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Abstract

An anatomically based computational model of the cardiac ventricles was developed.

The model is based upon the pig ventricles, as the pig is now the principal large animal

used experimentally. The model includes concise mathematical descriptions of the left

and right ventricular walls and the basal skeleton geometries in rectangular cartesian

coordinates. The non-homogeneous fibre and sheet microstructure is also incorporated.

The finite element method for finite deformation elasticity was used to simulate the

cardiac cycle and to investigate the global and regional mechanics. The deformation

response showed good agreement with reported observations. For the physiological

loading conditions chosen an ejection fraction of 48% was predicted with an apex-base

shortening of approximately 4%. The large ejection fraction was achieved through an

apex-base twist of 22.8 degrees and wall thickening of 33%. Predictions of the distribu-

tions of stress and strain in the ventricular myocardium are presented.

A finite element model was used to interpret the results from a published experimental

study of myocardial infarction. A nonlinear optimisation problem was solved to deter-

mine the parameters for a published proposal for an exponential constitutive law for in-

farcted myocardium. The suitability of the “pole-zero” constitutive law for myocardium

to model infarcted myocardium was also investigated. The pole-zero formulation, which

incorporates structural details of the myocardium, yielded strain distributions more sim-

ilar to those measured experimentally. The effect of infarction upon the regional and

global mechanics of the new porcine ventricular model was then examined.

In order to accurately and efficiently represent the ventricular anatomy and the large

spatial variations in the material properties and solution fields associated with myocar-

dial infarction, several new techniques were developed. The hanging node method for

high order cubic Hermite finite elements was developed to enable the use of localised

mesh refinement. Mapping constraints, to enforce
���

-continuity between high order
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elements with inconsistent parametric coordinates, were implemented to allow irregular

mesh topology. Texture map evaluations were used to provide a method of prescribing

the spatially varying constitutive parameters independent of mesh resolution . The new

techniques and models have provided initial insights into the behaviour of infarcted my-

ocardium, and a framework has been developed that can now be used for future studies

of both physiologically normal and infarcted porcine hearts.
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Chapter 1

Introduction

The heart is a complex four chambered organ whose role is to pump blood throughout

the body. In a typical person’s life of 75 years their heart will beat over 3 billion times,

pumping over 200 million litres of blood to supply the body’s nutrient needs. Heart

failure is the leading cause of non-accidental death in the industrially developed world

and by 2010 the same will be true in developing countries (American Heart Association

2002).

Although vast resources have been dedicated to heart research for many years, our

knowledge of normal cardiac function is far from complete. The quantity and com-

plexity of data being acquired both clinically and in research laboratory environments is

increasing as instruments become more sophisticated. Computer models are becoming

necessary to filter, present and interpret the data. But more importantly computer mod-

els can be also be used to simulate cardiac behaviour and predict quantities that cannot

be measured, such as mechanical stress in the beating muscle.

The heart continuously remodels itself in order to meet the demands upon it. The me-

chanical loading and deformation behaviour of an unhealthy heart varies from that of

a normal heart. The remodelling responses vary depending upon the loads and are not

well understood. One of the most common heart problems is myocardial infarction

(described in detail below). The onset of myocardial infarction starts a remodelling re-

sponse that changes the mechanical properties of the heart wall. The response is often

not successful. The mechanical rupture of myocardial infarcts is the leading cause of

in-hospital cardiac related deaths in the United States. Knowledge of the remodelling

1
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response is essential to diagnosis and prescription of the optimal treatment.

In this thesis a new porcine heart model is developed along with tools to investigate the

mechanical behaviour of infarcted myocardium and its effect on ventricular function.

The ventricular models developed and presented in this thesis build upon a solid and ex-

tensive foundation of mathematical principles and computational techniques contributed

to by many researchers in the Auckland Bioengineering Research Group. The follow-

ing two chapters, 2 and 3, present those techniques. Chapter 4 provides a review of the

cardiac models developed to date and is the starting point for the modelling work com-

pleted in this thesis. A new model of the porcine ventricles is developed in Chapter 5

followed by its use to simulate the cardiac cycle in Chapter 6. Finally, Chapter 7 devel-

ops the techniques for investigating the effect of myocardial infarction upon ventricular

mechanics and applies them to the new porcine ventricular model.

Appendix D includes an article accepted for publication that stems from the work com-

pleted for this thesis.

This chapter provides an overview of cardiac anatomy and function along with a de-

scription of myocardial infarction.

1.1 Cardiac Anatomy and Function

1.1.1 Gross Structure

Figure 1.1 shows the anatomy of the four heart chambers of a human heart. The two

large lower chambers are the left ventricle (LV) and right ventricle (RV). The two

smaller upper chambers are the left atrium (LA) and right atrium (RA). The thin-walled

atria act as low pressure blood reservoirs for the ventricles which are the predominant

pumping mechanisms.

The atria are connected to their respective ventricle via the atrioventricular valves which

ensure blood flows from the atria into the ventricles and not the reverse. The left atrial

valve is called the mitral valve and is composed of two leaflets (bicuspid). The valve

from the right atrium, the tricuspid valve, has three leaflets. The outflow tracts to the

great arteries are connected to the ventricles via the other two semilunar valves. The
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left ventricle pumps blood up the aorta though the aortic valve which prevents it re-

turning. Similarly the right ventricle pumps blood out the pulmonary artery though the

one way pulmonary valve. Although the semilunar and atrioventricular valves perform

similar functions, their mechanisms are quite different. The free edges of the atrioven-

tricular valve cusps are connected by fibrous attachments (chordae tendineae) to finger

like projections of muscle from the heart wall called papillary muscles. The aortic and

pulmonary valve cusps have thick tendinous fibres along their free edges.

Heart muscle tissue is called myocardium. Atrial and ventricular myocardium is sepa-

rated by the basal skeleton (also known as cardiac skeleton, base or basal ring). The

basal skeleton is a fibrous framework formed by the rings of the four valves and sur-

rounding connective tissue.

FIGURE 1.1: A cross-section of the heart taken though the four major chambers. Repro-
duced from Netter (1997).
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1.1.2 Microstructure

The myocardium is largely comprised of a framework of connective tissue and cells, the

surrounding extracellular space is fluid-filled. Cardiac muscle cells, called myocytes, are

typically cylindrical with lengths between 80 to 100 � m and diameters ranging from 10

to 20 � m. At the turn of the century the heart was viewed as an assembly of discrete fibre

bundles originating at the base and spiraling towards the apex (MacCallum 1900, Mall

1911). This qualitative description was generally accepted until Hort (1957) and Streeter

& Bassett (1966) made the first quantitative measurements of the fibre angle throughout

the heart wall. They found a smooth transmural variation of myocyte orientation, which

led to the predominant view that the myocardium is a single muscle mass that is more

appropriately described as a continuum than as discrete muscle bundles. Subsequently,

more detailed studies (Streeter, Spotnitz, Patel, Ross & Sonnenblick 1969, Armour &

Randall 1970) have confirmed this view for multiple spieces, including human hearts

(Fox & Hutchins 1972, Greenbaum, Ho, Gibson, Becker & Anderson 1981). However,

none of these studies sampled at more than eight sites on a single heart, nor did they

refer the muscle fibre architecture to the ventricular geometry, so the data only provided

a limited and essentially qualitative description of the ventricular fibre orientation.

The most thorough quantitative study to date of myocardial microstructure is that of

LeGrice (1992), who progressively removed fine layers of myocardium from a mounted

intact canine heart preparation. Muscle fibre orientation was measured together with

the absolute coordinates at a large number of sites through successive layers. LeGrice

also developed a method of drying thin transmural segments that exposed a transmural

laminar organisation of the cardiac myocytes. These techniques are described in further

detail in Sections 5.1.1 and 5.1.2 where they were used again to acquire data for this the-

sis. More recently the use of scanning electron microscopy (SEM) to image ventricular

specimens has shown myocardial sheets are formed by layers of myocytes tightly cou-

pled by endomysial collagen and about 4 cells thick; see Figure 1.2 (LeGrice, Smaill,

Chai, Edgar, Gavin & Hunter 1995). The sheets are separated by cleavage planes and

coupled via an extensive perimysial extracellular connective tissue network. There is

also branching between layers with muscle bridges one to two cells thick. On the basis

of these and other observations the conceptual model of myocardial architecture shown

in Figure 1.3 has been developed.

Biaxial tension tests on thin sections of ventricular myocardium (Smaill & Hunter 1991)
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FIGURE 1.2: Top: SEM of ventricular myocardium sectioned parallel to the epicardial
surface. Bottom: SEM of ventricular myocardium sectioned transverse to
the myocyte axis. Capillaries and perimysial collagen can also be seen.
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FIGURE 1.3: Schematic of myocardial microstructure illustrating the bundling of mus-
cle fibres into sheets (Modified from LeGrice 1995).
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have revealed highly nonlinear, anisotropic stress-strain behaviour which is typical of

most soft biological tissues. The stress-strain properties along each of the microstruc-

turally relevant directions are quite different, reflecting in part the organisation of colla-

gen relative to these three axis. Figure 1.4 schematically summarises the typical stress-

strain behaviour of myocardium when stretched along each of the three microstructural

axes. The important feature of the response is the different limiting strain for elastic

behaviour between each of the three axes.

axial tension

�
	

�
�

�
� axial strain

sheet
axisaxis

fibre
axis

sheet-normal

FIGURE 1.4: Typical nonlinear stress-strain response of ventricular myocardium. Note
the highly nonlinear behaviour as the elastic limits are approached.

When the tissue is stretched along the fibre direction the limiting extension ratio is about

1.3, relative to a resting sarcomere length of approximately 1.95 � m for the unloaded

muscle. The limiting extension ratio for the sheet axis is approximately 1.5. When

stretched in the sheet normal direction very little tension is developed below an exten-

sion ratio of 1.5, but increases rapidly above this and irreversible damage is occurs when

this ratio exceeds about 1.7 (Hunter, Nash & Sands 1997).

Variations in the axial limiting strains can be explained by the organisation of the extra-

cellular connective tissue matrix. The high fibre stiffness is probably due to intracellular

titin protein together with the tightly bound endomysial collagen coils that surround in-

dividual myocytes (Robinson, Geraci, Sonnenblick & Factor 1988a). As the tissue is

stretched along the fibre axis, these coils straighten and it is the taut length of the colla-

gen that determines the limiting strain (MacKenna, Omens & Covell 1996, MacKenna,

Omens, McCulloch & Covell 1994). In contrast the relatively low sheet-normal stiff-

ness is most likely to be due to the sparse array of perimysial collagen links in the
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cleavage planes between myocardial sheets (LeGrice, Smaill, Chai, Edgar, Gavin &

Hunter 1995).

Residual Strain and Stress in the Ventricular Wall

The ventricular wall in the absence of external loads is not completely stress free. Omens

& Fung (1990) demonstrated this by radially cutting an equatorial cross-sectional ring,

and observing how it sprang open into an arc when the so-called residual stress was

relieved. Several studies suggest that the residual stresses give rise to more uniform

transmural distributions of end-diastolic myocardial stress (Guccione, McCulloch &

Waldman 1991, Nevo & Lanir 1994, Rodriguez, Omens, Waldman & McCulloch 1993).

Although, during systole, Guccione, Costa & McCulloch (1995) found that the resid-

ual stresses were negligible compared to the large stresses produced by the contraction

mechanisms, Rodriguez et al. (1993) concluded that residual stress may significantly

impact systolic function by affecting end-diastolic sarcomere length and the subsequent

force of active contraction.

1.1.3 Cardiac Function

The heart contains a unique electrical conduction system which provides a coordinated

rhythmical electrical wavefront though the myocardium. At the wavefront each muscle

cell is excited in turn, generating contractile forces. Activation normally begins spon-

taneously in the pacemaker cells of the sinoatrial (SA) node, which lies between the

vena cava and the right atrium (see Figure 1.1). From the SA node, the activation wave

spreads firstly though the RA followed by the LA causing them to contract and pump

blood into their respective ventricles, before collecting at the atrioventricular (AV) node.

The AV node is the only electrical pathway between the atria and the ventricles, it con-

ducts slowly allowing enough time for the atrial blood to be pumped into the ventricles

prior to ventricular contraction. The ventricular myocardium is activated via the AV bun-

dle (otherwise known as the common bundle, or bundle of His), which bifurcates into

left and right bundle branches at the top of the interventricular septum. Both branches

travel down the septum and curl around the apical regions of their respective ventricles.

From there the bundles divide into networks of fast conducting Pukinje fibres, which

spread over and deliver the electrical impulse to the inner surface of the ventricles, the
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endocardium. The activation wavefront then travels to the outer myocardium, the epi-

cardium.

In terms of mechanical function the cardiac cycle has two major phases, ventricular

systole which is the period of contraction, and ventricular diastole in which the heart

relaxes and fills again ready for the next cycle. The Wiggers diagram in Figure 1.5

illustrates the relationship between the activation wavefront and the phases of the car-

diac cycle. At the start of systole the ventricular pressure begins to rise due to atrial

contraction. Following atrial contraction the mitral and aortic valves close, prevent-

ing any change in blood volume in the ventricles. The activation wavefront propagates

though the ventricular myocardium causing the cells to produce contractile force which

increases the ventricular pressure. This phase is referred to the as the isovolumic con-

traction phase and ends when the ventricular pressure exceeds that in the arteries and the

aortic and pulmonary valves open. The following sytolic phase is called rapid ejection

as the blood surges with an abrupt decrease in ventricular volume. After the rapid ejec-

tion phase there is a longer period of reduced ejection as the aortic pressure declines.

The remaining systolic interval is called protodiastole which ends with the closure of

the semilunar valves.

Following systole, the diastolic phase begins with a period of isovolumic relaxation,

during which ventricular pressure decreases. The atrioventricular valves open when

the ventricular pressure falls below the atrial pressure, and results in the rapid filling

phase during which the ventricular walls rebound elastically from their contracted and

compressed state. This is closely followed by the slow filling phase known as diastasis,

corresponding to a gradual increase in atrial and ventricular pressures. The final phase

of ventricular diastole coincides with atrial systole, which gives a final surge of blood

into the ventricles before the atrioventricular valves close.

1.2 Myocardial Infarction

The heart also requires its own continuous supply of blood for oxygen and metabolic

fuel (West 1985), which is delivered by the coronary arteries. Occlusion or obstruc-

tion of a coronary artery causes impaired function in the region supplied by that vessel

within seconds. Occlusion is often caused by coronary artery disease in which choles-

terol forms deposits inside the arteries of the heart (Menotti & Lanti 2003). After 15
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FIGURE 1.5: Wiggers diagram illustrating the eight primary phases of the cardiac cy-
cle. The top three traces show the pressure in the aorta, LV and atria in
millimetres of mercury. The following trace represents the LV volume.
The lower two traces indicate the relative timings of the sounds heard via
a stethoscope, and an ECG trace. The Wiggers diagram illustrates the re-
lationship between the electrical wave in the myocardium, the resultant
mechanical deformation and the consequential change in pressure in the
heart chambers. Reproduced from Katz (1992).
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minutes permanent damage, or myocardial infarction begins. Approximately 1.5 mil-

lion people experience myocardial infarction in the Unites States each year (American

Heart Association 2002). Of those, more than a third die, accounting for one quarter

of all deaths in that country. Sixty percent of patients die within the first hour, usually

before reaching hospital. Their deaths are usually because the myocardial infarct has

interrupted the normal coordinated electrical activation of the heart muscle. The un-

coordinated electrical activations, called arrhythmias, can generally be controlled once

the patient is hospitalised. Mechanical rupture of the wound is the leading cause of

in-hospital mortality.

If the patient is fortunate enough to survive the initial event, their long term chances of

survival depend on the healing of the infarct and the remodelling of both the infarct and

the remaining myocardium.

In the days and weeks following myocardial infarction the damaged area undergoes

necrosis, the death and removal of muscle cells, followed by fibrosis, the building of

collagen fibres. The collagen content increases steadily for six weeks or more. During

the remodelling process the size of the infarct may increase or decrease. Local stretching

and thinning of an infarct increases the surface area of the wound contributing to both

cardiac rupture and to overall dilation of the left ventricle. Progressive decreases in

the size of infarcts have also been reported, indicating that scar contraction may occur

similar to that observed in healing skin(Fishbein, Maclean & Maroko 1978).

Once the myocardial tissue is damaged, the contractile function is permanently impaired

(Akaishi, Weintraub, Schneider, Klein, Agarwal & Helfant 1986). The key structural

component of the infarcted region, collagen, is a very stiff protein(Fung 1981). Hence

the increase of collagen within an infarct results in the infarct being passively stiffer

along the collagen fibre directions than the surrounding myocardium (Holmes 1995).

1.3 CMISS

The numerical methods developed for this thesis were implemented within the CMISS

software package. CMISS is the product of 30 years of collective work by bioengineer-

ing researchers and their graduate students at the University of Auckland. CMISS is a

modular mathematical modelling environment that includes finite element, boundary el-
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ement, collocation methods and visualisation modules. The name CMISS is an acronym

for Continuum Mechanics, Image analysis, Signal processing and System identification.

The computational kernel of CMISS is written primarily in Fortran and the visualisa-

tion module in C. The CMISS command language module is a Perl interpreter. CMISS

currently runs on many platforms including SGI’s Irix, IBM’s Aix, Sun’s Solaris, HP/-

Compaq’s Tru64 and Linux on the x86 and ARM41 architectures. The development

work for this thesis was completed on an SGI 02, the computational work was carried

out on SGI Origin 3400 and IBM pSeries 690 multiprocessor supercomputers. Exam-

ples of the CMISS command and input files are included in Appendices B and C. CMISS

is currently available free for academic use from www.cmiss.org. The data and in-

put files required to complete the simulations performed in this thesis are also available

from that site.

Within the period of this work, simulations were performed on several generations of

computers from different vendors. Since these machines are not directly comparable,

neither are the computational times taken for different tasks completed on different ma-

chines. Therefore the timing information within this thesis is presented together with

the machine used to indicate the computational magnitude of the task.

1.4 Experimental Work

The Auckland University Bioengineering Institute includes members of, and works

closely with, the Department of Physiology at the University of Auckland’s School of

Medicine. The surgical and experimental work detailed here was performed in the De-

partment of Physiology by Dr Ian LeGrice and co-workers with the approval of the

University of Auckland Animal Ethics Committee.



Chapter 2

Finite Deformation Elasticity

Continuum mechanics deals with the movement of materials when subjected to applied

forces. The motion of a continuous and deformable solid can be described by a continu-

ous displacement field resulting from a set of forces acting on the solid body. In general,

the displacements and forces may vary continuously with time, but for the present pur-

pose a two-state quasi-static analysis will be discussed. The initial unloaded state of

the material is referred to as the reference or undeformed state as the displacements are

zero everywhere. The material then reconfigures due to applied loads and reaches an

equilibrium state referred to as the deformed state. The concepts of strain, a measure

of length change or displacement gradient, and stress, the force per unit area on an in-

finitesimally small plane surface within the material, are of fundamental importance for

finite deformation elasticity theory.

The equations that govern the motion of deformable materials can be derived in the

following four steps.

1. Kinematic relations, which define the components of the strain tensor in terms

of displacement gradients, and, for incompressible materials, define the incom-

pressibility constraint.

2. Stress equilibrium, or equations of motion derived from the laws of conservation

of linear momentum and conservation of angular momentum

3. Constitutive relations, which express the relationship between stress and strain

13
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and must be established from experimental measurement, subject to certain theo-

retical restrictions.

4. Boundary conditions, which specify the external loads or displacement con-

straints acting on the deforming body.

The first two steps define relationships which hold for all materials and will be detailed

in Sections 2.1 and 2.2, respectively. The third step is concerned with relations de-

termined experimentally for a particular material and is explained in Section 2.3. The

application of boundary constraints is introduced in Section 2.4 and will be dealt with

further in Chapter 3, which describes the solution of the governing equations. In the first

instance equations and quantities of interest are referred to rectangular cartesian coordi-

nates. It is often convenient, however, to utilise other systems of coordinates. Section

2.5 extends the theory to refer to general curvilinear coordinates.

2.1 Kinematic relations

The key to analysing strain in a material undergoing large displacements and deforma-

tion is to establish two coordinate systems and the relationship between them. The first

is a material coordinate system to effectively tag individual particles in the body. The

second is a fixed spatial coordinate system. Deformation is quantified by expressing

the spatial coordinates of a material particle in the deformed state, as a function of the

coordinates of the same particle in the undeformed state. Length changes of material

segments can then be determined from the known deformation fields and thus strain

tensors may be calculated.

2.1.1 Material versus spatial coordinates

Deformation is defined by the movement of material particles, which can be thought

of as small non-overlapping quantities of material that occupy unique points within the

undeformed body. For this reason a method of labelling the particles is required. One

convenient method is to define each material particle, � , by a set of rectangular cartesian

coordinates,
� � � � 	 � � �

, in the undeformed body. As the body deforms the coordinate
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axes deform with it and so orthogonal coordinate axes in the undeformed state will not in

general be orthogonal in the deformed configuration. These coordinates are referred to

as material (or Lagrangian) coordinates because as the body deforms, a unique material

particle is always identified by the same coordinate values.

Each point in space may be defined by a set of spatial (or Eulerian) coordinates relative

to a fixed reference cartesian coordinate system. A particular spatial point, � , with

coordinates,
� � � � 	 � � �

, may identify different material particles as they pass through

the point, � , during the deformation. Conversely, a fixed material particle, � , may

move to several spatial positions during the deformation. It should be noted that the

material coordinates, � , may be chosen to coincide with the rectangular cartesian spatial

coordinates, � , in the undeformed state.

2.1.2 Deformation and strain

To quantify the deformation of a material it is necessary to consider the change in length

of material segments, or sets of adjacent material particles within the body. In Figure

2.1, an infinitesimal material line segment, ��� , in the undeformed body,
�
� , has com-

ponents �
� �

, �
� 	

and �
� �

with respect to global rectangular cartesian coordinates�.� ��� � 	� � ���
. In the deformed body,

�
, the same material particles that constituted ���

have reconfigured (due to applied loads) into ��� , which has components �
� �

, �
� 	

and

�
� �

with respect to
� � ��� � 	
� � � �

. The deformation is quantified by the deformation gra-

dient tensor, which carries the line segment, ��� , into ��� � � ��� , or in component

form,

�
� � � � �� �

� �
. The deformation gradients are defined in Equation 2.1.

� �� �
� ���
� � .

(2.1)

Any deformation can be split into two parts: a rigid body rotation and a stretch. This

polar decomposition can be represented mathematically by considering the deformation

gradient tensor to be a product, � � !�$
, of an orthogonal rotation tensor,

!
, and

a symmetric positive definite stretch tensor,
$

. Thus the undeformed line segment

components �
� �

are stretched into ���

#
� & #� �

� �
before being rotated into �

� � �
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�
�

��� ���

�
� 	

�
� �

��� ���

���

���

�
�

����
� �

�
� 	

�
� �

�
� �

���

FIGURE 2.1: The deformation gradient tensor, � carries line segment 	�
 into 	�� .

" �#
���

#
. Equivalently the line segment could be rotated first and then stretched, but

for the present purpose it is more convenient to interpret the stretch in terms of material

coordinates and then relate the stretched material lines to the spatial coordinates through

the rotation tensor,
!

. For further details on polar decomposition refer to (Atkin &

Fox 1980, Sec. 1.4) or (Spencer 1980, Sec. 2.5). It is important to note here that the

stretch tensor,
$

, contains a complete description of the material strain, independent of

any rigid body motion.

Strain in a deforming body is determined by measuring segment length changes. Equa-

tion 2.2 uses Pythagoras to determine the arc length of the deformed segment ��� .

� 8 	 � �
� �
�
� � � ���� ��� � �

� ���
�  � ��� � ���� �� � ��� � ���� ) ��� (2.2)

where

) � �� � �
� � �

�� � � � �
�� ��*�� (2.3)

Equation 2.3 defines Green’s deformation tensor or the right Cauchy-Green deforma-
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tion tensor1 (Atkin & Fox 1980, p. 12), which indicates how each component of the

undeformed line segment � � contributes to the squared length of the deformed line

segment ��� . The deformation tensor
)

is related to the stretch tensor
$

in Equation 2.4

using the polar decomposition theorem.

) � �� � � � ! $ �  ! $ � $  !  !�$ � $  $ � $ 	
(2.4)

since
!

is orthogonal
� !  � !�� � �

and
$

is symmetric. Note that like
$

,
)

is sym-

metric and positive definite and that both
$

and
)

are expressed in terms of material

coordinates.

One method for computing the stretch tensor
$

from the deformation gradient tensor �
is to first calculate

) � �  � , then calculate the eigenvalues
� - ��� 	

,
� - 	 � 	

and
�.- � � 	

, and

orthogonal eigenvectors � � , � 	 and � � of
)

using a similarity transformation (Fox 1967,

p. 239).
$

may then be constructed using 2.5.

) � ��� 	 �  � �
��
�

�.- ��� 	 � �
� �.- 	 � 	 �
� � �.- � � 	

�
	
� �  $ � �����  � �

��
�
- � � �
� - 	 �
� � - �

�
	
� � 
(2.5)

where the columns of
�

are the orthonormal eigenvectors of
)

and are the principal

axes of stretch, and
-��

are the principal stretches (there are no shear terms when the de-

formation is referred to the principal axes). Note that since
)

is a real symmetric matrix,

the eigenvectors are orthogonal and therefore
�

is an orthogonal matrix, � �  � ���� . In

essence, the similarity transformation diagonalises
)

and the positive square root of the

resulting diagonal matrix is used to compute the stretch tensor
$

.

The two orthogonal tensors
!

and
�

, derived from � , have quite different physical

interpretations.
!

describes the rigid body rotation component of the deformation with

no information about the material stretching. On the other hand, the columns of
�

are

the orientations of the principal stretch axes relative to the material coordinates.

In three-dimensions the deformation tensor is a ����� matrix. There are three invariants

(scalar combinations of the components of
)

, which remain unchanged under coordi-
1The left Cauchy-Green deformation tensor ��������� is also defined, but is not useful here since it is

not independent of rigid body rotation.
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nate rotations at a given state of deformation. These principal invariants are given in

Equation 2.6 (see (Atkin & Fox 1980, Sec. 1.4)).

/ � ����� ) / 	 � ��
� � ��� ) � 	 � ��� ) 	 % / � ������� ) (2.6)

where the trace of
)

, denoted by �	� ) , is the sum of the diagonal terms,
) �+�

, and the

determinant of
)

, �
��� ) , is a measure of volume change.

The similarity transformation of 2.5 may be used to express the invariants of
)

in terms

of the principal stretch ratios as in Equation 2.7.

/ � � �.- ��� 	�� � - ��� 	� �.- � � 	/ 	 � �.- ��� 	 � - 	 � 	�� �.- 	 � 	 � - � � 	�� �.- � � 	 � - ��� 	/ � � �.- ��� 	 � - 	 � 	 � - ��� 	
(2.7)

Equation 2.8 is the additional kinematic constraint that must be imposed on the defor-

mation field for incompressible materials. This is discussed further in Section 2.3.

�
��� ) � / � � �.- � - 	 - � � 	 � � (2.8)

Equation 2.9 shows how the Lagrangian Green’s strain tensor, with respect to rect-

angular cartesian coordinates, is related to the right Cauchy-Green deformation tensor

(Spencer 1980, p. 72).

0 � �� � ) �  � (2.9)

2.2 Stress equilibrium

Having established the kinematic framework for finite deformation analysis, the next

step is to consider the governing force and momentum balances which follow from

Newton’s laws of motion. In order to apply these equations to materials which undergo

large deformations, it is necessary to define stress tensors and the way they enter into

the governing equations.
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2.2.1 Stress tensors

Stress is defined as the force per unit area acting on an infinitesimally small plane sur-

face. If the line of action of the force is normal to the plane then a normal or axial stress

results, whereas a shear stress arises when the line of action of the force is tangential to

the plane. The quantities of force and area can be referred either to the reference (unde-

formed) or deformed configurations, which leads to three important ways of represent-

ing stress in a deforming body, namely using the Cauchy, first or second Piola-Kirchoff

stress tensors. Refer to Malvern (1969, p. 220) for a more complete explanation.

1. The Cauchy stress tensor, denoted
4 �6�

, represents the force measured per unit

deformed area acting on an element of surface in the deformed configuration. The

first index indicates the direction of the normal to the surface on which
4 �6�

acts

and the second index indicates the direction of the stress component. It should be

noted that the Cauchy stress tensor is symmetric for non-polar materials (see Sec-

tion 2.2.2) and that in rectangular cartesian coordinates,
4 �5�

are also the physical

components of stress.

2. The first Piola-Kirchhoff stress tensor, denoted 8 �:� , represents the force acting

on an element of surface in the deformed configuration but measured per unit

undeformed area. The first index is written in uppercase as it refers to the normal

of the surface in the undeformed state, and is thus a material coordinate index. The

second index denotes the direction of the force acting on the deformed material,

and is a spatial coordinate index. For this reason the first Piola-Kirchhoff stress

tensor is generally not symmetric. It is sometimes referred to as the Lagrangian

stress tensor and is often used in experimental testing where force is measured in

the deformed tissue, but the area over which it acts is measured in the undeformed

tissue.

3. The second Piola-Kirchhoff stress tensor, denoted < �+*
, represents the force

measured per unit undeformed area, � , acting on an element of surface in the

undeformed configuration. This force may be determined from the actual force,
� , in the same way that the undeformed material vector, ��� , is determined from

the deformed material vector, ��� . Specifically � � � � � � just as � � � � � � ���
(Malvern 1969, p. 222). The primary use of the second Piola-Kirchhoff stress
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tensor is for representing material behaviour at a point, independent of rigid body

motion. This is discussed further in Section 2.3, which describes relationships

between stress and strain tensors at a point. The main idea here is that the second

Piola-Kirchhoff stress tensor is defined solely in terms of material coordinates,

just as for Green’s strain tensor. Note that the second Piola-Kirchhoff stresses

must be transformed into first Piola-Kirchhoff stresses for use in the equilibrium

equations, which require a spatial frame of reference.

Equations 2.10 and 2.11 define the relationships between the second Piola-Kirchhoff,

first Piola-Kirchhoff and Cauchy stress tensors.

7 � > � � � 3 ; � 7 � �  � � � � > � � � 3 � �  � � �
8 �:� � > � ���

� � � 4 �5� < �+*
� 8 �:� � � *

� � � � > � � �
� ��� 4 �5� � ��*

� � � (2.10)

or inversely

7 � ; �  3 �
�
� � 7 � �> � ; � 

8 �:� � < �+* � � �
� ��* 4 �5� � �

�
� � 	��� � 8 � � � �> � ���

� ��� < �+* � � �
� ��* (2.11)

where
>

is the Jacobian of the transformation from reference to deformed coordinates,

defined in Equation 2.12. Note from Equation 2.12 that the second Piola-Kirchhoff

stress tensor is symmetric whenever the Cauchy stress tensor is symmetric.-

> ������� � � � / � � - � - 	 - �
(2.12)

2.2.2 Conservation laws and the principle of virtual work

Conservation of mass

The conservation of mass principle relates the mass densities in the undeformed and

deformed bodies (denoted by ? � and ? , respectively) given in Equation 2.13 (Oden 1972,
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p. 15). �
��� ? � ��� � ' �

� ? ��� �
�
��� ? > ��� � (2.13)

Thus for arbitrary volumes, mass density for the undeformed and deformed bodies are

related using Equation 2.14.

? � � > ? � � / � ? (2.14)

Conservation of linear momentum

Following Malvern (1969, Sec. 5.3), for a given set of particles, the time rate of change

of the total linear momentum equates to the vector sum of all the external forces acting

on the particles of the set. This is expressed mathematically in Equation 2.15, where
@

is the traction vector (external surface forces per unit area),
B

represents the body forces

(per unit mass), and the rate of change of momentum is written in terms of the material

derivative
�
��� � A�� and the velocity vector C .� � @ ��	 � �

� ? B ��� � �
� A

�
� ? C ��� (2.15)

Cauchy’s formula, defined in Equation 2.16, projects the components of a stress vector
@

(the force per unit area acting on some deformed surface ��	 , with unit normal
IH � IK � � � )

onto the set of orthogonal base vectors for the rectangular cartesian reference coordinate

system,
���

.

@ ��	 � 4 �5� K � ��� ��	 (2.16)

where
4 �6�

are components of the Cauchy stress tensor and are physical stresses, since
� �

are unit vectors.

Cauchy’s formula is substituted into Equation 2.15 to form Equation 2.17, which is

appropriate for a material with constant density. Note that Equation 2.17 is written in

component form where the body force and velocity vectors have components
B � �

� ��
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and C � D � ��

, respectively.� � 4 �6� IK � ��	 � �

� ?�� � � � � D �
� A�� ��� � � (2.17)

Applying the divergence theorem to Equation 2.17 yields Equation 2.18.

�
� � � 4

�5�
� ��� � ? � � � ? F ��� ��� � � (2.18)

where
F � � ���	�� 3 are components of the acceleration vector.

If Equation 2.18 is to be valid for arbitrary volumes the integrand must vanish (it is as-

sumed here that the integrand is continuous). This results in Equation 2.19, which is the

component form of Cauchy’s first law of motion for rectangular cartesian coordinates.

� 4 �5�
� ��� � ? � � � ? F � (2.19)

It is often convenient to express Cauchy’s first law of motion in terms of the second

Piola-Kirchhoff stress components as in Equation 2.20. This can be determined by

substituting Equations 2.11 and 2.14 into Equation 2.19 and assuming that there are no

spatial gradients of density. Note that the term in parenthesis is simply the first Piola-

Kirchhoff stress, 8 �:� .
�

� � . � < �+* � � �
� ��*
� � ? � � � � ? � F � (2.20)

For static equilibrium of the material, important in solid mechanics, the right-hand-side

acceleration term in Equation 2.19 vanishes, and in the absence of body forces this

relation reduces to the statement of stress equilibrium in Equation 2.21 for rectangular

cartesian coordinates.
� 4 �5�
� ��� � � or

�
� ��� � < �+* � � �

� ��*
� � � (2.21)
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Conservation of angular momentum

The conservation of angular momentum equates the time rate of change of the total

angular momentum for a set of particles to the vector sum of the moments of the external

forces acting on the system. For stress equilibrium of non-polar materials, this principle

is equivalent to the symmetry condition on the Cauchy stress tensor, namely
4 �5� � 4 � �

(see Malvern (1969, Sec. 5.3) or Spencer (1980, Sec. 7.5) for a full derivation). Note

that if the Cauchy stress tensor is symmetric (as is the case for the non-polar materials

being considered here), the second Piola-Kirchhoff stress tensor is also symmetric as a

direct consequence of Equation 2.10. This implies that there are only six independent

components of stress — three normal components and three shear components.

Principle of virtual work

Now consider a body of volume � and surface 	 loaded by a surface traction � which is

in equilibrium with the internal stress vector
@
. If the body is subjected to an arbitrarily

small displacement
� C , which satisfies compatibility and any displacement boundary

conditions specified on 	 (where
� C must be zero), then the principle of virtual work

can be expressed in the form of Equation 2.22 (see Malvern (1969, Sec. 5.5) or Marsden

& Hughes (1983, p. 168)). ���� � � � C ��	 �
� � @ � � C ��	 (2.22)

where 	 	 is the portion of the boundary that is not subjected to displacement boundary

conditions.

The virtual displacements may be resolved into components
� C � � D�� � �

. Cauchy’s

formula (Equation 2.16) is then substituted into the virtual work equation (Equation

2.22) to yield Equation 2.23. ���� � � � C ��	 �
� � 4 �5� IK � � D � ��	 (2.23)

The right-hand-side surface integral in Equation 2.23 is transformed into a volume inte-
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gral using Gauss’ theorem (Fung 1965, p. 117) to give Equation 2.24.�� � � � � C ��	 �
� � � � 4

�5�
� ��� � D � � 4 �5� ��� D �

� ��� � ��� (2.24)

Cauchy’s first law of motion (Equation 2.19) is substituted into the volume integral in

Equation 2.24 to give Equation 2.25. Moreover, Equation 2.11 is used to express Equa-

tion 2.25 in terms of the second Piola-Kirchhoff stress tensor, as written in Equation

2.26. �
� 4 �5� � � D �

� � � ��� �
�
� ? � � � � F � � � D � ��� � �� � � � � C ��	 (2.25)�

� < �+* �> � � �
� ��� � � D �

� ��* ��� �
�
� ? � � � � F � � � D � ��� � �� � � � � C ��	 (2.26)

To solve the virtual work equations it is necessary to evaluate the surface integral on

the right-hand-side of Equation 2.26. This is outlined in Section 2.4. The next step,

however, is to express the stress components in terms of the deformation to characterise

the material behaviour. This is addressed in Section 2.3 through the use of constitutive

relations.

2.3 Constitutive relations

Unlike the previously described kinematic relations and stress equilibrium equations

that hold for most materials, constitutive relations characterise individual materials and

their response to external loads. In the context of finite deformation elasticity, constitu-

tive equations are used to represent the behaviour of a material through empirical rela-

tionships between experimentally observed stress and strain tensors. This section will

only treat constitutive equations concerned with the mechanical behaviour of materials.

There are several important considerations which should be addressed when formulating

constitutive laws. Perhaps the most important is that they are robust enough to predict

behaviour in various experimental situations using different samples of the same type

of material. It is unreasonable, however, to expect to simulate all aspects of a material’s
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behaviour with one set of constitutive equations. For this reason the most important and

relevant behavioural features should be identified for the particular application and it is

these features that the constitutive relations should approximate. The resulting equations

will be more concise, numerically efficient and thus more suitable for use in large scale

computer models.

It is essential that constitutive laws are based on experiments using real materials, but

certain theoretical restrictions must be observed. Firstly, constitutive equations must be

independent of the choice of coordinate system, since they characterise the constitution

of individual materials and not the frame of reference from which they are observed.

However, they can be expressed in terms of components relative to different coordinate

systems. Thus rigid-body motions should play no role in the constitutive law (this is

known as the axiom of objectivity, see Eringen (1980, p. 163)). Mathematically, this

is satisfied by postulating the existence of a strain energy function,
�

, to be a scalar

potential that depends on the components of either the right Cauchy-Green deformation

tensor or Green’s strain tensor (defined in Equations 2.3 and 2.9, respectively). Compo-

nents of the second Piola-Kirchhoff stress tensor are given by the derivatives of
� � ) �

or
� � 0 �

with respect to the components of
)

or
0

, respectively. Equation 2.27 defines

the components of the second Piola-Kirchhoff stress tensor when
�

is expressed in

terms of Green’s strain components,
1 �+*

, referred to
� �

-material coordinates (Green

& Adkins 1970, p. 6).

< �+*
� �� � � �

� 1 �+* � � �
� 12* � � (2.27)

Material symmetry imposes further theoretical restrictions on the form of the consti-

tutive law. Certain types of material possess no preferred direction, exhibiting rota-

tional symmetry about all directions and reflectional symmetry with respect to all planes.

These materials are isotropic. For isotropic materials, the strain energy is constant for

all orientations of the coordinate axes, or mathematically
� � ) � � � ��� ) �  � , where

�
is any constant orthogonal tensor. Thus the strain energy is an invariant function of)

. It can be shown that any invariant function of
)

can be expressed as a function

of the three principal invariants of
)

, which are defined in Equation 2.6 (see Spencer

(1980, Sec. 10.2)). This reduces the functional form of the strain energy function to� � � � / ��� / 	
� / � �
.
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For incompressible materials a further restriction on the form of the constitutive law

can be imposed. In this case the additional kinematic constraint
/ � � � ( Equation 2.8)

is applied. Spencer (1980, p. 141) notes that it is not sufficient to set
/ � � � in the

constitutive equation, since certain derivatives of
�

tend to infinity in the limiting case

of an incompressible material. This problem is overcome by introducing an arbitrary

Lagrange multiplier
-

into the constitutive equation. The unspecified strain energy term�
is limited to be a function of

/ �
,
/ 	

only. Thus for isotropic, incompressible materials,

Equation 2.28 shows the functional form of the strain energy function.

� � � � / ��� / 	 � � - � / � � � � (2.28)

The mechanical effect of the incompressibility condition is to give rise to a reaction

stress referred to as the hydrostatic pressure (denoted by � ), which does not contribute

to the deformation of the body. In other words, the addition of a hydrostatic pressure to

an incompressible elastic body indeed alters the stress, but does not in any way affect the

strain energy of the material. Equation 2.28 may be substituted into Equation 2.27 and

rearranged to give the components of stress with respect to
� �

-material coordinates,

expressed in Equation 2.29 (Spencer 1980, Sec. 10.2). Note that
�����

��� � � � � � �+*
, where� �+*

is the Kronecker delta, which is equal to one if the indices � and � are the

same and zero otherwise. In addition, the arbitrary Lagrange multiplier is chosen to

be
- � � �	 � in the constitutive equation (Equation 2.30) to ensure that the additional

component in the diagonal terms of the stress tensor is a true hydrostatic stress.

< �+*
� �� � � �

� 12�+* � � �
� 1 * � � � � � �+*

(2.29)

where, for isotropic, incompressible materials

� �
� 1 �+* �

� �
� / � � / �

� 1 �+* � � �
� / 	 � / 	

� 12�+* (2.30)

A suitable form of
� � / ��� / 	��

must then be chosen, based on experimental observations

of the material. Certain types of rubber exhibit almost isotropic behaviour and are re-

ferred to as Mooney-Rivlin materials. Equation 2.31 characterises this type of material

using material constants (mechanical properties) 	 � and 	 	 which must be estimated ex-
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perimentally. A subset of the Mooney-Rivlin materials are the Neo-Hookean materials,

which are characterised by setting 	 	 � � in Equation 2.31.

� � / ��� / 	�� � 	 � � / � � � � � 	 	 � / 	 � � � (2.31)

Note that the use of
� / � � � � and

� / 	 � � � ensures that the strain energy is zero when the

strain,
0

, is zero. This is demonstrated by using Equation 2.9 to show that
) �  for

zero strain, in which case Equation 2.6 reduces to
/ � � / 	 � � and

/ � � � .
Alternatively a transversely isotropic material possesses a single preferred direction at

every point. These materials exhibit rotational symmetry about the preferred axis and

reflectional symmetry with respect to all planes containing this axis. Green & Adkins

(1970, p. 28) have extended the above approach by allowing
�

to depend on the strain

invariants
� �

and
� 	

associated with the plane of isotropy.

A major objection to the above approaches to the formulation of constitutive equations

is that the parameters bear no direct relation to the underlying structure of the material.

An approach which incorporated parameters that directly reflect mechanical or structural

properties of the material would potentially yield a more reliable constitutive relation.

In addition, variations in material properties could be more easily understood in terms

of the effect on the behaviour of the material. Section 4.4.3 details the development of

a microstructurally based constitutive law for passive heart tissue.

2.4 Boundary constraints and surface tractions

All terms in Equation 2.26 have now been defined apart from the right-hand-side integral

involving the surface traction vector � . If external surface pressures are applied, this

integral must be evaluated for those portions of the boundary that sustain the loads. In

the absence of boundary pressures this term vanishes.

Consider a deforming surface, with unit normal
IH � IK � ��� . If the surface is loaded by

a pressure, � �$
 ��� � � (a physical stress), then the surface traction vector has components
� � � �$
 ��� � � IK ��� � and the right-hand-side surface integral of Equation 2.26 is evaluated
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using Equation 2.32. �� � � � � C ��	 �
�� � � �$
 ��� � � IK � � D � ��	 (2.32)

This surface integral is then substituted into Equation 2.26 to yield the governing equa-

tions for finite deformation elasticity with respect to rectangular cartesian coordinates

given in Equation 2.33.�
� < �+* �> � � �

� � . � � D �
� ��* ��� �

�
� ? � � � � F � � � D � ��� � �� � � �$
 ��� � � IK � � D � ��	 (2.33)

It then remains to solve Equation 2.33 in terms of the unknown virtual displacements� D �
, subject to any displacement boundary conditions. For geometrically simple bodies

with straight-forward material behaviour, Equation 2.33 can be used in its present form.

However, for more complex shapes and material laws it is often convenient to take

advantage of different coordinate systems. Section 2.5 details how the quantities and

governing equations that have been defined thus far may be generalised for curvilinear

coordinate systems.

2.5 Curvilinear coordinate systems

A material point may be represented by coordinates with respect to a general curvilinear

coordinate system. These coordinates are related to the reference rectangular cartesian

coordinates using a set of base vectors which are unique to the particular curvilinear

coordinate system. Tensor quantities such as strain and stress can be transformed to

refer to the new system of coordinates using metric tensors, which are defined by inner

products of base vectors and represent measures of the physical lengths of coordinate

increments. Base vectors and metric tensors can thus be used to express the governing

equilibrium equations with respect to a general set of curvilinear coordinates.
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FIGURE 2.2: Coordinate systems used in a kinematic analysis of large deformation elas-
ticity.

2.5.1 Base vectors and metric tensors

In Figure 2.2 a set of reference rectangular cartesian coordinates
� � � � � 	 � � � �

define

the position of a material point � , with position vector � � � �  ������
, in the deformed

body
�

. ������� � � �
are the unit base vectors for the rectangular cartesian coordinate

system
�.� ��� � 	
� � � �

. In the undeformed configuration
�
� ,

� � � � � 	 � � � �
are the refer-

ence rectangular cartesian coordinates of the same material point � with position vector! � � �  ������
. The displacement vector � of the material point is defined in equation

Equation 2.34 .

� � ! � � (2.34)

For convenience, a set of reference coordinates
� �

� � �
	 � �

� �
may be defined to describe

the material point � in the deformed body with respect to a general curvilinear coordinate

system. The covariant base vectors for the curvilinear reference coordinate system,  � � �� ,
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are defined to be the derivatives of the position vector � with respect to each of the � �
coordinates, as written in Equation 2.35 . Thus the covariant base vectors for the � � -
coordinate system are parallel to � � -coordinate lines.

 � � �� �
� ���
� � �

�������
(2.35)

The components of the covariant metric tensor, denoted by � � � ��5� , with respect to the � � -
coordinate system are defined to be the inner products of the covariant base vectors. The

covariant metric tensor with respect to the � � -coordinate system is defined in Equation

2.36.

� � � ��5� � �� � �� �  � � �� �
� �
�� � �
� �
�� � � (2.36)

By definition, another set of vectors
�  � � � � � are orthogonal to

� �� � �� �
using the relations

given in Equation 2.37.

 � � � � �  � � �� � � ��
(2.37)

where
� ��

is the Kronecker delta.

These vectors are referred to as contravariant base vectors and are perpendicular to

� � -coordinate surfaces. For example  � � � � is normal to a
� � � � � 	 � -surface since it is or-

thogonal to both �� � �� and �� � �	
from Equation 2.37.

The components of the contravariant metric tensor with respect to the � � -coordinate

system are defined in Equation 2.38.

�
�5�
� � � �  � � � � � 

�
� � � �

� � �
� �
�

� � �
� �
�

(2.38)

The contravariant metric tensor may be used to relate the contravariant and covariant

base vectors using Equation 2.39. For reference, the contravariant and covariant metric

tensors with respect to the � � -coordinate system are related using Equation 2.40 (Green



2.5. CURVILINEAR COORDINATE SYSTEMS 31

& Adkins 1970, p. 2).

 � � � � � �
�
�� � �  � � �� (2.39)

�
�
�� � � � � � ��

� � � ��
(2.40)

Material axes for anisotropic materials

Anisotropic materials possess different material properties in different material direc-

tions. It is often convenient to identify the material coordinate axes with structurally

important directions. For example myocardial tissue has a fibrous-sheet structure (see

Section 1.1.2) and it is convenient to model it as an orthotropic material with one axis

aligned with the muscle fibre direction, another with the sheet axis and the third orthogo-

nal to these two axes. Non-homogeneous materials possess different material properties

at different locations in a body. For non-homogeneous, anisotropic materials the ori-

entation of the material axes may vary with location and so it is no longer convenient

to identify the material axes in the undeformed body with the reference coordinates� � ��� � 	
� � ���
. Instead, a new material coordinate system

� D ��� D 	
� D � �
is introduced which

is aligned with certain structural features of the material. For myocardium, a natural set

of material axes are formed by identifying
� �

with the muscle fibre direction,
� 	

with

the sheet direction and
� �

with the sheet-normal direction.

The base vectors for the
�
� -coordinate system may be chosen to be orthogonal in the

undeformed state. This is convenient in myocardium, for example, where the
�
� -

coordinates are chosen to line up with the fibre, sheet and sheet-normal directions, which

are orthogonal in the undeformed state. However, the ensuing deformation dictates that

they are not orthogonal, in general, in the deformed configuration. For this reason it is

necessary to define base vectors and metric tensors for the
�
� -coordinate system in both

the undeformed and deformed states. � ��! �� , � � �$! � and # ��! �� , # � �$! � denote the base vectors

in the undeformed and deformed configurations, respectively. The metric tensors are

denoted by % ��! ���� , % �����! � and � �$! ���� , � �����! � in the undeformed and deformed configurations, re-

spectively. Recall that subscripted indices refer to covariant quantities and superscripted

indices refer to contravariant quantities, and note that Greek symbols are used to denote

individual
�
� material coordinates. They are computed in an analogous fashion to those

for the � � -coordinate system defined in Equations 2.35 and 2.40. The base vectors and

metric tensors for the
�
� -coordinate system are listed in Equation 2.41. Note that the
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undeformed covariant base vectors, � �$! �� , can be defined to be unit vectors by choosing

the
�
� -coordinates to be a measure of physical arc-length in the undeformed state.

� �$! �� � �����
� ! �  � ���� # ��! �� � � � �� ! � �������� � �$! � � � �$! �� � � �� # � ��! � � # ��! �� � � ��

% �$! ���� � � �$! �� � � �$! �� � � ���
� ! �

� ���
� ! � � ��! ���� � # ��! �� � # ��! �� � � � �� ! �

� � �� ! �% ����$! � � � � �$! � � � � �$! � � � ! �� � �
� ! �� � � � �����! � � # � ��! � � # � ��! � � � ! �� � � � ! �� � �� � �$! � � % �����! � � ��! �� # � ��! � � � ����$! � # ��! ��% �����! � % �$! �� � � � �� � ����$! � � ��! �� � � � ��

(2.41)

2.5.2 Measures of strain and stress in curvilinear coordinates

Equations 2.9 and 2.29 express Green’s strain tensor and the second Piola-Kirchhoff

stress tensor, respectively, with respect to rectangular cartesian coordinates. The ma-

terial coordinates required in these relations were chosen to align with the rectangular

cartesian coordinates in the undeformed reference state. Alternatively, stress and strain

tensors may be referred to
�
� -material coordinates as in Equations 2.42 and 2.43, respec-

tively, using the metric tensors for the
�
� -material coordinate system (Equation 2.41).

Note that if the
�
� -material coordinates are chosen to coincide with the rectangular

cartesian coordinates, ����! ���� reduces to
� ��� and both % �$! ���� and % ����$! � reduce to

�
��� .

1
��� � ��

�
� ��! ���� � % �$! ���� � (2.42)

< ��� � �� � � �
� 1

���

� �1
���
� � � % ����$! � (2.43)

Cauchy’s formula for rectangular cartesian coordinates ( Equation 2.16) is generalised

in Equation 2.44 to express the components of the stress vector
@

acting on a deformed

surface ��	 , with normal H � K �  � � � � , in terms of the components of the Cauchy stress

tensor.

@ ��	 � A �  � � �� ��	 � 4 �6� K �  � � �� ��	 (2.44)

For this research the constitutive law is based on the material structure (see Section
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4.4.3) and so it is convenient to compute components of the second Piola-Kirchhoff

stress tensor with respect to the undeformed
�
� -material coordinates, as in Equation

2.43. It is therefore more appropriate to express the stress vector in terms of the second

Piola-Kirchhoff stress components.

Nanson’s theorem ( Equation 2.45) maps the deformed spatial (world) coordinate area,

��	 , into the area of the same material surface in the undeformed state, ��	 � , with unit

normal
� � � � # � ��! � (Malvern 1969, p. 169).

�> � �
� K � ��	 � � ����	 � or

�  H ��	 � >�� ��	 � (2.45)

Substituting Nanson’s theorem and Equation 2.11 into Equation 2.44 results in an alter-

native form of Cauchy’s formula, written in Equation 2.46.

@ ��	 � < ��� � �
� � �= � � �� ��	 � (2.46)

Equation 2.46 defines the form of Cauchy’s formula used in Section 2.5.3 to generalise

the governing equations developed in Section 2.2.2 to curvilinear coordinates.

Physical components of stress and strain in curvilinear coordinates

The components of the Cauchy stress tensor (
4 �5�

in Equation2.44 ) are in general not

physical stresses since the base vectors  � � �� are not necessarily unit vectors. To obtain

physical stress components, these covariant base vectors must be normalised and the

components of the normal H must be referred to the unit contravariant base vectors as in

Equation 2.47.

H � K �  � � � � � � � �
�
� �
� � � K ����  � � � ��

�
� �
� � �
��

�
no implicit summation

�
(2.47)

where
�
�
� �
� � � K � are the covariant components of the unit normal vector, relative to the

unit contravariant base vectors, written in parenthesis. Equation 2.47 is then substituted
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into Equation 2.44 to form Equation 2.48.

@ � � �5� 4 �5� ��
�
� �
� � �

� �
�
� �
� � � K � �

�
��� � �� � ��  � � ���

� � � �� �
��

�
no implicit summation

�
(2.48)

where
� ������
� � ������ � are unit covariant base vectors.

By comparing Equation 2.48 with Equation 2.16, the physical components of the Cauchy

stresses, denoted here as
4 � �5� � , may be calculated using Equation 2.49. Note that the ma-

trix of physical stresses is symmetric since the Cauchy stress tensor is symmetric (see

Section 2.2.2), but
4 � �5� � are not the components of a tensor.

4 � �6� � � 4 �5� � � � � ��.��
�
� �
� � �

�
no implicit summation

�
(2.49)

Components of physical Green’s strain are related to the tensor components of Equation

2.42 in a slightly different manner. The relation defined in Equation 2.50 and incorpo-

rates the undeformed covariant metric tensor for the
�
� -coordinate system, % ��! ���� . Note

that like the physical stresses, the physical strain components form a symmetric matrix,

but are not (in general) tensor components.

1 � ��� � � 1
���
�
% �$! �� � % �$! �� � �

no implicit summation
�

(2.50)

Recall that earlier the base vectors of the
�
� -coordinate system were chosen to be or-

thonormal. In this case, the undeformed metric tensor % ��! ���� consists of the components

of the identity matrix, and the Green’s strain tensor is comprised of physical strain com-

ponents. If, however, strains were to be transformed to refer to reference � � -coordinates

(for which the base vectors are generally not unit vectors), then the tensor components

would not be physical components of strain. In this situation, physical strain compo-

nents could be computed using a relation similar to Equation 2.50 with the covariant

metric tensor � � � ��5� substituted in place of % ��! ���� in Equation 2.50.
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2.5.3 Equilibrium equations in curvilinear coordinates

Cauchy’s formula for curvilinear coordinates (Equation 2.46) may be substituted into

Equation 2.15 to yield a statement of conservation of linear momentum appropriate

for curvilinear coordinates. This is written in Equation 2.51 and has been expressed

in terms of the components of the second Piola-Kirchhoff stress tensor with respect to�
� -material coordinates.��

� < ��� � �
� � �  � � �� ��	 � � �

��� ? � B ��� � � �
� A

�
��� ? � C ��� � (2.51)

where Equation 2.13 has been used to transform the volume integrals to be taken over

the undeformed volume instead of the deformed volume.

The next step is to transform the surface integral in Equation 2.51 into a volume integral

using the divergence theorem (Sokolnikoff 1964, p. 264). Equation 2.52 defines the

transformation.��
� < ��� � �

� � �  � � �� ��	 � � �
� � � � � < ��� � �

�  � � �� � ��� � � �
��� � < ��� � �

� ���� �  � � �� ��� � (2.52)

where “ & � ” denotes covariant differentiation with respect to the
�
� -material coordinate

(defined in Equation 2.57).

The resulting linear momentum balance is written in Equation 2.53.�
��� � � < ��� � �

� ���� �  � � ��
� ? � B � ? � E�� ��� � � � (2.53)

where
E � ���� 3 . Note that ? � , C and

E
are assumed to be continuous throughout � � .

For arbitrary volumes, the integrand in Equation 2.53 vanishes resulting in Equation

2.54, which is a general form of Cauchy’s first law of motion appropriate for curvilinear

coordinates.

� < ��� � �
� ���� �  � � �� � ? � B � ? � E or � < ��� � �

� �	�� �
� ? � � � � ? � F � (2.54)

where the body force and acceleration vectors have components
B � �

�  � � �� and
E �F � �� � �� , respectively. Note that this reduces to Equation 2.20 if the

�
� -material coor-
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dinate are chosen to coincide with the rectangular cartesian reference coordinates in

the undeformed state and the � � -coordinates are chosen to be the rectangular cartesian

coordinates.

Now, recalling the principle of virtual work in Equation 2.22, the virtual displacements

may be expressed in terms of covariant components
� C � � D��  � � � � with respect to the

base vectors of the � � -reference coordinate system. Similarly, the surface traction vector

may be written in terms of its contravariant components using � � 8 �  � � �� . Substituting

these components together with the expression for the traction vector given in Equation

2.46, transforms the virtual work equations into Equation 2.55.�� � 8 � � D � ��	 �
��
� < ��� � �

� � �
� D �

��	 � (2.55)

Gauss’ theorem (Fung 1965, p. 117) is used to expand the right-hand-side surface inte-

gral in Equation 2.55 into the volume integral in Equation 2.56.�� � 8 � � D � ��	 �
�
� � � � < ��� � �

� ���� � � D �
� < ��� � �

�
� D � & � � ��� � (2.56)

where
� D � & � is the covariant derivative of the virtual displacement with respect to the�

� -material coordinate and is defined in Equation 2.57.

� D � & � � � � D �
� �

�
� ( ��

�
� D �

(2.57)

where

( ��
� �

�
� �

�

�  � � �� � �  � � � � �
�
� �

�
� � � �� � � � � � �

� �
�

(2.58)

are called Christoffel symbols of the second kind which are non-tensor quantities that

arise through partial differentiation of base vectors. As expressed here, they are not

symmetric with respect to the two lower indices since � is a spatial coordinate and � is

a material coordinate.

Cauchy’s first law of motion Equation 2.54 can be used to eliminate the second deriva-

tive terms in Equation 2.56 and reduce it to Equation 2.59. Notice that in this expression

of the virtual work principle, the stress components are referred to material
�
� -material
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coordinates, while the displacement components are referred to the � � -reference coordi-

nates. �
��� < ��� � �

�
� D � & � ��� � � �

� � ? � � � � � F � � � D � ��� � � �� � 8 � � D � ��	 (2.59)

The final step is to evaluate the right-hand-side surface integral, as discussed in Section

2.5.4.

2.5.4 Surface tractions in curvilinear coordinates

The right-hand-side surface integral of Equation 2.59 is evaluated by expressing the

contravariant components of the traction vector, 8 � , in terms of the pressure loads acting

on the external surfaces of the deforming body. In the absence of boundary pressures

this integral vanishes.

At this stage, it is convenient to introduce one further system of material coordinates that

describe the geometry of the deforming body. They are referred to as the finite element

material coordinates,
��� � ���
	 ���
���

, and are described fully in Section 3.1.5. The base vectors and metric tensors

for the
���

-material coordinate system are defined in Equation 3.20.

Consider a pressure load, � ��
��� � � (a physical stress), acting on the deforming
���������
	 �

-

coordinate surface. The unit normal to this surface is given by
IH � � � � � �

� � � �
��� � (since the

contravariant vectors for the
���

-coordinate system are not necessarily unit vectors).

The surface traction vector is expressed in Equation 2.60.

� � � � � � ��� � IH � � ��
��� � �  � ��. ��
�
� �

��. � �
� � � � ��� �  � ��0. ��

�
� �

��. �  ��. �
� � � � � � ��� � �

� �
�0. ��
�
� �

��. �
� � �
� ���  � � �� � 8 �  � � ��

(2.60)

where the contravariant components of the surface traction vector are given by

8 � � � ��
��� � � �
� �
��. ��
�
� �
�0. �

� � �
� �	� (2.61)
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The right-hand-side surface integral of Equation 2.59 may now be computed using

Equation 2.62. ���� 8 � � D � ��	 �
���� � ��
��� � � �

� �
�0. ��
�
� �

�0. �
� � �
� �	� � D �

��	 (2.62)

where the integral is performed over the portion of deformed surface that is subject to

pressure boundary constraints.

Finally, Equation 2.62 is incorporated into Equation 2.59 to yield the equilibrium equa-

tions that govern large deformation elasticity, written in Equation 2.63.�
� � < ��� � �

�
� D � & � ��� � � �

� � ? � � � � � F � � � D � ��� � � ���� � ��
 � � � � �
� �
��. ��
�
� �

�0. �
� � �
� ��� � D �

��	 (2.63)

Equation 2.63 is the starting point for the analysis of a body undergoing large elastic

deformations. To be useful for practical applications, the virtual displacements are ex-

pressed in terms of an interpolation of nodal parameters which may be determined using

a nonlinear Galerkin finite element method (see Chapter 3). Moreover, to be applica-

ble to the heart, the relationship between the stress and strain (Equation 2.43) must be

based on experimental observations of myocardium under physiological conditions (see

Section 4.4.3).



Chapter 3

The Finite Element Method For Finite

Elasticity

To analyse stress in an body undergoing large elastic deformations the equations that

govern finite deformation elasticity, developed in Chapter 2, must be solved. For materi-

als with regular geometries and simple material properties this may be done analytically

(an example of this is presented in Section 4.2). However, for most practical applica-

tions materials behave nonlinearly and assume complex shapes. Irregular domains may

be discretised into a number of smaller regular elements, over which quantities of inter-

est (for example the geometric coordinates of a point) are continuously approximated.

The two main types of interpolation functions used in this thesis are linear Lagrange and

cubic Hermite basis functions. Section 3.1 details these interpolation schemes and their

use in one, two and three spatial dimensions.

In order to accurately and efficiently resolve quantities of interest that vary dramati-

cally it is often necessary to vary the consistency of the discretisation. Section 3.1.4

describes a method to include irregular connections whilst maintaining continuity of the

approximation throughout the domain.

It is often convenient, if not necessary, to use several different coordinate systems for

the FEM for finite deformation elasticity. For example, stress components are most

conveniently expressed with respect to a system of material coordinates aligned with

structural features of the body, whereas the geometry best expressed using a system of

curvilinear reference coordinates. Section 3.1.5 defines FE material coordinate systems

39



40

CHAPTER 3. THE FINITE ELEMENT METHOD

FOR FINITE ELASTICITY

in terms of the global rectangular cartesian coordinate system.

For each element, the equations governing finite deformation elasticity are expressed

in terms of known material properties and the unknown displacements of the element

vertices (referred to as nodes). To formulate these equations many integrals must be

evaluated and often this cannot be done analytically. Gaussian quadrature (described in

Section 3.2) is a suitable numerical integration scheme for use with FE analysis.

Element contributions are assembled into a global system of equations to ensure that the

solution is compatible across element boundaries. The system of nonlinear equations

(defined in Section 3.3) are solved, subject to boundary constraints, to yield a set of

deformed nodal coordinates from which deformation patterns are approximated using

interpolation. Section 3.4 describes nonlinear techniques used to solve the equations.

To reduce solutions times, the computation of the element contributions to the global

equations is distributed across a number of processors, which may be a cluster of work-

stations or a high performance computer.

3.1 Interpolation using basis functions

Basis functions, also known as shape or interpolation functions, may be used to approx-

imate quantities of interest (for example geometric or solution variables) that vary over

a particular domain. They consist of sets of polynomials of different degrees, depend-

ing on the desired accuracy of the approximation (generally the higher the degree, the

better the approximation). This thesis uses two main types of interpolation functions —

namely the linear Lagrange and cubic Hermite basis functions. The higher order cubic

Hermite basis functions are used to approximate quantities of interest that possess large

spatial gradients, whereas linear Lagrange basis functions are used to approximate vari-

ables that do not vary appreciably. This section provides an overview of the properties

of each basis type and the way they can be combined to approximate field variables in

two- and three-dimensions. For further information see Zienkiewicz & Taylor (1994,

Chap. 7).
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FIGURE 3.1: Linear Lagrange basis functions

3.1.1 Linear Lagrange basis functions

Consider an arbitrary scalar function, � , with � � � � and � � � 	 at opposite ends of

a one-dimensional domain. A linear approximation of � , along the domain can then be

defined using Equation 3.1, by introducing a normalised measure of distance,
�
, with� � � at one end (where � � � � say) and

� � � at the other end of the domain (where

� � � 	 ).

� � � � � � � � � � � �
� � � 	 � � ) � ) � � (3.1)

The boundary points of the domain are variously referred to as element vertices, element

nodes or nodal points and the values of � at element nodes, namely � �
and � 	 , are

referred to as nodal parameters. In Equation 3.1, a weighting function is associated

with each of the nodal parameters. These weighting functions are straight lines that vary

between 0 and 1 as shown in Figure 3.1. They are referred to as the linear Lagrange

basis functions and are defined in Equation 3.2.

� � ��� � � � � � � � � 	 � � � � �
(3.2)
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FIGURE 3.2: The scalar field, u, may be approximated over an entire domain by using
piecewise polynomials over a set of smaller domains.

More complex variations of � (with larger spatial gradients, say) may be approximated

using piecewise linear polynomials over smaller domains, called elements. The union

of the set of smaller sub-domains must cover the entire domain of interest without over-

lapping. Adjacent elements share nodal parameters for their description of � as shown

in Figure 3.2, which ensures that the approximation of � is continuous throughout the

entire domain.

Equation 3.1 holds over each of the three elements in Figure 3.2. In the first element

� � � & �
and � 	 � & 	

, whereas in the second element � � � & 	
and � 	 � & �

. This

ensures that the quantity � is implicitly continuous between elements since in the first

element � � � � � & 	
and in the second element � � � � � & 	

using Equation 3.1. Similarly,

in the third element, � � � & �
and � 	 � & � , ensuring continuity between the second and

third elements with � � & �
at the junction node.

It is now clear that � may be approximated by a continuous piecewise parametric de-

scription in terms of the normalised element coordinate,
�
. In order to express � in

terms of the physical coordinate,
�

, the relationship between
�

and
�

must be defined

for each element. It is convenient to define the spatial coordinate,
�

, as an interpolation

of the nodal values of
�

. Thus the dependence of � on
�

is defined by the parametric

expressions in Equation 3.3.

� � � � � � � � ��� � � � � ��� � � � � � � � � � � (3.3)

Note that in Equation 3.3, summation is implied over all element nodes (there are only

2 for this one-dimensional case) and that
� � � �

provides the mapping between the math-



3.1. INTERPOLATION USING BASIS FUNCTIONS 43

ematical space, � ) � ) � and the physical space
� � ) � ) � 	

.

3.1.2 Cubic Hermite basis functions

Like the linear Lagrange basis functions, cubic Hermite interpolation functions provide

continuity of the variable of interest across element boundaries. In addition, they provide

continuity in the first derivative with respect to arc length, which is what makes them

different from cubic Lagrange basis functions. For this reason Hermite bases are ideal

for representing a smoothly varying curve or surface over some domain of interest.

To approximate the field quantity, � , using a one-dimensional cubic Hermite basis, two

element nodes are required, over which four nodal quantities must be defined. Two of

these are the values of � at the element nodes, namely � �
and � 	 , just as for the linear

Lagrange basis functions. The additional two quantities are the first derivatives of � with

respect to the normalised element coordinate,
�
. These two parameters are denoted by� ����

.
� � and

� ����
.
� 	 , where the subscripts refer to the element node at which the derivative

is defined.

A one-dimensional cubic Hermite basis incorporates the four cubic polynomials listed

in Equation 3.4 and illustrated in Figure 3.3. Note that the subscripted indices on the

basis functions refer to the element node number and the superscripted indices signify

whether the basis function is associated with the value of � (superscript 0) or its deriva-

tive (superscript 1) at the node.

� � � ��� � � � � � � 	 � � � � � �	 ��� � � � 	 � � � � � �� �� ��� � � � ��� � � �
	 � �	 ��� � � � 	 ��� � � � (3.4)

Equation 3.5 defines how � may be approximated in one-dimension using the four cubic

Hermite basis functions with their associated nodal parameters.

� � � � � � � � � � � � � � � �� ��� � � � �
� � � �

� � �	 � � � � 	 � � �	 ��� � � � �
� � � 	 (3.5)

To make cubic Hermite basis functions useful in practice, one further modification is

necessary. Instead of using the nodal derivative
� ����
.
� � that depends on the local element
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FIGURE 3.3: Cubic Hermite basis functions

�
-coordinate in the two adjacent elements, it is more useful to define a global node

derivative � � ���� � * , where 8 is the arc-length and � is the global node number. Equation

3.6 is then used to calculate the
�
-coordinate derivative.� � �

� � � � � � � �
� 8 � * � � � 8� � � � (3.6)

where
� ����
.
� � is an element scale factor which scales the arc-length derivative of global

node � to the
�
-coordinate derivative of element node K . Note that it is always con-

venient to associate the element node K in element � with the global node � using a

connectivity matrix
� � K �

�
� � � . The result is that � � ���� � is implicitly constrained to be

continuous across element boundaries rather than
� � ��
.
� .

3.1.3 Interpolation in two- and three-dimensions

Two- and three-dimensional basis functions can simply be constructed from tensor prod-

ucts of the one-dimensional bases described above.

To approximate � over a two-dimensional domain, the bilinear Lagrange interpolation

scheme may be used. This scheme consists of the four polynomials shown in Figure 3.4
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FIGURE 3.4: Two-dimensional bilinear basis functions.

, and is constructed by taking the tensor product of individual one-dimensional linear

Lagrange interpolations in the
���

and
�
	

directions as outlined in Equation 3.7.

� � ��� �����	�� � � #
� � � ��� � #

� ���	�� � � � � � ���� � � �
	��� 	 ��� �����	�� � � #
	 � � ��� � #

� ���	�� � � � � � � �
	 �� � ��� �����	�� � � #
� � � ��� � #

	 ���	�� � � � � � ��� �	� � ��� �����	�� � � #
	 � � ��� � #

	 ���	�� � � � �
	
(3.7)

where
� #
� ��� �

and
� #
	 ��� �

are the one-dimensional linear Lagrange basis functions de-

scribed in Section 3.1.1.

Four nodal parameters, � � ������� � � � , are associated with the two-dimensional basis func-

tions and are the values of � defined at the element vertices. The approximation of � is
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given in Equation 3.8.

� � � � � � �� � �����
	 � � �
� � 	 ��� � ���
	 � � 	

� � � ��� �����
	 � � �
� � � ��� �����	 � � � (3.8)

As for the one-dimensional case, the geometry of the element is defined in terms of in-

terpolations of nodal positions
� � � �

�
� � � K � � ������� . Equation 3.9 is then used to provide

the mapping between the mathematical space
���������
	��

and the physical space
� � �

�
�
.� ��� � ���
	 � � � � � � � �����	�� � � �

��� � ���	�� � � � � � � �����	 � � � (3.9)

Using a similar procedure, the eight polynomials that constitute a three-dimensional

trilinear Lagrange basis have been constructed in Equation 3.10 and used to approximate

� over a three-dimensional element in Equation 3.11.� � � � �����
	
������ � � � � � ���� � � �
	 � � � � �
� � � 	 ��� �����
	���
��� � � � � � � �	��� � � �
���� � � � �����
	
������ � � � � � ��� �	 � � � ���� � � ��� �����
	���
��� � � � �
	 � � � �
� �� � � � �����
	
������ � � � � � ���� � � �
	 � �
� � � ��� �����
	���
��� � � � � � � �	�� ����� � � �����
	
������ � � � � � ��� �	��
� ��� ��� �����
	���
��� � � � �
	��
�

(3.10)

and

� ��� �����
	 ���
� � ��� � � ��� �����
	���
� � � � K � � ���������� ��� �����	������ � � � � ��� �����	
���
� � � �� ���
	 ��� �
�
����� (3.11)

The construction of two- and three-dimensional basis functions involving cubic Hermite

interpolation can be achieved using the above procedure, with one modification for the

derivative terms. To approximate � using a two-dimensional bicubic Hermite basis, the

four quantities listed in Equation 3.12 must be defined at each element node, totalling

16 nodal parameters per element.

� �
� �
� � � �

� �
� �
	 �

�
	
�

� � � � �	 (3.12)

The need for the second-order cross-derivative term can be explained as follows. Since
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� is cubic in both
� �

and
�
	

independently, then the derivative
� �
� .�� is quadratic in

� �
and

cubic in
�
	

. The cubic variation of � with
� 	

is specified by the four nodal parame-

ters � � ,
� � �
� .

�
� � , � � , and

� � �
� .

�
� � , defined at element vertices one and three respectively.

However, since
� �
� .�� is cubic in

�
	
, as stated above, and is entirely independent of these

four parameters, four additional parameters are required to specify this cubic. Two of

these are specified by
� � �
� .��

� � and
� � �
� .��

� � , and the remaining two are the second-order

cross-derivative terms,
� �

�
�

� .�� � .

�
� � and

� �

�
�

� .�� � .

�
� � . Similar reasoning explains the need

for
�

�
�

� .�� � .

�
to be defined at element vertices two and four.

The bicubic Hermite interpolation of the field quantity � is written out in full form

in Equation 3.13 using the one-dimensional cubic Hermite basis functions defined in

Equation 3.4, and the 16 nodal parameters described above.

� � � � ���
	�� � � � � � � ��� � � � ���	�� � � � � �	 � � ��� � � � � �
	�� � 	� � � � � � ��� � �	 ���	�� � � � � �	 � � ��� � �	 � �
	�� � �� � �� � � ��� � � � ���	�� � � �
� .��

� � � � �	 � � ��� � � � � �
	�� � � �
� .��

� 	� � �� � � ��� � �	 ���	�� � � �
� .��

� � � � �	 � � ��� � �	 � �
	�� � � �
� .��

�
�� � � � � � ��� � �� ���	�� � � �

� .

�
� � � � �	 � � ��� � �� � �
	�� � � �

� .

�
� 	� � � � � � ��� � �	 ���	�� � � �

� .

�
� � � � �	 � � ��� � �	 � �
	�� � � �

� .

�
� �� � �� � � ��� � �� ���	�� � �

�
�

� .�� � .

�
� �

� � �	 � � ��� � �� � �
	�� � �

�
�

� .�� � .

�
� 	� � �� � � ��� � �	 ���	�� � �

�
�

� .�� � .

�
� � � � �	 � � ��� � �	 � �
	�� � �

�
�

� .�� � .

�
�
�

(3.13)

To ensure derivative continuity throughout the spatial domain as well as the
�
-coordinate

space, the global node derivatives need to be specified with respect to physical arc-

length. There are now two arc-lengths to consider. Arc-lengths along the
� �

- and
�
	

-

coordinates are measured by 8 � and 8 	 , respectively. Thus the one-dimensional scale

factors in Equation 3.6 are extended in Equation 3.14 for two-dimensional interpolation.

� � �
� .��

� � � � � �
� �

�
� * � ����� ��

.��
� �� � �

� .

�
� � � � � �

� �
�
� * � � ���

�
�
.

�
� � (3.14)
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with the additional cross-derivative scale factor

� �
	
�

� � � � �
	 � � � � �
	
�

� 8 � � 8 	 � * � � � 8 �� � � � � � � � 8 	� �	 � � (3.15)

where
� �

�

��
.��
� � and

� �
�

�
�
.

�
� � are element scale factors which scale the arc-length deriva-

tives of global node � to the
�
-coordinate derivatives of element node K , as for the

one-dimensional case. Again � is related to K using the connectivity mapping,
� � K �

�
�
.

A further condition must governs the choice of scale factors to ensure that � is
�

�

continuous across element boundaries. A sufficient condition is that the scale factor at

a node in one element is the same as the scale factor at the same node in an adjacent

element (Bradley, Pullan & Hunter 1997). In other words the scale factors should be

nodally based so that the same scale factor is used for all elements in which a node lies.

Any choice of scale factor will provide
�
�

continuity across element boundaries, but it

is convenient to choose the average of the two arc-lengths adjacent to the given global

node. This is because it is often computationally desirable to uniformly space the
�

coordinate with respect to arc-length (for example to evenly space out the computational

points of a Gaussian quadrature scheme across elements). However if adjacent element

arc-lengths differ largely, average arc-length scale factors may cause the arc-length to

be too long in one element and too short in the other. Another choice of scale factor

is the harmonic mean, given in Equation 3.16 for . The harmonic mean is smaller than

the arithmetic mean and is therefore more useful when the mesh contains neighbouring

elements of markedly different sizes.

�� � �K �� � ' � ����
or for the case of interest when K ���

� � � � � � 	 � � � � � � 	� � � � 	 (3.16)

Three-dimensional tricubic Hermite basis functions may be constructed in a similar
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manner by introducing a triple cross derivative with respect to all three element co-

ordinates as in Equation 3.17.� �
�
�

� � � � �
	 � �
� � � � � �
�
�

� � � � �	 � �
� � * � � ��� �� � � � � � � ��� 	� �
	 � � � � ��� �� �� � � (3.17)

3.1.4 Irregular Meshes - Hanging Nodes

In this thesis some of the phenomena of interest vary dramatically over a relatively small

portion of the solution domain, for example, the properties of soft tissue surrounding an

infarct. In order to resolve those quantities accurately, the discretisation of the domain in

the area of interest must be sufficiently fine and the order of the polynomial interpolation

sufficiently high. Meeting that criterion and uniformly discretising the entire domain

is often computationally inefficient or infeasible. Hanging nodes also referred to as

improper, slave or constrained nodes provide a means of connecting regions of varying

discretisation.

Hanging nodes are proper nodes for an element which uses them as vertices1 and their

field values contribute directly to these element stiffness matrices. However, their field

values are interpolated from neighbouring elements where they do not correspond to an

element vertex.

In the solution process the degrees of freedom of a hanging node are constrained to be

values interpolated from the neighbouring elements in order to enforce continuity of the

approximation across the inter-element boundaries. The constrained degrees of freedom

are eliminated from the discrete system of global equations. Figure 3.5 demonstrates the

use of a hanging node to create an irregular linear Lagrange mesh.

In the system of equations for the example presented in Figure 3.5, there are no equations

for the constrained node degrees of freedom. The equations for the proper nodes 5 and

6 are modified to include the coefficients associated with the hanging node, node 8.

For a hanging node in a cubic Hermite mesh, as in the linear Lagrange example, � is

interpolated from the adjacent element. The nodal arc length derivative value � ���� � � is

also evaluated from the adjacent element.

1“Vertex” here implies that the element node weights a corresponding element basis function (i.e. it
could be a mid side node for an element that directly used midside nodes).
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FIGURE 3.5: A Hanging node in a linear Lagrange domain mesh. The nodal parameter
� at the constrained node is constrained to be the value of � interpolated
from the proper nodes in element 1.

The scale factors
� �

��
.
� for the connected elements must be chosen to satisfy the condi-

tion that
���
� �
���
� � is continuous across the element boundaries to ensure that the domain mesh

varies smoothly and is continuous.

Note this criterion does not maintain strict
�

�
continuity, that is continuity of

� �
��� , across

the element boundaries. In fact it is not possible with the FEM implementation used

in this thesis to create a
�
�

continuous irregular mesh using cubic Hermite elements.

However, although
�
�

continuity is desirable it is not absolutely necessary.

3.1.5 Finite element material coordinates

When modelling the geometry of a deforming body using the FEM, it is convenient

to define a system of normalised element coordinates within each element,
� � �����	
���
� �

.

These coordinates are material coordinates because they are embedded in the body and

deform with the material as it deforms. Thus, in general the
���

-material coordinates

are not orthogonal. With reference to Figure 3.6, consider a material point � with rect-

angular cartesian coordinates
� � ��� � 	
� � ���

in the undeformed body
�
� . Equation 3.18

may be used to map the
���

-material coordinates of � into the undeformed spatial coor-

dinates using the values (and derivatives, for high order interpolation) of the geometric
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�

�
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�

� � � �

FIGURE 3.6: The finite element material coordinate system ��� ��� � 	�� � ��� .

coordinates for the K element parameters in the undeformed state,
� ��

.� � � � � ��� �����	������ � ��
(3.18)

where
� � � � �����
	
���� � are the chosen three-dimensional basis functions (see Section 3.1).

A subsequent deformation causes the material point to undergo a displacement � . In

the deformed body
�

, the material point is labelled � and has rectangular cartesian

coordinates
� � � � � 	
� � � �

. Again the
���

-material coordinates may be used to describe the

deformed geometry of the element using the mapping given in Equation3.19.��� � � � ��� �����
	 � �  � � � �� (3.19)

where
� ��

are the element nodal values (and derivatives) of the  -th geometric coordinate

in the deformed state.

The covariant base vectors and metric tensors for the
���

-coordinate system are defined

in Equation 3.20 for the undeformed and deformed states. Contravariant base vectors

and metric tensors for the
���

-coordinate system may be determined in an analogous
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fashion to those for the
�
� -coordinate system in Equation 2.41, and again the metric

tensors may be used to raise or lower indices.

, � � � �
� .
�  � ���� ��0. �� � � � �� .

� �������� �0. ��+* � , ��. �� � , �0. �* � � � �
� .
� � � �

� .
� � �0. ��+* �  ��. �� �  �0. �* � � � �� .

� � � �� .
� (3.20)

3.2 Gaussian quadrature

The calculation of surface and volume integrals is essential when using the FEM. Often

these integrals can not be determined analytically, especially when dealing with nonlin-

ear problems such as finite elastic deformations. For this reason an efficient and accurate

numerical method to determine the element integrals is required. The Gauss-Legendre

quadrature integration scheme (hereafter referred to as Gaussian quadrature) satisfies

these criteria by approximating an integral by a weighted sum of integrand evaluations

using specified sets of independent variables.

3.2.1 Integration in one-dimension

The one-dimensional integral given in Equation 3.21 is approximated by a weighted

sum of integrand evaluations, where � �
are the weighting factors and

� � � � are the points

at which the integrand,
F ��� �

, is evaluated. These sampling points are commonly termed

Gauss points. The error in the approximation is denoted by
1
� , where I is the order of

the quadrature scheme.
��
�

F � � �
�
� �

�� � ' � � � F � � � � � � � 1
� (3.21)

To exactly integrate a cubic polynomial, two Gauss points are required. This is proven as

follows. A general cubic polynomial incorporates four coefficients and may be written

in the form shown in Equation 3.22.F � � � � �
�

�
� � 	 � 	 � �

� �
(3.22)
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Substituting Equation 3.22 into the integral on the left-hand-side of Equation 3.21 yields

Equation 3.23.
��
�

F ��� �
�
� � �

��
�

� � �
�

�

��
�

�
�
� � 	

��
�

� 	
�
� �

�

��
�

� �
�
�

(3.23)

This integral may be approximated using two Gauss points as shown in Equation 3.24.
��
�

F ��� �
�
� � � � F ��� � � � � � � 	 F � � � 	 � � (3.24)

To determine the
� � � � positions and associated � �

weights, each integral on the right-

hand-side of Equation 3.23 is evaluated analytically. The same integrals are then ex-

panded using Equation 3.24, where the function
F

is chosen to be the corresponding

integrand. The result is a set of four equations in four unknowns, as detailed in Equa-

tions 3.25 - 3.28.

��
�

� � � � � � � � � � 	
since

F � � � � � (3.25)

��
�

�
�
� � �� � � � � � � � � � 	�� � 	 � since

F � � � � �
(3.26)

��
�

� 	
�
� � �� � � � � � � � � � 	 � � 	 � � � 	 � � 	 since

F � � � � � 	
(3.27)

��
�

� �
�
� � �� � � � � � � � � � � � � 	 � � � 	 � � � since

F � � � � � �
(3.28)

The four Equations 3.25 - 3.28 are expressed in terms of the four unknowns,
� � � � , � � 	 � , � �

and � 	
, and may be solved to determine the positions and weights (listed in Equation

3.29) unique to the quadrature scheme involving two Gauss points. Implicit in this

derivation is the fact that Equation 3.24 is exactly satisfied since the four integrals on the
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right-hand-side of Equation 3.23 are used in Equations 3.25 - 3.28 to calculate the Gauss

positions and weights. Thus a polynomial of degree three can be exactly integrated using

a Gaussian quadrature scheme with two Gauss points.

� � � � �
�	 � �	�� � � � �

�	
� � 	 � �

�	
� �	�� � � 	 �

�	 (3.29)

This idea is extended when treating higher order polynomials. A Gaussian quadrature

scheme with � sampling points (Gauss points) associated with � weights will exactly

integrate a polynomial of degree � � � � . Note that if there are more than � Gauss

points a polynomial of degree � � � � will also be exactly integrated, although needless

calculations will be performed reducing the efficiency of this scheme. Conversely, if

the scheme incorporates less than � Gauss points (say � � � ) then the error term in

Equation 3.21 will be of the order of
�

to the � � 3 � power. For example three Gauss

points will exactly integrate a fifth order polynomial, but if only two Gauss points are

chosen for the integration scheme, then
1
� will be of the order of

� �
.

3.2.2 Integration in two- and three-dimensions

To approximate surface and volume integrals using Gaussian quadrature, one-dimensional

schemes are set up in each direction. Consider the function
F ��� � ���
	��

which depends on

the two variables
� �

and
�	

defined to lie in the surface of interest. The surface integral

of
F

over its domain can be approximated by the two-dimensional Gaussian quadrature

scheme expressed in Equation 3.30.

��
�

��
�

F � � �����
	 �
�
�
	
�
� � �

��
�

� �� � ' � � � F ��� ����� � � �	 � � 1
��� �

� � �
�� � ' �

�� � ' � � � � ��F � � � � �� � � � �	 � � 1
� �

(3.30)

where a quadrature scheme with
/

Gauss points and weights is firstly employed in the�
	
direction (

� � � �	 and � � , respectively) followed by a scheme with
>

Gauss points and

weights for the
� �

direction (
� � � ��

and � � , respectively). Note that the error term depends
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on the choice of quadrature schemes in the
���

and
�
	

directions separately which, in

general, may be different.

Similarly in three-dimensions, Equation 3.31 shows how to approximate a volume inte-

gral of
F ��� �����
	
������

using Gaussian quadrature schemes with
/
,
>

and
�

Gauss points

and weights in the
�
�

,
�
	

and
� �

directions, respectively.

��
�

��
�

��
�

F ��� � ���
	 ���
���
�
�
�
�
�
	
�
� � �

�� � ' �
�� � ' ���� � ' � �

� � � � � F � � � � �� ��� � � �	 ��� � � �� � � 1
� �

�
(3.31)

It should be noted that the limits on the integrals performed throughout this section

have purposely been chosen as 0 and 1 for the following reason. For FE calculations,

integrals are generally performed over the physical coordinate space of each element.

The basis functions described in Section 3.1 map the spatial coordinates into the math-

ematical
�
-coordinate space and so the element integrals can also be transformed using

the appropriate Jacobian. Thus the integrals required are now performed over the
���

-

coordinate space for which � ) �	� ) � . Moreover, the integrands are polynomial-like,

hence Gaussian quadrature is an ideal integration scheme for FE analysis.

3.3 Galerkin finite element equations for finite elasticity

The equations that govern large elastic deformations of deformable materials have been

developed in Chapter 2. The framework has now been set to apply the Galerkin FEM

to the stress equilibrium equations developed in Section 2.5.3. Additional constraints

arise if the material is incompressible in nature, and if surface pressures are prescribed

on external faces.

3.3.1 Galerkin equilibrium equations

The virtual displacement fields
� D	�

in Equation 2.63 are approximated by a FE displace-

ment field in Equation 3.32 using interpolation functions
� � developed in Section 3.1.

� D � � � � ��� �����
	���
� � � D �� (3.32)
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where
� D ��

are arbitrary virtual nodal displacements.

Equation 3.32 is substituted into the equilibrium equations that govern finite deforma-

tion elasticity (Equation 2.63) and each component
� D ��

is considered in turn in Equation

3.33.�
��� < ��� � �

�
� � & � ��� � � �

��� ? � � � � � F � � � � ��� � � �� � � ��
��� � � �
� �
�0. ��
�
� �

�0. �
� � �
� �	� � � ��	 (3.33)

To evaluate the integrals in Equation 3.33, they must first be transformed from the ref-

erence coordinate space to the
���

-coordinate space using the appropriate Jacobian. The

transformed integrals are written in Equation 3.34.

� � �
��� < ��� � �

�
� � & � � � �0. � � �� � �
	 � � � � � � �

��� ? � � � � � F � � � � � � �0. � � �
� � �	 � � �
� � �� � � �$
 ��� � � � � ��0. �

� � �
� ��� � � � � �0. � � �
	 � � � (3.34)

where
� � ��. � � �

�
��� � � �0. ��5� �
and

� � ��. � � �
�
��� � � �0. ��5� �

are the three-dimensional co-

ordinate transformation Jacobians with respect to the undeformed and deformed con-

figurations, respectively. Note that the surface integral is transformed by substituting> 	�� � �
	 � � � for ��	 , where the two-dimensional Jacobian with respect to deformed coor-

dinates is given by
> 	�� �

�
� ��. � � � ���. � (Oden 1972, p. 245).

The three-dimensional integrals in Equation 3.34 are evaluated over the undeformed

volume and the two-dimensional integral is computed over the portion of the deformed

surface (denoted 	 	 ) for which external pressure loads are applied. These integrals are

replaced by a sum of integrals over the collection of element domains which constitute

the FE model. Element integrals are evaluated numerically using Gaussian quadrature

(Section 3.2) and adjusted by the scale factors associated with the chosen interpolation

scheme (see the discussion on scale factors in Section 3.1.3). Components of the second

Piola-Kirchhoff stress tensor, < ��� , are evaluated at each Gauss point using the constitu-

tive equations (Equation 2.43) and the strain energy is calculated using the appropriate

form of the strain energy function (see Sections 2.3 and 4.4.3 for further details).



3.3. GALERKIN FINITE ELEMENT EQUATIONS FOR FINITE

ELASTICITY 57

Element integrals are then assembled back into Equation 3.34 to yield a global system

of equations, in which there are three equations for each node of the FE mesh (one for

each spatial coordinate direction). The unknown variables are the three coordinate dis-

placements (or equivalently locations) for each node of the FE mesh, thus forming a

square system. Note that this formulation is isoparametric, as it uses the same basis

functions for the deformed coordinates (solution variables) as for the undeformed ge-

ometry (independent variables) (Zienkiewicz & Taylor 1994, p. 160). Further equations

and unknowns arise if the material is incompressible (see Section 3.3.2) and pressure

constraints are applied to external surfaces (see Section 3.3.3).

3.3.2 Galerkin incompressibility constraint

Equation 3.34 is sufficient to solve for the unknown nodal geometric displacements� D ��
. For incompressible materials, an additional scalar hydrostatic pressure field is in-

troduced into the constitutive equations (see Section 2.3). The extra constraint necessary

to determine the parameters of the hydrostatic pressure field arise from the requirement

that
/ � � � for incompressible materials. To reflect volume changes, the additional

kinematic constraint
� / � � � � � is incorporated into the global system.

To be consistent when calculating stress components and to avoid numerical

ill-conditioning, Oden (1972, p. 239) suggests that the interpolation scheme chosen to

describe the deformed geometric coordinates should be of higher order than that cho-

sen to approximate the hydrostatic pressure field. This arises because the strain en-

ergy contribution to stress components is related to the first derivatives of the geometric

displacement fields, whereas the hydrostatic pressure directly contributes to the stress

components (Equation 2.43). To be compatible the two contributions should vary in a

similar manner.

For trilinear interpolation of the deformed geometric solution variables, the hydrostatic

pressure field must be approximated using a piecewise constant scalar field to satisfy

the compatibility condition. One auxiliary parameter is introduced per element and

is simply the hydrostatic pressure within the element. One kinematic incompressibil-

ity constraint per element is introduced to produce a square system of equations, with

matching numbers of unknowns and constraints. For a Galerkin formulation, the form
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of the incompressibility constraints is given in Equation 3.35.� � �
��� � � / � � � � � � � � ��. � � �
� � �
	 � � � � � (3.35)

where � � denotes the domain of the element and
� � are the basis functions used to ap-

proximate the three-dimensional hydrostatic pressure field (
� � � � for constant element

based pressure interpolation). Note that the undeformed three-dimensional Jacobian,� � ��. � , is introduced since the integrals are evaluated with respect to the undeformed

configuration.

Alternatively, if cubic Hermite interpolation functions are used for the unknown geo-

metric displacements, the compatibility condition permits trilinear interpolation of the

hydrostatic pressure field. The desirable feature of this scheme is that the hydrostatic

pressure field is implicitly piecewise continuous across element interfaces, which is es-

sential for determining continuous stress distributions. The nodal hydrostatic pressure

variables are determined using Galerkin constraints of the form in Equation 3.35, ap-

plied at each vertex of the element. In this case, the weighting functions
� � are chosen

to be the trilinear basis functions of Equation 3.10, and the hydrostatic pressure field is

implicitly piecewise continuous across element interfaces.

3.3.3 Explicit pressure boundary constraints for the finite element

equations

To ensure that the stress field on the external boundaries of the body exactly matches the

applied pressure loads, an extra constraint may be introduced for each applied surface

pressure. These ideas were originally introduced by McCulloch (1986) and have also

been described by Costa, Hunter, Rogers, Guccione, Waldman & McCulloch (1996b),

so a brief summary is included here.

For the case of element based interpolation of the hydrostatic pressure field, extra de-

grees of freedom are required to satisfy these constraints. The hydrostatic pressure field

is thus extended to vary quadratically across each element (for convenience this varia-

tion is chosen to be in the
� �

-direction), as in Equation 3.36.
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� � ������ �
	� � ' � � �� ���� ���
� �

(3.36)

where

� �
�
������ � � � � � ���
� � � �
� � �	 ���
� � � � �
� ���
� � � � (3.37)

The constant hydrostatic pressure element variables, � �� , remain unchanged (see Section

3.3.2) and are determined using an element constraint of the form in Equation 3.35.

The two extra element parameters, � � � and ���	 , are determined by introducing the explicit

surface traction constraints in Equation 3.38 into the global system.4 � � � �� � 
 �0� � ��� . ��� �
� � � � � � � �4 � � � �� � 
 �0� � ��� . � ' �
� � � � � 3 � � � (3.38)

where � � � � � and � � � � 3 � are the applied pressure loads at the centre of the
� � � � and

�
� � �
faces, respectively, and

4 � � � �� � 
 � � � is the physical component of Cauchy stress normal to the

centre of the deformed
� � �����
	 �

face, which is defined in Equation 3.39.

4 � � � �� � 
 � � � � � < ��� �> � �
�

� � � � �
�

� � � � � � �
� �
�

� � �
� �
�

(3.39)

where � � and
�
� denote the undeformed and deformed microstructural material coordi-

nates, respectively, and � �
denotes the

��� �����
	 �
wall normal coordinate.

In Equation 3.39, the physical component of stress normal to the
��� �����
	 �

surface is com-

puted using two coordinate transformations. Firstly, the term in parenthesis transforms

components of the second Piola-Kirchhoff stress tensor (referred to microstructural ma-

terial coordinates in the undeformed state) into physical components of Cauchy stress

referred to deformed microstructural material coordinates. This is achieved using the Ja-

cobian and the deformation gradients with respect to the
�
� -material coordinate system.

The second transformation computes the physical Cauchy stress component normal to

the deformed
��� �����
	 �

surface using derivatives of the wall normal coordinate with re-
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spect to the
�
� -material coordinates.

For the case of trilinear Lagrange hydrostatic pressure interpolation, there are no ex-

plicit pressure boundary constraints and the applied boundary pressures contribute only

to the equilibrium equations for finite deformation elasticity (Equation 3.34). The nodal

hydrostatic pressure variables are determined using additional incompressibility con-

straints, of the form in Equation 3.35 (see Section 3.3.2).

The global nonlinear system is comprised of Equations 3.34 and 3.35, combined with

Equation 3.38 if explicit pressure boundary constraints are required. The final step in the

analysis is to solve the FE equations using a suitable nonlinear solution method. Section

3.4 briefly describes one common solution technique, known as Newton’s method.

3.4 Solving the nonlinear finite element equations using

Newton’s method

The FEM for finite deformation elasticity requires a system of nonlinear equations to be

solved over the domain of interest. It is convenient to rearrange the equations into a set

of residuals (with zeroes on the right-hand-side), which must be minimised with respect

to the set of solution variables. This set consists of the positions (or equivalently, the

displacements) and arc-length derivatives in each of the coordinate directions, at each

global node of the FE mesh. For incompressible problems additional variables arise

from the description of the hydrostatic pressure throughout the domain as discussed in

Section 3.3.2.

The residual equations are made up of rearranged forms of Equations 3.34 and 3.35.

Additional residuals of the form in Equation 3.38 arise if explicit pressure boundary

constraints are required to determine additional element based hydrostatic pressure vari-

ables. Equation 3.34 provides one equation for each coordinate direction (superscript

� ) at each node of the FE mesh (subscript K ), plus additional equations associated with

arc-length derivatives in each direction at each node. Further residuals arise from the

incompressibility constraint (Equation 3.35) and any explicit pressure boundary con-

straints (Equation 3.38). Note that in all cases there are the same number of residuals as

there are solution variables, comprising a square system of equations.
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The residuals can be minimised using a nonlinear optimisation technique, such as New-

ton’s method. As detailed below, this technique minimises a set of residuals using their

first derivatives with respect to each of the solution variables to determine the parameter

space search direction for the next solution iteration. For a more detailed description of

Newton’s method see Acton (1970, p. 367).

Consider the system of K nonlinear equations of the form
F=� �

�
� � � , �  � � � ����� � K � ,

where � are the solution variables. With an initial estimate of the solution
���J� � � �

�
� �

,

each function can be expanded about # in K -space using Taylor’s series. Retaining only

the linear terms in this expansion yields Equation 3.40, where
� � ���

represents the set of

deviations from # .

F � � # � � � �
�� � � � # � � �

� � �
�� �
�
� # � � 	

� � � � � � �
�� � �

� # � � � � �F 	 � # � � � �
�

� � � � # � � �
� � �

�
� �
�
� # � � 	

� � � � � � �
�

� � �

� # � � � � �
...

...F � � # � � � �
�� � � � # � � �

� � �
�� �
�
� # � � 	

� � � � � � �
�� � �

� # � � � � �
(3.40)

or

� � # � � � � E � # � (3.41)

where
�

is the Jacobian of derivatives evaluated at # , and is defined in Equation 3.42 in

terms if the solution variables � .

� �
�
� �

�����
�

� �
�� � � � �

�� �
�
� � � � �

�� � �� �
�

� � � � �
�

� �
�
� � � � �

�
� � �

...
...� �

�� � � � �
�� �
�
� � � � �

�� � �

� 				
� (3.42)

Equation 3.41 is a system of linear equations that can be solved using direct solvers

such as the LU decomposition method (Press, Flannery, Teukolsky & Vetterling 1989,

Sec. 2.3), which is suitable for small systems, or iterative solvers such as the generalised

minimum residual (GMRES) method (Saad & Schultz 1986), which is more suitable for
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large systems of equations. The solutions to the linear system are the set of deviations� � ���
, which are used to calculate the new approximation to the solution variables of the

nonlinear system from the initial solutions �
�
, using Equation 3.43.��� � �

� � � �  � � � ����� � K (3.43)

Convergence of Newton’s method is highly dependent on the nonlinearity of the func-

tions and the choice of the initial solution. For initial solutions sufficiently close to the

true solution, convergence is quadratic. However, for more distant initial solutions, con-

vergence of Newton’s method is not guaranteed, especially when the functions possess

large gradients with respect to the solution variables.

The initial solution for the FE equations for finite deformation analysis is chosen to be

the undeformed mesh. Thus for small loads, which produce small displacements, con-

vergence is likely. For larger loads the likelihood of convergence may be improved by

splitting up the applied loads into incremental load steps, and applying them sequen-

tially. This requires a nonlinear optimisation at each step, where the final solution from

the previous load step is used as the initial solution for the current load step.

Section 6.4 details the implementation of the finite element method for finite elasticity,

using Newton’s method to solve the nonlinear system of equations. These techniques are

used in Chapters 6 and 7 to analyse strain and stress in the deforming heart ventricles.



Chapter 4

Previous Mathematical Modelling of

Cardiac Ventricular Mechanics

In comparison with typical engineering structures the mechanical behaviour of the heart

is extremely complex. In order to understand how the heart functions it is necessary to

use engineering mechanics techniques based upon mathematical models. Mathematical

models have contributed greatly to our understanding of ventricular cardiac mechanics

over the last few decades. They have evolved from simple axisymmetric shapes with

isotropic, homogeneous material properties (Wong & Rautaharju 1968) to geometrically

accurate models (Nielsen, Le Grice, Smaill & Hunter 1991) with detailed descriptions

of the fibrous sheet microstructure of the myocardium (LeGrice, Smaill & Hunter 1992)

and simulations of the cardiac cycle (Nash & Hunter 2001). With each improvement in

the models has come greater understanding of cardiac function. This chapter provides

a review of the significant steps in the evolution of cardiac ventricular modelling that

have led to the developments described in this work, more detailed reviews of cardiac

biomechanics modeling may be found in Yin (1981) and McCulloch (1995). Yin (1985)

also presents are good review of cardiac ventricular models based on the finite element

method.

To date most attention has been paid to the function of the the left ventricle because it

provides the vital function of pumping oxygenated (pulmonary) blood to the systemic

circulation. It was reported as early as 1915 (Starling 1915) that LV ejection rose with

increased cavity volume at the end of diastole. He also suggested that the end-diastolic

muscle fibre length was the most likely mechanism behind “The Law of the Heart”.
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More recent studies (ter Keurs, Rijnsburger, van Heuningen & Nagelsmit 1980) have

confirmed that the the force developed during isometric contraction increases with mus-

cle stretch. These findings indicate that mathematical models of ventricular function

must first predict physiologically realistic end-diastolic fibre strains in order to model

ejection.

4.1 Thin Walled Models

Models for determining the ventricular wall stress were proposed as early as the late

1800’s, but in the absence of computers they were based on analytical techniques.

Woods (1892) modeled the LV as a simple thin-walled sphere with uniform internal

pressure. The model approximated myocardial tension to be proportional to the product

of pressure and radius. Similar techniques were used by Sandler & Dodge (1963) to

model the ventricle as an axisymmetric ellipsoid, expressing the the wall stress in terms

of wall thickness, the principal radii of curvature and the cavity pressure. These mod-

els are limited by the assumption that the thickness of the wall is much less than the

radii of curvature, and by the omission of material properties. Nevertheless, estimates

of the principal wall stresses could be obtained with simple measurements of ventricular

pressure and geometry.

4.2 Axisymmetric Cylinder Models

A better first approximation of the LV’s diastolic behavior is to model it as a homo-

geneous thick-walled cylinder with an internal pressure loading, applied torsion and

extension. The myocardial tissue is assumed to be incompressible, isotropic and lin-

early elastic. Rivlin (1950, p.175) derived physical Cauchy stress components using the

theory of finite deformation elasticity (presented in Chapter 2) for this model. Stress

distributions based on Rivlin’s analysis are compared with those computed using the

Finite Element Method (Chapter 3) in Figure 4.1 for an example model (Table 4.1).

The FE model model incorporated a single element with tricubic Hermite interpolation

of the radial coordinate and trilinear Lagrange interpolation of the circumferential and

longitudinal coordinates. Whilst both analysis techniques yield similar solutions for the
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model presented, specialised analysis developed for simple geometries do not extend

well to more complex geometries and deformation patterns (McCulloch 1986, Costa,

Hunter, Rogers, Guccione, Waldman & McCulloch 1996a, Costa et al. 1996b).

Parameter Value

External radius (cm) 1.5
Internal radius (cm) 1.0
Axial extension ratio 1.2
Cylinder length(cm) 1.0
Material Properties (kPa) 2.0, 6.0
External Pressure (kPa) 0.0
Internal Pressure (kPa) 1.5

TABLE 4.1: Model parameters for the closed form and FE analyses presented in Figure
4.1. The material is Mooney-Rivlin.
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FIGURE 4.1: Axisymmetric cylinder model of an incompressible, isotropic and linearly
elastic material (Table 4.1). The application of torsion reduces the trans-
mural gradient of circumferential stress.

Despite its over-simplification of the physiology, this model revealed that an applied

twist serves to reduce and balance the transmural distribution of circumferential stress.

The heart twists and untwists of its own accord throughout the cardiac cycle. This

alludes to the significance of the myocardium’s microstructure.

Axi-symetric models also served in the development of constitutive laws for myocardium.

Janz & Grimm (1973) developed a finite element model that characterised passive my-

ocardium by a nonlinear constitutive relation.
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The cylindrical models do not represent the geometry of the LV, and they are not closed

at one end, therefore physiological loading conditions are difficult to simulate on such a

simple model.

4.3 Axisymmetric Prolate-Spheroidal Models

Since the left ventricular geometry resembles a prolate spheroid, this can be taken ad-

vantage of. The prolate-spheroidal coordinate system, shown in Figure 4.2, is described

by a focus or focal length � , two angular coordinates � , � and a measure of distance

from the origin of the coordinate system
-

. By formulating the FE model in prolate-

spheroidal coordinates few degrees of freedom are required to model an axisymmetric

thick walled prolate.

-
�

�

FIGURE 4.2: An axisymmetric prolate-spheroidal model.

These models have been very successful in elucidating some of the mechanisms of car-

diac mechanics. McCulloch (1986) investigated the effects of the helical fibrous struc-

ture of the myocardium by comparing isotropic models with anisotropic models with

realistic fibre fields, and confirmed that experimental observations were consistent with

material anisotropy. It was also found in the anisotropic models that ventricular torsion

resulted which substantially reduced the unrealistically high transmural gradients of fi-

bre stress and strain that isotropic models had predicted. However, the axisymmetric

models do not fully represent the complex LV geometry nor the RV at all, thus their

usefulness is limited.
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4.4 Anatomical Prolate-Spheroidal Models

To further understand ventricular mechanics a geometrically and structurally more re-

alistic continuum model is necessary. The University of Auckland anatomical prolate-

spheroidal canine model was developed by many researchers with significant steps be-

ing achieved through a sequence of doctoral theses (Hunter 1975, Nielsen 1987, LeGrice

1992, Nash 1998).

4.4.1 Geometry and Fibres

Nielsen (1987) used a rig (described in detail in Section 5.1.1) to complete the first

detailed study of ventricular geometry and myocardial muscle fibre orientation. He then

fitted a prolate-spheroidal finite element model to the geometric data and another nodally

interpolated field to represent fibre data. The prolate-spheroidal coordinate system was

chosen in the original model for its ventricle-like shape in order to reduce the number

of degrees of freedom in the model. The canine ventricular continuum model shown in

Figure 4.3 has since served as the basis for numerous studies of ventricular behaviour,

both electrical and mechanical, by research groups around the world (Eason, Schmidt,

Dabasinskas, Siekas, Aguel & Trayanova 1998, Huiskamp 1998).

FIGURE 4.3: The first anatomically accurate continuum ventricular model (Nielsen
1987). Left: Prolate-spheroidal mesh. Right: Fitted epicardial fibre field.
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4.4.2 Sheets

At that time the myocardial fibres were thought to be a uniformly branching continuum

and material properties were therefore modelled as transversely isotropic. Then LeGrice

(1992) showed by drying thin apex-base transmural segments that the myocardial fibres

are in fact bound more tightly with some neighbouring fibres than others. The inter-

connections are arranged such that the fibres form a discrete laminar structure or sheets

(Section 1.1.2). In the transmural plane, myocardial sheets run from endocardium to

epicardium in a characteristic pattern which varies at different ventricular sites. Figure

4.4 shows an example specimen segment before and after drying to reveal the laminar

sheet structure.

FIGURE 4.4: Longitudinal-transmural ventricular sections from a canine LV free wall,
Left: Before drying. Right: After drying (LeGrice 1992).

LeGrice extended the anatomical ventricular canine model to incorporate a field repre-

sentation of the laminar organisation of the myocardium. The techniques used to collect

the data and fit the sheet field are described in more detail in Section 5.1.2 where they

are repeated in the work for this thesis.
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4.4.3 Mechanical Simulation

Nash (1998) used the LeGrice model and the finite element method based on finite

elasticity theory to compute the ventricular deformation throughout the heart cycle. It is

this last model developed at the University of Auckland that provides the starting point

for the work completed in this thesis, and therefore this model is described in detail in

the following sections.

In directions tangential to the local endo- or epicardial surface, the interpolation was

cubic Hermite for the radial coordinate and linear Lagrange for the angular coordinates.

In the transmural direction, all coordinates were interpolated linearly. The local finite

element parametric coordinates were chosen to lie in the circumferential, longitudinal

(apex-to-base) and transmural (though-wall) directions, respectively (see Figure 4.5).

FIGURE 4.5: The anatomical prolate-spheroidal canine ventricular model.
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The “Pole-Zero” Constitutive law for Myocardium

The nonlinear viscoelastic and poroelastic nature of myocardial tissue has been mod-

elled before (Huyghe, Arts, van Campen & Reneman 1992, Yang & Taber 1991), but

for simplicity this aspect of the material properties was neglected and the myocardium

treated as an incompressible, elastic solid. For an incompressible material the com-

ponents of the second Piola-Kirchhoff stress tensor are given by the derivatives of the

strain energy function
� � 0 �

(Equation 2.29) with respect to the components of
0

and

a hydrostatic pressure, which does not contribute to the deformation, and hence strain

energy of the material.

The parameters of such a constitutive law can be obtained directly from experiment

without reference to the underlying tissue structure. But an approach which incorporates

parameters that directly reflect mechanical or structural properties of the material yields

a more useful constitutive relation. For example, observed spatial variation in collagen

distributions can be related to material constitutive parameters.

Based on the stress-strain properties of ventricular myocardium described in Section

1.1.2, a constitutive law which incorporates material properties that can be directly es-

timated from the tissue was developed (Nash & Hunter 2001). The pole-zero strain

energy function for myocardium is given by Equation 4.1.
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(4.1)

where the constitutive parameters (a’s, b’s and k’s) have the following interpretations:

� the � ��� are the limiting strains or poles for each mode of deformation. They are

physical properties of the tissue that may be measured directly from microstruc-

tural observations. In particular, MacKenna et al. (1994) used elastica theory on

the collagen helices aligned with the myofibres to determine the yield strain (pole)

of �
� � � � � * � along the fibre axis. Alternatively, these yield strains can be esti-

mated by fitting the model directly to experimental stress-strain data (Smaill &

Hunter 1991).
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� the � ��� are related to the curvature of the uniaxial stress-strain relationships for

each mode of deformation. These have been estimated using the biaxial test re-

sults of Smaill & Hunter (1991).

� the � ��� weight the contribution of the corresponding mode of deformation to the

total strain energy of the material.

The terms in Equation 4.1 are naturally split into six groups, one for each mode of

deformation. These groups correspond to the six independent terms of the Green’s

strain tensor. The first three terms refer to the axial modes of deformation, fibre, sheet

and sheet-normal denoted 11, 22 and 33, respectively. The remaining terms relate to

modes of shear deformation between the microstructural axes, fibre/sheet, fibre/sheet-

normal and sheet/sheet-normal denoted by the subscripts 12, 13 and 23, respectively.

The parameters associated with the axial terms were estimated using a combination

of microstructural observations, biaxial tension tests and non-invasive magnetic reso-

nance imaging (MRI) data. The shear parameters were determined using a biophysical

model that assumes that certain shear deformations are strongly correlated to certain

axial modes of deformation (Appendix A). The parameters used are given in table 4.2.

Type Axial Properties Shear Properties

Coefficients (kPa) �
� � � ��� ��� �

� 	 � � �
�
	 	 � � � � � �

� � � � �
�
� � � � � � � �
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�
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	 � � ��� ���
Curvatures �

� � � � �,* � �
� 	 � � �

�
	 	 * ����� � �

� � � � �
�
� � � � � � � �

	 � � � �
TABLE 4.2: Material properties of myocardium for the pole-zero constitutive law used

in the canine model. Note that the poles, � ��� , and curvatures, � ��� , are
dimensionless, but the coefficients, � ��� , have units of stress.

Residual Strain and Stress in the Ventricular Wall

The concepts of residual stress and strain in the ventricular muscle were introduced

in Section 1.1.2. To accurately predict myocardial stress the pre-existing stress in
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the reference state of the model must be accounted for. The residual strains within

the myocardium may be approximated by introducing the concept of a growth tensor

(Rodriguez, Hoger & McCulloch 1994). The growth tensor, denoted � � , modifies the

deformation gradient tensor of Equation 2.1 to account for the differences between the

no-load state and the stress-free state of the ventricular wall.

� �� �
� ���
� ��* � ��� * � (4.2)

The elements of the growth tensor express deformation gradients relating the unloaded

and stress-free states with respect to the microstructural material coordinates. The diag-

onal elements of �#� define the initial extension ratios due to the residual strains for the

fibre, sheet and sheet-normal axes, respectively. The off-diagonal elements represent

the residual shear deformation gradients.

Applying the growth tensor to a body upsets the internal equilibrium, because the cre-

ated non-zero strain field is incompatible with the zero stress state. Therefore the resid-

ual stresses necessary for equilibrium with the modified strain field need to be deter-

mined. This is achieved by solving the model in the absence of external loads. This

requires a stress-free reference configuration to which the computed strains (and hence

stresses) are referred. However, the stress-free reference configuration is not available

and is therefore approximated by the unloaded, residually stressed state for this solution

procedure. This is reasonable since the displacements due to the residual stresses are

presumably small (the effect of cutting the wall radially, to examine the deformation

arising from these residual stresses, is discussed in Section 6.3.2).

The initial distribution of applied residual strain is listed in Table 4.3, the values were

derived from Rodriguez et al. (1993).

Boundary Conditions

The model was used to simulate passive inflation to physiologically realistic LV and RV

end-diastolic pressures of 1.0 kPa and 0.2 kPa, respectively.

The central RV epicardial node on the basal ring (shown by a in Figure 4.6) was fixed

in the circumferential direction to prevent rigid body rotations, and the three apical
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nodes ( ) were constrained to lie on the long axis of the LV for compatibility.

It was found that in the absence of any radial constraints the model predicted exces-

sive radial expansion and wall thickening, and consequently the basal ring descended

towards the apex to maintain tissue incompressibility. To counter this non-physiological

behaviour a so called pericardial-constraint was applied by fixing the the radial (
-

) coor-

dinate of the epicardial nodes ( ). Katz (1992, p. 366) commented that the pericardial

sac plays an important role in limiting ventricular filling due to its low compliance.

��� � �
# �

Same as

Same as plus fixed in �

Fixed in
-

and all spatial
derivatives of

-

Fixed in � only

plus fixed in �

FIGURE 4.6: Schematic of the boundary conditions applied to the anatomical prolate
model.

Ventricular region Transmural location Initial fibre extension ratio,
- � �

Equator LV endocardium 0.95
LV/RV epicardium 1.05
RV endocardium 1.00

Base, Apex all 1.00

TABLE 4.3: Initial fibre extension ratios applied to model residual strain in the passive
myocardium.



74

CHAPTER 4. PREVIOUS MATHEMATICAL MODELLING

OF CARDIAC VENTRICULAR MECHANICS

4.4.4 Summary

The previously developed model of the canine ventricles successfully incorporated an

anatomical description of the ventricular geometry and the non-homogeneous laminar

microstructure. A fully orthotropic pole-zero constitutive law based upon the three-

dimensional architecture of the myocardium was used to account for the nonlinear mate-

rial response of resting cardiac muscle. However the model has the following limitations

which prevent accurate representation of modes of deformation:

� The apical and basal anatomy is not accurately represented.

� The model is formulated in the prolate-spheroidal coordinates which constrains

the motion of the apex to the axis of the coordinate system.

� The pericardial constraint boundary condition is excessively rigid.

� Myocardial fibres that lie oblique to the ventricular wall surfaces such as occur

near the apex were not accounted for.

� The myocardial tissue is modelled as incompressible, but physiologically it is

slightly compressible particularly in the subendocardium.

� Regional variations in material properties were not modelled.

A new porcine model is presented in the next two chapters to overcome some of these

limitations.



Chapter 5

A Finite Element Model of the Porcine

Ventricles

The pig is now the principal large animal used experimentally because the regional dis-

tribution of coronary vessels, extent of collateralisation and the heart to body weight

ratio are more similar to humans than dogs (Bloor, White & Lammers 1986). Animal

rights issues have also had an influence upon the which species can be used experimen-

tally. Therefore it is necessary to have a computational model of the porcine ventricles

to model and interpret experimental findings. The previous canine model made use of

several simplifications in order to ensure that it was computationally efficient, includ-

ing using the prolate-spheroidal coordinate system. Since the canine model was devel-

oped computer technology has improved dramatically rendering earlier simplifications

no longer necessary. The porcine ventricular model developed in this thesis also seeks

to address some of the deficiencies of the earlier model. It is developed in rectangular-

cartesian coordinates and includes an accurate description of the basal region geometry.

5.1 Data Acquisition

The heart specimens were obtained from anesthetised pigs via a median sternotomy

using the procedures detailed in Nielsen et al. (1991) with the exceptions that anesthesia

was induced with Zoletil and maintained with 2.5% halothane in oxygen. The heart

was then prepared for morphologic measurements which are detailed in the following

75
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sections.

5.1.1 Ventricular Geometry and Myocardial Fibre Angle Measure-

ment

The ventricular geometry and myocardial fibre angles of a 24 kg pig heart were mea-

sured by LeGrice and coworkers in a manner similar to the earlier study performed on

the canine heart (LeGrice 1992).

To prepare the heart for measurement, the atria were removed and a stainless steel spin-

dle was inserted through the fibrous tissue between the mitral and aortic valves and

though the apex. Pins attached to a plate on the end of the spindle were passed though

the valve orifices into the left and right ventricular cavities. The ventricular cavities

were then filled with silicone rubber under water. The endplate assembly ensured that

the heart was firmly located with respect to the spindle even as parts of the myocardium

were later dissected away.

The spindle was inserted in a specially designed rig (Figure 5.1)1. For each data point

measurement, a vertically mounted probe was wound down until its tip touched the sur-

face of the heart. A small lamp projected the shadow of a horizontal pin, attached to

the side of the probe near the tip, onto the myocardial surface. The probe was rotated

about its axis to align the shadow with the fibre direction. The rig was attached to a

computer which recorded the the spindle angle, probe height and rotation in cylindri-

cal polar coordinates at the operators command. However, the rotation of the pin was

not the same as myocardial fibre angle since the shadow was projected on an inclined

myocardial surface. This was accounted for in subsequent post-processing of the data.

Data was acquired at 5 mm intervals from apex to base and 4 degree increments in

the spindle angle. To record fibre angles though the heart wall, after each complete

revolution of data acquisition, a layer of tissue approximately 0.5 mm thick was removed

over the entire surface. The axial and radial coordinates were reproducible to 0.3 mm

and the angular coordinate to 1.2 degrees.

The rig design prevented accurate acquisition of the heart’s base plane geometry because

the probe approaches the base tangentially. It was not possible to accurately digitise the
1The rig was initially designed and built by Peter Hunter during post-doctoral work at Oxford Univer-

sity. Later, Nielsen (1987) added a mechanism for computerised data acquisition.
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FIGURE 5.1: The ventricular geometry and myocardial fibre angle acquisition rig
(loaded with a plastic anatomical model).
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valve ring geometry with this rig, nor measure fibre angles in the base plane. There-

fore another three-dimensional digitisation device called a FaroArm produced by Faro

Technologies Inc2. was also used. The FaroArm, shown in Figure 5.2, is a multiple axis

articulated arm with a spherical working volume. Each joint has a rotary transducer.

The signals from these transducers are sent to a computer which acquires the rectangu-

lar cartesian coordinates of the probe tip within an accuracy of 75 � m. The FaroArm

was used to digitise the epicardial valve orifice geometry and the basal regions that were

unreachable with the rig.

FIGURE 5.2: The FaroArm used to digitise the valve ring geometry

In order to be able to combine the two sets of data, three reference pins were inserted

into the myocardium, two near the base in each ventrical’s free wall, and the other near

the apex. The pin’s locations were digitised using both the rig and the FaroArm. A

transformation matrix to rotate and translate the FaroArm data to align with the rig data

2http://www.faro.com
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was computed using a nonlinear optimisation. The sum of the squared distances between

the reference points in each data set was minimised to 0.2 mm. Figure 5.3 shows the

combined epicardial data sets and reference points.

FIGURE 5.3: Combined epicardial data sets and reference points from the rig and the
FaroArm. The rig data is plotted using crosses and the FaroArm data using
spheres. The mitral valve data is red, the aortic brown, tricuspid blue, and
the pulmonary valve data is purple. The green data are epicardial surface
points that were unreachable in the rig, between the valves and the top of
the pulmonary outflow tract.

The myocardial fibre angles in the basal region of the RV free wall and the top of the
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pulmonary outflow tract could not be measured in the rig because the base was nearly

tangential to the probe. Instead reference pins were inserted into the pulmonary outflow

tract, digitised in the rig and then that piece of tissue was dissected out. The removed

piece of myocardium was then pinned onto a cylinder and placed in the rig to measure

the fibre angles relative to a pair of the reference pins.

5.1.2 Myocardial Sheet Angle Measurement

Another heart from a 25 kg pig was prepared as described above, since the fibre orien-

tation measurement technique prevented the sheet orientation data from being acquired

from the same heart.

The surface geometry was measured along 30 meridians spaced at 12 degree intervals

around the heart. Base-apex transmural segments were cut from the heart along each

of these meridians in the (x,r)-plane. Initially wedges were cut from the RV free wall

exposing the silicon rubber cast of the RV. The geometry of the RV free wall endo-

cardium was then recorded along the same meridians on the cast. The RV cast was then

removed and the geometry of the RV septal endocardium was recorded. Finally the LV

free wall and septal myocardium was cut into 30 segments along the meridian and the

LV endocardial geometry was measured from the silicone cast of the LV lumen.

To reveal the transmural and circumferential myocardial sheet organisation a technique

of cutting and drying full length (apex to base) frozen sections was used. A longitudinal

transmural section was cut from each of the 30 wedges described above. 80 � m thick

sections were then cut from corresponding surfaces of each myocardial wedge using

a sledge microtome. These sections were carefully floated onto a 120 mm x 60 mm

x 1 mm polycarbonate sheet. The specimen plate was then drained and placed on a

transparent acetate sheet marked with a 10 mm square grid representing the (x,r)-plane.

The slide was oriented so that shallow epicardial cuts that had been made around the

circumference of the heart near the apex and base were aligned with the appropriate

axial coordinates on the grid below and so that the radial coordinates matched those

measured on the geometry rig. In this way the section was positioned in the (x,r)-plane,

in the identical location that it was before being removed from the intact heart. Digital

images of the sections were taken before and after drying were compared to check for

shrinkage. For meridians transecting both RV free wall and septum, a section was cut
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from each block and these were processed together on the same slide.

FIGURE 5.4: Longitudinal-transmural ventricular section after drying, with sheet orien-
tation vectors. To the left is the inter-ventricular septum and the RV free
wall is shown on the right.

Digital image analysis was used to quantify the sheet orientations. The analysis was per-
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formed on a Macintosh computer using the public domain NIH Image program3. The

muscle layer orientations were recorded from the 30 transverse sections with approxi-

mately 550 observations recorded from each section. At each observation point a short

vector was drawn parallel to the local sheet direction using the computer mouse. The

cylindrical polar coordinates of the point was recorded along with the vector orientation.

Since the camera lens system limited the maximum area of section imaged at one time

it was necessary to process several images to cover the whole section. Figure 5.4 shows

a dried ventricular section prepared for measurement.

5.2 Model Creation

The design of the finite element model presented here varies significantly from those

presented to date. With the increased computational power available it is possible to in-

clude more physiological detail in the model while still retaining a reasonable solution

time. The model developed in this thesis increases the order of the geometric and mi-

crostructure interpolation to fully tricubic Hermite, and changes the reference coordinate

system to rectangular cartesian for reasons provided below. An innovative mesh design

and alterations to the computational implementation have allowed the total number of

nodes and elements to be reduced from the number required in the anatomical prolate

model presented in Section 4.4.3, while capturing more detailed ventricular physiology.

5.2.1 Coordinate System

Like most of the ventricular models developed to date the Auckland canine model took

advantage of the left ventricle-like prolate-spheroidal coordinate system to reduce the

number of degrees of freedom in the model. However, the use of the prolate-spheroidal

coordinate system imposes constraints on the model that may not be completely phys-

iological. The prolate-spheroidal coordinate system imposes limits on the geometry

of the model. For example, the complicated geometry of the basal region cannot be

accurately represented and the apex is constrained to lie on the axis of the coordinate

system. Deficiencies in the geometric description result in non-physiological boundary
3Developed at the U.S. National Institutes of Health and available from

http://rsb.info.nih.gov/nih-image
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conditions being applied and less physiological model behaviour, such as the “peri-

cardial constraint” which prevents radial expansion during diastole. The rectangular-

cartesian coordinate system was chosen for the development of a new porcine model

since the computational efficiency aspect of the model no longer outweighs the need

for including more physiological complexity. Using rectangular-cartesian coordinates

also increases the usability of the model for other research efforts within the Auckland

University Bioengineering Institute and the wider Physiome project4.

Before fitting, the geometric data was transformed from the original cylindrical-polar

coordinates to rectangular cartesian coordinates. The z-axis is aligned with the axis of

the cylindrical polar coordinate system in which the data was acquired, from base to

apex. The x- and y-axes lie in the base plane.

5.2.2 Geometric and Field Fitting With Finite Elements

Measured data is usually in the form of a non-uniform discrete data set. However,

mathematically it is more useful to have the information as a continuous field. The node

points of a finite element model define continuous fields which can be evaluated at any

point within the domain using the standard interpolation formula given in Equation 3.1.

To represent the measured discrete data set with a continuous finite element model, the

model must be fitted to minimise the difference between to the two representations.The

choice of measure for the difference or error depends upon the field to be fitted and

desired qualities in the final result.

First we shall consider the geometric fitting problem, where given a set of data defining

the geometry, the nodal positions and derivatives, for a given mesh, must be found that

minimises the error in the mesh approximation to the data.

For each point in a set of rectangular cartesian data with geometric locations
� � �

� �
� ������� ��� , a point on the mesh with the shortest distance to that data point can be found.

This point is termed the orthogonal projection of the data point onto the mesh. The

length of the orthogonal projection provides the measure of error, illustrated in Figure

5.5.

To calculate the
�

coordinate of a data point projection,
� �

, a non-linear iterative proce-

dure is required. Given a starting
�

position for the data point projection, the geometric
4http://www.bioeng.auckland.ac.nz/physiome/physiome.php
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position is given by the standard interpolation Equation 3.3. An error function can then

be set up as the Euclidean distance between this point and the actual position of the data

point. The local
�

position that minimises this function can then be found using the

Newton-Raphson root finding method on the derivative of this function. This
�

position

is effectively the orthogonal projection of the data point onto the finite element.

Geometric fitting is just a particular case of field fitting, in which the fields are the

geometric coordinates. The general field fitting problem can then be formulated as a

minimisation procedure in which the objective is to minimise the sum of squared dif-

ferences over all the data points, between the known value at each data point, � � , and

the finite element field approximation evaluated at the projected
� �

position of the data

point, � ����� �
, i.e.,

����� � � � � �
��
� ' � 0 � ����� � � � � 5 	 (5.1)

The field value at a given
�

location � ��� ���
can be interpolated from the nodal field values

( � � ) of the element by Equation 5.2.

� ����� � ��� � � ��� � � � (5.2)

where � � ��� � � represents basis function K evaluated at
� �

. The sum of squared differences

� ��� � �

� �	� � �

� �
� �

FIGURE 5.5: Schematic of orthogonal data point projections. The dashed lines show the
projections onto a mesh, and their positions in parametric coordinates � �
are illustrated within each element.
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between this value and the measured value � � for all the data points ( � � � ����� ��� ) is

� �
��
� ' � �

� � ����� � � � � � � �
	

(5.3)

Minimising
�

with respect to the nodal parameters �
.

results in

� �

� �
. � �

��
� ' � �

� � ����� � � � � � � � �
. ����� � � � �

� K � � ��� ��� � � (5.4)

or

� ��
� ' � �

. � ��� �
� � � ��� � � � � �

��
� ' � �

. � ��� � � � �
� K � � ��� ��� � � (5.5)

This can then be assembled into a global system of equations
1 . � � � � � .

where

1 . � �
��
� ' � �

. � ��� �
� � � ��� �

� . �
��
� ' � �

. � ��� � � �
(5.6)

and � � are the unknown field values at each finite element node K . The solution of this

system of equations gives the fitted nodal field values and derivatives.

During this fitting process the scale factors and data point projections are held constant,

therefore the resultant mesh may not completely minimise the error. Hence it is nec-

essary to iteratively apply the fitting procedure in order to obtain a mesh that best fits

the data. The fit can be considered converged when the root mean squared, RMS, error

in the fit does not change significantly between iterations. The RMS error of the fit is

defined as
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����� ���	��� � �

����	
�

�� ' ��
 � � ��� � � � � 

	

� (5.7)

The fitting algorithm used in this thesis is as follows:

1. Define an initial mesh (and calculate the initial scale factors).

2. Calculate the initial data point projections and initial error in the mesh.

3. Repeat until converged or the maximum number of iterations is exceeded:

� Fit the mesh by applying the fitting procedure;

� Update the scale factors to be harmonic mean arc-lengths based on the new mesh;

� Recalculate the data point projections on the new mesh.

Sobelov Smoothing

If the objective function is only measured in terms of deviation from the data points as in

Equation 5.1 and in some locations there is a lack of data points, the finite element field

representation may deviate in an undesirable manner without affecting the objective

function. This can be treated by introducing a smoothness constraint (Young, Hunter &

Smaill 1989) by adding a second term to the objective function.

����� � � � � �
��
� ' � 0 � ��� � � � � � 5 	�� �

� � � � � � ���
�
�

(5.8)

The first term in Equation 5.8 measures the error in the data from the surface while

the second term measures the deformation of the surface. The deformation is measured

using a ���� order weighted Sobelov norm (Terzopoulos 1986) defined by
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� ��� �
� � � � ��

� ' �
���

�

� � � $ � ' � �
� �6� �

�
�
�

� � �
� � �� � �	 ���� 	 (5.9)

where � �5� are the weighting values applied to the component of � � � � . The addition to

the objective function, called the Sobelov value, is defined as

� � � � � �
� � � � � � �

where
�

is the mesh domain.

For a two-dimensional surface, the smoothing constraint is given by

� � � � � � � ���
�
� � � � � � �

�
�
� �
� .��

�
�
� 	
� �

�
�
� �
� .

�
�
�
� 	 �� � �

�
�
�

�
�

� .

�

�

�
�
� 	
� � ��� �

�
�

� .�� � .

�
�
�
� 	
� �

�
�
�

�
�

� .

��
�
�
� 	 � �

� (5.10)

The parameter � controls the tension of the surface and parameter
�

controls the degree

of surface curvature. The weighting values � and
�

are chosen manually to ensure the

fitted fields vary physiologically (Young et al. 1989).

5.2.3 Valve Rings

The valve rings form the basis of the basal skeleton, the structure to which the ventricles

are attached. Therefore their location and geometry in the model are important. The

first step in creating the full ventricular model was to model the geometry of each of

the valve annuli. One-dimensional cubic Hermite elements were fitted to the epicardial

valve orifice data collected with the FaroArm. The number of nodes and their initial

positions were chosen to facilitate their inclusion in the full ventricular mesh.

Fits of each of the fitted orifices are plotted in Figure 5.6, their relative locations are

shown in Figure 5.7, and Table 5.1 lists the results of each fit.
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The degrees of freedom that described these elements were included as fixed parameters

in the fitting of the ventricular surface meshes.

(a) Mitral valve (b) Aortic valve

(c) Tricuspid valve (d) Pulmonary valve

FIGURE 5.6: Fitted valve orifice geometries with raw data and error projections. The
four valves are plotted using the same scale.

5.2.4 Left Ventricular Endocardium

The left ventricular endocardial surface was fitted with 54 bicubic Hermite elements.

The elements at the apex are collapsed along one side by using the same node twice to
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FIGURE 5.7: A projected view from the basal short-axis plane of the fitted valve ring
geometries. The mitral valve is red, the aortic brown, tricuspid blue, and
the pulmonary valve is purple.

Valve Orifice Nodes Data Points RMS Error (mm)

Mitral 5 17 0.47
Aortic 6 19 0.75

Tricuspid 5 23 0.83
Pulmonary 6 13 0.75

TABLE 5.1: Summary of valve orifice fitting results.
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form triangular elements. There are 9 versions of the derivative degrees of freedom at

the apical node.

The nodal derivatives and element scale factors determined from the mitral and aortic

annuli fits were fixed input variables for the corresponding degrees of freedom in the

ventricular surface mesh.

An element has been omitted on the septal wall side between the two valves. That is

where the connective tissue that forms the bridge between the valves is attached. The

surface mesh is designed such that it can be connected into the full volume mesh later.

Surface data corresponding the papillary muscle is included in the fitting but tendon data

is ommited. The mesh design and Sobelov smoothing have the effect of truncating the

papillary muscles to bumps on the surface.

The parametric coordinate
� �

is aligned approximately circumferentially and the
� 	

co-

ordinate longitudinally. Figures 5.8 and 5.9 plot the fitted LV endocardial geometry, 888

data points were used in the fit with a resultant RMS error of 0.93 mm.

5.2.5 Right Ventricular Endocardium

36 bicubic Hermite elements were used to fit the right ventricular endocardial surface.

The parametric coordinate
� �

is aligned approximately circumferentially and the
� 	

coor-

dinate longitudinally. The tricuspid valve orifice degrees of freedom already determined

were fixed in the fit. The previously fitted pulmonary valve orifice was not included

this surface mesh. A hanging node was used at the top of the pulmonary outflow tract

to provide the degrees of freedom necessary to represent the orifice without the extra

computational expense of an extra column of elements from apex to base.

The RV endocardial geometry fit used 327 data points, and had an accuracy of RMS

1.37 mm. Figures 5.10 and 5.11 show the fitted geometry.

Two versions of the derivative variables are used to join the septal and free wall surfaces

where the connection is not smoothly continuous. Along the lower edge of the cavity the

two versions of nodal derivatives with respect to
���

, for the septal and free wall surfaces,

are constrained to be equal and opposite. Similarly at the surfaces connection between

the two valve orifices.
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FIGURE 5.8: Fitted left ventricular endocardial surface geometry with raw data and er-
ror projections.
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(a) Coronal, aortic outflow above the mi-
tral inlet

(b) Posterior

(c) LV free wall (d) Septum and anterior

FIGURE 5.9: The fitted left ventricular endocardial surface.
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FIGURE 5.10: Fitted right ventricular endocardial surface geometry with raw data and
error projections.
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5.2.6 Epicardium

The epicardial surface was fitted with 63 bicubic Hermite elements. The mitral, aortic

and tricuspid valve orifices degrees of freedom were fixed to the values already used in

the LV and RV endocardial surface fits for compatibility. The pulmonary valve orifice

was fitted since the mesh does not extend completely to the digitised annulus. As with

the RV endocardial surface fit, a hanging node was used at the top of the pulmonary

outflow tract to provide the degrees of freedom necessary to represent the orifice.

The parametric coordinate
� �

is aligned approximately circumferentially and the
� 	

coor-

dinate longitudinally. However, the complicated basal geometry prevents the construc-

tion of a completely
�
�

continuous mesh. Instead, multiple versions of the derivative

quantities are employed to provide the necessary connections between the annuli. Mul-

tiple versions of the derivative variables are also used at the apical node.

Plots of the fitted epicardial geometry are presented in Figures 5.12 and 5.13. 575 data

points were used in the fit which had an RMS accuracy of 0.55 mm.

(a) RV free wall (b) Septal wall

FIGURE 5.11: The fitted right ventricular endocardial surface.
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FIGURE 5.12: Fitted epicardial surface geometry with raw data and error projections.
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(a) Posterior (b) Anterior

(c) RV free wall (d) LV free wall

FIGURE 5.13: The fitted epicardial surface.
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5.2.7 From Surfaces to a Volume Model

Creating a volume mesh from the three fitted surfaces required a consolidation of the

common degrees of freedom and the introduction of new degrees of freedom to complete

the transmural connections as shown in Figure 5.14.

FIGURE 5.14: Connection of fitted surfaces to form the volume mesh. Two-dimensional
projections of the mesh topology at the inter-element locations are plot-
ted on the right.

Throughout the mesh construction process the nodal locations have been carefully cho-

sen to ensure that the resultant volume elements are as nearly cuboid as possible. In fact

quite some iteration between the surface mesh fits and the volume mesh were required

to produce the final meshes presented here.

In the final volume mesh
� �

is aligned circumferentially,
� 	

longitudinally and
� �

radi-

ally outward. Multiple versions were used connect the interventricular septum to the
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ventricular free walls as illustrated in Figure 5.15. Geometrically equivalent derivatives

in adjacent elements with inconsistent parametric coordinates were constrained to be

the same, likewise with the corresponding elemental scale factors.
�

�
continuity is not

maintained across these element boundaries.

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���
���

���

���
���

������

���
���

FIGURE 5.15: A plan view of the transmural element connectivity and parametric coor-
dinates.

The remaining degrees of freedom necessary to complete the volume element between

the mitral and aortic valve orifices were determined manually since no data was acquired

in that region.

Apex

To date most ventricular models have treated the apex as thick walled, similar to the rest

of the LV free wall (Section 4.5). In reality the wall tapers steeply to a thin collagenous
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membrane as shown in Figure 5.16(a). We hypothesize that this feature is mechani-

cally significant and might serve as a type of hinge. Therefore the LV endocardial apex

geometry has been modeled more accurately. The rate of inclination of the wall thick-

ness depends upon the extent of trabeculation in any given region. The model does not

account for trabeculation, nor is there any data at the very apex because the spindle

protruded though it. Therefore the LV endocardial apex surface was manually adjusted

to model the observed anatomy more accurately. Figure 5.16(b) shows a cross-section

though the model in a fashion similar to the photograph in Figure 5.16(a).

(a) Sagital LV cross-section

(b) Sagital section of the model

FIGURE 5.16: Apical cross sections from a porcine heart and the model. The model
endocardial and top surfaces are red, the transmural cut face is yellow.

The resulting geometric fit is a very good representation of the original data set. The up-

per pulmonary outflow tract would benefit from more degrees of freedom, but is accept-

able for the work anticipated in the near future. The final geometric degree of freedom
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count is presented is Table 5.2. The model is 58.54 mm from apex to base. The fitted

myocardial volume is 83.1 cc, The LV and RV cavity volumes are 22.7 cc and 15.9 cc

respectively.

Nodes Versions Fields (x,y,z) GDOF

114 1 3 2736
15 2 3 675
23 3 3 1518

3 4 3 261
1 9 3 192
1 26 3 549

157 Total 5931
Elements 88

TABLE 5.2: Geometric degrees of freedom

5.2.8 Myocardial Fibre Structure

Fibre Angle Transformations

The fibre angle measurements were made relative to the circumferential direction of the

heart. Previous models incorporating fibre angle data from this rig have aligned the
� �

direction with the circumferential direction, allowing the measured angles to be fitted

directly as rotations from the
� �

direction (Nielsen 1987, LeGrice 1992, Nash 1998). The

model geometry defined in this thesis does not enforce
� �

to be solely circumferential,

in order to better represent the geometry. Consequently the fibre angle data must be

pre-processed before fitting as a field defined relative to
� �

.

The correction angle, � , that must be added to the measured fibre angle is the angle be-

tween the
� �

direction and the circumferential direction in the
� � � ���
	��

plane (see Figure

5.17). The circumferential vector �� is a linear combination of the vectors in the
���

and�
	
directions,  � and  	 (Equations 5.11, 5.12, 5.13).
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 � �
� �
�� � � � � (5.11)

 	 �
� �
�� �
	 � � (5.12) � � �  � � �  	 (5.13)

or

 � � �
� �
�� � � � �

�
�
� �
�� �	 � � (5.14)

For � 1 to be oriented in the circumferential direction � and � must be chosen such that

the component in the
� �

direction is zero.

�
� � �
� � �

�
�
� � �
� �	 � � (5.15)

� � �
� �

� �
� � �� .

�
� � �� .��

(5.16)

Circumferential

� �

� 	

�
� 1 � �

�
	

FIGURE 5.17: Fibre angle correction for non-circumferential � � direction.



102

CHAPTER 5. A FINITE ELEMENT MODEL OF

THE PORCINE VENTRICLES

The correction angles to be applied to the measured fibre angles can then be calculated

from Equation 5.17.

� � 	�� 8 � � �  � �  ��� (5.17)

where  � and  � have been normalised to unit length.

Fibre Field

The process of fitting the fibre field was the same as that used by LeGrice (1992). The

three-dimensional fibre field parameters were found by first fitting the LV endocardial,

RV endocardial and epicardial surface fibre distributions using bicubic Hermite inter-

polation. The transmural myocardial fibre angles were then fitted to data while the

longitudinal and circumferential surface parameters were fixed. The transmural inter-

polation of the fibre field was also cubic Hermite, providing a fully tricubic Hermite

representation of the fibre field.

Previous models have used cubic Hermite interpolation only for the transmural fibre

parameters (Nielsen 1987, LeGrice 1992, Nash 1998). Longitudinal and circumferen-

tial fibre orientation have been represented using linear Lagrange interpolation. Bicubic

Hermite interpolation was used here because it avoided the extra complexity of mixed

basis function types between adjacent elements where parametric coordinate consis-

tency is not maintained (see Figure 5.18). The additional computational expense is not

significant. The fibre field interpolation and connectivity is the same as used for the

geometric fields.

A predominant fibre direction is not visible in the collagenous basal skeleton that con-

nects the valve orifices. Therefore the fibre field was not fitted in the elements corre-

sponding to the basal skeleton.

Due to the inability to measure fibre angles accurately in the basal region there was

little data to fit to around the base. On the specimen it was observed that the fibres

tend to continue in the same direction over the base to as they did along the wall. The

application of Sobelov smoothing enforced this constraint in the fit, providing a fibre

field that resembled the observed fibre distribution about the valve orifices well. The

RMS errors for the fibre field fits are reported in Table 5.3. Plots of the fitted fields are
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given in Figures 5.20, 5.21 and 5.22. The fitted fibre orientations for the porcine heart

are quite similar to those measured in the earlier canine model, a helical pattern from

-60 degrees on the epicardium through to +90 degrees at the endocardium.

The
� �����
	

planes of the LV, septum and RV connective elements shown in Figure 5.18

are not parallel with the epi- and endocardial surfaces as elsewhere, therefore non-zero

imbrication angles were applied within those elements to provide continuous flow of

the fibre field through those elements. A two dimensional projection of the fibres, Fig-

ure 5.19, illustrates the flow of the fibres achieved around the margins where the right

ventricle joins the septum.

Fibre Field Fit Data Points RMS error (radians)

LV endocardium 622 0.27
RV endocardium 153 0.18

Epicardium 754 0.22
Transmural myocardium 4386 0.29

TABLE 5.3: Fibre field fit RMS errors.

5.2.9 Myocardial Sheet Structure

As for the fibre angle data, the experimentally measured sheet angle must first be trans-

formed to an angle that defines the orientation of the sheet with coordinates attached

Cubic HermiteLinear Lagrange

FIGURE 5.18: A bilinear Lagrange-cubic Hermite fibre field would require the LV, sep-
tum and RV connection elements to use cubic Hermite-linear Lagrange-
cubic Hermite for a consistent cubic Hermite interpolation of the trans-
mural fibre parameters.
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FIGURE 5.19: Fibre direction vectors projected onto a two-dimensional cross-section of
the pig heart model. All fibres are drawn as vectors with the same length,
so the more axially aligned fibres in the subepicardium and subendo-
cardium have a smaller projection onto this plane than the more circum-
ferentially aligned midwall fibres. The apparent inward orientation of
some of the subepicardial and subendocardial fibres reflects the taper
of the wall (out of the plane of this projection) and does not indicate a
non-zero imbrication angle. Notice the flow of fibres around the margins
where the right ventricle joins the septum.
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(a) Posterior (b) LV free wall

(c) Anterior (d) Septum

FIGURE 5.20: LV endocardial fitted fibre field.
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(a) Free wall (b) Septal wall

FIGURE 5.21: RV endocardial fitted fibre field.

(a) Posterior (b) Anterior

FIGURE 5.22: Epicardial fitted fibre field.
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to the heart itself. In order to calculate the transformations another FEM model of the

specimen geometry from which the sheet angles were measured is required.

Sheet Data Specimen Model

In order to take advantage of the model built earlier and to avoid repeating the model

making process outlined in Sections 5.2.3 through 5.2.7, the fitting algorithm was mod-

ified to enable the degrees of freedom associated with the external surfaces of a volume

mesh to be fitted, while the remaining degrees of freedom were not considered. Thus

the complete model from the previous section with some rotation and translation to

align anatomical features, was used as the initial mesh. The geometry of the exterior

faces, epicardium, LV endocardium and RV endocardium were then each fitted to the

corresponding data sets recorded from the segments described in Section 5.1.2. Both

specimens were of similar size and shape resulting in a good fit for the second geo-

metric model. The final RMS values of the fit are listed in Table 5.4, and the model is

presented in Figure 5.23. The valve orifice geometry was not measured for the sheet

data specimen because sheet orientations could not be identified in the basal skeleton

beyond the ventricular myocardium.

Geometric Field Fit Data Points RMS error (mm)

LV endocardium 589 0.56
RV free wall endocardium 148 0.87

RV septal wall endocardium 133 0.62
Epicardium 318 0.56

TABLE 5.4: RMS errors of sheet specimen geometric fit.

Sheet Angle Transformations

���
is defined to be a unit vector lying at the intersection of the myocardial sheet plane

and the (x,r)-plane and makes an angle
� �

with the radial axis at that point.
� �

is the

angle measured experimentally. The unit vector
�

lies on the myocardial sheet plane

orthogonal to the fibre vector � . Thus
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(a) Initial mesh, original fibre and geometry
specimen

(b) Fitted sheet data specimen

FIGURE 5.23: Plots of the model geometries for the initial mesh and the fitted sheet data
specimen. The sheet specimen geometry is used in the post processing of
the recorded sheet orientation data. (a) The initial mesh of the specimen
from which the geometry and fibre data was obtained. (b) The fitted
mesh geometry of the specimen from which the sheet orientation data
was measured. Both plots are to the same scale. The specimens were
very similar in size and shape.



5.2. MODEL CREATION 109

� � H � � (5.18)

where

H � � � � �
�� � � � � �� (5.19)

and

� � �
��
� � � �
� � � ��� � � ��� �
� � ��� � � � ���

� 	
�

��
�
� � ���

� �
� � � � �
�

� 	
� (5.20)

A unit vector normal to the
��� � ���
	��

-plane is

� �  � �  	
&  � �  	 & (5.21)

The sheet angle
�

is defined to be the angle subtended by
�

and � and lies in the
��� ��� �

-

plane, hence:

� � � " � � � ����
	 (5.22)

where
���

and
��	

are the components of
�

in the p- and u-directions, respectively.

Thus, given the measured sheet angel
� �

and the fibre orientation � together with the

heart geometry, the following sequence of computations is used to find the sheet angle�
� � � from Equation 5.20

� H from Equation 5.19
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� � from Equation 5.18

�  � and  	 from Equations 5.11 and 5.12

� � from Equation 5.21

� � from � � �
� �

from Equation 5.22

Sheet Field

The sheet angle data was fitted by a tricubic Hermite field to the transformed sheet

orientation values
�

at corresponding
�

locations in the original fibre and geometry

model. The sheet field was fitted with an RMS error of 0.49 using 8360 data points.

The implementation of the transformations and fitting technique were tested and vali-

dated by transforming and fitting generated raw data with simple patterns, such as zero

and 45 degree angles, then plotting cross-sections of the fitted fields to confirm the fields

represented the original data. The tricubic Hermite field has enough degrees of freedom

to adequately describe the transmural variation of sheet orientation.

Cross section plots of the fitted sheet fields are presented in Figure 5.24. The fitted

sheets are aligned predominantly radially, but curve to align more tangentially to the

external surfaces. The transmural sheet curvature appears less marked than in the earlier

canine heart.
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FIGURE 5.24: Fitted sheet orientations, shown in three longitudinal sections through
the heart. The sheets are predominantly radially aligned. The apparent
discontinuities are actually only an artifact of the rendering technique at
the element boundaries.





Chapter 6

Simulating Ventricular Mechanics

using the Finite Element Model of

Porcine Ventricles

This chapter presents the use of the porcine ventricular model to simulate passive in-

flation and predict the myocardial distributions of stress and strain. The validity of

the FEM and finite elasticity techniques presented in Chapters 2 and 3 for modelling

ventricular mechanics have been rigorously tested (McCulloch 1986, Nash 1998). The

following selection of modelling and solution techniques draws heavily upon that body

of work.

6.1 Solution Fields

There are four fields to solve for, the displacements in each geometric coordinate,
�

, �

and
�
, and the hydrostatic pressure. For each field an appropriate set of interpolation

functions must be chosen. The interpolation functions must be able to represent the

solution fields with the required accuracy. A desirable feature of the model is that the

predicted stress and strain distributions are also spatially
� �

-continuous.

In this model the myocardial stress components are derived from components of the

strain tensor, the hydrostatic pressure field and the material properties of the ventricular

tissue. Therefore these quantities must be spatially continuous throughout the model to

113
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achieve
� �

-continuity of myocardial stress. Trilinear Lagrange is the lowest order in-

terpolation that will provide adequate resolution and continuity of the hydrostatic pres-

sure field. To be consistent when calculating components of stress the interpolation

scheme for the geometric solution fields should be of a higher order than the interpo-

lation scheme for the hydrostatic pressure field (Section 3.3.2). For this reason and for

their ability to resolve the deformation fields accurately, tricubic Hermite interpolation

is used for all three geometric displacement fields. As for the model geometry multiple

versions of the derivative dependent variables are necessary to connect elements with

inconsistent parametric coordinates.

6.2 Displacement Boundary Conditions

The anatomical model presented in this thesis was designed to provide the ability to

apply more physiological boundary conditions than in earlier ventricular model simu-

lations. Although the earlier prolate-spheroidal coordinate system based models had

the benefit of the model geometry and deformations aligned with the coordinate sys-

tem directions, allowing for the direct application of boundary conditions to modes of

deformation, the coordinate system imposed constraints on the modes of deformation

itself (Section 4.4.3). The anatomical rectangular cartesian model makes no assumption

about the relationship of the model geometry or deformation with the global coordinate

system. The model accurately represents the basal skeleton which serves as the point

of connection of the ventricles with the body. Therefore the node positions and deriva-

tives which form the perimeter of the ventricular myocardium were fixed. The elements

corresponding to the collagenous inter-valve basal skeleton are omitted because their

material properties are unknown and are not thought to contribute significantly to the

deformation of the ventricular wall. It was also discovered that fixing the derivatives

of the apex nodes improved the convergence of the solution procedure at higher cavity

pressures. Fixing the apex derivatives has the effect of making the region immediately

adjacent to the nodes more rigid, which is consistent with the observation that the apex

is more collagenous than the ventricular wall. This is discussed further in the following

section that describes the material properties. Figure 6.1 shows the applied boundary

conditions.

These boundary conditions are also consistent with experimental protocols for inflat-
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FIGURE 6.1: Displacement boundary conditions. The cubes represent nodes at which
all the degrees of freedom are fixed, both location and curvature. The
spheres represent nodes at which only the derivatives are fixed.
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ing excised hearts, as illustrated by the experimental rig for investigating ventricular

mechanics using MRI shown in Figure 6.2.

FIGURE 6.2: An experimental heart preparation for examining passive ventricular de-
formation. The ventricles are attached to the rig via tubes that also sup-
ply fluid to the cavities to apply pressure. MRI techniques are then used
to examine the ventricular deformation under various loading conditions.
(Presented with permission, K. Augenstein, thesis in progress)

Earlier models have included a pericardial constraint to limit the circumferential bulging

(Section 4.4), whilst perhaps having some physiological merit, its application has not

been consistent with the physiology. The form of the pericardial constraint applied

to the anatomical prolate canine model is too restrictive. A less restrictive alternative

would be to apply the pericardial pressures to the epicardial surfaces. These pressures

vary significantly throughout the cardiac cycle and their measurement has been a topic

of considerable discussion (Tyson, Maier, Olsen, Davis & Rankin 1984, Tyberg & Smith



6.3. MATERIAL PROPERTIES 117

1990, Hamilton, Dani, Semlacher, Smith, Kieser & Tyberg 1994). A superior alternative

would be to couple the ventricular model to a model of the pericardial sac.

It is preferential to omit the influence of the pericardial sac than to model it incorrectly,

since much of the experimental data available in the literature is from excised hearts, or

from procedures that involve incising the pericardial sac to obtain access to the ventri-

cles. Therefore no pericardial constraint is applied in this work. Without the ability to

force a desired deformation through the application of rigid boundary conditions such

as the “pericardial constraint”, the role of the microstructure and its material properties

becomes considerably more important.

Following the application of the boundary conditions there are 3110 solution degrees of

freedom in the model to solve for.

6.3 Material Properties

6.3.1 Constitutive Law

The pole-zero strain energy function for myocardium, Equation 4.1, was used to model

the stress-strain behaviour of the ventricular myocardium. Estimates for several of the

pole-zero constitutive law parameters have been made using material testing and elastica

theory as described in Section 4.4.3. However, to date the regional variation in myocar-

dial material properties, evident from the regional variation in the microstructure and its

constituents, has not been characterised. It was discovered that the material parameter

set used in the earlier canine model did not yield a model that was numerically stable

under physiological loading when applied to the current model. The reasons for this are

not well understood, but may be due to a lack of adequate stiffness in certain regions

of the model. Since it was found that increasing the stiffness in several regions of the

model enabled it to simulate physiological loading without becoming numerically un-

stable. The regions that needed modifying were consistent with regions that do in fact

exhibit increased collagen densities (and hence the stiffness of the extracellular matrix).

The regions that required modification were portions of the RV free wall and septal wall

interface, the base and the apex. An attempt was made to describe the regional varia-

tion in material properties using trilinear-Lagrange interpolation, but the model became
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numerically unstable. The variation of multiple constitutive parameters within the el-

ements may have resulted in portions of tissue with non-viable properties. Variation

of the material properties on an element by element basis, which provides a piecewise

constant description, proved successful. The modified elements are shown in Figure

6.3. In the modified regions the sheet and sheet-normal constitutive parameters were set

equivalent to the fibre direction parameters. For the apex, the now stiff isotropic ma-

terial description is consistent with the observation that the apex is a more collagenous

region without a discernible microstructure orientation. At the lower RV free wall the

modified material properties are representative of the increased trabeculation and the

less structured alignment of fibres at the septal wall interface. Similarly the modified

basal element is in a region where an increased collagen density is observed.

The constitutive parameters used in the pole-zero law were chosen such that the fibre

term parameters were consistent with those obtained from material testing and used in

the earlier canine model. The sheet and sheet-normal term parameters were chosen to

provide the relationships between the normal direction terms observed experimentally in

the physiological strain range. Namely, marginally stiffer in the sheet direction than the

fibre direction, and much more compliant in the sheet-normal direction than the fibre

direction. For ease of interpretation and through lack of quantitative data the coeffi-

cients � ��� were set equivalent while the curvatures ����� and poles � ��� were manipulated

to provide the desired strain energy contribution relationships for the normal direction

terms.

Recent triaxial shear testing of myocardial tissue (Dokos, Smaill, Young & LeGrice

2002) has begun to provide insights into the shear behaviour of ventricular myocardium.

The testing rig measured the force required to deform cubes of myocardium excised

from the ventricular mid wall. Simple shear deformation also imposes strain in the di-

rections normal to the shear plane. The Dokos experiments determined that the simple

shear deformation is resisted by the elastic elements aligned with the microstructural

axes of the tissue. Therefore the data acquired in that series of experiments cannot be

used to determine the shear term parameters in the pole-zero law because they need to

be independent of other modes of deformation. The triaxial testing rig is currently under

going modification to enable the imposition of pure shear, which will provide the stress-

strain relationship for the shear modes independent of any other modes of deformation.

The experiments to date do, however, indicate the validity of the previous assumption
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FIGURE 6.3: Regional variation of material parameters. Material properties in the sheet
and sheet-normal directions are set equivalent to the fibre direction in the
shaded elements. The modified elements are in the lower RV free wall,
base and apex.
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that the shear behaviour is strongly correlated with the axial behaviour. Therefore the

fibre distribution model (Nash & Hunter 2001) (Appendix A) for calculating the shear

poles from the axial parameters was used. The shear coefficients and curvature terms

were assigned to reflect the assumption that these modes of deformation to not con-

tribute significantly to the strain energy of the myocardium. Table 6.1 lists the material

properties used in this model1.

Type Axial Properties Shear Properties

Coefficients (kPa) �
� � � � � �

� 	 � � �
�
	 	 � � � �

� � � � �
�
� � � � � �

	 � � � �
Poles �

� � � � * � � �
� 	 � � � �

�
	 	 � � * � � �

� � � � � �
�
� � � � � ��� �

	 � � � � �
Curvatures �

� � � � �,* � �
� 	 � � �

�
	 	 � ��� �

� � � � �
�
� � � � � �

	 � � � �
TABLE 6.1: Material properties of myocardium for the pole-zero constitutive law used

in the porcine model.

6.3.2 Residual Stress and Strain

The concepts of residual stress and strain in the ventricular muscle were introduced

in Section 1.1.2, and a suitable method for incorporating these properties into a ven-

tricular model by the use of a growth tensor was presented in Section 4.4.3. Using data

from studies that have quantified residual strain distributions in intact ventricular muscle

(Omens & Fung 1990, Rodriguez et al. 1993) a trilinear Lagrange initial fibre extension

ratio field was generated with the nodal values presented in Table 6.2 and shown in

Figure 6.4.

To restore internal equilibrium within the ventricular myocardium the model is solved

without any external loading. The residual stresses and strains in the unloaded ventric-

ular model at equilibrium, or reference state, are presented in Figure 6.5.

1The pole-zero constitutive law parameters presented here vary from those presented in Appendix D,
because work subsequent to the submission of the paper led to changes in the parameter set.
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Ventricular region Transmural location Initial fibre extension ratio,
- � �

LV endocardium 0.95
Equator LV epicardium 1.05

RV endocardium 1.00
RV epicardium 1.00

Base, Apex all 1.00

TABLE 6.2: Initial fibre extension ratios applied applied to model residual strain in the
passive myocardium.

FIGURE 6.4: Applied initial residual fibre strain field. Red diamonds mark the nodes at
which an initial fibre extension is applied, blue diamonds mark nodes with
an applied initial fibre compression. No initial residual strains are applied
at unmarked nodes. The green crosses indicate the regions in which the
reference state stresses and strains are plotted in Figure 6.5.
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The introduction of residual fibre strain into the equatorial region of the model results

in a residual sheet-normal strain also being produced to satisfy the incompressibity con-

straint. The sheet and shear components of strain remain largely unchanged. The resul-

tant residual fibre strain is similar to that reported by Costa, May-Newman, Farr, O’Dell,

McCulloch & Omens (1997) and the shear strains are similarly small. However, the in-

duced sheet and sheet-normal residual strains do not the resemble reported data, which

indicates that the imposed residual stress distribution may be overly simplistic.

The only significant residual stress produced is in the fibre direction. The residual sheet-

normal strain does not result in any notable residual stress because the material is rel-

atively compliant along the sheet-normal axis. The maximum residual fibre stress is

small compared to maximum end-diastole and end-systolic fibre stresses.

In order to assess the extent to which the imposed residual stresses represent those

actually occurring, a model simulation of the opening angle experiments (Omens &

Fung 1990) was performed on a slice of the porcine ventricular model. The resultant

simulated opening angle was approximately 10 degrees, which is less than the 25 degree

opening angles observed experimentally in canine hearts (Costa et al. 1997). The com-

pressive behaviour of myocardium is not well quantified and may significantly influence

the deformation in the opening angle experiment.

6.4 Computational Techniques

Deformation of the ventricular mechanics model is governed by the theory of finite

deformation elasticity (Chapter 2). A system of nonlinear equations is assembled and

solved in CMISS using the FEM (Chapter 3) and Newton’s method (Section 3.4), which

incorporates the sparse SuperLU2 method to solve the resulting set of linear equations.

Convergence is achieved when both the ratio of unconstrained to constrained residuals

and the sum of solution vector increments for the current Newton iteration are less than

a prescribed error tolerance. Constrained residual equations are associated with degrees

of freedom for which the boundary conditions have been fixed (thus these equations are

removed from the problem). Unconstrained residuals are associated with the solution

variables which are to be determined.

2http://www.nersc.gov/ xiaoye/SuperLU/
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FIGURE 6.5: Residual fibre strains and stresses in the unloaded, reference state, lateral
LV free wall. (a), (c) and (e) show the strains, (b), (d) and (f) the stresses
in the material coordinate system. The sampling locations are plotted in
Figure 6.4
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Several sections of the solution algorithm lend themselves well to a multiprocessor com-

puter architecture, in particular the determination of the element stiffness matrices and

the solution of the system of linear equations. For the most part the development of this

cardiac model was performed on SGI Origin type multiprocessor machines. Parallel

processing of the algorithm was implemented to obtain the best performance from this

architecture, and did exhibit linear speed-up with increased processor count. However

shortly before the completion of this thesis a newer IBM pSeries 690 supercomputer

became available. The different architecture design and newer technology executed the

algorithm implementation sufficiently differently that the parallelisation code designed

on the earlier machine was no longer suitable. In fact a single processor executed the

algorithm quicker than any multiprocessor combination on the earlier machine. Further

redesign of the parallisation code could therefore potentially reduce the execution time

significantly. However, for the purposes of this study the single processor solution times

were considered adequate. The model results presented in the following sections were

completed on the IBM pSeries 690 supercomputer on a single processor.

6.5 Passive Inflation

The anatomical rectangular cartesian porcine ventricular model was inflated to LV and

RV end-diastolic pressures of 1 kPa and 0.2 kPa respectively, to simulate the first portion

of passive diastolic filling during the cardiac cycle. A physiologically end-diastolic

LV cavity pressure is nearer 2kPa but attempts to simulate inflation to higher cavity

pressures were unsuccessful due to the material property short comings discussed in

Section 6.3.1. Despite the reduced cavity pressures the model still serves to provide

insight into the mechanical behaviour of the ventricles and the role of the microstructure

in its deformation. Unfortunately the lower pressure loads limit the comparisons that can

be made with results in the literature to assess the suitability and accuracy of the model.

The simulation took approximately 30 minutes on a single processor on an IBM pSeries

690.
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6.5.1 Cardiac Coordinate Strains

Radiopaque marker beads have been used (Waldman, Fung & Covell 1985, Omens, May

& McCulloch 1991) to measure the deformation in a small

region of myocardium. The results of an experimental study on isolated pig hearts

(Holmes 1995) are presented with the predicted model strains for comparison in Fig-

ure 6.6. The strains are presented in the coordinate system used for the experimental

work referred to as the cardiac coordinate system or wall coordinates. In this more

topologically relevant coordinate system the axes are aligned with the circumferential,

longitudinal and outward radial directions of the ventricles. The model normal strains
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FIGURE 6.6: Cardiac coordinate strains in the equatorial lateral LV free wall at end-
diastole, an LV cavity pressure of 1 kPa. The sampling locations are plot-
ted in Figure 6.4. The predicted strains are approximately the same mag-
nitude and exhibit similar trends to the experimental pressure-strain data
of Holmes (1995), shown in blue with the same symbols for each strain
component.

agree reasonably well with the experimental results, while the shear components do not

follow quite so similar trends.

The apex-base length of the model increased from 58.54 mm to 60.27 mm a change of

2.96%. Measuring the base to apex twist with anti-clockwise rotations being positive

when viewed from the apex towards the base, the model twist was 4 degrees.

Further analysis of the deformation using microstructural information provides more
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understanding of the ventricular mechanics taking place in the model.

6.5.2 Microstructure Coordinate Strains

To gain more insight into the model behaviour it is necessary to interpret the deforma-

tions with respect to the microstructural axes. By analysing each of the deformation

components the role of the microstructure in the global ventricular deformation and the

applicability of the constitutive law can be examined. The end-diastolic material stresses

and strains are presented in Figures 6.8, 6.9 and 6.10 in a variety forms to aid in their

interpretation. The fibre and sheet orientations in the equatorial region of the lateral LV

free wall are plotted in Figure 6.7 and are referred to in the following interpretation of

the material coordinate stresses and strains.

FIGURE 6.7: Anterior view of the fibre and sheet orientations in the equatorial region of
the lateral LV free wall. The fibres are directed into the page with the sheet
orientations plotted at their origin. The sheets are radially aligned in the
outer third of the wall and become more longitudinally aligned towards
the endocardium.
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FIGURE 6.8: Fibre strains and stresses in the lateral LV free wall at end-diastole. (a),
(c) and (e) show the strains, (b), (d) and (f) the stresses in the material
coordinate system. The sampling locations are plotted in Figure 6.4.
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FIGURE 6.9: Circumferential distribution of fibre, sheet and sheet-normal stretch at
equatorial midwall locations shown on the right. The numbers on the hor-
izontal axis refer to Gauss point locations in the sequence around the heart
shown by the figure on the right. Note that strain components at locations
1,2,17,18 are omitted from the plot because the fibre orientations are not
in the circumferential direction.
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FIGURE 6.10: Base-apex distribution of fibre stretch in the subepicardium, midwall and
subendocardium. The stretch in the basal elements is influenced by the
applied boundary conditions, and the apical deformation is limited by the
stiff isotropic material and the apical derivative boundary condition.
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� Fibre strain - The fibre extension ratios reach physiological end-diastolic values

of about 1.1 in the LV free wall. There is small transmural variation peaking at

the midwall and decreasing at the sub-epi and sub-endocardial surfaces (Figures

6.8 and 6.10). The circumferential distribution of fibre stretch (6.10) reflects the

circumferentially varying wall thickness. The peak fibre strain occurs between the

regions where the LV free wall is thickened by the bulge of the papillary muscles

(6.9). The minimum fibre strain occurs where the wall is thickest at the junction of

the right ventricle with the septum. The fibre stresses are significantly greater than

the other stress components (Figure 6.8) reflecting the constitutive law parameters

chosen to model the increased stiffness of myocardium along the direction of the

fibre axis

� Sheet strain - The sheets are aligned predominantly radially (Figure 6.7) except

in the subepi and subendocardial regions where they rotate to be tangential to

the surfaces. The sheet strains vary consistent with the sheet orientations, in the

midwall the sheet strains are negative as the sheets are compressed by the radial

pressure loading, while close to the surfaces the sheets are stretched as they bear

some of the load in the base-apex direction (Figure 6.8). The change in sheet

orientation gives rise to large subepi and subendocardial stresses that indicate the

constitutive law parameters might not be suitable for the sheet direction term in

these regions.

� Sheet-normal strain - The sheet orientations dictate the mode of deformation in

the sheet-normal direction. In the regions where the sheets are aligned radially,

they are pulled apart by longitudinal deformation. In the subepi and endocardium

the sheets are aligned tangential to the surface planes and hence pressed together

by the radial loading (Figure 6.8). The large sheet-normal stresses in the sub-

endocardium again highlight the shortcomings of a homogeneous material de-

scription and incompressible material model to represent the myocardium.

� Fibre/Sheet shear strain - The shearing between sheets in the fibre direction is

not a significant mode of deformation and does not generate any stress in the

myocardium (Figure 6.8).

� Fibre/Sheet-normal shear strain - The shearing across the sheets in the fibre direc-

tion is not a significant mode of deformation either and does not contribute any
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stress to the myocardium (Figure 6.8).

� Sheet/Sheet-normal - The shearing between sheets in the sheet direction is a sig-

nificant mode of myocardial deformation, but does not generate significant stress

because the sheets are only bound loosely together. This mode of shearing be-

tween the sheets enables significant wall thickening and thinning throughout the

cardiac cycle without creating significant stress. The change in sign transmurally

of this deformation component (Figure 6.8) is consistent with the change in ori-

entation of the sheets transmurally (Figure 6.7). The large sub-endocardial shear

stress associated with this mode of deformation may not be physiologically rea-

sonable, but without more constitutive property data it is not possible to do better

at the moment.

6.6 Active Contraction

Following end-diastole an electrical wave propagates through the ventricular myocardium

exciting the myocites causing them to contract and generate force. To model the iso-

volumic contraction and ejection phases of the cardiac cycle, the forces generated by

the contracting cells must also be calculated and added to the passive three-dimensional

stress tensor of Equation 2.43. For the purposes of this research it is assumed that the

muscle fibres only generate force in the direction of their longitudinal axes, hence only

one term needs to be added to the passive stress tensor. Expressing the stress tensor

with respect to the microstructural material axes makes only modification of the < � �

component necessary, as given in Equation 6.1.

< ��� � �� � � �
� 1

���

� � �
� 1

� �
� � � % ���� � � � < � �� � �� (6.1)

where < � � A�� - � ��� 0 � � 	�$ 5 � � is the active tension generated by a fibre at time,
A
.

For the development of the anatomical prolate canine model the active contraction ten-

sion was calculated from a cell model implemented at the Gauss points within the FEM

for finite elasticity solution procedure. Since then an extensive framework for solving

cellular models using a collocation method (Hunter et al. 1997) has been developed
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within CMISS. The new framework enables the solution of more complex cell models

and will ultimately serve full coupling of the electro-mechanics problem. At the time

of this research the electrical coupling in three dimensions was still under development,

hence only cell-tissue coupled mechanics is considered here. Therefore, the dynamic0 �
�
	�$ 5 � heterogeneities, due to the spread of electrical excitation are not taken into ac-

count.

The collocation method implemented in CMISS is not described here in detail because

without consideration of the electrical problem it can be reduced to the evaluation of

the cell model at the FEM Gauss points. The point of difference from the earlier canine

model is the adoption of the extensible cellular modelling framework to drive the ven-

tricular mechanics simulation. This also enables the investigation of the suitability of

different cardiac cell models for coupling to the continuum ventricular model.

Two models for determining the active tension generated by a fibre were investigated,

the fading memory model (Bergel & Hunter 1979, Hunter 1995) and the more com-

plex Hunter-McCulloch-ter Keurs or HMT (Hunter, McCulloch & ter Keurs 1998).

The steady state
�  #" 	�$ %

-tension relationship function derived from the fading memory

model is given in Equation 6.2.

< � - �  #"

21 3 � � � �  #"


2143 � � �! #" 	�$ % .

 � � ��  #"


2143 � � �  #" 	�$�% .

 � � � � � 	 � � � � � <������ � 0 � � � �.- � � � 5 (6.2)

where

� �) #" 	�$�% .

 � � � � * mM is the intracellular calcium concentration for maximal ac-

tivation.

�  #"

21 3 � is a non-dimensional parameter which represents the level of activation.

� 	 � � � � � � * mM is the intracellular calcium concentration at which the isometric

tension is 50% of its maximum.

� - � � is the Hill coefficient, determining the shape of the saturation curve.

� <������ � � � � kPa is the isometric, actively developed tension at
- � � and saturating

intracellular calcium.
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� � � � � � * is the non-dimensional slope parameter for the maximally activated

isometric tension-
-

relationship.

The HMT isometric
�  #" 	�$ %

-tension relationship is not presented in detail here because

it proved unsatisfactory for reasons detailed in the following section.

The tension generated by the cell models is dependent upon the extension ratios of the

fibres, hence the deformation during systole is dependent upon the model deformation

at end-diastole. As indicated earlier there are several shortcomings of the model at end-

diastole, which must be taken into account when examining any model predictions from

the systolic simulations.

6.6.1 Isovolumic Contraction

Isovolumic contraction was modelled by a sequence of quasi-static mechanics solutions

coupled to the cell models at increasing states of activation.

The maintainence of the constant cavity volume was achieved via an alternative tech-

nique to the earlier work of Nash (1998). Rather than coupling the ventricular wall mesh

to meshes of the cavities and solving a coupled multiple region problem, an iterative ap-

proach was used. Meshes of the end-diastolic cavity spaces were created to evaluate

their volumes. If the ventricular wall contraction reduced the cavity volume, an increase

in the cavity pressure boundary condition to restore the volume was estimated, and the

problem resolved. This approach had the benefit of not requiring any equations to be

simultaneously solved for the cavity regions and being simpler to implement in rectan-

gular cartesian coordinates, but increased the number of solution steps required, which

was not a large penalty.

Convergence for the coupled HMT-ventricle model could not be a achieved for an LV

cavity pressure above 2.6 kPa. The reason for this appeared to be that the HMT cell

model is more sensitive to the tissue extension ratios, creating large tension gradients

across the ventricular wall.

The fading memory model deforms the LV into a more physiological spherical shape

while HMT squeezed the LV into a more elongated shape. This suggests that the circum-

ferential tensions from HMT were too high relative to the subepi- and subendocardial

tensions, which in turn might be because the predicted end-diastolic transmural strain
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variation is too large. An effort was made to modify the HMT parameters to reduce

the sensitivity to the tissue extension ratios (specifically
�
� ), but the result remained

similar. Therefore only the fading memory model results are presented and discussed

here. The deformed end-diastolic and end-isovolumic contraction models are plotted in

Figure 6.11.

The LV cavity volume was maintained at its end-diastolic volume of 33 ml while the

active tension along the fibre axes was increased. Several studies have reported end-

isovolumic contraction cavity pressures of approximately 15kPa (Waldman et al. 1985,

LeGrice, Takayama & Covell 1995), but model convergence could not be achieved for

cavity pressures beyond 9.6 kPa. Again this appears to be related to the lack of adequate

regional variation of material properties. Considerable testing of the model using a

variety of constitutive laws, material properties and boundary conditions suggests that a

inhomogeneous parameter set is necessary to improve the robustness of the model.

During this isovolumic contraction simulation the apex-base twist was 23.4 degrees

from the end-diastolic state, and the apex-to-base length of the model decreased slightly

to 60.12 mm from 60.27 mm.

The isovolumic contraction phase of the simulation took approximately 4 hours on a

single processor on an IBM pSeries 690.

6.6.2 Ejection

Ideally an accurate model of the fluid mechanics within the ventricles and the great ves-

sels would provide for the correct impedance behaviour during ejection. Although such

models are in development, they are not yet mature enough to accurately simulate the

pressure loading within the ventricular cavities during ejection. Instead the cavity pres-

sure was gradually decremented, solving for the ventricular wall deformation at each

step. The active tension generated by the cell model was kept at the level obtained

at the end-isovolumic contraction. Hence the quasi-static solutions are representative

of the deformation at a given pressure loading and myocardial activation level, but the

sequence of solutions may not be representative of the actual cardiac sequence. Never-

theless, the solutions do provide insight into the mechanical behaviour of the ventricular

wall during systole and are a valid for examining the end-systolic state.
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At end-systole, zero LV cavity pressure, the LV cavity reduced to a volume of 17 ml

from 33 ml. The ejection fraction of 48% compares favourably with the values reported

in the literature, published figures vary with an average about 45% (Fann, Sarris, In-

gels, Niczyporuk, Yun, Daughters, Derby & Miller 1991, Azhari, Weiss, Rogers, Siu,

Zerhouni & Shapiro 1993). Plots of the model at the end of each of the phases of the

simulated cardiac cycle are presented in Figure 6.11.

The circumferential distribution of the myocardial material stretch is plotted in Figure

6.12. The myocardium is contracted along the fibre axis direction by the myocyte activa-

tion, and expands in the sheet and sheet-normal directions because it is incompressible.

The variation in the circumferential distribution of fibre stretch can be related to vari-

ations in the wall thickness and the fibre orientation. The end-systolic distributions of

fibre stretch in the LV free wall a plotted in Figure 6.13. The average fibre extension

ratio in the LV free wall is approximately 0.9, which is consistent with the experimental

results of Rodriguez, Hunter, Royce, Leppo, Douglas & Weisman (1992) and Guccione,

Le Prell, de Tombe & Hunter (1997). The variation in fibre strain in the subendocardium

appears to be consistent with the variation in wall thickness. Further more, the incom-

pressibility constraint is particularly non-physiological in the subendocardium and may

skew the results in this region. The apex-base shortening of the model from the begin-

ning till the end of ejection also compares well with published literature. The model

predicts a length change of 3.47%, Rankin, McHale, Arentzen, Ling, Greenfield & An-

derson (1976) reported an apex to base length change of 4.7%
�

0.3% from eight closed

chest dogs, although the base was measured as the top of the left atrium in this case .

The apex-base twist during ejection was a slight untwisting of -0.6 degrees. The total

twist from end-diastole to end-systole was then 22.8 degrees. This model result is con-

sistent with reported values of about 20 degrees (Beyar, Yin, Hausknecht, Weisfeldt &

Kass 1989).

Although there have been studies of the regional distribution of myocardial strain in dog

(Rademakers, Rogers & Guier 1994, Villarreal, Lew, Waldman & Covell 1991, McCul-

loch & Omens 1991) the data is not suitable for a rigorous examination of the porcine

model developed here. However, a project is currently underway at the University of

Auckland Bioengineering Institute to comprehensively characterise the strain distribu-

tion in the porcine ventricles (Augenstein, McVeigh & Young 2001). The study in

progress uses tagged MRI to measure the deformation of excised hearts during pas-
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(a) Reference geometry (b) End-diastole

(c) End-isovolumic contraction (d) End-systole

FIGURE 6.11: Plots of the model deformation at the end of each phase in the simulated
cardiac cycle.
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FIGURE 6.12: Circumferential distribution of fibre, sheet and sheet-normal stretch at
equatorial midwall locations shown on the right at end-systole. The num-
bers on the horizontal axis refer to Gauss point locations in the sequence
around the heart shown by the figure on the right. Note that strain com-
ponents at locations 1,2,17,18 are omitted from the plot because the fibre
orientations are not in the circumferential direction.
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FIGURE 6.13: Base-apex distribution of fibre stretch in the subepicardium, midwall and
subendocardium at end-systole.
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sive inflation by a pumping device. The data will serve to determine the constitutive law

parameters in vivo and further validate the porcine model developed here.

The ejection phase of the simulation took approximately 2 hours on a single processor

on an IBM pSeries 690.

6.7 Numerical Verification

It is important to assess the sensitivity of the deformation solutions to the discretisation

of the finite element mesh. If the mesh is too course the solution fields will lack the

degrees of freedom required to accurately represent the actual deformation, rendering

the results useless. Prior to designing the model presented here, experience was gained

modelling single LV’s as part of the study, presented in the following chapter, that ex-

perience suggested the use of the mesh discretisation and interpolation schemes used

for this model. To confirm those design choices were in fact sound and the solutions

are converged, that is, would not differ if the mesh was more finely discretised, the LV

free wall was refined transmurally, since the strains vary most rapidly in that direction.

Figure 6.14 shows the locally refined mesh, and the end-diastolic Gauss point strain

distributions are plotted together for comparison in Figure 6.15.

Refinement of the model introduced another 400 solution degrees of freedom. 200 of

which are at hanging nodes, and hence are explicitly mapped to genuine degrees of

freedom, removing them from the system of equations (Section 3.1.4). Thus a total of

200 new degrees of freedom are are added to the system of equations. The elements

within which the strains are evaluated do not contain any hanging nodes. The local

refinement add added another 8 minutes to the total solution time.

The strain comparisons between the refined and original models presented in Figure

6.15, indicate that the unrefined mesh is a suitable model for investigating myocardial

deformation. Refinement of the mesh does not alter the behaviour of the model signif-

icantly. However, the difference in the sub-endocardial sheet-normal strain should be

kept in mind when interpreting the results of the unrefined model.
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FIGURE 6.14: Transmural local refinement of the LV free wall.
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6.8 Summary and Discussion

A new finite element mechanics model of the left and right ventricular myocardium has

been developed. In contrast to an earlier prolate spheroidal model of the dog heart, the

model is developed in rectangular cartesian coordinates and uses tricubic Hermite basis

functions for the geometric coordinates. The fibrous-sheet structure of the pig heart was

measured and fitted with parameters defined at the nodes of the finite element mesh. In

comparison with the earlier dog heart model, this new pig heart model gives a much

more accurate description of the base and valve ring geometry. The thin apex of the

heart is also now modelled more accurately than in the previous model.

The model was used to simulate the cardiac cycle. The pole-zero constitutive law for

myocardium formulated with respect to the underlying microstructure represented the

ventricular myocardium stress-strain response. Physiological boundary conditions and

myocite activation models simulated observed ventricular mechanics with an acceptable

degree of accuracy.

At end-diastole the circumferential distribution of fibre stretch reflects the circumferen-

tially varying wall thickness. The peak fibre strain occurs between the regions where the

free wall is thickened by the bulge of the papillary muscles. The minimum fibre strain
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FIGURE 6.15: Gauss point fibre strains the equatorial lateral LV free wall at end-
diastole. Refinement of the mesh yields little change in the predicted
strains. (The sampling locations are connected linearly to clarify the
data; the strains do not vary linearly between the Gauss points).
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occurs where the wall is thickest at the junction of the right ventricle with the septum.

Sheet strains are compressive because the sheets lie primarily in the transmural direction

which thins during diastole. The sheet-normal direction is primarily in the base-apex di-

rection and this is extended during diastole, yielding a positive sheet-normal stretch.

The longitudinal distribution of fibre stretch is fairly uniform (within 5%, except at the

base and apex) and with small transmural variations (also less than 5%).

The systolic deformation response exhibited physiological characteristics. An ejection

fraction of 48% was predicted with an apex-base shortening of approximately 4%. The

large ejection fraction is achieved through apex-base twist of 22.8 degrees and wall

thickening of 33% in the equatorial region.

The choice of constitutive properties for the myocardium significantly effect the resul-

tant deformation. The use of a homogeneous parameter set does not accurately represent

reality. One approach to rectify this would be to experimentally determine the stress-

strain relationship for tissue from many regions throughout the ventricles. Alternatively,

formulation of growth laws to determine the required stiffnesses based upon stress and

strain from cardiac cycle simulations may be sufficient. The later adaptive approach

would also have the benefit of enabling remodelling simulations.

Further investigation of the sensitivity of the ventricular mechanics during diastole to

the material parameters, is presented in an article accepted for publication included in

Appendix D.

6.8.1 Limitations of the Model

As noted throughout this thesis many assumptions have been made to reduce the com-

plexity of the model. These simplifications limit the applicability of the model predic-

tions. The following are the major limitations of the model:

� The myocardial tissue is modelled as incompressible which is not completely ac-

curate, particularly in the sub-endocardium (Krams, Sipkema & Westerhof 1989).

This immediately limits the models ability to accurately predict strains in the sub-

endocardium.

� The constitutive parameters used in the pole-zero constitutive law for myocardium

are primarily based upon in-vitro biaxial tension tests of this sections of ventricu-
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lar myocardium. These parameters would be better estimated using in-vivo tech-

niques, possibly with deformation data from MRI along with pressure recordings.

� Transmural and regional variations of material properties are not included in the

model presented here. The passive inflation simulations suggest regional vari-

ations of material properties must be modelled to successfully simulate the de-

formation of the apical and right ventricular regions and simulate physiological

loading.

� The compressive response of myocardial tissue is poorly quantified. For this study

it was approximated using a shallow linear strain energy function. Further exper-

imental studies are required before the compressive myocardial response can be

modelled.

� The papillary muscles are not yet modelled - an important omission that needs

to be rectified in the future because the mechanical loads transmitted from the

systolically loaded mitral valve to the apical free wall by the papillary muscles is

an important aspect of ventricular mechanics during systole.

� The model of the fibrous-sheet structure of the heart presented here assumes that

the fibres lie in planes tangent to the epicardial and endocardial surfaces. From

LeGrice (1992) measurements, the out-of-plane deviation (imbrication angle) is

less than 5 degrees for the bulk of the myocardium but is substantially greater than

this for the regions of the myocardium close to the apex and base, where fibres

spiral inward to provide continuity from epicardium to endocardium.

� The rigid boundary conditions applied at the base are not completely physiologi-

cal. The basal skeleton does deform, though considerably less than the ventricular

myocardium and valve orifices themselves change in diameter throughout the car-

diac cycle. The model may also benefit from being coupled to a model of the

pericardial sac which would alter the ventricular deformation by limiting the the

radial expansion (Katz 1992) and increasing the apex-base lengthening.

� The current model does not include myocardial fluid shifts or viscoelasticity (Bache

& Cobb 1977, Huyghe et al. 1992, Yang & Taber 1991).

Many of these issues are being actively researched both at the University of Auckland

Bioengineering Institute and research groups abroad.





Chapter 7

A Finite Element Model of Myocardial

Infarction

Until recently most efforts to model infarction (Section 1.2) have focussed on the impact

of a noncontracting segment on overall ventricular function. The common approaches

to modelling ischemic myocardium utilise material descriptions of passive myocardium,

or normal myocardium with modifications such as reduced contractility, reduced max-

imal tension, or altered myofilament calcium sensitivity. The presence of myocardial

scar tissue decreases the performance of the heart by (i) decreasing the amount of con-

tracting myocardium contributing to ejection (Parmley, Chuck, Kivowitz, Matloff &

Swan 1973), (ii) by stretching locally during systole, (aneurysmal bulging,) thereby re-

ducing the stroke volume, and (iii) by interfering with the shortening and thickening of

the adjacent myocardium (Janz & Waldron 1977, Lessick, Sideman, Azhari, Marcus,

Grenadier & Beyar 1991, Guccione, Moonly, Moustakidis, Costa, Moulton, Ratcliffe &

Pasque 2001). It has been concluded therefore that the decrease in cardiac performance

post-infarction depends both on the scar size (Choong, Gibbons, Hogan, Franklin, Nolt-

ing, Mann & Weyman 1989, Pfeffer, Pfeffer, Fishbein, Fletcher, Spadaro, Kloner &

Braunwald 1979) and the scar stiffness (Bogen, Rabinowitz, Needleman, McMahon &

Abelmann 1980, Bogen, Needleman & McMahon 1984, Janz & Waldron 1977, Parmley

et al. 1973, Swan, Forrester, Diamond, Chaterjee & Parmley 1972).

Holmes (1995) recognised that the term scar stiffness was too simplistic and attempted

to determine the collagen fibre structure and its relationship to mechanical properties

and deformation in myocardial scar. An experimental study was completed and a con-
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stitutive law for infarcted myocardium proposed. Holmes also performed a limited in-

vestigation of the validity of the proposed constitutive relationship using a simple ax-

isymetric prolate finite element model. A quote from the end point of that work sets the

scene for the work carried out in this chapter:

We therefore collected three-dimensional regional strain data during

passive inflation and digitized the three-dimensional geometry for these

infarcted hearts to allow parameter estimation via a model optimization

approach. At present, this validation awaits refinement of computational

methods for handling the rapid changes in local geometry and material

properties that occur over very short distances at the scar border.

The work by Holmes et al. is described in more detail in the following sections. This

chapter presents the computational methods developed for handling sharp changes in ge-

ometry and material properties. A model optimisation approach is then used to estimate

parameters for the Holmes constitutive law for infarcted myocardium.

The pole-zero constitutive law has proven suitable for relating the deformation be-

haviour of normal myocardium to its microstructural constituents (Section 4.4.3). There-

fore, the ability of the pole-zero law to represent the constitutive behavior of infarcted

myocardium is also investigated here.

Following the development of the constitutive relationships for infarcted myocardium,

a quantitative comparison is made of the end-diastolic states of the anatomical porcine

model developed in Chapters 5 and 6 pre- and post infarction. The command file used

for the following simulations is included in Appendix C.

7.1 Constitutive Laws for Infarcted Myocardium

7.1.1 Holmes Passive Infarction Mechanics Study Review

This section describes the relevant details of the study performed by Holmes et. al. upon

which the models in this chapter are developed.
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Experimental Work

Transmural infarcts were induced in the left ventricle of domestic farm pigs by ligation

of an obtuse marginal branch of the left circumflex coronary artery. The animals were

then left to recover. Three weeks later two sets of marker beads were implanted, one in

the scar tissue and the second in the noninfarcted anterior wall of the left ventricle. A set

of marker beads consisted of three columns of small (0.9-1.0 mm diameter) gold beads.

Each column contained three or four beads 2-3 mm apart. The hearts were arrested and

removed. The left atrium was opened and a balloon secured to a custom mitral plug was

inserted (Figure 7.1).

Aortic cannula

Embedded marker beads

External vent

Intracavity balloon

Mitral cannula

FIGURE 7.1: Diagram of the isolated arrested heart preparation used to study passive
mechanics of the infarcted left ventricle.

The mitral plug was secured in the annulus by a suture. An aortic cannula was positioned

above the valve leaflets and secured to prevent herniation of the balloon into the aorta.

Pressure and volume data was acquired as the ventricle was inflated to a maximum

pressure of 30 mmHg. Simultaneously the marker bead positions were recorded under

flouroscopy using biplane video tape.

Upon completion of the data acquisition runs the left ventricles were filled with silicon
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rubber which was allowed to harden. The fixed ventricle was then sliced into 5mm thick

short axis slices. The epicardial and endocardial contours of each slice were traced onto

transparencies, as well as the infarct boundaries which were grossly visible.

Transmural blocks of tissue were then removed from each of the bead sets for histol-

ogy. The collagen content, collagen orientation and muscle fibre angles were measured

at 0.5 mm increments from the epicardial surface to the endocardial surface through

the infarcted blocks. The measurements were made at 1.0 mm increments through the

normal myocardium blocks.

Holmes observed that most of the muscle in the infarct region had been replaced by

collagen, which is in agreement with reports on humans (Smith, Feild & Rackley 1974).

It was observed that within the scar there were several unique features that acted to

increase the number of collagen fibres oriented along the circumferential direction, and

presumably the ratio of overall circumferential to longitudinal stiffness in the scar.

� The transmural collagen fibre angle gradient in the scar was less steep than the

muscle fibre gradient in noninfarcted muscle. Hence the collagen fibres were

aligned more circumferentially than longitudinally within the inner half of the

wall, where the stresses are expected to be highest.

� The scatter of the collagen fibre angles about the mean angle was greater in the

sub-epi and sub-endocardium, where the mean angle was the farthest from cir-

cumferential. Thus even in these layers substantial numbers of collagen fibres

were oriented more circumferentially than longitudinally.

� The collagen area fractions were highest in the midwall. Therefore the circumfer-

ential mean angles measured near the midwall represented more collagen fibres

than the angles measured in the inner and outer wall.

Since the scar was composed primarily of large collagen fibres that resist stretch along

their axes, Holmes predicted from these features that the large numbers of nearly cir-

cumferential fibres in the scar will result in a high ratio of circumferential to both lon-

gitudinal and radial stiffness in the scar tissue.

The positions of the marker beads were recorded as the cavity pressure was incremented.

From the changes in the bead positions the deformation gradient tensor, � , was calcu-

lated within each of the bead sets using the finite element method. The strains measured
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during passive inflation supported the interpretation of the collagen structure. While the

longitudinal strain in the scar was slightly greater than in the remote myocardium at any

cavity pressure, the circumferential strain was smaller at all depths and pressures. A

significant finding of the Holmes study was that radial strain was also similar in the scar

and the remote myocardium.

Having measured the scar structure and deformation under controlled loading condi-

tions and found them to agree generally with the concept that collagen fibres in the

scar contribute significantly to its mechanical behavior by resisting axial deformation,

Holmes formulated a constitutive law to test the hypothesis that the collagen density and

distribution are the principle determinants of the scars material properties using a finite

element model. The constitutive law formulation is presented in the following section.

Constitutive Law Formulation

Tendon and passive myocardium can be modelled as hyperelastic materials (Douglas,

Rodriguez, O’Dell & Hunter 1991), for which the Cauchy stress tensor,
3

, can be related

to the Lagrangian strain tensor � through a strain energy function
�

(Section 2.3).

Following Choung & Fung (1986) Holmes employed a strain energy function of the

form given in Equation 7.1 because a function for which most of the material constants

could be determined from structural measurements was desired. The function contains

an isotropic term and a set of terms related to the axial deformation of collagen fibres.

� �
� �

� � � � � � � (7.1)

where

� � � 	 � / � � � � � � � � F  ��� � 8 A � �, K A
��� � 8 �

At each transmural depth, the orientation of individual fibres, � � , were expressed relative

to the local mean fibre angle, �
. � 
 � .
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� � � � � � �
. � 
 � (7.2)

The axial strain of each fibre was given in terms of strain components in an axis system

aligned with the mean fibre, cross-fibre and radial directions. It was observed that the

large collagen fibres were all parallel with the local epicardial tangent plane, therefore

the radial components of the fibre vectors were set to zero.

� � � H � 0 H � (7.3)
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	 � � � � 	 �� � � ��� � ���
� � ��� � ��� � � ��� � � � � � � (7.6)� � � � ��� � ���
� � � ��� � ��� � � ���

� � � � � �
At a given depth a group of

	
individually measured fibre angles and an expression for

the squared axial strain of each fibre were defined. To sum the contributions of the

individual fibres, the fibre angle measurements were treated as a discrete distribution.

The probability of finding a fibre at a given angle � is given by 
 � � �
:


 � � � �
� �

� ����� � �� ��� � � � � ������� � 	
� � ��

����� � � � (7.7)

To account for potential variations in area fraction in different regions of the scar, the

probability functions were weighted by the measured collagen area fraction, � � .
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 � � � � �
�����

� ��� � � �� � � � � � � ������� � 	
� � ��

����� � � � (7.8)

Summing the contributions of each fibre provides the fibre strain terms in Equation 7.1:

� � � 	 � / � � � � � � � � ��
� 
 � � �� � � 	

�
�
� � � � ��� � � ��� � � ��� � �  ��� (7.9)

Expanding and rearranging
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�������
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where
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The constants
���

through
� �

can be determined from the measured large collagen fibre

distribution within the scar. The remaining three constants
� �

,
� 	

and
� �

scale the

steepness of the exponential and the relative contributions of the large collagen fibres to

the isotropic background.

Holmes estimated values for
� �

,
� 	

and
� �

of 0.5 kPa, 1 and 100 respectively from a

series of trials using a simple axisymetric prolate model. The simple model was unable

to represent the regional variation in material properties, so the entire myocardium was

described with the constitutive relationship developed for the infarcted tissue.

In this chapter the computational methods required to determine the remaining three

constants are developed and applied to experimental data provided by Holmes et. al.

7.1.2 Validating the Holmes Constitutive Relationship for Infarcted

Myocardium

If the constitutive law for infarcted myocardium formulated by Holmes is a suitable rep-

resentation of the scar tissue behavior, it is attractive because it is based directly upon

physical measurements. However, there are three unknown scaling variables. To vali-

date the infarcted material description the remaining variables must be determined and

the model predictions compared to the experimental recordings. A parameter optimisa-

tion approach is used to determine values for the unknown constants.

Specimen Specific Geometric Model

A finite element model of the most typical specimen was made from the digitised ven-

tricular surface data following the procedure described in Section 5.2.2. The specimen

chosen was labeled scp04 in the Holmes study. The model was created in rectangular

cartesian coordinates using tricubic Hermite interpolation with the techniques presented

in Section 5.2.2. The parametric element coordinates were aligned the same as the mod-

els already presented,
� �

circumferentially,
� 	

longitudinally and
� �

radially outward. A

circumferential mesh resolution of eight elements was the lowest resolution that could

represent the geometry suitably. Although there is little geometric variation longitudi-

nally, four elements were chosen to keep the mesh resolution similar in all three direc-
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tions. The epicardial and endocardial surfaces were fitted with RMS errors of 0.79 and

0.68 to 2782 and 1581 data points respectively.

A tricubic Hermite finite element mesh was also fitted to the infarct geometry for use

with the material property description presented in the following section. The LV and

infarct models are shown in Figure 7.2.

FIGURE 7.2: The fitted finite element model of the infarcted LV of specimen scp04 and
the meshed infarction. The infarct mesh protrudes from the ventricular
mesh slightly because each surface was fitted independently. The speci-
men is 62.25 mm from apex to base.
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Spatially Varying Material Properties

The material properties of infarct tissue are dramatically different from the surrounding

myocardium and the transitional border zone is relatively narrow. The finite element

model must be capable of representing both the spatially varying material parameters

and the deformation solution accurately. In order to achieve the required accuracy with a

computationally efficient model, the hanging or constrained node method for high order

cubic Hermite elements was developed (Section 3.1.4) along with a new framework for

prescribing spatially varying model parameters within CMISS.

Although localised refinement provides more resolution of the dependent variables, it is

not very convenient to describe the material parameter fields using nodally interpolated

or element based fields. It would be a tedious task to align the node positions and

element boundaries with the infarct geometry and determine the appropriate nodal or

element values of the material parameters. Then if the desired mesh resolution were to

be changed, the task would have to be repeated. These problems are overcome here by

extending existing facilities within CMISS and applying them in a new way.

First, a common technique used by graphics programmers to map images or textures

onto element meshes is used to map the material parameter data into the elements

through the heart wall. The material parameter data for
� �

through
� �

was provided

in terms of wall depth, but the wall may be modelled using any number of elements

transmurally. Therefore each material parameter data set is represented as a texture field

that is scaled to fit across the wall. The texture field is then sampled where the material

parameter values are required. The transmural texture field values for the spatially vary-

ing parameters
���

,
���

and
���

are presented in Figure 7.3. The material parameter data

was limited to wall depths from 20% through 80%, the properties for the remainder were

estimated to be equivalent to the nearest data. As well as convenience this approach has

another very appealing point. Since the material parameter description is independent

of the finite element model, the same material parameter value is obtained at any given

depth regardless of the number of transmural elements or their interpolation schemes.

The current CMISS implementation does not provide for the direct sampling of the ma-

terial parameter textures at the Gauss points, where those quantities are required during

the solution process. Rather than adding this feature, an intermediate step that may offer

future benefits was introduced. CMISS contains a framework for solving cellular mod-

els (Section 6.6) and modelling electrical activation problems using collocation grids
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(a) C4

(b) C5

(c) C6

FIGURE 7.3: The material parameter texture fields for the spatially varying parameters���
,
���

and
���

. The texture fields are defined from 0 to 1, zero being at the
endocardium and 1 at the epicardium. The parameter value texture field
is scaled to span the extent of the model to which it applies and can span
multiple elements.
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embedded within finite elements (Hunter et al. 1997). The texture fields are evaluated

at the grid points, and Gauss point values then interpolated from the grid points. With a

sufficiently high resolution collocation grid the Gauss points are very close to the nearby

grid points at which the material parameter was evaluated, interpolating from them pro-

vides an accurate estimate of the material parameter value at the Gauss point. The

process is illustrated in Figure 7.4. Research is also progressing on solving distributed

metabolism problems and cellular mechanics on the embedded grids. The mechanical

material properties of the myocardium and infarct tissue are ultimately dependent upon

cellular activity, therefore working on the framework to couple the large continuum me-

chanics models to the finer scale cellular models was an attractive direction to further

develop CMISS.

1

M
at

er
ia

lp
ar

am
et

er

Depth

Grid points

E
pi

E
nd

o

Finite elements

Gauss points

0

FIGURE 7.4: Material parameter fields are represented as textures that are scaled across
the heart wall. The material parameter texture fields are evaluated at the
embedded grid points then interpolated to the Gauss points.

In order to define the myocardium and scar tissue properties separately the grid points

need to be divided into two groups, those inside the infarct and those in the normal

myocardium. The transitional border zone was not modelled since data was not acquired

in that region. The grouping was determined by evaluating whether or not the grid point

position lay within the finite element mesh of the infarcted region or not. A Newton-

Raphson root finding method was used to calculate the
�
-coordinates of each grid point
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within each infarct element. Only the points with
�
-coordinates that were within the

element i.e. between 0 and 1, were added to the infarct grid point group.

A transmural resolution of three elements was found to be adequate to represent the

transmural variation in the material property fields. The mesh was also refined locally in

the longitudinal and circumferential directions to retain cuboid elements and to provide

a higher resolution of the dependent variable fields.

In summary, a localised refinement technique was developed for high order elements.

The model was refined locally about the infarcted region to achieve a high resolution

of the dependent variables and material parameters. A semi-automated procedure was

developed to define the material parameters within the infarct. The method provides

a mechanism for future coupling of mechanical constitutive law parameters to cellular

scale models. Figure 7.5 shows the grid points within the infarct and a spatially varying

material field parameter plotted.

The fibre angles were only accurately measured within the infarcted region and in an-

other control region in the lower left anterior wall. That data was inadequate to fit a FE

field description over the entire model. In the control region the fibre angle orientations

were consistent with the data fitted in Section 5.2.8. The difference in geometry of the

infarct specimen and the porcine model indicated that there was little to gain by mapping

the porcine model fibre fields into the infarct specimen. Therefore a theoretical field was

generated for evaluation of the constitutive law in the FEM. The fibre angle distribution

was modelled as varying linearly from the -60 degrees at epicardium to +60 degrees on

the endocardium. Within the infarcted region the fibre angle distribution was modified

to +30 degrees on the endocardium to represent the more circumferential collagen fibre

alignment measured within the scar tissue (Holmes 1995).

Material Parameter Estimation

The experimental ventricular pressure and strain data provide more information about

the behavior of the scar tissue than the structural measurements alone. The remaining

unknown material parameters were found by optimising their values to minimise the

difference between the model deformation and the experimentally measured deforma-

tion.

The objective function was evaluated using the deformation at three transmural locations
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FIGURE 7.5: Grid point specification of material properties. The constitutive parameter
� �

is plotted on the grid points. The points within the infarct are plotted
slightly larger.



7.1. CONSTITUTIVE LAWS FOR INFARCTED MYOCARDIUM 157

compared with the experimental values at four prescribed ventricular cavity pressures.

The three transmural locations chosen for comparison were at 5%, 35% and 65% wall

depth from the epicardium, corresponding to the minimum, mid and maximum trans-

mural extent of the experimental data set. The differences between the model strains

and the experimental strains (residuals) were evaluated at cavity pressures of 5, 10, 15

and 20 mmHg, which correspond to the pressures at which the data was obtained exper-

imentally. The optimisation problem was formulated to minimise the sum of squared

residuals, Equation 7.11. The nonlinear optimisation problem was solved using a se-

quential programming method implemented within CMISS.

����� � � � ��� � 	
� � � � �
��
� ' �

��
� ' � 0 � � * � ����� � � �

� * � � � � 5 	 (7.11)

Following Holmes’s approach the normal myocardium was modelled having a collagen

area fraction of 0.4 and the collagen fibres are assumed to be parallel with the muscle

fibres. Using a typical angular deviation of � *�� about the mean angle, a normal fibre

angle distribution was generated and used to calculate the material parameters for the

myocardium. The unknown constants
� �

,
� 	

and
� �

were set to the values chosen by

Holmes using a systematic series of trials. The constants
� �

and
� �

were set to zero

because they were on average two orders of magnitude smaller than
� �

and one order

of magnitude smaller than
���

and
���

. The structural constants used for normal my-

ocardium are given in Table 7.1, and the strains in the noninfarcted region are presented

in Figure 7.6.

Material Parameter Value
� �

0.5 kPa
� 	

2.5
� �

100
���

0.0442
���

0.0006
���

0.0026
� �

0
� �

0

TABLE 7.1: Structural constants for normal myocardium.
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FIGURE 7.6: Strains in the noninfarcted myocardium using the parameters listed in Ta-
ble 7.1 along with the experimentally measured strains. The normal strain
components predicted by the model agree reasonably well with the exper-
imental data, with the exception of the longitudinal strain component.
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The predicted strains for normal myocardium agreed reasonably well with the measured

values. The longitudinal however, strains did not exhibit the recorded increase from

the epicardium through to the endocardium. This finding suggests perhaps there is a

complex relationship between the effect of the rotating fibres, the isotropic term and

the surrounding tissue that is not accurately reflected in the model. The incompressibity

constraint may account for the minor oscillations in the model’s radial strains. The shear

behaviour of the model also differs from the measured data towards the endocardium.

Again, this is likely due to the incompressibility constraint.

Observation of the microstructure and the experimental infarct strain results suggested

that the longitudinal and radial strains within the infarct are not too dissimilar to those in

the surrounding normal myocardium, while the circumferential strain is independent of

the surrounding tissue. Prior to the optimisation runs this observation was investigated.

Model simulations were performed examining the infarct strains while varying the con-

stitutive law scaling parameters
� �

and
� 	

within the normal myocardium (see Figures

7.7 and 7.8).
� �

,
� 	

and
� �

for the scar tissue were chosen to be 0.5 kPa, 1.0 and 100

respectively.

The model reproduced the experimental relationship of infarct strains to normal my-

ocardial strains. The longitudinal and radial strains were sensitive to the surrounding

myocardium but the circumferential strain was not.

Since the purpose was to determine the unknown constants for infarcted myocardium

it was undesirable to formulate the problem in a way that was sensitive to the choice

of parameters in the normal myocardium. Therefore only the circumferential strain

component was chosen to optimise against. The shear terms were not used because they

were considerably smaller.

Results

The optimised values for
� �

,
� 	

and
� �

were 0.64 kPa, 1.44 and 106 respectively. This

required 42 inflations of the model. The predicted strains in the infarcted region are

presented with the experimental results in Figure 7.9.

The optimised parameter set does provide a reasonably accurate prediction of the cir-

cumferential infarct strain, although the predicted subendocardial circumferential strains
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FIGURE 7.7: Sensitivity of model infarct strains to variation of the normal myocardium
properties via the

���
constant. The percentage transmural depth is mea-

sured on the abscissa.
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FIGURE 7.8: Sensitivity of model infarct strains to variation of the normal myocardium
properties via the

���
constant. The percentage transmural depth is mea-

sured on the abscissa.
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FIGURE 7.9: Optimised model and experimental pressure strain relationships within the
infarct.
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are slightly too high. The enforcement of the non-physiological incompressibility con-

straint is likely to have lead to the discrepancy between the experimental and predicted

strains in the subendocardium. The incompressibility constraint may also be responsible

for the oscillations in the radial strain component.

The nonphysiological transmural distribution of longitudinal strain indicates that the

constitutive relationship does not accurately represent the complex relationship between

the effect of the rotating fibres and the isotropic term. The constitutive law is founded

upon collagen in the fibre direction being the stiffening component, with some inference

of its role in the cross-fibre direction. Therefore further experimental work may be nec-

essary to quantify the cross-fibre constitutive relationship. These results are discussed

further in Section 7.1.4.

7.1.3 A Pole-Zero Constitutive Relationship for Infarcted Myocardium

The pole-zero constitutive law for myocardium (Section 4.4.3) directly relates microstruc-

ture to function. Current estimates for the constitutive parameters provide a good model

for the material properties of normal myocardium, and research is in progress at the

University of Auckland to further quantify the constitutive parameters. Therefore it is

desirable to be able to also model infarction through the modification of the appropriate

terms in the pole-zero law.

The pole-zero law was tested in place of the Holmes constitutive law in the same model

and infarct geometry. However, the pole-zero law is dependent upon a laminar sheet

field in the model but the sheet structure was not investigated in the Holmes study.

Instead a physiological sheet field was generated. The generated sheet field shown in

Figure 7.10 turns through 90 degrees from +45 degrees at the epicardial surface to -45

at the endocardial surface with respect to the radial axes.

A series of trials were performed to determine the constitutive law parameters that pro-

vided an acceptable match of the non-infarcted model with the experimental control

data. Only the curvature constants for the normal direction terms �
� �

, �
	 	

and �
� �

in

equation 4.1 were modified, the values used in the following simulations for normal

myocardium are listed in Table 7.2. The predicted strains are plotted with the experi-

mental results for normal myocardium in Figure 7.11.
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FIGURE 7.10: Generated sheet field for use with the pole-zero constitutive law, +45
degrees at the epicardial surface to -45 degrees at the endocardial surface
with respect to the radial axes.
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FIGURE 7.11: Experimental strains for normal myocardium and the predicted strains
using the pole-zero constitutive law.



166

CHAPTER 7. A FINITE ELEMENT MODEL OF

MYOCARDIAL INFARCTION

Type Axial Properties Shear Properties

Coefficients (kPa) �
� � � � � �

� 	 � � �
�
	 	 � � � �

� � � � �
�
� � � � � �

	 � � � �
Poles �

� � � � * � � �
� 	 � � � �

�
	 	 � � * � � �

� � � � � �
�
� � � � � ��� �

	 � � .18
Curvatures �

� � � � � �
� 	 � � �

�
	 	 � � � �

� � � � �
�
� � � � � � �

	 � � � �
TABLE 7.2: Material properties of myocardium for the pole-zero constitutive law used

in the porcine model.

The determination of parameters for the pole-zero law to model infarction is not suited

to the optimisation approach used earlier with the Holmes constitutive law, because

several parameters, potentially transmurally varying, must be found rather than a pair

of constants. Nor are the quantitative structural measurements immediately useful for

determining a suitable set of pole-zero law parameters. Nevertheless, an attempt is

made to estimate the parameters based upon the observations of the collagen density

and scatter along with the pressure strain data.

The observation that the circumferential strains are significantly reduced within the in-

farcted region suggests that the upper limit or pole of circumferential stretch may also

be reduced. The midwall circumferential strain can be interpreted as largely strain along

the fibre axis of the material coordinate system since those fibres are circumferentially

oriented. The circumferential infarct strains do not increase beyond 0.1 therefore the

fibre axis pole, �
� �

is estimated to be 0.15.

The range of circumferential strain with increasing cavity pressure is very small com-

pared to the range exhibited in the noninfarcted tissue. This indicates a less gradual

curvature is required for the fibre axis term, hence the curvature parameter �
� �

is re-

duced to 0.2. The stress strain relationships for normal and infarcted myocardium along

the fibre axis are plotted in Figure 7.12 for comparison.

Holmes reported that the collagen fibres were more scattered towards the epicardial and

endocardial surfaces than in the midwall, possibly contributing to the circumferential

stiffness in regions where the fibres are not so circumferentially aligned. This obser-
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FIGURE 7.12: The stress strain relationships of the fibre axis term in the pole-zero law
for normal and infarcted myocardium.

vation is incorporated by decreasing the pole for the deformation in the sheet-normal

axis direction, �
� �

, in the subepi and subendocardial regions. The stiffness in the sheet-

normal direction is not altered in the midwall because such a change would also modify

the longitudinal strain response, which varied little between the infarcted and normal

myocardium in the experiments. The sheet-normal strain limiting pole �
� �

was reduced

to 0.7 in the subepicardium and 0.9 in the subendocardium, the transmural distribution

of the pole is shown in Figure 7.13. The sheet-normal pole position in the subendo-

cardium was decreased less because the more more circumferentially aligned fibres in

that region caused the longitudinal strain response to be more greatly effected.

There are many more possible parameter variations that could be explored, but it was

found that the above modifications to the pole-zero law constitutive parameters do pro-

vide a good model of the passive mechanical behaviour of an infarcted region. The

model simulation results are presented in Figure 7.14.

The predicted circumferential strain agrees reasonably well with the experimentally

measured values, Figure 7.14(a). The modifications to the infarcted region constitutive

parameters do not significantly alter the longitudinal or radial deformation behaviour as

desired, Figures 7.14(c and e). However, further material testing of myocardial scar tis-

sue is needed to more accurately define the necessary spatial distribution of constitutive
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FIGURE 7.13: Transmural sheet-normal axis pole position distribution, 0.7 in the
subepicardium and 1.0 at the midwall 0.9 at the subendocardium.

parameters.

The generated theoretical fibre and sheet fields within the normal myocardium may

not be physiological enough to enable the correct shearing behaviour during inflation

Figures 7.14(b,d and f) and hence the appropriate apex-base lengthening of the model

Figure 7.14(c).

The incompressibility constraint and lack of regional variation of material properties

probably contribute to the oscillations in the radial strain, Figure 7.14(e).

7.1.4 Discussion and Conclusions

The computational techniques developed for this study successfully enabled closer in-

vestigation of ventricular deformation behavior than has been possible previously. De-

spite the advances in computational technology, there is still a need to design models

efficiently to maximise the accuracy of results. The hanging node method for high order

elements has made detailed study of localised phenomena such as infarction computa-

tionally feasible using high order FE models of the ventricles.

The coupling of the continuum description of material properties to an embedded grid

scheme along with the suite of cellular and graphical modelling tools available in CMISS

provide a highly configurable method for prescribing spatially varying material proper-

ties. The coupling of the continuum and cellular modelling frameworks along with the



7.1. CONSTITUTIVE LAWS FOR INFARCTED MYOCARDIUM 169

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 20 40 60 80 100

C
ir

cu
m

fe
re

nt
ia

l (
E

11
)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

-0.200

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0 20 40 60 80 100

In
-P

la
ne

 (
E

12
)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 20 40 60 80 100

L
on

gi
tu

di
na

l (
E

22
)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

-0.200

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0 20 40 60 80 100

T
ra

ns
ve

rs
e 

(E
13

)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

0 20 40 60 80 100

R
ad

ia
l (

E
33

)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

-0.200

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0 20 40 60 80 100

T
ra

ns
ve

rs
e 

(E
23

)

Transmural Depth (%)

Experimental 5 mmHg
10 mmHg
15 mmHg
20 mmHg

Model 5 mmHg
10 mmHg
15 mmHg
20 mmHg

FIGURE 7.14: Predicted and experimental strains within the infarct with increasing cav-
ity pressure.
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visualisation tools is an on-going area of development in CMISS with many researchers

contributing their expertise. These first steps toward coupling material properties struc-

tures also demonstrated the power of generalised modelling tools within a single frame-

work for examining new problems.

Two constitutive laws for the modelling of infarcted myocardium were investigated us-

ing the same ventricular and infarct geometries. The Holmes constitutive law for in-

farcted myocardium has the benefit of being largely based upon structural measure-

ments, but lacks description of microstructural features that play a significant role in the

deformation behaviour. The isotropic plus fibre strain term formulation (Equation 7.1)

neglects the laminar sheet arrangement of the microstructure and does not include the

cross-fibre properties. These omissions may account for the nonphysiological transmu-

ral distribution of longitudinal strain exhibited by the model. The unrealistic longitu-

dinal strain distribution could be created solely by varying the constant
� 	

. The effect

of the infarct geometry was also examined using a rectangular shaped infarct, but the

results remained unchanged. Therefore it appears that the Holmes constitutive law does

not accurately represent the complex relationship between the rotating fibres and the

isotropic background, or the isotropic background itself does not suitably describe the

tissue within the subendocardium.

Modification of the pole-zero constitutive law for myocardium to also represent in-

farcted tissue is more attractive because it relates modes of deformation to microstruc-

tural features (Section 4.4.3) including the laminar sheets. The anisotropic constitute

law provided a good fit to the experimental normal myocardial strains. Simple modifi-

cations to several of the infarcted region parameters, based upon Holmes’s observations

of the physiology, resulted in the infarcted ventricular model representing the signif-

icant features of the experimental study. The circumferential strain was significantly

reduced locally, while the longitudinal and radial strain components remained largely

unchanged. The fibre and sheet fields used in the model were generated based upon

the Holmes data and commonly used average values. They were not specific to the ge-

ometry of the particular specimen and did not vary regionally as is observed in normal

ventricular myocardium. Therefore some mismatch between the geometry and the sheet

orientations could account for the discrepancy between the predicted and experimental

shear strains. Ideally suitable pole-zero constitutive law parameters for infarcted my-

ocardium would be determined through material testing testing techniques, to quantify
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the stress-strain behaviour along each of the microstructural axes.

Both material law descriptions model the myocardium as incompressible. As discussed

in Section 6.8.1 this immediately limits the achievable accuracy of the models since

myocardium is slightly compressible particularly in the subendocardium. Furthermore

the Holmes data indicated that the infarcted region actually increased in volume during

inflation.

The pole-zero formulation for infarcted myocardium appears to provide a suitable model

for investigating the effect of infarction upon ventricular mechanics.

7.2 The Anatomical Ventricular Porcine Model and In-

farction

In this section the tools and techniques described above for modelling ventricular me-

chanics and infarction are applied to the model of the porcine ventricles developed in

Section 5. A simulation and analysis of the end-diastolic state of the ventricles was pre-

sented in Chapter 6. Suitable parameters to represent infarcted myocardium using the

the pole-zero constitutive law were determined in Section 7.1. Here an infarcted region

is introduced into the anatomical model and the end-diastolic simulations results are

compared with those obtained in Chapter 6 for the healthy model. The applied bound-

ary conditions are the same, the basal skeleton displacements are fixed, and the LV and

RV cavities are loaded to 1.0 kPa and 0.2 kPa respectively.

7.2.1 Material Properties

The size, shape and location of myocardial infarcts varies. The pole-zero constitutive

parameters for infarcted tissue have been determined from data of completely transmural

infarcts with a longitudinal orientation located between the papillary muscles in the

LV free wall. Without further experimental analysis to determine the properties of a

variety of different infarct types, the applicability of the constitutive parameters to other

infarct geometries and locations cannot be known. Therefore the geometry of the infarct

used here is designed to be similar to that induced by the coronary ligation experiments

detailed in Section 7.1.1. Localised wall thinning is not considered.
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The pole-zero constitutive law is used for both the normal and the infarcted myocardium.

The constitutive parameters for the normal myocardium are the values determined in

Section 6.3.1, and the infarcted region parameters are evaluated in Section 7.1.3.

The transmural fibre orientation within the infarcted region is modified to reflect the

more circumferentially aligned fibres measured by Holmes (Section 7.1.1).

7.2.2 Localised Ventricular Mesh Refinement

The LV free wall is refined in the circumferential and transmural directions to more

accurately resolve the strains in the infarcted region. The local refinement creates an

additional 31 elements with another 800 degrees of freedom to be solved for. The refined

model and the infarcted region with the modified constitutive parameters are shown in

Figure 7.15.

7.2.3 Results

The passive inflation simulation was repeated using the refined mesh with and without

the infarct present. The longitudinal and circumferential distributions of strain are com-

pared to examine the global effect of the localised increase in circumferential stiffness

caused by the infarction. The circumferential distributions of the material strains at the

midwall are plotted in Figure 7.16. The midwall fibre orientations are close to circum-

ferential and the sheets are radially aligned therefore the strains may also be interpreted

as circumferential, longitudinal and radial.

The strains within the infarcted region are consistent with the experimental and model

results presented in the previous sections. The predicted circumferential strain within

the infarcted region is reduced while the radial and longitudinal strains remain un-

changed. However immediately adjacent to the infarcted region the sheet strains peak

unexpectedly. The material properties of the transitional border zone between the in-

farcted and normal myocardium were not modelled because of the lack of available

data. Therefore no conclusions can be drawn regarding the increases in sheet strain in

the adjacent myocardium.
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FIGURE 7.15: The anatomical porcine model with an infarcted region and localised re-
finement.
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farcted models. The infarct element is shaded in the diagram on the right.

7.3 Discussion

There is little quantitative data published describing the histology and deformation be-

haviour of infarcted myocardium. The experimental study by Holmes was the only

source available. Holmes also completed a modelling study to formulate a constitutive

law for infarcted myocardium, but was limited by the modelling methods available. In

this thesis the required techniques, listed below, have been developed and applied.

The proposed constitutive law for infarcted myocardium of Holmes did not adequately

represent the deformation characteristics of the scar tissue. However, Holmes’ measure-

ments of infarct microstructure and strain behaviour enabled the estimation of suitable

parameters for the pole-zero law to represent the scar tissue behaviour. The predicted

strains using the estimated parameters indicate the pole-zero law for myocardium is also

suitable for representing infarcted myocardium.

Since the pole-zero law is based upon the stress-strain properties of the microstructural

constituents it is necessary to experimentally measure the material properties of infarct

tissue to determine the parameters more quantitatively. The material properties of the

transitional border zone must also be quantified to improve the accuracy of the models.

In summary, a first exploration of detailed myocardial infarction modelling using anatom-

ically accurate models with microstructurally based material properties has been com-

pleted. For this study several new techniques have been developed and implemented



7.4. FUTURE WORK 175

within the CMISS package, namely:

� The hanging or constrained node method for high order cubic Hermite finite ele-

ments (Section 3.1.4).

� The fitting degrees of freedom associated with external faces of volume elements

to data (Section 5.2.9).

� The coupling of discrete cellular mechanics models to continuum models (Section

6.6).

� The evaluation of texture maps to prescribe material properties (Section 7.1.2).

� The mapping constraints to ensure
� �

-continuity between cubic Hermite elements

with inconsistent parametric coordinates (Section 5.2.7).

� The optimisation of constitutive law parameters using a three-dimensional finite

element model (Section 7.1.2).

7.4 Future Work

The techniques and models developed in this thesis have provided initial insights into

ventricular mechanics and the behaviour of infarcted myocardium. The new framework

can now be used for future studies. In order to improve the accuracy and robustness of

the models there are several key areas that require further work.

Firstly, the material properties of the myocardium need to be addressed. The material

laws used in this thesis modelled myocardium as an incompressible material. This as-

sumption may be significantly affecting the accuracy of the predicted subendocardial

strains. Furthermore, the constitutive parameters in the pole-zero law are based upon

in-vitro biaxial tension tests of ventricular myocardium. More suitable in-vivo testing

techniques, such as MRI may soon yield better data for the determination of constitu-

tive parameters. An investigation of the inhomogeneity of the ventricular myocardium’s

material properties would also aid the accuracy and robustness of the models.

The models developed here have excluded the papillary muscles. However, the papillary

muscles do influence ventricular deformation. The next step in the development of the
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geometry and loading conditions of the models is to include the papillary muscles and

their link to the heart valves by the chordae.

Studies of the influence of the apical geometry upon ventricular mechanics, and possible

constraints by the pericardium would also be interesting areas for further investigation.

Many of these issues are being actively researched by the University of Auckland Bio-

engineering Institute and other research groups.



Appendix A

Fibre Distribution Model for Cardiac

Tissue

A biophysical model of cardiac muscle elasticity has been formulated to help understand

the correlation between the axial and shear parameters of the pole-zero constitutive law

for myocardium (Hunter et al. 1997). The main assumption of this fibre distribution

model is that three families of fibrous connective tissue (mainly collagen) are respon-

sible for storage of the total strain energy of the myocardium. This implies that some

axial and shear deformations must be strongly correlated since they involve the same un-

derlying collagen microstructure. The fibre orientations within each family is assumed

to be normally distributed about a mean direction, which is aligned with one of the

microstructural material axes (see Figure A.1). Note that in the following description

the term ‘fibre’ refers to a collagen connection within a fibre family and not a cardiac

muscle fibre. The latter will be referred to as a ‘myocyte’.

The first fibre family consists of the large coiled perimysial fibres that are closely asso-

ciated with the myocytes (Robinson, Geraci, Sonnenblick & Factor 1988b, MacKenna

et al. 1996). The mean direction of this family is coincident with the longitudinal axis of

the local myocytes and individual collagen fibres are assumed to lie in the plane of the

myocardial sheet. The second family has a mean orientation centred about the sheet axis

(which also lies in the sheet plane, but is perpendicular to the myocyte axis) and con-

sists of tightly bound endomysial collagen (Caulfield & Borg 1979). The third family of

fibres is assumed to have an axisymmetric distribution about a mean direction aligned

with the local sheet-normal axis. This family consists of the sparse array of perimysial

177
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FIGURE A.1: The fibre distribution model: orientation of each fibre family about its
mean orientation.
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collagen struts that connect the myocardial sheets.

The variation of connective tissue fibre orientations about their mean directions is as-

sumed to be different for each family of fibres. These variations are defined by standard

deviations that describe the distribution of each family of fibres as illustrated in A.1.

The first standard deviation defines the variation about the mean direction of the large

coiled perimysial collagen fibres about the mean myocyte axis and is therefore relatively

small. The second standard deviation defines the variation of the direction of in-sheet

endomysial collagen about the local sheet axis and is greater than the first. Two further

standard deviations define the axisymmetric variation of the inter-sheet collagen strut

direction.

To evaluate the contribution that one particular fibre of a family makes to the total strain

energy, consider a unit length fibre in the reference state at an angle of
�

to the
� �

-axis,

as illustrated in Figure A.2. The
� �

and
� 	

axes are not material axes (they do not change

with material deformation), but rather are local orthogonal reference axes with the
� �

coordinate defined to be aligned with one of the microstructural material axes. In the

deformed state, the fibre has length
-

and is oriented at an angle of � to the
� �

-axis. In

the undeformed state
� � � � � �

and
� � � ���

�
, and in the deformed state

� � - � � � �
and � � -

� ��� � .

� 	

� � � � �

� � �
�
�

�

-
�

�

� �

FIGURE A.2: Kinematic analysis of a typical deforming fibre.

Consider now a particular state of strain in the tissue, characterised by extension ratios- �
and

- 	
along the local reference axes,

� �
and

� 	
, respectively. These extension ratios

can be expressed using Equation A.1.
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- � � �� � - � � � �
� � � �

- 	 � �� � - � ��� �
� ���

� (A.1)

By dividing the extension ratios, Equation A.1 may be used to determine an expression

for the angle of the deformed fibre, � , given in Equation A.2.

- 	- � � � " � �
� " � � or � � � " � � � � - 	- � � " � � � (A.2)

Thus, given
- �

and
- 	

, a fibre at initial position
�

is rotated to an angle � and stretched

by extension ratio
-

in Equation A.3.

- �
���� ���
- � � � � �

� � � � when � ��� �- 	
� ���

�
when � � � �

(A.3)

The fibre strain is calculated from the extension ratio using Equation A.4.

1 � � �� � -
	 � � � (A.4)

The next step is to assume that the fibre orientations for each of the families are normally

distributed about their mean directions. In this way, for example, the family of fibres

associated with the myocyte axis may be approximated using the Gaussian probability

distribution (with standard deviation
4 �

) defined in Equation A.5. Note that the mean

of this distribution is aligned with the local myocyte axis in the reference state and that
�

quantifies the difference between the direction of a particular fibre and the mean fibre

direction.

� � � � � � �� � � 4 � ���
� � � �� �

	4 	� � (A.5)
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The total strain energy (due to the deformation) stored in the family of fibres associated

with the myocyte axis may be computed by summing up the individual strain energies

of all fibres in the family. Equation A.6 expresses this sum as the integral over all

possible fibres since the probability distribution function varies continuously with the

undeformed position,
�

. In this expression, �
�
, �

�
and �

�
are properties of the family of

fibres associated with the myocyte axis. The dependence of the fibre strain,
1 �

, on
�

is

defined using Equations A.2 and A.4.

� � � �

�
�
�
�

� � � � � � �
� 1 	�

�
�
� � 1 � ���

�
�

�
(A.6)

In a similar manner, the total strain energy stored in the family of fibres associated with

the myocardial sheet axis may be calculated using Equation A.7.

� 	 � �

�
�
�
�

� � 	 � � � �
	 1 	�

�
�
	 � 1 � � �

�
� �

(A.7)

where � 	 � � �
is the Gaussian probability distribution function for the family of fibres

associated with the sheet axis, �
	
, �

	
and �

	
are properties of this family, and

1 �
is the

material strain along the sheet axis. Note that
1 �

and � 	 � � �
may be evaluated using

expressions similar to Equations A.4 and A.5, respectively.

The strain energy for the third family of sheet-normal fibres is calculated using Equation

A.8, and the probability distribution function for this family is expressed in Equation

A.9 in terms of the two standard deviations that describe an axisymmetric variation of

inter-sheet collagen fibre orientations.

� � �
	 ��

��� ' � �

�
�

� � ' � � � � � �
� � � � �
� 1 	��

�
� � 1 � ��� � � � �

� � �
(A.8)
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with

� � � � � � � � � � �� � 4 � 4 � ���
� � � �� � �

	�4 	� � �
	
�4 	� � � (A.9)

where
1 � is the material strain along the family of collagen fibres associated with the

sheet-normal axis and �
�
, �

�
and �

�
are properties of this family. Finally, it is assumed

that the combined strain energy from each of the three families sums to yield the total

strain energy in the tissue.

For present purposes, the fibre distribution model has been used to express the limiting

strains for shear (namely �
� 	

, �
� �

, and �
	 �

in Equation 4.1) as a function of the axial

poles, since it was assumed that the same underlying distributions of collagen connec-

tions determine both the tensile and shear characteristics of the tissue. This relationship

is derived by considering the kinematics of a typical fibre during a simple shear defor-

mation as shown in Figure A.3.

η

11

������������
	�������
1 1 �

FIGURE A.3: Kinematic analysis of a fibre during simple shear.

The bold line segment in Figure A.3 represents a particular connective tissue fibre ori-

ented at angle � to the mean direction for its family in the reference state. Using

Pythagoras, this undeformed fibre has length
� �

�
� " � 	 � � �	� � � . During the de-

formation the fibre moves through a shear angle of
�

and due to the simple kinematics

of the deformation, the deformed fibre length is
� �

� � � " � �
�
� " � � � 	

. The extension

ratio (deformed length divided by undeformed length) of the fibre is defined in Equation

A.10 as a function of the undeformed fibre angle, � , and the shear angle,

�
.
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For a given shear angle

�
, the fibre angle � � which produces maximum stretch is found

from Equation A.10 by solving
� &��
� � � � for � � . The result is given in Equation A.11.

� � � �� �
" � � � � � � � � � � (A.11)

As

�
increases from � � to

� � � , � � decreases from
� * � to � � . The extension ratio of

the fibre with maximum stretch is determined by substituting Equation A.11 back into

Equation A.10. Using some considerable manipulation (see (Nash 1998)) the maximum

extension ratio for a given shear angle is written in Equation A.12.

-
max � ��

�
�

� � � �
�
	 � (A.12)

where � � � " � �
. If this particular fibre yields when its Green’s strain reaches the limit

stop � �
�	 � - 	

max
� � � , then the maximum possible elastic shear strain is calculated

using Equation A.13.

� � � �� �
� � � (A.13)

The key point here is that the shear poles of Equation 4.1 (namely �
� 	

, �
� �

and �
	 �

)

may be directly determined from the limiting strains of the fibre families. For example,

consider simple shearing deformations within the plane of the myocardial sheet, referred

to here as the
� � � � � -plane. The yield strain for a simple shear of the

� � � � � -plane in the

direction of the myocyte axis (a � � � shear) is limited by the sheet axis pole position,

�
	 	

, since the collagen connections associated with the sheet axis family are put into

tension. On the other hand, a � � � shear is limited by the fibre axis pole position,

�
� �

, since the collagen fibres aligned with the myocyte axis sustain the load. Thus for a
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general shear of the
� � � � � -plane, a reasonable approximation to the limiting shear strain,

�
� 	

, may be determined by substituting the minimum of �
� �

and �
	 	

into Equation A.13,

which monotonically increases with � . The pole position for the in-plane
� � � � � shear is

defined in Equation A.14. Pole positions for the other shear terms may be determined

in an analogous manner.

�
� 	 �

��� ��
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$ 	
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if �

	 	 ) �
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$ 	
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�
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Appendix B

The CMISS Command File for the

Anatomical Porcine Ventricular Model

The CMISS (Section 1.3) command file for the anatomical porcine ventricular model.

This file is presented to document the algorithms used within this thesis. The accom-

paning input files are prohibitively large to include here, but can be downloaded from

http://www.cmiss.org.

$TRUE = 1; # Initialise logicals

$FALSE = 0;

#

use MySubs; # file manipulation & plotting routines

#

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Execution Flow \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

set num_threads 1;

#

# Cell model

#

$CELL_MODEL="FM";

#$CELL_MODEL="HMT";

#

# LV free wall local refinement, only for inflation

$REFINE=$FALSE;

$REFINE_INFARCT=$FALSE;

#

# Output

#

if (! $REFINE || !$REFINE_INFARCT)

{

$OUTPUT_DIR = "output_".$CELL_MODEL."/";

} else {

$OUTPUT_DIR = "output_refined/";

}

if ( ! � d ${OUTPUT_DIR})

185
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{

mkdir ${OUTPUT_DIR};

}

#

# Solve phases

#

$SOLVE_INFLATION = $TRUE;

#

$SOLVE_ACTIVE_CONTRACTION = $TRUE;

#

$SOLVE_EJECTION = $TRUE;

#

if ( $SOLVE_ACTIVE_CONTRACTION )

{

$CAVITY_REGIONS = $TRUE;

} else {

$CAVITY_REGIONS = $FALSE;

}

#

$GRID_BASED_MECHANICS_PROPERTIES = $TRUE;

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Regions & Classes \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

# Regions

#

$WALL = 1;

$BASE = 2;

$LV_CAVITY = 3;

$RV_CAVITY = 4;

#

# Classes

#

$MECHANICS = 1;

$CELLULAR = 2;

#==========================================================================================================

print " \033[0;30;42m ==================================================================== \033[0m\n";

print " \033[0;30;42m Nodes, Elements, Fibres & Sheets for Pig heart Model \033[0m\n";

print " \033[0;30;42m ==================================================================== \033[0m\n";

#==========================================================================================================

#

fem define parameters;r;MRP01;

fem define coordinates;r ;MRP01;

fem define region;r ;MRP01;

#

fem define node;r;MRP01;

fem define nodes;r;MRP01_base region 2;

#

fem define base;r;MRP01; # 1..8 Geometry and fibres

fem define;add bases;r;3Linear � 2PressAuxXi3_4x4x4Gauss; # 9 Pressure

#

fem define elem;r;MRP01;

fem define elements;r;MRP01_base region 2;

#

fem define base;r;MRP01_readse; #redefine bases to read in scale factors

fem define;add bases;r;3Linear � 2PressAuxXi3_4x4x4Gauss;

fem define line ; r ;MRP01;

fem define line ; r ;MRP01_base region 2;

#

fem update nodes hanging nodes 144,146 element 47 direction 1;

#

fem define fibre ; r ;MRP01;

fem define elem;r;MRP01 fibre;

#

# Node Groups

#
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fem group nodes 3,4,7,8,18,20,32,34,89..94,105..106,115..120,121,122,123,134..136,109,110 as FIXED;

fem group nodes 9,13,21,23,35,37,41..42,45..46,49..50,53..54,81..82,95..96 as EQUATOR_LV_ENDO;

fem group nodes 22,24,36,38,83..84,11..12,15..16,97..98,101..102 as EQUATOR_LV_EPI;

fem group nodes 1..8,10,14,17..20,25..28,30..34,39..40,43..44,47..48,51..52,55..64,66,69,72,75,

85..94,99,100,103..110,120..133,135..142,65,67..68,70..71,73..74,76..80,111..119,134 as REMAINDER_INITIAL;

#

# Element Groups

#

fem group elements 14..21,32..34,37,43,51..52 as SEPTUM;

fem group elements 22,26,23..25,27,36,45..50,55 as RV_FREE_WALL;

#

fem group elements 8,13,31,39,53..54,59..63,76..80,22,23,71,72,1,36,75 as ISO;

fem group elements 2..7,9..12,14..21,24..30,32..35,37,38,40..52,55,57..58,64,68..70,73,74,65,66,67 as ANISO;

#

fem group elements 4..13,28,29,30,31,35,39,40,41,42,53,54,57,59,61..62,65..69 as LV_FREE_WALL_INITIAL;

#

fem group element all_elements as ALL_ELEMENTS;

#

if ($REFINE){

fem refine Xi 1 element 4,5,6,7 at 0.7;

fem refine Xi 3 element 10,11,29,28,30,12 at 0.5;

fem refine Xi 3 element 5,6,7 at 0.5;

#

fem group nodes 158..161,166,167,168..183 as REMAINDER_REFINED;

fem group nodes REMAINDER_INITIAL,REMAINDER_REFINED as REMAINDER;

#

fem group elements 89..92 as LV_FREE_WALL_REFINED;

fem group elements LV_FREE_WALL_INITIAL,LV_FREE_WALL_REFINED as LV_FREE_WALL;

#

fem export nodes;${OUTPUT_DIR}."MRP01_refined" as MRP01 region all;

fem export elements;${OUTPUT_DIR}."MRP01_refined" as MRP01 region $WALL;

fem export elements;${OUTPUT_DIR}."MRP01_base_refined" as base_skel region $BASE;

} elsif ( $REFINE_INFARCT) {

fem refine Xi 1 element 4,5,6,7 at 0.7;

fem refine Xi 3 element 10,11,29,28,30,12 at 0.5;

fem refine Xi 3 element 5,6,7 at 0.5;

fem refine Xi 1 element 10,11,12,93,94,98 at 0.5;

fem refine Xi 1 element 10,11,12,93,94,98 at 0.5;

fem refine Xi 1 element 102,103,104,105,106,107 at 0.5;

#

fem group nodes 1..8,10,14,17..20,25..28,30..34,39..40,43..44,47..48,51..52,55..80,85..94,99..100,103..142 as REMAINDER_REFINED1;

fem group nodes 158,160,166..183,185..187,189..191,193,195,197..199,201..203,205,207,209..211,213..215,217,219 as REMAINDER_REFINED2;

fem group nodes REMAINDER_REFINED1,REMAINDER_REFINED2 as REMAINDER;

#

fem group elements LV_FREE_WALL_INITIAL,LV_FREE_WALL_REFINED as LV_FREE_WALL;

fem group elements 102..104,108..110,114..116 as LV_FREE_WALL_REFINED;

fem group elements 103,106 as INFARCT_ELEMENTS;

#

fem export nodes;${OUTPUT_DIR}."MRP01_refined" as MRP01 region all;

fem export elements;${OUTPUT_DIR}."MRP01_refined" as MRP01 region $WALL;

fem export elements;${OUTPUT_DIR}."MRP01_base_refined" as base_skel region $BASE;

#

fem define fibre ; r ;MRP01_refined;

} else {

fem group nodes REMAINDER_INITIAL as REMAINDER;

fem group elements LV_FREE_WALL_INITIAL as LV_FREE_WALL;

}

if ($GRID_BASED_MECHANICS_PROPERTIES) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Grid \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define grid ; r ;MRP01_refined class $MECHANICS region $WALL;

fem update grid geometry class $CELLULAR region $WALL;

fem export element;${OUTPUT_DIR}."MRP01_grid" grid_numbers as grid class $CELLULAR;
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fem group grid;r ;MRP01_refined region $WALL;

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Equations \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define equation;r ;finelas_tch_incomp lockregion $WALL;

fem define mapping;r;MRP01;

#

if ( $GRID_BASED_MECHANICS_PROPERTIES) {

fem define equation;r ; cellular class $CELLULAR region $WALL; # Cellular equations (set, not used)

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Material Properties \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

if (! $GRID_BASED_MECHANICS_PROPERTIES) {

fem define material; r ;polezero region $WALL;

} else {

fem define cell ; r ;polezero class $CELLULAR region $WALL;# Cell variant definitions

fem define material; r ;polezero_infarct_edited cell class $CELLULAR region $WALL;

fem define material; r ;polezero_grid region $WALL; # Mechanics materials set from cells

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Initial Conditions \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define initial ; r ;MRP01 region $WALL;

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solution Method \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define solve;r ; lu region $WALL;

$ITERS = 15;

$TOL = 0.001;

if ( $SOLVE_INFLATION ) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solve Inflation \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

print " \033[0;30;43m Increase cavity pressures incrementally to simulate diastole \033[0m\n";

#

set out;${OUTPUT_DIR}steps_inflate on;

$NAME1 = "full_heart_press_";

$MAXIMUM_INCREM = 1;

$PRESS = 0.0;

for $i ( 0.. $MAXIMUM_INCREM )

{

if ( $i < 1)

{

$INCREM = 0.0;

} else {

$INCREM = 0.1;

}

#
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$PRESS = $PRESS + $INCREM;

if ( $PRESS < 1.3)

{

$PRESS_mmHg = sprintf "%1.1f",${PRESS} � 7.500637554192106;

} else {

$PRESS_mmHg = sprintf "%2.1f",${PRESS} � 7.500637554192106;

}

$FILE = ${NAME1}.${PRESS};

fem solve increment $INCREM iter $ITERS error $TOL class $MECHANICS;

fem define initial ;w;${OUTPUT_DIR}.${FILE};

fem export nodes;${OUTPUT_DIR}.${FILE} as heart;

fem export nodes;${OUTPUT_DIR}${FILE}_def field as heart;

fem export elements;${OUTPUT_DIR}.${FILE} as heart;

fem export elements;${OUTPUT_DIR}${FILE}_def field as wall;

#

fem update gauss strain fibre components region $WALL;

fem export gauss;${OUTPUT_DIR}.${FILE}."_gauss_strain" yg as gauss_strain;

fem update gauss stress fibre components region $WALL;

fem export gauss;${OUTPUT_DIR}.${FILE}."_gauss_stress" yg as gauss_stress;

if ( $GRID_BASED_MECHANICS_PROPERTIES) {

fem export element;${OUTPUT_DIR}.${FILE}."_grid_fields" field cell grid_numbers as grid class $CELLULAR;

fem export gauss;${OUTPUT_DIR}.${FILE}."_gauss_material" parameters class $MECHANICS region $WALL;

}

#

for $ne ( 1..79 )

{

$xi1 = 0.5;

$xi2 = 0.5;

MySubs::Create_File_strain_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_gauss",$ne);

MySubs::Create_File_strain_gauss("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_gauss",$ne);

MySubs::Create_File_stress_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_gauss",$ne);

#

MySubs::Create_File_strain_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_strain_xi("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_stress_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_xi",$ne,$xi1,$xi2);

}

#

if ( $REFINE)

{

for $ne ( 89..101 )

{

$xi1 = 0.5;

$xi2 = 0.5;

MySubs::Create_File_strain_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_gauss",$ne);

MySubs::Create_File_strain_gauss("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_gauss",$ne);

MySubs::Create_File_stress_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_gauss",$ne);

#

MySubs::Create_File_strain_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_strain_xi("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_stress_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_xi",$ne,$xi1,$xi2);

}

MySubs::Combine_Element_Files(${OUTPUT_DIR}.${FILE}."_ne_11_fibre_strain_gauss",${OUTPUT_DIR}.${FILE}

."_ne_94_fibre_strain_gauss",${OUTPUT_DIR}.${FILE}."_ne_11.94_fibre_strain_gauss")

#

MySubs::Combine_Element_Files(${OUTPUT_DIR}.${FILE}."_ne_11_fibre_strain_xi",${OUTPUT_DIR}.${FILE}

."_ne_94_fibre_strain_xi",${OUTPUT_DIR}.${FILE}."_ne_11.94_fibre_strain_xi")

}

if ( $REFINE_INFARCT)

{

for $ne ( 89..119 )

{

$xi1 = 0.5;

$xi2 = 0.5;

MySubs::Create_File_strain_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_gauss",$ne);

MySubs::Create_File_strain_gauss("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_gauss",$ne);

MySubs::Create_File_stress_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_gauss",$ne);

#

MySubs::Create_File_strain_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_strain_xi("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_stress_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_xi",$ne,$xi1,$xi2);
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}

MySubs::Combine_Element_Files(${OUTPUT_DIR}.${FILE}."_ne_11_fibre_strain_gauss",${OUTPUT_DIR}.${FILE}

."_ne_94_fibre_strain_gauss",${OUTPUT_DIR}.${FILE}."_ne_11.94_fibre_strain_gauss")

#

MySubs::Combine_Element_Files(${OUTPUT_DIR}.${FILE}."_ne_11_fibre_strain_xi",${OUTPUT_DIR}

.${FILE}."_ne_94_fibre_strain_xi",${OUTPUT_DIR}.${FILE}."_ne_11.94_fibre_strain_xi")

}

}

#

if (! $REFINE)

{

MySubs::Create_Slice_EXR_FILE();

MySubs::Create_Section_EXR_FILE();

}

if (! $REFINE_INFARCT)

{

MySubs::Create_Slice_EXR_FILE();

MySubs::Create_Section_EXR_FILE();

}

} else {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m End � Diastolic State \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

print " \033[0;30;43m Reading in end � diastolic state \033[0m\n";

$FILE = "full_heart_press_1";

$PRESS = 1;

fem define initial ; r ;${OUTPUT_DIR}.${FILE} region $WALL;

fem define solve; r ; lu region $WALL;

fem solve increment 0.0 iter 20 error $TOL ;

}

if ( $CAVITY_REGIONS ) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Set up Cavity Regions \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define base;r;MRP01; # Redefine bases to calculate scale factors

fem define;add bases;r;3Linear � 2PressAuxXi3_4x4x4Gauss;

#

# Define geometry for LV and RV cavities

#

fem define region;r ; cavities ;

#

fem define coord;r ; lv_cavity region $LV_CAVITY;

fem define node;r; lv_cavity region $LV_CAVITY;

fem define element;r; lv_cavity region $LV_CAVITY;

#

fem define coord;r ; rv_cavity region $RV_CAVITY;

fem define node;r;rv_cavity region $RV_CAVITY;

fem define element;r;rv_cavity region $RV_CAVITY;

#

# Calculate the cavity volumes

#

fem list elements deformed total cavity_volume region $LV_CAVITY; # Defines and sets the var $LV_CAVITY_VOLUME

fem list elements deformed total cavity_volume region $RV_CAVITY; # Defines and sets the var $RV_CAVITY_VOLUME

print " \nLV cavity volume = ${LV_CAVITY_VOLUME}\n";

print "RV cavity volume = ${RV_CAVITY_VOLUME}\n\n";

$DIASTOLIC_LV_CAVITY_VOLUME = $LV_CAVITY_VOLUME;

$DIASTOLIC_RV_CAVITY_VOLUME = $RV_CAVITY_VOLUME;

#

# Read back in scale factors for the ventricular wall elements

#



191

fem define base;r;MRP01_readse; # Redefine bases to read in scale factors

fem define;add bases;r;3Linear � 2PressAuxXi3_4x4x4Gauss;

fem define line ; r ;MRP01;

$LV_PRESS = $PRESS;

$RV_PRESS = $PRESS � 0.2;

}

if ( $SOLVE_ACTIVE_CONTRACTION ) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solving Active Contraction \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define material; r ;polezero_active region $WALL;

fem define active ; r ;$CELL_MODEL

#

# Set up the HMT cellular model � used to calculate the active tension

# Define a 3x3x3 grid scheme for use in all elements and calculate

# their spatial location and metrics

#

fem define grid ; r ; cell � 3x3x3 gauss class $CELLULAR;

fem update grid geometry;

fem update grid metric;

#

fem group grid element ALL_ELEMENTS as ALL_GRID_POINTS;

#

# Define the cardiac cell mechanics model

#

fem define equation;r ; cell � $CELL_MODEL class $CELLULAR;

fem define material; r ; cell � FM class $CELLULAR; # unused

#

# Define the model parameters, there are no spatially varying cellular parameters

#

fem define cell ; r ; cell � $CELL_MODEL class $CELLULAR;

fem define material; r ; cell � $CELL_MODEL cell class $CELLULAR;

fem update grid material class $CELLULAR;

#

# Define the [ Ca]i transient

#

$cai = " cai" ;

fem define time;r ;cai � $CELL_MODEL;

#

# Define the initial condition for the cellular model � setting the

# [Ca]i variable in the cell model to be defined via the above time

# variable

#

fem define initial ; r ; cell � $CELL_MODEL class $CELLULAR;

#

# Define a simple Euler interagtion for the cellular ODE’s

#

fem define solve;r ; cell � $CELL_MODEL class $CELLULAR;

#

# Cai index for grid ( YQS) variables

#

fem inquire cell_variable Cai return_variables CAI_GRIDARRAY,CAI_GRIDIDX;

#

# Fibre extension ratio index for grid ( YQS) and mechanics variables

#

fem inquire cell_variable ExtensionRatio return_variables L_GRIDARRAY,L_GRIDIDX;

$L_MECHIDX = 1;

#

# Tension index for grid ( YQS) and Gauss (YG) variables

#

fem inquire cell_variable IsometricTension return_variables T_GRIDARRAY,T_GRIDIDX;

$T_GAUSSARRAY = "YG";

$T_GAUSSIDX = 1;

#
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# Open a history file to store the cellular extension ratios

#

fem open history;${OUTPUT_DIR}."cell � ext" write variables yqs niqslist $L_GRIDIDX,$T_GRIDIDX,$CAI_GRIDIDX binary class $CELLULAR unit 21;

#

fem update gauss strain fibre components;

fem update grid extension_ratio component $L_MECHIDX $L_GRIDARRAY $L_GRIDIDX class $MECHANICS;

fem solve class $CELLULAR to 0;

fem update gauss gridvars $T_GRIDARRAY $T_GRIDIDX $T_GAUSSARRAY $T_GAUSSIDX;

fem solve class $MECHANICS increment 0.0 iterate 10 error 0.001;

#

#

# Loop through time, solving the coupled active dynamic HTM with coupled mecahnics

#

$RESOLVE=$FALSE;

$PRESSURE_INCREMENT=$FALSE;

$TIME = 0.0;

if ($CELL_MODEL eq "HMT") {

$TIME_MAX=120;

} elsif ( $CELL_MODEL eq "FM") {

$TIME_MAX=30; # Time is actually activation level

}

$dt=1;

while ($TIME <= $TIME_MAX) {

$iter = 0;

$CONVERGED = 0;

while ( $iter < 1) {

$iter++;

print " \ nIteration : $iter \n\n";

if (! $PRESSURE_INCREMENT){

fem update gauss strain fibre components;

fem update grid extension_ratio component $L_MECHIDX $L_GRIDARRAY $L_GRIDIDX class $MECHANICS;

}

$local_time = $TIME;

$local_tend = $TIME+$dt;

$FILE = "fullheart_def_active_" .${TIME};

#

if ($RESOLVE){

$TIME_last=$TIME � $dt;

$FILE_LAST="fullheart_def_active_".${TIME_last};

fem read matrix;${OUTPUT_DIR}.${FILE_LAST}."_YQ_YQS" matrices YQ,YQS binary;

}

#

fem solve class $CELLULAR from $local_time to $local_tend;

fem update gauss gridvars $T_GRIDARRAY $T_GRIDIDX $T_GAUSSARRAY $T_GAUSSIDX ;

fem solve increment 0.0 iterate 10 error 0.001;

print " \n\n\n convergence iterations $CONVERGENCE_ITERATIONS \n\n\n";

#

fem list elements deformed total cavity_volume region $LV_CAVITY;

fem list elements deformed total cavity_volume region $RV_CAVITY;

print " \nLV cavity volume = ${LV_CAVITY_VOLUME}\n";

print "RV cavity volume = ${RV_CAVITY_VOLUME}\n\n";

#

# Increase cavity pressures to maintain constant volume

#

if ( $CONVERGED) {

$PRESSURE_INCREMENT=$FALSE;

if ( $LV_CAVITY_VOLUME < ($DIASTOLIC_LV_CAVITY_VOLUME � $DIASTOLIC_LV_CAVITY_VOLUME � 0.01) )

{

$INCREM = 0.1;

fem update pressure boundary elements LV_FREE_WALL auxillary 1 increment $INCREM;

fem update pressure boundary elements SEPTUM auxillary 1 increment $INCREM;

$LV_PRESS = $LV_PRESS+$INCREM;

print " \nIncreasing LV cavity pressure by $INCREM to $LV_PRESS kPa\n\n";

$RESOLVE=$TRUE;

$PRESSURE_INCREMENT=$TRUE;

last ;

}

if ( $RV_CAVITY_VOLUME < ($DIASTOLIC_RV_CAVITY_VOLUME � $DIASTOLIC_RV_CAVITY_VOLUME � 0.01) )

{
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$INCREM = 0.1;

fem update pressure boundary elements SEPTUM auxillary 2 increment $INCREM;

fem update pressure boundary elements RV_FREE_WALL auxillary 1 increment $INCREM;

$RV_PRESS = $RV_PRESS+$INCREM � 0.2;

print " \nIncreasing RV cavity pressure by $INCREM to $RV_PRESS kPa\n\n";

$RESOLVE=$TRUE;

$PRESSURE_INCREMENT=$TRUE;

last ;

}

}

#

# Increase time if all has gone well, otherwise try again

#

if ( $CONVERGED) {

if (( $CONVERGENCE_ITERATIONS == 1) || ($CELL_MODEL eq "FM" )) {

$LAST_CONVERGED_TIME=$TIME;

$TIME += $dt;

$RESOLVE=$FALSE

last ;

} else {

$RESOLVE=$TRUE

last ;

}

}

}

if ( $CONVERGED == 0) {

print " \n\nCouldn’t Converge, Exiting.\n\n\n";

fem export nodes;${OUTPUT_DIR}.${FILE} field as heart region $WALL;

fem export elements;${OUTPUT_DIR}.${FILE} field as wall region $WALL;

fem export nodes;${OUTPUT_DIR}."lv_cavity_ref_".${TIME} as lv_cavity region all;

fem export elements;${OUTPUT_DIR}."lv_cavity_ref_".${TIME} as lv_cavity region $LV_CAVITY;

last ;

}

#

fem export nodes;${OUTPUT_DIR}.${FILE} field as heart region $WALL;

fem export elements;${OUTPUT_DIR}.${FILE} field as wall region $WALL;

fem export nodes;${OUTPUT_DIR}."lv_cavity_ref_".${TIME} as lv_cavity region all;

fem export elements;${OUTPUT_DIR}."lv_cavity_ref_".${TIME} as lv_cavity region $LV_CAVITY;

#

# Update grid and get new extension ratio values

#

fem update grid geometry deformed class $CELLULAR from_class $MECHANICS;

fem update grid metric deformed class $CELLULAR from_class $MECHANICS;

fem update grid material class $CELLULAR;

#

if (! $RESOLVE) {

# A converged solution was obtained, so we are done for this time step..

# Store the current cell state for the next set of iterations

fem write matrix;${OUTPUT_DIR}.${FILE}."_YQ_YQS" matrices YQ,YQS binary;

fem write history time $TIME variables yqs binary class $CELLULAR unit 21;

}

}

#

fem close history binary class $CELLULAR unit 21;

#

# Export the history file to signal files

#

fem evaluate electrode;${OUTPUT_DIR}."/cell � ext" history ${OUTPUT_DIR}."/cell � ext" from grid yqs iy $L_GRIDIDX binary class $CELLULAR;

fem evaluate electrode;${OUTPUT_DIR}."/cell � tension" history ${OUTPUT_DIR}."/cell � ext" from grid yqs iy $T_GRIDIDX binary class $CELLULAR;

fem evaluate electrode;${OUTPUT_DIR}."/cell � cai" history ${OUTPUT_DIR}."/cell � ext" from grid yqs iy $CAI_GRIDIDX binary class $CELLULAR;

#

fem define export; r ; cell � 3x3x3;

#

fem export signal ;${OUTPUT_DIR}."/cell � ext" electrode signal ${OUTPUT_DIR}."/cell � ext";

fem export signal ;${OUTPUT_DIR}."/cell � tension" electrode signal ${OUTPUT_DIR}."/cell � tension";

fem export signal ;${OUTPUT_DIR}."/cell � cai" electrode signal ${OUTPUT_DIR}."/cell � cai";

#

print " Total LV cavity pressure = $LV_PRESS\n";

print " Total RV cavity pressure = $RV_PRESS\n";

print "End � diastolic LV cavity volume = ${DIASTOLIC_LV_CAVITY_VOLUME}\n";
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print "End � isovolumic contraction LV cavity volume = ${LV_CAVITY_VOLUME}\n\n";

print "End � diastolic RV cavity volume = ${DIASTOLIC_RV_CAVITY_VOLUME}\n";

print "End � isovolumic contraction RV cavity volume = ${RV_CAVITY_VOLUME}\n\n";

}

if ( $SOLVE_EJECTION ) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solving Ejection \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

# Decrement the cavity pressures to simulate ejection

#

set output;${OUTPUT_DIR}steps_ejection on;

#

$FILE = "fullheart_def_active_30_press_";

$INCREM = � 0.1;

$ITER = 20;

$ERROR_TOLERANCE = 0.001;

$PRESS=$LV_PRESS � 10;

while ($PRESS > 0.0 )

{

fem solve increment $INCREM iter $ITER error $ERROR_TOLERANCE;

fem define initial ;w;${OUTPUT_DIR}.${FILE}.${PRESS} region $WALL

#

fem list elements deformed total cavity_volume region $LV_CAVITY;

print " \nLV cavity volume = ${LV_CAVITY_VOLUME}\n\n";

#

#

fem export nodes;${OUTPUT_DIR}.${FILE}.${PRESS} field as heart region $WALL;

fem export elements;${OUTPUT_DIR}.${FILE}.${PRESS} field as wall region $WALL;

for $ne ( 1..79 )

{

$xi1 = 0.5;

$xi2 = 0.5;

MySubs::Create_File_strain_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_gauss",$ne);

MySubs::Create_File_strain_gauss("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_gauss",$ne);

MySubs::Create_File_stress_gauss("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_gauss",$ne);

#

MySubs::Create_File_strain_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_strain_xi("wall",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_wall_strain_xi",$ne,$xi1,$xi2);

MySubs::Create_File_stress_xi("fibre",${OUTPUT_DIR}.${FILE}."_ne_".$ne."_fibre_stress_xi",$ne,$xi1,$xi2);

}

$PRESS � � ;

}

set out off ;

}

quit



Appendix C

The CMISS Command File for the

Infarction Models

The CMISS (Section 1.3) command file for the myocardial infarction models based

upon the Holmes data set. This file is presented to document the algorithms used within

this thesis. The accompaning input files are prohibitively large to include here, but can

be downloaded from http://www.cmiss.org.

#

# This is a reccursive command file! It invokes itself to

# solve the mechanics problem to evaluate the objective for

# the optimisation problem.

#

$SPECIMEN="scp04"

#

$TRUE = 1; # Initialise logicals

$FALSE = 0;

#

$pressure = "time" ; # To use time variables to represent experimental pressure � strain data

#

use MyPlot; # Necessary for plotting commands

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Execution Flow \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

set num_threads 1;

#

# Output

#

$OUTPUT_DIR = "output/".${SPECIMEN}."/";

if ( ! � d ${OUTPUT_DIR})

{

mkdir ${OUTPUT_DIR};

}

#

# Optmising

195
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#

$OPTIMISE = $TRUE;

#

# Local Refinement

#

$LOCAL_REFINEMENT = $TRUE;

#

# Grids

#

$CALCULATE_INFARCT_CELLS = $TRUE;

#

# Constitutive law

#

#$CONSTITUTIVE_LAW = "POLE_ZERO";

$CONSTITUTIVE_LAW = "HOLMES";

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Regions & Classes \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

# Regions

#

$WALL = 1;

$INFARCT = 2;

$CAVITY = 3;

#

# Classes

#

$MECHANICS = 1;

$CELLULAR = 2;

if ($RESOLVE ne "TRUE") { # Don’t need to redo these commands when resolving during optimisation

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Environment \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define parameters;r;large; # Large set for local refinement and hi � res grid

fem define coordinates;r ;rc3d;

fem define regions;r;5_regions;

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Bases \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define bases;r;geom_fibres region $WALL; # 1..8 Geometry and fibres

fem define;add bases;r;pressure region $WALL; # 9 Pressure

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Nodes, Elements & Fibre Fields for Ventricular Wall \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define nodes;r;"models/".${SPECIMEN}."/".${SPECIMEN} region $WALL;

fem define elements;r;"models/".${SPECIMEN}."/".${SPECIMEN} region $WALL;

#

fem define fibres ; r;60 � 60 region $WALL; # zero sheets

fem define elements;r;60 � 60 fibre region $WALL;

#

# Node Groups

#

fem group nodes 1..8,34..41 as fixed_positions region $WALL;
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fem group nodes 1..33 as endo region $WALL;

fem group nodes 34..66 as epi region $WALL;

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Infarct \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define node;r;"models/".${SPECIMEN}."/".${SPECIMEN}."_infarct" region $INFARCT;

fem define element;r;"models/".${SPECIMEN}."/".${SPECIMEN}."_infarct" region $INFARCT;

fem group elements 101..110 region $INFARCT as INFARCT_ELEMENTS;

fem export nodes;${OUTPUT_DIR}.${SPECIMEN}."_infarct" as infarct region $INFARCT offset 1000;

fem export elements;${OUTPUT_DIR}.${SPECIMEN}."_infarct" as infarct region $INFARCT offset_elem 1000;

#

fem export nodes;${OUTPUT_DIR}.${SPECIMEN}."_fitted" as ${SPECIMEN}."_fitted";

fem export elements;${OUTPUT_DIR}.${SPECIMEN}."_fitted" as ${SPECIMEN}."_fitted";

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Local Refinement \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

if ( $LOCAL_REFINEMENT) {

fem refine Xi 2 at 0.6 element 19,20 region $WALL;

#

fem refine Xi 3 at 0.333 element 19,20 region $WALL;

fem refine Xi 3 at 0.333 element 111,112 region $WALL;

#

fem refine Xi 3 at 0.5 element 113,114 region $WALL;

fem refine Xi 3 at 0.5 element 115,116 region $WALL;

#

fem refine Xi 3 at 0.333 element 11,12 region $WALL;

fem refine Xi 3 at 0.5 element 121,122 region $WALL;

#

fem refine Xi 2 at 0.5 element 11,121,123 region $WALL;

fem refine Xi 2 at 0.5 element 12,122,124 region $WALL;

#

fem refine Xi 1 at 0.5 element 19,113,117,111,115,119,11,121,123,125,126,127;

fem refine Xi 1 at 0.5 element 20,114,118,112,116,120,12,122,124,128,129,130;

#

fem group elements 1..32,111,112,125,128,131,134,137,140,143,146,149,152 as PLV region $WALL;

#

$GRID="refined_scheme_6";

if ( $CONSTITUTIVE_LAW EQ ’POLE_ZERO’ ) {

fem define fibre ; r ;${GRID}."_polezero" region $WALL; # 30 degree infarct endo

} else {

fem define fibre ; r ;${GRID} region $WALL; # 30 degree infarct endo

}

#

fem export nodes;${OUTPUT_DIR}.${SPECIMEN}."_refined" as ${SPECIMEN}."_refined";

fem export elements;${OUTPUT_DIR}.${SPECIMEN}."_refined" as ${SPECIMEN}."_refined";

} else {

$GRID="3x3";

fem group elements 1..32 as PLV region $WALL;

fem group elements all_elements as all region $WALL;

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Grid \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define grid ; r ;$GRID class $MECHANICS region $WALL;

fem update grid geometry class $CELLULAR region $WALL;

#

fem export element;${OUTPUT_DIR}.${SPECIMEN}."_grid" grid_numbers as grid class $CELLULAR;
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#

if ( $CONSTITUTIVE_LAW EQ ’POLE_ZERO’ )

{

if ( $CALCULATE_INFARCT_CELLS ) {

fem group grid grid 1 as NORMAL_CELLS;

fem group grid within elements INFARCT_ELEMENTS as INFARCT_CELLS region $INFARCT;

fem group grid;w;$GRID."_polezero" region $WALL;

} else {

fem group grid;r ;$GRID."_polezero" region $WALL;

}

} elsif ( $CONSTITUTIVE_LAW EQ ’HOLMES’ ) {

if ( $CALCULATE_INFARCT_CELLS ) {

fem group grid grid 1 as NORMAL_CELLS;

fem group grid within elements INFARCT_ELEMENTS as INFARCT_CELLS region $INFARCT;

fem group grid;w;$GRID."_holmes" region $WALL;

} else {

fem group grid;r ;$GRID."_holmes" region $WALL;

}

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Equations \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define equation;r ;finelas_tch_incomp region $WALL lock;

fem define equation;r ; cellular class $CELLULAR region $WALL; # Cellular equations (set, not used)

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Material Properties \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

if ( $CONSTITUTIVE_LAW EQ ’POLE_ZERO’ )

{

fem define cell ; r ;polezero class $CELLULAR region $WALL;# Cell variant definitions

fem define material; r ; polezero_infarct cell class $CELLULAR region $WALL;

fem define material; r ;polezero_grid region $WALL; # Mechanics materials set from cells

} elsif ( $CONSTITUTIVE_LAW EQ ’HOLMES’ ) {

fem define cell ; r ;holmes class $CELLULAR region $WALL; # Cell variant definitions

fem define material; r ;" models/".${SPECIMEN}."/".${SPECIMEN} cell class $CELLULAR region $WALL;

fem define material; r ;holmes_grid region $WALL; # Mechanics materials set from cells

}

#

fem export element;${OUTPUT_DIR}.${SPECIMEN}."_grid_numbers" grid_numbers as grid class $CELLULAR;

fem export element;${OUTPUT_DIR}.${SPECIMEN}."_grid_fields" field cell grid_numbers as grid class $CELLULAR;

fem export gauss;${OUTPUT_DIR}.${SPECIMEN}."_gauss_material" parameters class $MECHANICS region $WALL;

#

fem define active ; r ;active0_00

} # !resolve

if ($RESOLVE eq "TRUE") { # Need to update the material parameters to those being evaluated by the optimiser

fem update material optimise cell variant 2 parameter 3 optimisation_variable 1;

fem update material optimise cell variant 2 parameter 4 optimisation_variable 2;

fem update material optimise cell variant 2 parameter 5 optimisation_variable 3;

fem define material; r ;holmes_grid region $WALL; # Mechanics materials set from cells

}

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Initial Conditions \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define initial ; r ;bcs region $WALL;
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#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solution Method \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define solve; r ; lu region $WALL;

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Solve Inflation \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

print " \033[0;30;43m Increase cavity pressures incrementally to simulate diastole \033[0m\n";

#

set out; steps_inflate on;

$residual_index = 0;

$NAME1 = ${SPECIMEN}."_press_";

$TOL = 0.001;

$MAXIMUM_INCREM = 8;

$PRESS = 0.0;

for $i ( 0.. $MAXIMUM_INCREM ) # kPa increments

{

if ( $i < 1)

{

$INCREM = 0.0;

$ITERS = 10;

} else {

$INCREM = 0.3333; # nice mmHg unit increment

$ITERS = 12;

}

$PRESS = $PRESS + $INCREM;

if ( $PRESS < 1.3)

{

$PRESS_mmHg = sprintf "%1.0f",${PRESS} � 7.500637554192106;

} else {

$PRESS_mmHg = sprintf "%2.0f",${PRESS} � 7.500637554192106;

}

$FILENAME = ${NAME1}.${PRESS_mmHg};

fem solve increment $INCREM iter $ITERS error $TOL ;

#

if ($RESOLVE eq "TRUE") {

if (( $PRESS_mmHg == 5 ) || ( $PRESS_mmHg == 10 ) || ( $PRESS_mmHg == 15 ) || ( $PRESS_mmHg == 20 )) {

$depth__5_ne = 123;

$depth_35_ne = 121;

$depth_65_ne = 121;

$xi1 = 0.5;

$xi2 = 0.5;

$depth__5_xi3 = 0.15;

$depth_35_xi3 = 0.05;

$depth_65_xi3 = 0.95;

@transmural_elements = [123,121,11];

#

# average

fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth__5_xi3 element $depth__5_ne wall to YP $residual_index+1;

fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth_35_xi3 element $depth_35_ne wall to YP $residual_index+2;

fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth_65_xi3 element $depth_65_ne wall to YP $residual_index+3;

fem evaluate $pressure variable circ_e11_infarct_depth_5 $pressure $PRESS_mmHg to YP $residual_index+1;

fem evaluate $pressure variable circ_e11_infarct_depth_35 $pressure $PRESS_mmHg to YP $residual_index+2;

fem evaluate $pressure variable circ_e11_infarct_depth_65 $pressure $PRESS_mmHg to YP $residual_index+3;

$residual_index = $residual_index + 3;

#

#scpecimen specific

#fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth__5_xi3 element $depth__5_ne wall to YP $residual_index+1;

#fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth_35_xi3 element $depth_35_ne wall to YP $residual_index+2;

#fem li strain e11 xi_point xi_1 $xi1 xi_2 $xi2 xi_3 $depth_65_xi3 element $depth_65_ne wall to YP $residual_index+3;

#fem evaluate $pressure variable ${SPECIMEN}."_wall_e11_infarct_depth_5" $pressure $PRESS_mmHg to YP $residual_index+1;

#fem evaluate $pressure variable ${SPECIMEN}."_wall_e11_infarct_depth_35" $pressure $PRESS_mmHg to YP $residual_index+2;
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#fem evaluate $pressure variable ${SPECIMEN}."_wall_e11_infarct_depth_65" $pressure $PRESS_mmHg to YP $residual_index+3;

#$residual_index = $residual_index + 3;

}

}

#

fem define initial ;w;${OUTPUT_DIR}.${FILENAME};

@transmural_ne = (123,121,11);

$xi1 = 0.5;

$xi2 = 0.5;

MyPlot::Create_Transmural_Data_File(${OUTPUT_DIR}.${FILENAME}."_ne_".$transmural_ne[0]."_infarct",$transmural_ne[0],$xi1,$xi2);

MyPlot::Create_Transmural_Data_File(${OUTPUT_DIR}.${FILENAME}."_ne_".$transmural_ne[1]."_infarct",$transmural_ne[1],$xi1,$xi2);

MyPlot::Create_Transmural_Data_File(${OUTPUT_DIR}.${FILENAME}."_ne_".$transmural_ne[2]."_infarct",$transmural_ne[2],$xi1,$xi2);

MyPlot::Combine_Transmural_Element_Files(\@transmural_ne,$PRESS_mmHg,$SPECIMEN);

#

fem export nodes;${OUTPUT_DIR}.${FILENAME} as heart;

fem export nodes;${OUTPUT_DIR}${FILENAME}_def field as heart;

fem export elements;${OUTPUT_DIR}.${FILENAME} as heart;

fem export elements;${OUTPUT_DIR}${FILENAME}_def field as wall;

fem export element;${OUTPUT_DIR}.${FILENAME}."_grid_fields" field cell grid_numbers as grid class $CELLULAR;

fem export gauss;${OUTPUT_DIR}.${FILENAME}."_gauss_material" parameters class $MECHANICS region $WALL;

}

if ($RESOLVE eq "TRUE") {

$ITERATION=$ITERATION + 1;

print " \033[0;30;43m Iteration = ${ITERATION} \033[0m\n";

}

if ( $OPTIMISE && ($RESOLVE ne "TRUE")) {

#==========================================================================================================

print " \033[0;30;42m ============================================================ \033[0m\n";

print " \033[0;30;42m Material Paramter Optimisation \033[0m\n";

print " \033[0;30;42m ============================================================ \033[0m\n";

#==========================================================================================================

#

fem define $pressure;r;wall_e11_normal; # Curves defining the _average_ experimental pressure � strain

fem define $pressure;r;wall_e22_normal; # data at various depths for normal & infarct tissue

fem define $pressure;r;wall_e33_normal;

fem define $pressure;r;wall_e12_normal;

fem define $pressure;r;wall_e13_normal;

fem define $pressure;r;wall_e23_normal;

#

fem define $pressure;r;wall_e11_infarct;

fem define $pressure;r;"models/".${SPECIMEN}."/".${SPECIMEN}."_wall_e11_infarct";

#

fem define $pressure;r;"models/".${SPECIMEN}."/scp04_wall_e22_infarct"; # at various depths for infarct tissue in scp04

fem define $pressure;r;"models/".${SPECIMEN}."/scp04_wall_e33_infarct";

#

$ITERATION = 1;

$RESOLVE = "TRUE";

#

fem define optimise;r ;C1_C2_C3_e11;

#

optimise;

}

quit
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The following article, stemming from work completed in this thesis, has been accepted

for publication in the Journal of Biomechanics.
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