin-
dle was inserted through the fibrous tissue between the mitral and aortic valves and
though the apex. Pins attached to a plate on the end of the spindle were passed though
the valve orifices into the left and right ventricular cavities. The ventricular cavities
were then filled with silicone rubber under water. The endplate assembly ensured that
the heart was firmly located with respect to the spindle even as parts of the myocardium
were later dissected away.

The spindle was inserted in a specially designed rig (Figure 5.1)%. For each data point
measurement, a vertically mounted probe was wound down until its tip touched the sur-
face of the heart. A small lamp projected the shadow of a horizontal pin, attached to
the side of the probe near the tip, onto the myocardial surface. The probe was rotated
about