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Abstract

The last forty years have seen an enormous growth in the physiological understand-
ing of the structure and function of cardiac muscle, and in the creation of mathe-
matical models which attempt to quantify the observed mechanical, electrical and
biochemical behaviour of the heart. These models have, in general, been developed
independently of one another, and there has been little attempt to integrate the var-

ious mechanisms, even though the processes are clearly interdependent.

The work presented in this thesis illustrates the first stages of development of
a unified model of cardiac structure and function, with particular reference to
modelling cardiac activation. We are building on a base which has already been
constructed describing the geometry and microstructure of ventricular muscle.
Models of mechanical deformation are also under construction, and this work
proposes a solution technique which allows the electrical processes to be integrated

with these, and other, models of cardiac structure and function.

A new collocation method is developed which constructs a grid of collocation points
defined at specific material locations throughout the ventricular finite element mesh.
A finite difference based solution technique uses local metric information to solve the
activation equations on this grid. In general, the collocation grid is non-uniformly
spaced, and will deform with the movement of the finite element mesh.

This collocation method is used to simulate activation using a multiple-purpose
solution program on a range of one, two and three-dimensional geometries, with
a number of variations. Initial test simulations in two dimensions examine
the performance of the method on a square, isotropic domain using a simple

ionic current model to demonstrate convergence with both spatial and temporal
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resolution. The various parameters are then changed incrementally to incorporate
such variations as an irregular domain, anisotropic conductivities using a range
of fibre fields, and various ionic current models. Simulations using multiple
stimuli show the effect of anisotropy on reentrant behaviour. The dimensionality
of the solution domain is also altered, with a one-dimensional solution showing
the interaction of the Purkinje network with a myocardial sheet, and a range of
examples are defined on several three-dimensional geometries including a cube and

an anatomically accurate ventricular mesh.

We also investigate coupling of the myocardial activation model to two other models
of cardiac function. Firstly, the bidomain model is used to couple the myocardial
potential solution with a calculation of torso potential. The activation model is also
coupled to a model of mechanical deformation. This electromechanical coupling is
demonstrated in two dimensions using two ionic current models on both a square
domain, and a mesh generated from a ventricular cross-section. A final three-
dimensional solution presents preliminary results showing the activation model

coupled to a model of deformation in an anatomically accurate ventricular mesh.
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Chapter 1

Introduction

In 1985, the World Health Organisation published a report on “Sudden Cardiac
Death” in which they state that sudden cardiac death is the number one health
problem in the developed countries of the world. In the United States of America,
it is responsible for some 400,000 deaths every year which is approximately 1 in 5
deaths, or about 0.16% of the total population. According to the 1995 New Zealand
Official Year Book, ischemic heart disease contributed towards 26% of all deaths in
1992 in New Zealand, which totals around 7000 deaths. As the expected lifespan
increases, the proportion of deaths due to cardiac failure is likely to increase even
further. These deaths are most often caused by an electrical malfunction within the
heart, due either to infarcted or damaged tissue, or to abnormal passage of electrical
conduction. In either case, the normal pattern of cardiac activation is disturbed, and
the heart enters into ventricular tachycardia (VT) and fibrillation.

Physiologists have a reasonably good understanding of the normal cardiac activa-
tion sequence, in which natural pacemaker tissue and specialised conducting path-
ways activate the atrial and ventricular myocardium in the correct sequence so that
the heart contracts efficiently and blood is pumped throughout the body. What is
not so well understood is the breakdown of this normal activation into fibrillation
which leads to a non-contracting heart. As Lab (1991, p. 29) states,

“Despite the fact that heart disease together with arrhythmia is a potent

cause of sudden death in the western world, their precise mechanisms

remain unclear, and the treatment on the whole is disappointing. The
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initiating cause of the first ectopic that precipitates lethal arrhythmia in

the first hours of myocardial ischemia is not understood, neither are the

mechanisms that sustain the arrhythmia.”
This quote illustrates several of the important areas of research which are required,
starting from a better understanding of the normal activation process. A “normal”
heart does not remain in a constant state throughout its lifetime. External factors on
the body result in stress to the heart, a varied diet introduces chemical substances
which change cellular composition and behaviour, and exercise (or lack thereof)
changes the cellular structure of the heart according to the level of fitness. The
fact that a normal heart continues to function for many years in spite of these
substantial changes indicates that there are regulating factors that constrain the
activation process to follow a somewhat normal course, even though the precise
sequence may be altered. At some stage, however, the changes to cardiac structure
and composition become too great for the heart itself to correct, and an arrhythmic
pattern is started. In order to understand the transition to arrhythmia, the process of
non-arrhythmic activation in an abnormal heart must also be understood from the

cellular and subcellular level through to the complete myocardium.

There are many forms of arrhythmia which lead to abnormal cardiac function.
Simply by observing and cataloguing these phenomena in many patients over
several decades, doctors have formulated an empirical working knowledge of the
characteristics of arrhythmia and methods for treating them. This approach is
clinically useful, as it allows diagnosis and treatment based on previously observed
conditions, and much of modern medicine is based on this technique. In general it
does not provide any understanding of the causes of the arrhythmia, and may only
diagnose and treat it. An understanding of the underlying causes would allow the
prediction and, hopefully, prevention of many of these cases.

In order to understand the underlying causes it is not sufficient to simply observe
behaviour once it has occurred. Determining cause-and-effect relationships through
experimental research is a valuable method for noting some causes of arrhythmia,
though limited to the specific situations investigated. Another, preferable, approach
is to construct a model of the activation process, the parameters of which are
determined through experimental means. Such a model allows the extension of the
observed behaviour to predict what may occur in cases not able to be experimentally
studied. A mathematical model attempts to construct a framework which explains
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what is already known, and quantifies the parameters of the structure.

1.1 Modelling cardiac function

There are several fields of research within the scope of modelling cardiac function
and dysfunction. In a model of mechanical behaviour the heart is treated as a
very complicated pump and the deformation and associated stresses and strains
are important. Alternatively, the energetic function or metabolism of cardiac cells
is studied, and the function of the heart is related to the change in concentration
and movement of various ions and chemicals. An electrical model describes cardiac
function according to the activation process and changes in membrane potential.
Usually, there is very little overlap between the research in different areas, yet the
different processes are certainly influencing and influenced by the other aspects
of function. This thesis begins to integrate some of the aspects of electrical and
mechanical function so that the relationships between the two can be studied in the

future.

The advantage of a model is that a large problem can be broken down into small
sections, and each part described separately. The work in this thesis concentrates on
developing a general model of cardiac activation which is designed to be integrated
with models of other aspects of cardiac function. As a model of each particular sub-
function (such as mechanical contraction, cell energetics, protein kinase movements
and so on) is updated and improved, the individual models can be incorporated into

their place in a global model.

There are a number of details that were considered significant when determining
the formulation of this model of activation. The first of these is that the region
over which the model is to be solved is not predetermined, and therefore the model
should be general enough to solve in any solution domain in either two or three
dimensions, and this domain should be able to be specified in the most convenient
coordinate system. At this stage, the model is restricted to that of ventricular
activation (due to the complexity of this region alone), though the model should
not be restricted to this region, and should be extensible to atrial activation and

Purkinje fibre modelling. A model of full ventricular activation requires an accurate
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description of the physical structure of the heart. This includes both a precisely
measured geometry and a detailed description of the microstructural composition of
cardiac muscle. The solution domain is considered to be, in general, inhomogeneous
and orthotropic. Additionally, the region may be undergoing deformation during
the activation process (either imposed externally or in response to the activation
wave) and the model needs to be able to maintain registration with material points

as they move.

The cardiac activation process possesses a number of qualities which also help to
determine the requirements for the model. Firstly, the activation process has a very
small space constant in that activation is propagated on a cell-to-cell basis. However,
the cellular coupling has been shown by others to have a negligible effect on
activation, and gives justification for using a continuum model of cellular structure
by which the cellular properties can be averaged over a length scale somewhat
greater than that of a single cell. This scale is still small, on the order of 1 mm,
and requires a high resolution of solution points. The activation process also has
a wide range of time constants, where cellular depolarisation occurs in about 1 ms,
while the full activation cycle is on the order of 1 s. This requires the solution process
to be able to solve at small time increments where necessary.

The understanding of cellular activation continues to grow, and a variety of models
of cellular membrane behaviour have been, and are continuing to be developed. The
model needs to be able to use the most appropriate cellular model for the results
that are being sought. The activation process is also influenced by outside factors,

particularly physical deformation.

The final result is a large and complex model capable of solving in solution
domains defined in two or three dimensions, constrained in its complexity by the
computational speed and memory of modern computers. When coupled with other
models, such as those of mechanical deformation or torso electric field mapping, the
size of the full model is much larger again. An efficient solution technique needs to
be developed which makes use of the available computing resources.

A finite element based collocation method is developed to solve a class of partial
differential equations that model electrical activation. This scheme combines the

accuracy of a high order finite element based description of geometry with the speed
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of a finite difference method. The bidomain representation of cardiac tissue is used
together with any of a number of ionic current descriptions as the activation model,
and is solved using the collocation method. This solution scheme is applied to an
anatomically accurate model of the geometry combined with a detailed description

of the microstructural arrangement of cardiac muscle.

1.2 Scope of this thesis

The cardiac modelling research group here at the University of Auckland has already
developed a sophisticated model of ventricular geometry and microstructure which
has been extensively used for modelling cardiac mechanical function. A Huygen'’s
wavelet model has provided a simple computation of the movement of the
activation wavefront, but this is an empirical technique. The work presented in
this thesis demonstrates the integration of a ionic current based continuum model
of electrical activation into the existing framework. This has been done so that
several advantages result. Firstly, the comprehensive model of ventricular anatomy
and microstructure, which is based on extensive physiological measurements, is
available to the activation model and provides a realistic environment in which the
model can be solved. Secondly, the activation model can accommodate any of the
existing models of cellular activation, as well as being able to incorporate future
models as they are developed. Such models are usually formulated for a particular
type of tissue, and different models may be used in different regions of the heart as

required.

The third advantage is the most significant, and enables a new feature of activation
to be investigated for the first time. The solution technique used in the activation
model defines the solution points to be attached to material locations within the
myocardium, and this complete integration with the mechanical model allows the
investigation of the effect of deformation on the activation process. The coupling
between the models is bidirectional, although at this stage less is known of the
stretch-dependence of the cellular activation process. It is clearly shown that the
deformation of the tissue has a significant effect on the nature of the activation, and

in particular when the wavefront is reentrant.
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Due to the complexity of the electro-mechanical interaction it is difficult to construct
experimental techniques which can be used to validate the model. In this sense,
much of the work presented is proof of concept, and has not been experimentally
verified. The development of an apparatus to do this (combining biaxial mechanical
testing with confocal imaging of activation wavefronts) is underway but not

available to be used at this stage.

In Chapter 2 a basic outline is given of cardiac structure and function, and the
physiological background is given for a mathematical model of activation. Chapter 3
discusses the various types of activation models which have been used by others in
earlier work, and determines their deficiencies for the objectives stated above. It
also covers the formulation of the bidomain model, which we use. In Chapter 4
a history of the development of models of cellular ionic current behaviour is
presented, showing the progress in understanding of membrane processes, and the
complexity that is present. Several simplified models, which are non-physiological
but practically useful in some situations are also outlined together with their
advantages and disadvantages. Chapter 5 looks at solution methods which have
been commonly used for solving mathematical activation models, and derives the
collocation method which has been constructed specifically to enable the solution to
meet the above requirements. A number of two-dimensional solutions are given in
Chapter 6 which show how the model works, and shows integration of the method
with a model of torso electric potential and body surface mapping. A specific
application of the method is illustrated in an example of parameter estimation
using a nonlinear optimising technique to determine material parameters based
on an experimentally measured activation sequence. Three-dimensional solutions
are given in Chapter 7, including solutions on an anatomically accurate model of
ventricular geometry. Finally, the process of electromechanical coupling is explored
in Chapter 8, where both two-dimensional and three-dimensional examples are
given of the activation problem being coupled to a simple model of the mechanical
deformation.



Chapter 2

Structure and Function of the Heart

A realistic model of the electrical activation needs to be based on an accurate
description of the structure and function of the heart. Qualitative anatomical
information has been available since the first substantial dissection experiments in
the 16" century (although physicians in ancient Greece and other early civilisations
probably also examined the internal structure of the human body, but may not
have linked form to function), and this information has continued to become
more accurate as surgeons and scientists gain a greater understanding of the way
in which the heart works. Descriptions of the cell structure and function have
come much more recently as microscopic techniques have improved, and detailed
measurements of the processes occurring inside the cell and through the cell
membrane are only now becoming available as new techniques in molecular biology
are developed. A mathematical model also requires quantitative measurements
and these are more difficult to obtain, and the necessary detailed microstructural
studies have only recently begun to be performed. This chapter outlines a
qualitative background to cardiac structure and function, while a description of the

mathematical model used to simulate cardiac activation is outlined in Chapter 3.
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2.1 Cardiac Anatomy and Function

The description of cardiac physiology given here is only a basic outline, with greater
detail on a few points which are relevant to the problem of activation modelling. For
a more in-depth coverage of this subject, a textbook such as PHYSIOLOGY Section V:
The Cardiovascular System (Berne and Levy 1988) should be consulted, or for a more
specific look at only the heart, an excellent reference is PHYSIOLOGY OF THE HEART
(Katz 1992).

2.1.1 Macroscopic description

The heart is situated near the centre of the chest cavity between the right and left
lungs, and is supported inside a membranous structure, the pericardial sac. There
are four major chambers in the heart and various accessory tissues as shown in
Figure 2.1. The heart is divided into left and right halves by the interventricular
septal wall, such that that there are no internal connections between the opposing
chambers. The larger lower chambers are the ventricles (the left and right ventricles
are abbreviated as “LV” and “RV” respectively) and the smaller upper chambers
are the left and right atria (given abbreviations “LA” and “RA”). The bottom of the
ventricles is called the apex and the top of the ventricles is termed the base.

Blood returns to the heart from the rest of the body via the superior and inferior
vena cava and enters the right atrium. It flows from this chamber into the right
ventricle which pumps the blood to the lungs via the pulmonary artery where the
blood is oxygenated through the diffusion of oxygen across the alveolar membrane.
The blood then returns to the heart through the pulmonary vein and enters the left
atrium, passes into the left ventricle, and is subsequently pumped via the aorta to
the rest of the body. For this reason the left ventricle is considerably larger than
the right, and exhibits a greater change in pressure during the cardiac cycle. The
period during which the heart is being filled with blood is called diastole, and the
period of contraction during which blood is pumped from the heart into the lungs
and circulatory system is called systole. The flow of blood from the RA to the RV is
controlled by the tricuspid valve, and the mitral valve controls blood flow between
the LA and LV. The pulmonary valve is at the outflow tract of the RV into the
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FIGURE 2.1: Longitudinal cross-section of the heart. From Katz (1992, Fig 1.1, p. 3).
pulmonary artery, and the aortic valve at the connection of the aorta to the LV.

Papillary muscles in both the LV and RV tether the mitral and tricuspid valves to
the ventricular wall during systole. The LV papillary muscles are large protrusions
from the endocardial wall, and occupy a significant portion of the cavity, whereas the
RV muscles are relatively small, and attached only by their bases to the ventricular
wall. These muscles prevent the valves from inverting and entering the atria during
systole, but the opening of the valves is solely due to the pressure difference between
the chambers, and not to muscular contraction. The pulmonary and aortic valves are
not tethered because they are only preventing blood flow during the slower passive
filling phase.

2.1.2 Microscopic description

Cardiac muscle cells or myocytes are roughly cylindrical with a length in human
ventricular tissue of 80 to 100 um and a diameter of 10 to 20 um, and are bounded by
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FIGURE 2.2: Diagram showing the structure of a cardiac muscle cell. A capillary

runs between two adjacent cells. From Berne and Levy (1988, Fig 28-2, p. 432).

the cell membrane or sarcolemma. A diagrammatic representation of the cell is given
in Figure 2.2 and has been reconstructed from an electron micrograph. There are two
sets of filaments present in muscle cells: thin filaments composed of a globular protein
called actin, and thick filaments formed as an aggregate of a much larger protein called
myosin. The thick and thin filaments interdigitate to form a sarcomere between the
thin filament tethering points at Z lines, and this sarcomere is the basic contractile
unit. The myosin molecule is composed of a pair of heavy chains which hinge
outwards near the end of the chain and attached to the end of this “tail” are two
globular “heads” and two pairs of light chains. The tail and heads are hinged with
respect to the rest of the molecule which is buried within the filament. According
to the most common theory of contraction, these appendages, or crossbridges, cause
the thick and thin filaments to move relative to each other according to the proposed
four-stage crossbridge cycle. An important compound involved in this process is ATP
(adenosine triphosphate) which is usually bound to myosin in its resting state due
to the very high affinity between them. ATP inhibits the interaction of myosin with
actin. The first stage of contraction is the hydrolysis of ATP to form ADP (adenosine
diphosphate) and P; (inorganic phosphate), both of which remain associated with
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myosin. In this state, the myosin head interacts with the actin to form the active
complex actomyosin. The chemical energy expended by dissociation of ADP and P;
from the complex performs mechanical work: the motion of the crossbridge. This
allows ATP to bind again to the myosin and dissociates the crossbridge and the thin
filament, returning to the resting state. Each cycle causes the thick and thin filaments

to move by about 10 nm relative to each other.

A large number of sarcomeres are present in a single cell. Cells are joined to other
cells through intercalated disks both end-to-end and also by branching to connect
with neighbouring, nearly parallel cellular strands. Electrical connection between
adjacent cells is through gap junctions which are located in the intercalated disks.
Additionally, there are several important internal structures. Due to the almost
constant energy requirements of repeated cellular contraction in the cardiac cell there
are a large number of mitochondria which provide oxygen to the cell. A network of
sarcoplasmic reticulum (SR) provides a large region of uptake pumps which remove
Ca’*from the cellular matrix and stores it in the junctional SR (JSR) awaiting release
for enabling contraction. Deep invaginations of the sarcolemma into the fibre are
known as the transverse tubular system or T-tubules. This system is used primarily
to conduct the action potential down into the cell, and additionally to transport
components from the interstitial fluid surrounding the cell deep into the cell, and

is of particular importance in the excitation-contraction coupling (see Section 2.2.7).

An averaged myocyte direction can be defined at any point, which is known as the
local fibre orientation. Early papers by MacCallum (1900) and Mall (1911) investigating
the muscular architecture of the heart suggest that ventricular myocardium is an
assembly of discrete muscle layers arranged in nested shells, or discrete fibre bundles
(Le Grice 1992a). This view of the microstructure was generally accepted until Hort
(1957) and Streeter and Bassett (1966) performed the first quantitative measurements
of fibre orientation and found a smooth transmural variation in fibre angle, which
led to the predominant view being that myocardium is a uniformly continuous,
transversely isotropic medium. A uniformly continuous medium is one in which
there are no discontinuous changes in the local fibre orientation, and a transversely
isotropic medium is one in which the material structure is isotropic in all directions
orthogonal to the fibre. In other words, the fibre orientation is the only local measure

of microstructural composition, and can be regarded as a local axis of symmetry.
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Later studies by Streeter, Spotnitz, Patel, Ross and Sonnenblick (1969) and others
were more thorough and tended to confirm this view. Streeter (1979) did
acknowledge, however, that the muscular architecture is discontinuous at both a
macroscopic and microscopic level. There were some problems associated with the
methods used to produce these results, as measurements were made only at a limited
number of sites, and the measurement points could not be accurately located within

a standard ventricular geometry.

Measurements of fibre orientation at a large number of sites spread throughout the
ventricular myocardium were made by Nielsen (1987) and McLean and Prothero
(1987). Their approaches involved cutting the ventricles into thick serial slices
transverse to the base-apex axis. These techniques have problems, including
difficulty in spatial registration between slices due to distortion, and loss of detail
through averaging. McLean, Ross and Prothero (1989) measured fibre angles from
both transverse and longitudinal slices, though the fibre orientation could not be

measured from two orthogonal slices taken from the same heart.

Many of the problems associated with earlier studies have been overcome in the
work of Le Grice (19924), which, building on the techniques developed by Nielsen
(1987), is the most comprehensive and thorough quantitative study of cardiac
microstructure to date. In the research described, a measurement rig was developed
on which a fixed heart could be mounted. A pointer determined the physical
position of a point on the surface of the heart, and the projection of a shadow was
aligned with the local fibre direction. After obtaining data from a number of points
on the epicardium a small thickness of tissue (approximately 0.5 mm) was removed
from the entire ventricular surface using a dermatome, and the process was repeated.
The mounting ensured that the successive data sets preserved spatial registration.
This technique allowed measurement of fibre orientation throughout the ventricular
wall, and the absolute coordinates of each measurement point could be recorded
for alignment with the measured geometry. This technique was a time-consuming
process as it needed to be performed manually, however the results obtained provide
an accurate definition of both cardiac geometry and microstructure. Details of the
method and results are more fully described in a paper by Nielsen, Le Grice, Smaill
and Hunter (1991).

Measurements obtained by Le Grice and coworkers are broadly consistent with



2.1 CARDIAC ANATOMY AND FUNCTION 13

those reported by Streeter and others, but also reveal a new understanding of the
global nature of cardiac microstructure. Their studies suggest that the ventricular
myocardium is not a uniform continuum, but rather a composite of discrete layers
of fibres, which are called sheets (Le Grice 1992a; Smaill and Hunter 1991; Le Grice,
Hunter and Smaill 1994). Recorded fibre angles are the edges of these branching
sheets, and because fibres traverse the sheets at a small angle, these measured angles
are only projections of the true angle. However, Streeter (1979) reports that these
small angles, known as imbrication angles' have a magnitude of at most 3° to 5° at
the epicardium where the angles are greatest, and therefore this variation is often

ignored.

The sheets are on average four cells thick, with neighbouring layers of sheets
branching into one another, and the sheets are surrounded by a matrix of collagenous
connective tissue. The nature and arrangement of the branching and of the
connective structure varies according to position within the ventricular wall. Sheet
orientation is generally radial to the ventricular surfaces, though they appear to
become almost tangential to the epicardial surface. A simple structural model
describing these features of the myocardium has been developed by the Cardiac
Research Group at the University of Auckland?, and details of the model are
presented in several papers (Hunter, Nielsen, Smaill, Le Grice and Hunter 1993;
Hunter, Smaill, Nielsen and Le Grice 1996). Hunter, Smaill, Nielsen and Le Grice
(1996, p. 3) outline the model of ventricular myocardium, which
is represented as an interconnected hierarchy of muscle layers

whose three-dimensional orientation varies through the ventricular wall.

The extent of coupling between adjacent layers or sheets also varies

transmurally to accommodate the changes in sheet orientation. For a

section cut tangential to the epicardial ventricular surface, the cut edges

of the sheets define the fibre orientation. Alternately, the cleavage planes

revealed in transmural base-apex sections indicate the radial orientation

of the sheets.
Figure 2.3 shows a schematic view of the cardiac microstructure as predicted by this
model. No similar studies have yet been performed on atrial tissue, though this will

be required for a complete cardiac model at a later date.

IThe imbrication angle (not, as occasionally written, embrication angle) at the epicardium is the
angle at which the fibre intersects the epicardial surface (from the Latin imbricare which describes the

overlapping of roof tiles). A value of 0° indicates a fibre orientation parallel to the surface.
2Department of Engineering Science, University of Auckland, New Zealand
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FIGURE 2.3: Schematic of cardiac microstructure. (a) Ventricular wall. (b) A
transmural block showing fibre orientation and branching sheet structures. Note
the transmural variation of fibre angle. (c) The muscle fibres are bound by collagen
fibres into sheets 3 to 4 cells thick.

2.1.3 Connective tissue structure

There also exists a comprehensive organisation of extracellular connective tissue,
including a substantial hierarchy of collagen structures which constrain the
movement of the muscle fibres and sheets. This constraining network is more
important when modelling mechanical behaviour than it is when modelling
electrical activation. However, the constraints it places on the microstructure
will become significant as the electromechanical coupling is investigated. Various
studies have begun to quantify the nature of the connective tissues (Caulfield and
Borg 1979; MacKenna 1994).
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FIGURE 2.4: Schematic of the activation sequence. From Berne and Levy (1988,
Fig 27-23, p. 414)

2.2 Activation

Mechanical contraction of the heart is caused by the electrical activation of the
myocardial cells. The heart is electrically self-contained, having the ability to initiate
its own beat with a regular period, and will continue to beat after being removed
from the body. Cells capable of initiating electrical activity are called pacemaker cells,
and exist in several places throughout the heart.

2.2.1 Normal activation sequence

The normal sequence of activation is shown diagrammatically in Figure 2.4. Only
those pacemaker cells with the fastest rate of pacemaker discharge control the
electrical activity of the entire heart. The region of tissue with the shortest period
of spontaneous electrical activity is the sinoatrial (SA) node, which is located on the
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atrial wall near the junction of the superior vena cava and the right atrium, and
consists of a cluster of pacemaker cells. Action potentials are normally generated
in the SA node at the rate of 60 to 100 per minute. From the SA node, the action
potential is propagated from cell to cell through firstly the right atrium, followed
closely by the left atrium at a conduction velocity of approximately 1 m - s ! until
it reaches the atrioventricular (AV) node. The AV node consists of pacemaker-type
cells similar to those found in the SA node, but because they beat spontaneously
at a slower rate (approximately 40 to 55 beats per minute) they are governed by
the propagation from the SA node. In the event that the SA node is removed or
destroyed, or that conduction is slowed through the atria, the cells in the AV node

will take over as pacemaker for the heart.

Conduction through the AV node is at a much slower rate (around 0.05 m-s™!)
giving time for the atria to contract and pump blood into the ventricles before
the action potential conducts through the ventricles and causes them to contract.
The AV node is normally the only electrical connection between the atria and the
ventricles. From the AV node, the electrical propagation enters the bundle of His
which is the upper portion of the ventricular conduction system and runs down the
right side of the septum, and this common bundle divides after a short distance
into right and left bundle branches. The right branch continues down the right
septal wall, and the left perforates the septum and splits into two further main
branches on the left septal wall. All of these branches continue to subdivide into
a complex network of fibres called the Purkinje fibre network , spreading across the
endocardial surface of both ventricles and into the subendocardial region of the
ventricular myocardium. Due to this arrangement of connecting fibres the septum
is activated first and normally pushes in towards the left ventricular wall (Durrer,
van Dam, Freud, Janse, Meijler and Arzbaecher 1970). The papillary muscles are
also activated early so that they can prevent the AV valves from inverting during
systole. Due to the faster conduction of approximately 2 m - s* through the bundle
and Purkinje fibres, the entire endocardium is excited almost simultaneously. The
apical regions contract first and the basal regions are usually the last regions to be
excited. Excitation spreads outwards through the ventricular wall at a rate of about
0.3to 0.4 m-s !, and the first epicardial region to be excited is the thinnest portion

of the right ventricular wall. This activation process is summarised in Table 2.1.
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TIME FOR RATE OF
NORMAL CONDUCTION
IMPULSE TO PACEMAKER CELL
SEQUENCE OF VELOCITY
TRAVERSE DISCHARGE
ACTIVATION (m - sect) .
STRUCTURE (sec) (min)
SA node < 0.01 T 60-100
l ~0.15
Atrial
) 1.0-1.2 i None
myocardium
1
AV node 0.02-0.05 T Most rapid in
1 lower fibres:
Bundle of His 1.2-2.0 : 40-55
l ~0.08
Bundle branches T T
L 2.04.0 : 2540
Purkinje network 1 1 1
1
Ventricular
) 0.3-1.0 ~0.08 None
myocardium

TABLE 2.1: Normal activation sequence. (From Katz (1992, Table 20.1, p. 475))

2.2.2 Activation at a cellular level

From an electrical perspective, the cell membrane is a dielectric phospholipid bilayer
separating intracellular and extracellular conducting electrolytic solutions, thus
forming a capacitor (Guevera 1991). There is a potential difference across the
membrane, known as the transmembrane potential V,,, and changes in this quantity
are given by
dVin _ 2 Tion
dt Cm

where C,,is the cell membrane capacitance, and the I;,,, are the various ionic currents

(2.1)

flowing across the cell membrane.

Ionic currents are caused by the flow of different species of ions (especially sodium

(Na™), potassium (K) and calcium (Ca*")) through individual channels in the
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membrane. Channels differ in their selectivity of ion species, and in the way
they respond to changes in the transmembrane potential (Hille 1984). Molecular
biologists have developed techniques by which individual channels may be isolated
and studied, and from the results of these experiments mathematical models of the
ion channels are formulated. Such models exist for many types of cardiac cells
including the SA node (Noble and Noble 1984; Clark, Shumaker, Murphey and
Giles 1991), atrial tissue (Hilgemann and Noble 1987), Purkinje fibre (Noble 1962;
McAllister, Noble and Tsien 1975; Di Francesco and Noble 1985) and ventricular
muscle (Beeler and Reuter 1977; Luo and Rudy 1991; Luo and Rudy 19944), all of
which are based on the form of the original Hodgkin and Huxley (1952) model for
nerve. Chapter 4 discusses these and other ionic current models in more detail.

2.2.3 Cellular resting potential

The concentrations of the various ions sets up an electrochemical gradient across
the cell membrane according to the Nernst equation in Equation (2.2). According to
this equation, the equilibrium potential Ex of an ion X is given by the ratio of the
intracellular and extracellular concentrations ([X]; and [X], respectively) of that ion:

Ex = g -log ( [X]i) (2.2)

where R is the gas constant, F is Faraday’s constant, T is the temperature and z is the
valence of the ion. At the body temperature of 37@,° @!C the value of 8 = 61.5mV.
Approximate concentrations and the corresponding equilibrium potential generated
from each of the major ions is given in Table 2.2. In a resting state, the cell membrane
is highly permeable to potassium ions, but much less permeable to sodium, calcium
or chloride ions, and therefore the resting potential of the cell is determined largely
by the potassium gradient across the cell membrane. Typical cell resting potentials
are slightly lower, at between —80 mV and —90 mV, due largely to the electrogenicity

of the Na*/K *pump allowing a small permeability to sodium.
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Extracellular Intracellular Equilibrium
Concentrations Concentrations Potential
Ion z (mM) (mM) (mV)
Na* 1 145 10 70
K* 1 4 135 — 94
Ca*t 2 2 107 -10"* 132
Cl —1 100 15 — 51

TABLE 2.2: Intracellular and extracellular ion concentrations in cardiac muscle cells,
and their corresponding equilibrium potentials generated from the Nernst
equation. (From Berne and Levy (1988, p. 400) and Katz (1992, p. 440))

2.2.4 Ion channel behaviour

The movement of ions through the cell membrane is a passive process requiring no
energy to be expended, because the ions move down their natural electrochemical
gradients. There are portions of the membrane which allow ions to travel across
the membrane more easily than at other places, and these are called ion channels.
Ion channels are ion-selective, which means that only one or two particular ions can

travel through a given channel.

Until recently, it has been thought that ion channels have three functional states,
though recent research (Bean 1990; Mazzanti and DeFelice 1990) has indicated an
additional variation. There are two closed states of the membrane channel. In a
resting state, the channel will open in response to an appropriate stimulus, while in a
refractory or inactive state the channel will not open under any circumstances. It had
been thought that there was only a single open state, though single channel studies
have shown that two distinct modes exist: brief openings (called mode 1) and long-
lasting openings (mode 2). The channel may spontaneously change between either of
these two states. In general, a channel moves in a cycle from the resting state to the
open states to the refractory state and back to the resting state. Transitions between
states are controlled largely by changes in membrane potential, though chemical

factors and drugs cause additional modifications.

The first description of the nature of ion channels was developed by Hodgkin
and Huxley (1952) for the squid axon. They proposed a gating mechanism which
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controlled the opening and closing of gates within sodium and potassium channels.
The state of these gates determined whether or not a particular channel is open to

allow an ion to pass through.

According to the Hodgkin-Huxley (HH) model, the sodium channel can be
described by the existence of two gates. The first gate is activated (opened) by a
depolarisation of the cell membrane, and is therefore called an activation gate, which
Hodgkin and Huxley denoted with the symbol “m”. There seemed to be three m
gates located near the outside of the membrane which worked cooperatively. The
second gate, located at the intracellular surface of the membrane closes in response
to a depolarisation, and is called an inactivation gate, also termed an “h” gate. When
the sodium channel is in a closed resting state, the h gate is open but the m gate
is closed. In order for sodium ions to pass through the channel, both sets of gates
must be open, which means that the m gate must open much faster than the h gate
closes when the membrane is depolarised. The HH model is discussed in more
detail in Section 4.1.1 where the mathematical model is outlined and the various

time-dependent properties of the gates are described more fully.

2.2.5 Types of ionic current

There are three types of behaviour of an ion channel, determined by the way in
which the current responds to a change in voltage. When a voltage-clamped channel

with a steady-state current is clamped to a new voltage, the current will either:

e immediately attain a new steady-state value, termed a time-independent current
or a background current

e gradually approach a new steady-state value, termed a time-dependent activa-

tion current

e begin to activate, but then inactivate, which is called a time-dependent activation-
inactivation current

The mathematical forms for models of these three types of membrane channel are
outlined in Section 4.1.1.
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FIGURE 2.5: Action potential configurations in different regions of the mammalian
heart. (Adapted from Katz (1992, Fig 19.13, p. 463))

Also present are several pump and exchange mechanisms which transfer ions
across the membrane, but are not voltage-dependent. The sodium-potassium pump
extrudes sodium from the cell and replaces potassium inside the cell, which helps
to maintain the concentration gradients for these ions, and generates a net outward
current. The sodium-calcium pump removes calcium from the cell in exchange for
sodium generating a net inward current, and the calcium pump removes calcium
from the cell, which generates an outward current. These pumps work against the

natural electrochemical gradients, and therefore require the usage of energy.

2.2.6 Action potential shape

In each of the regions, the shape of the propagating action potential is slightly
different, as shown in Figure 2.5. In ventricular tissue and other non-pacemaker cells
the transmembrane potential is held by an ionic current balance at a steady resting
potential. In both the SA node and the AV node there is a steady depolarisation due

to a leakage of calcium ions over the membrane. As soon as the potential reaches a
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FIGURE 2.6: The five stages in a ventricular action potential (described in the text).
Adapted from Katz (1992, Fig 19.2, p. 439).

critical value called the threshold, then an action potential is triggered. Differences in
shape and duration of action potentials in the other tissues are due to the varying

influence of the ions.

The ventricular action potential (Figure 2.6) lasts over 300 ms and consists of five
phases. The resting potential (phase 4) has already been discussed, and in ventricular
cells the potential is fairly constant. This is the phase during which the heart is
passively filling with blood (diastole). The initial rapid upstroke (phase 0) is due
largely to the opening of the sodium channel, increasing the permeability of the
membrane to sodium and therefore altering the transmembrane potential. The

depolarisation of the membrane due to this inward sodium current is very fast.

A short period of early repolarisation (phase 1) occurs largely because of the closure
of sodium channels, though in addition several outward currents contribute. This
is followed by the plateau (phase 2) which is maintained by the secondary inward
current, a current carried by calcium ions entering the membrane through calcium
conductance channels. The plateau can last for well over 100 ms but is only present
in the Purkinje and ventricular cells. The duration of the action potential is partially
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determined by the length of the preceding diastolic interval, so that a more rapid
heart beat results in a shorter Action Potential Duration (APD) .

Repolarisation (or recovery) of the membrane potential (phase 3) can be further
subdivided into three parts. The absolute refractory period (ARP) is the early
repolarisation in which no stimulus can initiate a propagated response. The relative
refractory period (RRP) follows the ARP, and is an interval during which a stimulus
exceeding the normal threshold will produce a propagating wave. This is followed
by the supernormal period (SNP) during which stimuli slightly less than normal
threshold will initiate another action potential. These latter two activation waves
propagate more slowly than a standard action potential due to the recovering tissue
that the wavefront is propagating into, and therefore the full recovery time is the

interval until a stimulation would produce a normally propagating action potential.

2.2.7 Excitation-contraction coupling

As the wavefront passes over cardiac tissue, the action potential causes the
cell membrane to depolarise. Figure 2.7 shows the cellular processes involved
in excitation-contraction coupling. The action potential is constructed by the
superposition of the many ionic currents which change the relative electric potential
of the intracellular to the extracellular space. The first ionic current is called the fast
inward sodium current (Ino) which is responsible for the very fast initial depolarisation
of the membrane. This current has a short duration, but initiates a second, slower
inward current I; which transports calcium ions across the membrane. The calcium
acts both to further depolarise the cell, and more importantly to trigger the release
of a large amount of calcium from internal stores in the sarcoplasmic reticulum in
a process called calcium-induced calcium release. The incoming calcium travels into
the JSR through the dihydropyridine (DHP) receptor, which then triggers release of
calcium from the JSR through the calcium release channel at the ryanodine receptor.
The calcium that is released into the cytoplasm binds to troponin C molecules within
the contractile proteins. The number of bound calcium sites affects the number
of actin-myosin interactions, which determines the degree of contraction of the
tissue. In a model of cardiac activation it is often possible to represent, as a first

approximation, the level of activation by the concentration of intracellular calcium.
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FIGURE 2.8: A propagating impulse from left to right in a strand of cardiac muscle.
Arrows indicate directions of positive current flow from the electron flux, which are
currents between the depolarised tissue (shaded) and resting tissue. (From Katz
(1992, Fig 21.1, p. 518).)

There are also several ways in which the deformation of the muscle cell affects the
activation process. The most obvious is the change in path length as the lengths of
cells change. Additionally there appear to be stretch dependent ion channels which
alter the number or ratio of ions that they pass through the membrane depending
on the degree of stretching of the muscle.

2.2.8 Cellular conduction

Four physiological variables primarily determine conduction velocity:

action potential amplitude

the rate of rise of the action potential

threshold

internal and external electrical resistances

The currents which propagate an impulse along a cardiac fibre are caused by
electron flow (electrotonic), and are generated by the ionic currents of the action
potentials. The flow of electrons causing this current requires that current flows
in two directions as shown in Figure 2.8. Electrons flow towards the resting tissue
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on the outside of the cells, and the electrotonic current returns through the inside
of the cell membrane. These electrotonic currents cause resting excitable cells to
depolarise, and initiate an action potential. The spread of excitation is caused by

this propagation of a wave of depolarisation.

Action potential amplitude and rate of depolarisation

The spread of electrotonic currents is much faster than the propagation of a wave
of depolarisation. This explains the dependence of conduction velocity on the
action potential amplitude and the rate of depolarisation. Amplitude determines
the size of the depolarising current, determining how far the electrotonic currents
are propagated ahead of the wavefront. An increased rate of depolarisation causes
a more rapid spread of current into the resting tissue. Therefore large, rapidly
depolarising action potentials propagate more quickly than small slower action
potentials because they induce large electrotonic currents which depolarise cells a
greater distance ahead of the wavefront. This explains part of the reason for slow
conduction in the SA node and the AV node, as their action potentials are of small

amplitude, and have a slow depolarisation (see Section 2.2.6).

In addition the rate of activation is governed by the electrical state of the tissue so
that if an action potential is generated while the cell is still in a relative refractory
state, the rate of propagation of the activation wave will be slowed. This is because
cells further ahead of the wavefront are still in the absolute refractory state and
cannot begin to be reactivated. This is part of the process which can initiate reentrant

waves.

Threshold

The threshold is the amount of current required in order to initiate a propagated action
potential, and therefore reducing the threshold will increase the rate of conduction
by generating action potentials further ahead of the wavefront. The threshold is
related to the number of ion channels that need to be opened for a depolarisation

wave to be self-sustaining, independent of the initial stimulus.
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Resistance

Connections between the intracellular spaces of neighbouring cells is through the
intercalated discs which separate the cells. The connecting tissue is called the nexus
or gap junction, and these have lower resistances than the plasma membrane,
allowing rapid longitudinal propagation of current between cells. The number of
gap junctions which exist changes the conduction velocity, and when these channels

are closed, adjacent heart cells can become uncoupled.

2.3 Applications For This Research

A model of cardiac activation is useful simply in determining the natural process
of ventricular activation. There are also abnormal conditions, called arrhythmia, in
which the activation process is changed in some way, and it is useful to have a model
which will enable the study of these situations also in order that cardiologists can
gain a better understanding of the various factors involved. A model is also useful
in explaining results gathered either in experimental work or as part of surgical

procedures.

2.3.1 Arrhythmic activation patterns

There are a number of conditions in which the sequence of activation is altered, in
most cases due to a physical defect. The first has been mentioned already. When
there is a failure in the SA node, or in the conduction from the SA node to the AV
node, then the AV node will assume the pacemaker responsibility for providing an
activation wave to the ventricles. In this case the pattern of activation is markedly
changed in the atria, but only slightly changed in the ventricles, and some form
of contraction at a lower rate and lower pressure may still occur. Many other
abnormalities have a more serious result, though the heart has in place a number

of “backup” facilities which can deal with some of the problems.
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Bundle block

Conduction may be impaired in any of the bundle branches (two in the left ventricle
and one in the right) to cause bundle branch block. This results in a variety of activation
sequences and characteristic electrocardiographic patterns. If either of the main
branches are blocked then that ventricle receives the activation from the propagation
of the wave through from the other ventricle, and contraction in that ventricle is
slowed. A block in either of the left sub-branches results in slowed left ventricular
conduction. Because of the dense network of Purkinje fibres intertwining over the

endocardial surface a block in any of these usually has only a very local effect.

Accessory Pathways - WPW

The activation sequence may bypass its normal route through the spurious
placement of additional tissue. One example is the Wolff-Parkinson-White (WPW)
syndrome in which a small bridge of tissue connects the atria and the ventricles over
the top of the insulating atrioventricular ring. This causes a premature excitation
of the ventricles from the basal epicardial surface, and a corresponding change in
the contraction process leading to depressed ventricular pressure. This condition is
easily diagnosed, though the exact position of the accessory tissue may be difficult
to detect. Various cardiac mapping techniques may help to pinpoint its location.

Wenckebach phenomenon

This is a rate-dependent block in which some activation waves may not be
completely propagated through their full sequence. Often the AV node causes the
block which is usually expressed as a conduction rate N : M, where N is the number
of atrial stimuli and M is the number of ventricular responses. Commonly N and
M are small integers, and common ratios are 2:1, 3:2 and 4:3. The block is due
to decreased conductivity in a refractory zone of a previous wave, or alternatively
slow recovery of excitability.
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Altered heart rate

There are two general types of arrhythmia describing an altering of the heart
rate: tachycardias which represent an increase in the rate and bradycardias in which
the heart rate is too slow, and each may occur in any of the tissues in the
heart. Bradycardias are caused by areas of decremental conduction and regions
of unidirectional block, where conduction may proceed in one direction but not
another. These features are easily incorporated into a model of cellular conduction.
Tachycardia is a regular sequence of premature systoles, more rapid depolarisation
is called flutter, and the extreme case where the electrical wave is completely
disorganised and there is no effective pumping is called fibrillation. There are
many mechanisms which cause tachycardia including abnormal pacemaker activity,
abnormal conduction, inhomogeneous action potential characteristics and several
others. The same mechanisms can cause either a slowed or an increased cardiac rate
and therefore determining the result of a known defect can be difficult without a
model. The transition from tachycardia to fibrillation is not yet well understood, and

a model could be used to great advantage in determining the processes involved.

2.3.2 Ischemia

Due to the large consistent consumption of energy the heart requires an uninter-
rupted supply of oxygen. An ischemic heart lacks sufficient oxygen to contract nor-
mally and there are two results: loss of contractile function causing arrhythmia, and
subsequently death of the cells which is known as myocardial infarction. An in-
farct can have substantial effect on the contractile process because it inhibits both
the mechanical and electrical function in that region. By changing the parameters on
a model of the ionic currents, some of these effects can be modelled, but a complete
mathematical description would require coupling of the electrical model to both the

mechanical processes and a model of the coronary vasculature.
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2.3.3 Reentrant waves

A byproduct of some of the above physical defects is the possible creation of a
reentrant wave. A unidirectional block, especially in conjunction with an infarcted
region could allow an activation wave to reenter a previously excited region of
myocardium and this reentry may continue giving rise to a tachycardic state.
Alternatively the existence of an ectopic focus (which is a region which spontaneously
activates) could cause a spiral wave if the event occurred in the relative refractory
period of the action potential.

2.3.4 Mechanically-induced changes in electrophysiology

Recent experiments have shown that not only does the process of electrical activation
cause cellular contraction, but also that changes in both stress and strain within
the muscle leads directly to changes in electrical function and cause arrhythmia
(Lab 1982; Lab and Holden 1991; Taggart, Sutton and Lab 1992). There is evidence
that changes may occur in action potential duration, cellular excitability and in
the form of the electrocardiogram. A coupled model of electrical and mechanical
function is required to investigate the interaction between these processes.

2.4 A Cardiac Mapping System

Determining the large scale process of activation is most easily accomplished with
a cardiac mapping system. There are several components in a mapping system.
Electrodes are used to measure electrical signals from small regions of the cardiac
tissue. The electrodes may be constructed in different ways depending on the
measurements required. In order to record epicardial signals over the ventricular
surface, a “sock” is constructed, made of some slightly elastic material, and the
electrodes are attached (usually by sewing into the sock) at a number of points.
This sock then slips over the heart, covering the ventricular epicardium. A denser
array of electrodes can also be constructed which provides more detail on a small
epicardial region, and a number of electrodes may also be spaced along the length
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of a “pin”, which allows for three-dimensional recording of the signals. Endocardial
recordings may be made using a balloon which has been inserted through a catheter
and inflated inside the ventricle. The electrodes may be either unipolar or bipolar,

depending on the recording requirements.

Due to the large number of electrodes potentially required (which will in general
be many more than for a standard 12-lead ECG) specialised computer hardware
and software needs to be developed to acquire the electrical information. We have
provided the software for a mapping system called EMAP which is developed in
conjunction with the Biorobotics Group at M.LT. . A further description of the
software can be found in Bullivant (1994) and a description of the next generation of
hardware is available in Bullivant (1996).

This system is currently in use at several hospitals and research centres around
the world, including our own research group. The two centres with whom our
research group has the closest contact are Green Lane Hospital* where the primary
focus is as a diagnostic tool in a surgical environment, and Cedars Sinai Medical
Research Institute® where the system is mainly used in experimental research. In
each situation the apparatus is used to provide quantitative measurements in an
easily understood fashion. One aim of the activation modelling is to supplement the
experimental data with an analysis which may lead to a greater understanding of
the situation.

$*http://biorobotics.mit.edu/
4Auckland, New Zealand
°Los Angeles, California, U.S.A.






Chapter 3

Cardiac Activation Modelling

There are a number of different approaches to the problem of simulating cardiac
electrical activity. These models vary according to the knowledge of the processes
involved and the sophistication of measurement and analysis techniques available
at the time of construction. The oldest models, which are still in use in a clinical
setting as the basis of standard electrocardiogram (ECG) analysis, represent the
entire cardiac electrical state as a single time-varying vector or dipole in an infinite
homogeneous medium. A description of the cardiac state is constructed by
interpreting voltage-time diagrams which show the difference in potential between
various extremities as a function of time. Though the model is simple and the results
are crude, ECG analysis still produces many results which are useful to the practising
physician. While a dipole model can give a basic global picture of cardiac condition,
it is difficult to accurately model localised phenomena.

Later models discretise the heart into a large number of cells of some small finite
volume, each of which has locally defined properties and a number of variables
which describe the state of the tissue within that volume. The first of these
approaches were again rather simple, due to a lack of adequate knowledge of
the workings of the cardiac cell, and to computers being small and slow. As
experimental techniques have improved, further research has given researchers
a greater understanding of cellular electrical activity. Additionally, the level of
computing power available has increased which makes more detailed models

computationally tractable. This enables a more accurate and detailed model of the
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electrical processes, but one which is continuing to increase in complexity as the

combination of knowledge and computing power continues to increase.

Even though the understanding of the workings of the cell is small, though
continually growing, there is always more that is known than can be fully modelled.
Even with a level of computational power likely to be available in the next five
years, there will still be insufficient computing resources to construct a model of
the most advanced current knowledge of cardiac cellular processes for every cell
in the heart for a single heartbeat, let alone include the additional mechanical and
biochemical models, or modelling the processes at a molecular level. There must
always be a stage at which a particular level of detail is deemed sufficiently accurate
to give the solutions required, so that the assumptions made in constructing the
model are acceptably small. This chapter discusses the development of various
methods of modelling cardiac activation, culminating in a model which flexibly
includes any given model of the ionic processes. The subsequent chapter outlines the
important models of ionic movement and membrane currents, from those which are
based on biophysical measurements and attempt to accurately describe every detail
contributing to the action potential, to those which simplify all of these processes into
approximate equations which produce results of a similar form to the biophysical

models, but which have no underlying biophysical basis.

Some of the information contained in this chapter is adapted from review papers
by Plonsey and Barr (1987) and Gulrajani (1988) which provide a more detailed and

complete review of the various methods of modelling activation.

3.1 Non-Propagating (Dipole) Models

The simplest activation models belong to a class known as dipole models which
describe the integrated effect of cardiac electrical activity rather than explicitly
modelling the propagation of an action potential. Gulrajani (1988, p. 1) gives a brief
background describing this class of models. The concept of a dipole model was
formulated by Wilson, MacLoed and Barker (1933) who suggested that the electrical
state of the heart could be described by defining a positive pole immediately
in front of the excitation wavefront and a negative pole immediately behind the
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wavefront, these two poles together forming a dipole. Savard, Roberge, Perry and
Nadeau (1980) outline a method using a single moving dipole model which attempts
to determine the location, orientation and magnitude of a single dipole so as to

reconstruct measured body surface potentials with a least-squares estimator.

The dipole approach was later extended to include more than one dipole. An early
model involving multiple dipoles was described by Selvester, Collier and Pearson
(1965), who constructed an analogue computer simulation. This was later updated
into a digital form and described in two subsequent papers (Selvester, Kalaba,
Collier, Bellman and Kagiwada 1967; Selvester, Solomon and Gillespie 1968). In
their model, the heart was divided into 20 regions with a dipole at the centre of
each region. Dipole orientations were defined to be perpendicular to the average
wavefront direction within the region, where the wavefronts were constructed from
activation isochrones calculated from measurements made in dog heart by Scher and
Young (1956). From the definition of the dipoles, vectorcardiograms (VCGs) on the

torso surface could be calculated and compared with experimental measurements.

A pair of studies for normal (Miller and Geselowitz 1978a) and abnormal (Miller
and Geselowitz 1978b) myocardium used the bidomain model (see Section 3.3) to
compute dipoles. They constructed an anatomical model of the ventricles from
approximately 4000 points, and divided it into 23 regions, each containing a single
dipole. Data obtained by Durrer et al. (1970) of activation isochrones within the
isolated human heart were used for computing the dipole orientations. Body-
surface potential maps and ECGs were calculated and compared with experimental
observations.

In each case the body-surface potential maps, ECGs or VCGs obtained by the dipole
method are in good agreement with those obtained by experimental measurement.
However, the dipole method cannot be used to determine information about the
processes of activation and propagation themselves, as that would require at least
the measurement of activation wavefronts on the epicardium. It is therefore
necessary to develop models which also model action potential propagation, and
determine the position of wavefronts from this. In many cases dipoles are
subsequently calculated from the computed wavefronts and the same analysis and
comparisons as given here are performed. Two main classes of propagation-based

models exist. The simplest are empirical models which use a black-box or rule-based
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representation of the action potential and its propagation. More sophisticated and
realistic models attempt to model the membrane currents (see Section 2.2.4) and
compute the cellular activation process from this.

3.2 Empirical Models

The next major class of activation models are ad hoc or empirical models (Gulrajani
1988). These (and all following) models describe localised electrical activity rather
than only an integrated sum over the entire heart. This is achieved by discretising
the cardiac geometry into a number of small cells. These cells are not related in
any way to the physical cells which make up cardiac muscle, but are simply small
three-dimensional “building blocks” occupying a finite volume which are connected
together so that their combined volume fills the space of the original geometry. Each
cell has a number of properties associated with it which describe the state of the cell,
for example the conductivity at that point, the fibre direction, the transmembrane
potential, and other static or dynamic properties. There is some scheme specified
for each model describing how a cell is electrically connected to its neighbours and
additionally some set of rules which defines the propagation of the wavefront. The
combination of all this information provides a means for modelling the activation
process at each point, and the global sum of the state of each cell defines the state of

the heart at a given time.

Empirical models do not attempt to model the membrane currents which define
the action potential, but instead construct a stylised action potential and enable
propagation according to a predefined pattern. There are two such methods in
common usage. Models based on the cellular automata method use a set of rules to
specify how cells are activated from neighbouring active cells. The second empirical
method is based upon a Huygen’s wavelet approach which determines propagation
according to spherical or ellipsoidal wavelets. Each of these models can incorporate
an anisotropic conduction velocity, but the membrane kinetics are not taken into
account.
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3.2.1 Cellular automata models

The cellular automata approach assumes that we can divide the geometry of the
cardiac tissue into a regular matrix of cells, each representing some small volume
of tissue. Activation is described by a stylised action potential, and a rule-based
method is used to define the activation process. A system is defined for the set of

cells which comprises

1. a set of two or more different states, where a given state describes the electrical

state of a given cell at any point in time, and

2. a set of rules, which define when the cell will move from one state to another.

In addition to these definitions, the cellular automata model requires a geometrical
description of the domain in which the model needs to be solved, and also a
definition of the cell neighbourhood. The cell neighbourhood defines the set of
neighbouring cells over which the state of a central cell will have an influence. In a
square 2D grid, each cell may influence either four or eight neighbours (in general),
while in a hexagonal 2D grid, six neighbours is most likely. A 3D model will often
have cuboid cells, and therefore each cell has 26 nearest neighbours, although a
more closely packed hexagonal arrangement is also possible. Some possible 2D

neighbours are shown in Figure 3.1.

The earliest cellular automata model (and in fact the earliest computer model of
activation) was a two-dimensional model of a sheet of atrial tissue constructed by
Moe, Reinbolt and Abildskov (1964). An active cell would excite its six neighbours
after some time delay, and then follow a stylised action potential whereby it would
be in an absolute refractory state for one time step and in a relative refractory state
for some number of further time steps. Using this model with a spatially varying
refractory period generated waves resembling atrial fibrillation. Reinboldt, Ledly,
Abildskov and Oestreich (1963) construct a similar model for the ventricles, but in
three dimensions with cubic blocks.
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1 2 3 1
4 5 2 3
6 7 8 4

FIGURE 3.1: The nearest neighbours of an active (shaded) cell according to three
possible rules in two dimensions. (a) 8 neighbours. (b) 4 neighbours. (c) 6
neighbours on a hexagonal grid.

A three-state model incorporating re-entry

Bailie, Mitchell and Anderson (1990) describe a three-state cellular automata model,
with a quiescent (Q) state, an excited (E) state and a refractory (R) state. These
three states correspond to the basic three states of a membrane channel described
in Section 2.2.4: resting, open and refractory states respectively. From that point
of view, this three state model is the simplest physiologically reasonable cellular
automata model. A two-state model does not provide sufficient information to
allow a wavefront to propagate and then die away. For this problem the cell
neighbourhood is defined in two dimensions as the eight nearest cells (as shown
in Figure 3.1a).



3.2 EMPIRICAL MODELS 39

State(y Count) Neighbour ) State(i41) Countyy1)
Q (any) 0 Q 0
Q (any) > 1 E 1
E < o (any) E County)+1
E Eo (any) R 1
R <Ry (any) R Count)+1
R Ro (any) Q 1

TABLE 3.1: Three-state cellular automata model. Inputs are the cell state, count
value and number of excited neighbouring cells at time (t). Output is new state and

count value for subsequent time-step. From Bailie et al. (1990).

The rules which determine the change of state (called a state transition function) for
this system are outlined in Table 3.1. Cells at rest in the Q state are activated by
neighbouring cells (in this case, at the time-step immediately after a neighbouring
cell enters the E state) entering the E state, and at the next time-step the cell activates
any neighbouring cells which are in the Q state. After some length of time E, the cell
enters the R state for a time Ry, in which it will no longer activate neighbouring Q
cells, nor can it be reactivated by neighbouring E cells. This state transition function
results in a stylised action potential as shown in Figure 3.2.

This is the simplest system which will permit the generation of re-entrant
phenomena, however the results printed in Bailie et al.’s (1990) paper show some
of the limitations of the cellular automata approach. The model they use does
not incorporate any microstructural information such as fibre orientation which
would require anisotropic conductivity, as the propagation time from one cell to
a neighbouring one is a single time-step (which they set to some realistic value).
Cells are square and arranged on a rectangular grid, which influences the shape of
the wavefront.

A four-state model including curvature and dispersion

Some cellular automata models attempt to include more sophisticated features of
wave propagation in excitable media. A model constructed by Gerhardt, Schuster
and Tyson (1990) includes two features not present in the earlier models: curvature
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FIGURE 3.2: Stylised action potential produced by the state transition function
given in Table 3.1. The diagram shows the passage of the cell through the three

states and the time spent in the excited and recovering states.

of the wavefront influencing propagation, and dispersion of refractoriness. This is
performed by incorporating delayed excitation and a relative refractory period into
the model and giving an effective four states. A summary state table is shown in
Table 3.2, and the paper contains a full description. Rather than using the state
names Q, E and R as in the previous example, this model describes the cell state in
terms of two state variables, u and v. u can take values of either 0 or 1 corresponding
to resting and excited states respectively. The variable v is almost equivalent to the
“Count” variable used above. It is bounded by the values 0 to v;,qx and provides a

measure of the refractoriness of the system.

The cell begins in a resting state (u = 0, v = 0) and remains there (Rule 1). Once
the number of excited neighbours exci;) exceeds a threshold key.i the cell becomes
active by Rule 2 and enters an excited state (u = 1, v > 0). g, is a positive integer
which is a measure of the length of the “plateau”. The cell remains in an excited
state by Rule 4 until either v = v;;4x (Rule 6) or the number of neighbouring cells
in a resting or recovering state reco() exceeds the recovery threshold k¢, (Rule 5).
The cell now enters a recovery state (u = 0, v > 0) and v begins to fall by Rules 3 and
1 at a rate ggouwn Which is a positive integer representing the speed of the recovery

process. While the cell is in an absolute refractory state (W = 0, v > Veyi) the cell
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Rule Uy Vi) excify TeCco(y) U(e41) Viet1)

1 0 < Vexci < Kexci (any) 0 Viy) —

Jdown

2 0 < Vexci > Kexci (any) 1 vy +
Gup

3 0 > Vexci (any) (any) 0 Vie) —

Jdown

4 1 < Vinax (any) < Kreco 1 Vi) +
Gup

5 1 > Vreco (any) > Kreco 0 Vi) —

Jdown

6 1 Vinax (any) (any) 0 Vi) —

Jdown

TABLE 3.2: Two variable cellular automata model. Inputs are state variables u and
v, exci(y) which is the number of excited neighbouring cells at time (t) and recoy),
the number of neighbouring resting or recovering cells (reco () = n — exci() where
n is the number of neighbours). Output is the value of the state variables for the
subsequent time step. Note that v is bounded by 0 and v qx at each time step. From
Gerhardt et al. (1990).

will not excite neighbouring cells, nor will it be reexcited. Once it enters the relative
refractory state (W = 0, Vv < Veyci) it may become reexcited. The threshold variable
Kexci adjusts so that if v is large then more excited neighbours are required to excite

the cell. A diagram illustrating the change in the two variables is shown in Figure 3.3.

With judicious definition of the parameters kexcireco and gup down @ good model
of activation can be constructed. The model exhibits some of the physiological
properties of a normal activation wave, such as curvature and dispersion of
refractoriness inducing by a relative refractory period. The problem is that the
complexity of the rules has greatly increased and there is still no information about
what may actually be occurring within the tissue. This is the shortfall of using an
empirical approach, rather than an approach which attempts to model the cellular
processes.



42 CARDIAC ACTIVATION MODELLING

1
u
0
time
vmax ~
| |
| l
| |
0 ‘ \ ! \
I I ! I .
\ ! | \ o
Resting | Excited : Absolute | Relative | time

Refractory ~ Refractory

FIGURE 3.3: Two variable cellular automata model. The change in value of the
variables gives rise to four effective cell states. From Gerhardt et al. (1990).

Other cellular automata models

Restivo, Craelius, Gough and El-Sharif (1990) describe a five-state model which has
two explicit refractory states, and a slightly more sophisticated algorithm again for
determining movement through the states, but there is still no membrane kinetics
involved, nor any inclusion of microstructural information.

Leon and Horacek (1991) have constructed a much more sophisticated cellular
automata model which uses the bidomain model and an anisotropic conductivity to
more accurately specify the propagation. Each cell has four macro-states: the resting
state, the excitatory state, the absolute refractory and relative refractory states. Each
of these four macro-states has its own set of micro-states and its own state transition
function. This model still suffers from having a limited number of discrete states

to approximate the local action potential rather than a continuous approach. In
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addition the model is still based on rules, and this makes it difficult to easily model

abnormal activation patterns.

3.2.2 Huygen’s wavefront method

The other main empirical technique is an approach derived from Huygen'’s principle
of the propagation of light. This model only describes the activation process, and is
often used where only this quantity is of interest. In some cases it has been coupled
with a rule-based scheme describing the recovery process. Huygen’s wavefront
models are very similar in form to cellular automata models, and share many of

the same advantages and disadvantages.

This model is solved either on an array of blocks or on a grid of solution points where
each block or point represents a finite area or volume of excitable tissue. From all
active points a spherical (or ellipsoidal) wavefront is constructed which represents
the distance that an action potential would propagate in a time step At. If a solution
point falls inside this augmented wavefront then it too is activated. The process
repeats as shown for a two-dimensional example in Figure 3.4 until the activation
wave spreads over the whole tissue. The construction of the ellipsoids can account
for anisotropic or orthotropic conduction speeds by aligning the main axis of the
ellipse with the fibre direction, and the conduction ratios can be spatially varying,
together with a varying fibre orientation through the tissue.

A simple model employing Huygen’s method is that of Okajima, Fujino, Kobayashi
and Yamada (1968) who construct a ventricular model comprising 27,000 3 mm side-
length cubic blocks. Isotropic conduction only was considered, and a wavefront
approach specified the activation time of a block depending on its distance from all
neighbouring active blocks. This model only generated isochrones based upon times
of activation, and did not incorporate the recovery process. Solomon and Selvester
(1973) extended their earlier work with a dipole model to include a Huygen’s model
of propagation and constructed a 750,000 node ventricular model with 1 mm spacing
between nodes.

One of the most sophisticated isotropic Huygen’s wavefront models was developed
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FIGURE 3.4: A simple two-dimensional simulation using Huygen’s wavefront

method. The entire domain is activated after 6 time steps. The ellipses representing

the wavefront are aligned with the fibre direction and the axes are scaled to

represent the ratio of conduction velocities.
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at Dalhousie University' in the early 1970s, and uses a realistic model of the atrial
and ventricular geometry (Gulrajani 1988). Rhombic dodecahedra were used as the
volume-filling blocks because all twelve nearest neighbours are equidistant when
packed in a honeycomb-like structure, and therefore an isotropic activation model is
easy to implement. The model was constructed from 24,413 atrial blocks, 156,349
ventricular blocks and 19,283 blocks describing the Purkinje fibre network. The
Purkinje blocks conduct at three times the rate of the other blocks. Once activated,
each block follows a stylised action potential with variable length absolute and
relative refractory periods. From the activation analysis, dipoles are constructed
and are used to compare against ECGs generated using an inhomogeneous torso
model.

An anisotropic Huygen’s wavefront model was developed by the same group and
used to investigate the WPW syndrome (Lorange and Gulrajani 1986). This model
was based on the original Miller and Geselowitz (1978a) model with twice as many
solution points in each direction. Ellipsoidal activation wavefronts were constructed
so that activation spread quickly parallel to the epicardium and more slowly through
the wall, with a velocity ratio of 1.94 computed from canine myocardial experiments
by Roberts and Scher (1982). Because the ellipsoids were not oriented with the local
fibre orientations the results differed somewhat from experimental measurements.
Later models by Adam (1985), Saxberg, Grumbach and Cohen (1985) and Wach,
Killmann, Dienstl and Eichtinger (1989) incorporate ellipsoids calculated along
experimentally determined fibre orientations, with up to 1 mm resolution between
solution points. Various action potential waveforms were used to describe activation
at each site, and reconstruction of ECG and body torso signals tended to agree well
with experimental data. However, this tends to occur because model parameters are
adjusted so that the correlation is good, and often the parameters do not closely
approximate experimental values. This restricts their usefulness in simulating

abnormal conditions.

Another anisotropic Huygen’s wavefront model was constructed by Hookings
(1988) and uses the accurate model of cardiac microstructure developed by Nielsen
et al. (1991). Only the activation process was simulated with this model, and
transversely isotropic wavespeeds were assigned in directions which are aligned
with the local fibre orientation. In order to obtain results which are well correlated

1Halifax, Nova Scotia, Canada
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with experimental measurements the wavespeed parameters were required to be
somewhat higher than those recorded experimentally (Roberts and Scher 1982)
showing need for further refinement of the model. This model was extended to
incorporate the orthotropic structure evident in later histological studies by Le Grice
(1992a). There is no experimental wavespeed data available which is based on the
laminar structure, and therefore the relative wavespeeds needed to be estimated
from a combination of known values and observations of the myocardial structure.
This results in the propagation rate in the third direction being determined by
branching ratios of the sheet structures, and it varies transmurally. The wavespeeds

1 1 in the sheet direction and

used were 0.67 ms " in the fibre direction, 0.5 ms~
between 0.34 ms ! and 0.25 ms ! through the wall. A scale factor of 3.0 was used to
enhance the velocities in the Purkinje fibre network, which has been defined so as
to penetrate the endocardial wall by up to several mm in order to be consistent with

canine myocardial observations.

As with the cellular automata models, Huygen’s wavefront models have the
restriction that they are based on a set of rules which do not accurately represent the
underlying electrophysiological behaviour of the cell membrane. Empirical models
are useful for modelling relatively simple predefined situations, especially involving
only activation. However, new rules must be developed and verified for every new
problem, restricting their usefulness.

3.3 The Bidomain Model

The complete model of cardiac activation would be one in which an accurate model
is formulated for each type of muscle cell. The model would completely describe the
structure of the cell and detail every aspect of its electrophysiological function down
to a molecular level, as well as the mechanical and energetic processes involved
if this information was required. This cellular model would then be inserted into
a anatomically accurate description of the global cardiac geometry, and solved on
a cell-by-cell basis over the cardiac volume. There are many reasons why such
a model has not yet been constructed. Firstly, it is difficult to obtain an accurate
model of cell function. Many of the membrane processes are still being quantified,
if they are known at all. Some recent improvements in this area are outlined in
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Chapter 4. Secondly, an anatomically accurate definition of the cardiac geometry
is still incomplete. Difficulties exist in measuring the position of the ventricular
endocardium, and many models only describe the ventricular myocardium but not
the atrial tissue or accessory structures. Coupled with this is a lack of a complete
description of the cellular structure. The Auckland model (see Section 2.1.2) is the
most detailed and accurate ventricular microstructural model to date, yet it has little
information yet on the Purkinje network, and none at all on the atrial tissues. The
process of propagation is again only partially understood, and a model describing
even the conductivities in the orthogonal microstructural directions is yet to be
formulated. Similar models of the energetic function and the passive and active
mechanics are still under construction, and the concept of being able to couple the
various components together in a total model is only beginning to be looked at.
Even given the availability of this vast amount of information, there would still
be one requirement lacking. Existing computational resources are barely adequate
to solve a small region of tissue. Spach and Heidlage (1993) have developed a
model solving activation equations for individual cells for a two-dimensional sheet
model containing between 25,000 and 85,000 cells. Even though there is only a
small number of cells in a 2D preparation, and the ionic model used is not the
most complex presently available, the model requires the use of a high-performance
supercomputer in order to solve the problem. While computational speeds are
doubling approximately every eighteen months, a complete model involving all
cardiac processes is still a long way from being computationally tractable.

Given that the current state of knowledge and the current computational capabilities
preclude the use of a model completely representing the current state of knowledge
of cardiac activation, we need to determine what level of detail is feasible yet
sufficiently realistic so as to allow the investigation of various abnormal phenomena.
The empirical models are no longer appropriate as they ignore the cellular processes.
One commonly used method is to use a macroscopic model which uses a volume-
averaged approach, known as the bidomain model. This model averages the electrical
properties over some length scale which is greater than that of a single cell. In
doing this with an appropriate choice of length scale, the effect of cell junctions
on propagation can be ignored, and the discrete cellular structure may be replaced
with a uniformly continuous structure. There are problems with this approach. If
discrete cellular effects play a significant role in the propagation of activation, then
either this will need to be incorporated or a new model will need to be constructed.
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Alternatively, if a macroscopic model can provide results which are a reasonable
approximation to the explicit microscopic model then the averaged model may be
justified.

3.3.1 Definition of the bidomain framework

The physical arrangement of cardiac cells has led to the belief that the heart has
electrical properties that are the same as a syncytium. Experimental work by
Weidmann (1970) and Clerc (1976) on mammalian cardiac tissue confirmed that
propagation either along the fibre axis or transverse to it produced results like a one-
dimensional cable. Cable theory defines propagation along a membrane between
two distinct spaces, or domains, and describes the one-dimensional version of the
bidomain model. This theory can easily be extended to two and three dimensions

for domains of higher order geometry.

The concepts behind the bidomain model were first proposed by Schmitt (1969)
who suggested that two interpenetrating domains could be used to describe cardiac
tissue, one representing volume-averaged quantities in the intracellular space and
one for those of the extracellular space. A mathematical formulation of this proposal
was constructed in several theses and papers by Tung (1978), Plonsey and Barr
(1984), Miller and Geselowitz (1978a) and others. The bidomain model has been
adopted by many other researchers in one form or another due to its convenience
and simplicity. The model is discussed more fully in review papers by Henriquez
(1993) and Plonsey and Barr (1987).

Different papers give different names to the various regions that are part of the
bidomain model. The names that we have chosen reflect the generally accepted
definitions (as given by Krassowska and Neu (1994)) which tie in with those
that physiologists would use to describe cellular structure. When developing an
activation model which is designed to be coupled with other models, it is necessary

to maintain consistent definitions and distinctly identify each region.

The bidomain framework defines two domains which make up the cellular matrix.

1“7
1

The intracellular domain, given the subscript “i”, is the region inside the cells,

and the extracellular domain with subscript “e” is the region between cells. These
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FIGURE 3.5: The bidomain model.

two domains are interpenetrating which means that they coexist at all points
in space. Therefore the properties and state of the tissue at each point have
separate components related to each domain with appropriate subscripts. For
example, a single point in space will have a tensor quantity associated with it
defining the conductivity in each of the intracellular and extracellular spaces. The
intracellular and extracellular domains are separated by the cell membrane at all
points, and all current flow between the two domains occurs solely through the cell
membrane. Because of the continuum approach to the physiology of the tissue, this
transmembrane current is volume-averaged. This averaging approach is required
so that a length scale can be chosen such that the averaging produces little loss of
information. Additionally, a third domain may be defined consisting of all regions
outside of the cardiac muscle, such as the bath that the tissue is in, or the tissues
within the torso cavity. This domain is referred to as the extramyocardial (outside)
region and given the subscript “o”. Krassowska and Neu’s (1994) paper simply refers
to this region as “outside”, but in a coupled problem it is unsure whether this should
refer to a region outside the heart or outside the body. This naming convention is
illustrated in Figure 3.5.

Some authors (including Pollard, Hooke and Henriquez (1993), Henriquez (1993),
Plonsey and Barr (1987) and others), define the regions differently. In particular,
what we term the extramyocardial region is defined as the extracellular space, and
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what we call the extracellular domain is called the interstitial domain, often with
“extracellular” also written in parentheses afterwards. This causes some confusion
in the definitions of what constitutes extracellular space, and is inconsistent with the
standard physiological definition of the extracellular matrix being the connective
support structure and myoplasm surrounding cells. Therefore it seems best not to
use the term “interstitial” at all, but to reserve the word “extracellular” for use in
describing structure that is part of the extracellular matrix, and use another term
for the medium surrounding the tissue, which in this case we have chosen to call
“extramyocardial”. This agrees also with the tissue definitions of Clerc (1976) in his
study of tissue conductivities which is cited as a definition for these terms by Pollard
et al. (1993). It is true that the extramyocardial space is also technically extracellular,
but it is not (by definition) part of the cardiac tissue structure, and because it is often
not used in many bidomain simulations, it is sensible to use another name for this
region. Some authors (Plonsey and Barr 1987) also use the subscript “o” for the

extracellular space, but this seems much less standard, and is similarly confusing.

The bidomain model describes current flow through the cell membrane in a space-
averaged sense. Instead of modelling a discrete cellular structure, the bidomain
constructs a continuum model with effective conductivity tensors which is governed

by continuous partial differential equations.

3.3.2 Mathematical derivation of the bidomain model

The most substantial mathematical description of the bidomain model is found
in the review paper by Henriquez (1993), which presents a formal definition of
the model from its origins in the core conductor model, and outlines many of
the approximations that can be made under certain assumptions. The derivation
presented here follows the pattern of this review, but only illustrates the details
appropriate to the work carried out here. Small changes have been made in the

notation and these are noted where they occur.

At a point, we define volume-averaged macroscopic potentials ¢; and ¢. in the
intracellular and extracellular spaces respectively, where the values of the potentials

are measured in mV. The transmembrane potential V., is defined as the potential
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difference across the cell membrane

Vin=bi — ¢e 3.1)

and is also measured in mV.

From the definition of the cardiac microstructure, there is a local material coordinate
system defined at every point with axes aligned with each of the local fibre,
cross-fibre (sheet) and cross-sheet directions. In an undeformed geometry, these
material axes are defined to be orthogonal. These three axes are used to define the
principal directions of propagation. That is, we replace the discrete structure by
effective conductivities which average out the discrete behaviour. In a coordinate
system defined by the material axes, the effective conductivity tensors are diagonal.
Allowing for different conductivities in each domain, we can construct two effective
conductivity tensors o; and o, for the intracellular and extracellular domains
respectively, with units (Om)?, or equivalently, Sm . Henriquez uses the symbols
gi and g. to describe the effective conductivities, with ;. being reserved for
true conductivities. However, we choose to use the variable o for the effective
conductivities to emphasise that these are defined in the material coordinates rather
than the global coordinates. Values for these tensors are still difficult to obtain
as much of the experimental work has yet to be done, but using transversely
isotropic measurements such as those by Clerc (1976) and using microstructural
observations regarding path lengths can lead to a first approximation to the
effective conductivities. The experimental work required will involve measuring
three-dimensional plane wave propagation rates and relating them to observed
microstructural details. In constructing effective conductivities, a continuum
approach is taken whereby the discrete cell-to-cell coupling and the fibrous and
sheet branching ratios are not explicitly modelled, but rather the averaged rate of

propagation implicitly takes into account these microstructural features.

Restricting the relationship between the two domains can simplify the following
equations greatly, especially for equal anisotropy or reciprocal anisotropy where the
ratios between fibre and non-fibre directions are either the same or inverted in each
domain, respectively, but these are only defined for a transversely isotropic medium.
In this thesis, no such restriction is made, and independent orthotropic effective
conductivity tensors are described for each domain.

Using Ohm’s law, the intracellular and extracellular current densities J; and J. (with
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units Am!) are derived as
Ji= -0V 3.2)
and

Ie - *Gevd)e (33)

where V is the gradient operator, and the current densities are defined in the local

material coordinate system.

All current leaving one domain crosses the cell membrane and enters the other
domain, so that the change in current density between the two domains is equal and
opposite, with allowance made for any source or sink current within either domain.
The change in current density in each domain is equal to the current density across
the membrane

VYV Ji=Anln — L=V -], (3.4)

where A, (units m 1) is the surface-to-volume ratio of the cell membrane, I, (units
Am?) is the transmembrane current density per unit area, and I (units Am ) is an
externally imposed source current per unit volume. Ignoring the applied current,

this gives the following conservation of current density equations:

V- (0iVdi) =Anmln (3.5)
V- (0Vde) = —Anln (3.6)

From Equations (3.5) and (3.6) and by using Equation (3.1) we can write

V- (0iVdi) =V - (0:Ve) (3.7)

V- (01Vhi) = V- (0:Vhe) = =V (0Ve) — V- (0:V Pe) (3.8)
which gives

V- (0:VVy) =V ([0 + 0c) Ve) (3.9)

This is the conservation of current equation and describes the coupling of the two

domains.

The transmembrane current can be described as the sum of a capacitive current

given by the change in transmembrane potential and a ionic current governed by
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a Hodgkin-Huxley type model for cardiac tissue (Hodgkin and Huxley 1952)

0V

Ihw=Ch——
ot

+ Iion (310)

where C,, is the membrane capacitance per unit area (uF - mm 2) and I, is a
nonlinear function representing the sum of all of the transmembrane ionic currents

and other cellular currents, with units Am—2.

There are many possible functions
which display behaviour resembling the ionic currents, and some of the history and

usefulness of these functions in covered in Chapter 4.

From Equations (3.5) and (3.10), and substituting Equation (3.1), we obtain

oV

V- (@Yl 4V (00500 = A (€5

+ Iion> — I (3.11)
Equations (3.9) and (3.11) are together known as the bidomain equations. We have
not made any assumptions at this stage about the geometry of the problem or the
nature of the conductivity tensors, except that from geometry we assume that the
principal axes of anisotropy are aligned for each domain, and therefore these partial
differential equations are a completely general description of the bidomain model.

There is one assumption commonly made which reduces the bidomain equations to
a single monodomain equation and considerably simplifies the computational effort
required. This assumption can be made if the extracellular space is assumed to
be highly conducting (i.e. o is effectively infinite) or if the domains are equally
anisotropic i.e. 0; = co. where c is a constant. Making this assumption reduces
Equations (3.9) and (3.11) to a single equation known as the monodomain equation

0V

V- (oVVy) ( T

i) 1. 612
where 0 = o; is the effective conductivity tensor of the single domain, and the
transmembrane potential equals the intracellular potential because the extracellular
potential is effectively constant and zero. In some places further on in the thesis,
it becomes convenient to talk of either Equation (3.12) or Equation (3.11) being the

transmembrane equation, and Equation (3.9) being the extracellular equation.

The potential in the extramyocardial domain satisfies Maxwell’s equations, but
because of the low frequency of cardiac events (less than 250 Hz) and the particular
electrical material properties of the surrounding tissue, the capacitive, inductive and
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propagative effects are small enough that they may safely be ignored. This results
in the extramyocardial potential satisfying Laplace’s equation

V- (6oVo) =0 (3.13)

for a general inhomogeneous anisotropic medium. Advanced models of the torso
incorporate the varying conductivities and anisotropies present in structures outside
the heart, though the tissue immediately surrounding the heart is isotropic.

Boundary conditions

The intracellular domain is essentially self-contained, and therefore we can assume

a no-flux boundary condition at all points where it is required, i.e.

(ol
on

=0 (3.14)

where n is a unit outward normal vector to the domain boundary. The extracellular
and extramyocardial domains are effectively linked, and therefore the potential and
the normal current must be continuous at the tissue-bath interface

d)e‘r = d)o‘r (3.15)

0,

(O-evd)e)-n‘r = 0Op ﬁ -

(3.16)

where T' represents the interface between the domains and the extramyocardial
domain is considered to be isotropic on I'. Only Equation (3.14) is required for a

monodomain simulation.

3.3.3 Applications of the bidomain model

The bidomain model of cardiac activation has gained some acceptance since its
derivation in the late 1970s and early 1980s (Tung 1978). As mentioned earlier,
papers by Plonsey and Barr (1987) and Henriquez (1993) present reviews of many of
the simulations which use a bidomain approach. In many cases, a monodomain
formulation is used, and as shown by Pollard et al. (1993), the results are often

very similar whether one uses a bidomain or monodomain formulation. There
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are two main reasons why a bidomain formulation would be used: firstly if the
stimulus current is applied specifically to the extracellular domain, or secondly if
the activation model was being coupled to an electrical model of the torso cavity to

obtain body surface potentials.

Several papers have been important in describing the behaviour of the bidomain
model. Plonsey and Barr (1984) examined patterns of current flow resulting
from a given state of activation in an anisotropic two-dimensional sheet of fibres.
The ratio of conductivities between the intracellular and extracellular domains
was investigated, and behaviour modelled for three ratios: isotropy, reciprocal
anisotropy and nominal anisotropy. Their results showed that, given a reciprocal
anisotropy, the current flows in loops of about 2 mm in the resting portion of the
tissue, which is markedly different from the results obtained in an isotropic model.
Their results were confirmed in a later study by Sepulveda and Wikswo (1987) which
used a finite element technique, and subsequent experiments (Staton, Friedman and
Wikswo 1991) have shown current patterns consistent with those generated using
the bidomain formulation, indicating that myocardium has unequal anisotropy

ratios.

A number of other papers have defined the method of action potential propagation
within a bidomain, the earliest of which seem to be a series of three theoretical
papers by Muler and Markin (1977a; 1977b; 1978). Their studies focused on a two-
dimensional bidomain with arbitrary anisotropy but homogeneous fibre orientation,
and derived several equations describing the conduction velocity in the tissue. Their
results indicate that a single-fibre core conductor model can only be extended to
two or three dimensions under the monodomain assumption in which either there
is the special case of equal anisotropy or the extracellular resistance is zero. Later
numerical models by Barr and Plonsey (1984) confirmed the theoretical predictions
of Muler and Markin (1977a) except for the case of reciprocal anisotropy where a
diamond shape was formed rather than the predicted rounded square. However,
that turned out to be due to the ionic current model used by (Henriquez 1993)
and further simulations by Pollard et al. (1993), using an implicit technique and
the Ebihara-Johnson model of the membrane kinetics (see Section 4.1.5), resulted
in diagrams which qualitatively resembled the rounded square which had been
predicted.
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Many further models have used the monodomain assumption and additionally used
a simplified model of the membrane kinetics (Section 4.2), particularly in the study
of rotors or spiral waves in two and three dimensions. Much of the theoretical
and modelling work in this area has come from Winfree who uses the FitzHugh-
Nagumo equations in a generic monodomain model using a regular finite difference
grid in both two and three dimensions (Henze, Lugosi and Winfree 1990, Winfree
1990a; 1990b; 1990c; 1991. Other papers by Rogers and McCulloch (1994a), Agladze,
Keener, Miiller and Panfilov (1994), Courtemanche and Winfree (1991), Karma
(1993), Kogan, Karplus, Billett and Stevenson (1992), Panfilov and Holden (1993)
and others use various monodomain models and various membrane kinetic models
in their investigation of spiral waves and two-dimensional propagation. Some three-
dimensional studies have also been performed by Panfilov and others, including a
large scale finite difference model of a static heart. A complete heart simulation in

which the cardiac tissue is free to move has not yet been accomplished.

Some progress has been made in the development of eikonal equations. These are
non-linear elliptic equations describing solely the position of the wavefront, or
alternatively the isochrones describing the activation time. Colli Franzone, Guerri
and Rovida (1990) have developed zero-order eikonal equations by generalising the
relationship between velocity and conductivity, and also equations of higher order
in which the effect of the wavefront curvature is included in the model. Additional
papers (Colli Franzone, Guerri and Tentoni 1990; Colli Franzone, Guerri and
Taccardi 19934; Colli Franzone, Guerri and Taccardi 1993b) develop the technique
turther to include three-dimensional tissues with fibre rotation and an anisotropic
bidomain model. The eikonal technique involves only spatial parameters and
is therefore easier to solve than the partial differential equations based on the
membrane kinetics, but the information gained is more limited and the eikonal

equations cannot describe any form of reentrant behaviour.



Chapter 4

Ionic Current Models

One assumption that has been made in developing the bidomain framework is that a
mathematical model can be constructed which describes the membrane kinetics that
cause an ionic current to flow across the cell membrane. Ideally, this ionic current
model would describe each of the individual ion currents which flow through the
ion channels and pumps, and in doing so maintain knowledge of the intracellular
and extracellular concentrations of all ions involved in the activation process. The

ionic current I;,,, is defined as the sum of the individual currents.

There are two main ways in which an ionic current model can be constructed.
One approach is to attempt to exactly describe all of the behaviour and construct
a biophysical model, also called in some papers an exact or complete model. In
some cases the theory contained within the model has been confirmed by later
experiments, and in others the models have been developed in order to explain
observed behaviour. There are two main problems with this approach. Firstly,
the ionic processes are still not well understood, and the models are constantly
being updated and revised in order to incorporate new information. There are
experimental problems in accurately measuring cause-and-effect relationships to a
significant level of detail at this small scale. Secondly, the models produced using
this approach tend to be large and complex, and the computational time required to

solve the system of equations becomes prohibitive for large problems.

The alternative approach is to construct much more simple models which produce
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behaviour similar to that of the exact models, but which are not derived directly
from physiological observation. The aim of these simplified models is to replicate
certain key features of activation, such as propagation and recovery. The advantage
is that they are typically very small and fast to solve, and therefore usable in large
problems. The main disadvantage is that although the model will successfully
predict the nature of a normal activation, it will not be able to determine the effect
of some abnormality in the tissue with any degree of certainty as the physiological

influences on the electrical processes are not being adequately modelled.

The ideal solution is to use the most appropriate model for a particular problem, and
retain the flexibility to include any of a number of models. The first section of this
chapter discusses the physiologically based models and the second section examines
a few of the simpler models. The equations describing most of these models have
been coded and solved using the NAG routine DO2EBF (NAG 1993) for solving a
system of first-order ordinary differential equations using a variable-order, variable-

step method implementing the back differentiation formulae.

4.1 Biophysically Based Ionic Current Models

An exact model is constructed by deriving mathematical equations which describe
specific actions within the cell membrane, such as the transfer of ions through a
pump or the flow of ions through a gate which is caused by a concentration gradient.
These models have developed either from fitting the parameters of an equation to
experimentally measured data, or in some cases from defining an equation to match
observed conditions which were later confirmed experimentally. The first models
were derived for Purkinje fibres, based on the Hodgkin-Huxley model of nerve.
Later models have quantified specific behaviours of atrial and ventricular tissue,
and the models have grown in size as other currents are found to exist and become
significant in the role of the action potential. The latest, most sophisticated models
require a large amount of computing resources in order to be solved, and have
to date only been used to model single cell behaviour and small two-dimensional
domains. As computational speed increases and more memory is available, these
models will begin to be used for three-dimensional studies, though this is prohibitive

at the present time.
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Each model described here builds on previous models, and all those described in
this section are based on the cell membrane formulation developed by Hodgkin and

Huxley for nerve fibres.

41.1 Hodgkin-Huxley Model

In a series of papers published in 1952, A.L. Hodgkin and A.F. Huxley present the
results of a series of experiments in which they investigate the flow of electric current
through the surface membrane of the giant nerve fibre of a squid. In the summary
paper of the HH model (Hodgkin and Huxley 1952), the authors developed a
mathematical description of the perceived behaviour of the membrane based upon
these experiments which would account for the conduction and excitation of the
fibre. The form of this description has been used as the basis for almost all other
complete ionic current models of different excitable tissues, including Purkinje fibres

and cardiac atrial and ventricular muscle.

The cell membrane

Hodgkin and Huxley derived an electrical circuit which they considered to be
representative of the electrical behaviour of the cell membrane. This circuit is shown
in Figure 4.1 with one small modification from the diagram illustrated in the original
paper. Figure 4.1 has reversed the direction of positive current flow to conform
with the convention proposed by Noble (see Section 4.1.2 for the reasons for this
change) which has been commonly adopted for cardiac tissue. Hodgkin and Huxley
proposed two parallel pathways for current to be carried through the membrane.
These are the capacitive current through the membrane derived using Ohm’s law

(where the membrane capacitance is denoted by C,,,), and the ionic current I;,.

0V
[ =Ch—— + Lon 41
FYaluy (4.1)
The ionic current is further divided into components carried by the sodium and
potassium ions (ing and ik respectively), and a leakage or background current ip

carried by chloride and other ions.

Lion = ina + 1k + 1 (4.2)
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FIGURE 4.1: Electrical circuit representing the cell membrane. gng and gk are
functions of time and membrane potential; all other values are constant. Derived
from Figure 1 in Hodgkin and Huxley (1952).

Each of these ionic currents can be expressed in terms of the ionic conductances gnq,
gk and g respectively, which are the inverses of the respective resistances, and the
electrical potential difference of the ion channel, using the relations

:LNa - gNa(vm* ENa)
ik = gk(Vm — Ex) (4.3)
i = gr(Vm —Er)

where Eno, Ex and E; are the equilibrium potentials or reversal potentials
associated with each current and V,, is the transmembrane potential as defined in
Equation (3.1).

Membrane channel current formulation

Each of the three types of ionic current described in Section 2.2.5 has a mathematical
description of that membrane channel.

e Time-independent or background currents
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Time-independent currents are only voltage-dependent, and can be described
by
[ =1(Vi) or (4.4)

where E. is the reversal potential of the channel. The reversal potential is
equal to the Nernst potential (see Equation (2.2)) for an ion if the channel
is permeable only to that ion. The leakage current i, is a time-independent

current, and later ionic models add further background currents.

e Time-dependent activation currents

In order to describe an activation channel, Hodgkin and Huxley proposed
the definition of a gate variable (or activation coefficient) which indicates the
probability of that gate being open, and thus the channel being open. Using an
activation coefficient x (0 < x < 1), the current produced by a time-dependent
channel is

where x satisfies a first-order differential equation

dx

E = O(*x(vm)(] - X) - BX(VTTL)X' (47)

where «, and f are the rate coefficients of the equation, and are generally non-

linear functions of voltage but not time, and have units time !

. The gate is
fully open when x = 1 and current is maximal, but fully closed when x = 0.
In some cases, the rate constant is raised to some power k if that is necessary
to describe the observed behaviour of the channel, indicating that there are k
identical gates combining together in one channel in series, and the state of the

channel is dependent on the combination of the states of each of the gates.

Equation (4.7) can be rewritten as

dx X — Xoo
priaie - (4.8)
where
Ty = 1 4.9)
o + P
g = — (4.10)

o+ By
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If Vi, is held constant, then the solution of Equation (4.8) is

X(t) = Xoo — (Xoo — X0) €XP <i> (4.11)

Tx

where there is an exponential approach to x,, from xp as t — co. An example
of this type of current whose time dependence is described by an activation
variable is the plateau potassium current ik which is involved in repolarising
the action potential.

e Time-dependent activation-inactivation currents

Channels displaying an activation-inactivation behaviour whereby the chan-
nel initially opens and then closes contain two or more gate variables. Currents
of this type are described by equations of the form

I=g(Vm)xy(Vm—E;) (4.12)

where x is the activation variable as before, and y is an inactivation variable of
an identical form, but with coefficients &, (V) and B, (Vi). In general, the rate
coefficients of the inactivation variable will be much slower than the activation
rate constants to allow the channel to open before closing. One example of
this type of channel is the sodium channel, iy, as described in Section 2.2.4
and Section 4.1.1 which possesses the two gate variables m and h, and is
responsible for the initial upstroke of the action potential.

The sodium conductance

Hodgkin and Huxley proposed two hypotheses which would describe the nature
of the transient changes in sodium conductance. Both describe the movement of
charged particles within the cell membrane which move to allow or prevent sodium
ions from passing through the sodium-selective channel. The first hypothesis
supposes that there is a single particle which moves to allow sodium ions to pass,
and then undergoes a chemical change as the transmembrane potential increases
which causes it to move back into a position which inhibits the transfer of sodium
ions. In mathematical terms, this can be thought of as a single variable which is
governed by a second-order differential equation. The alternative hypothesis would
suggest two such particles. One, the activation particle, moves quickly from an
inhibitory position to one where sodium ions are free to pass. A second inactivation
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particle is initially in a non-inhibitory state, and moves much more slowly to block
the flow of sodium ions. Mathematically, this corresponds to two variables, each
of which is governed by a first-order differential equation. They chose the second
alternative because it was simpler to formulate and use. This is the process described
in Section 2.2.4.

According to this description of the sodium channel, the description of the sodium
conductance becomes

gna = M*hna (4.13)

where m is the activation coefficient, and h is the inactivation coefficient, and gny is
a maximal sodium conductance with units S- mm2. Raising m to the third power
indicates that there are three m gates present in a single channel, all of which have
to be fully open for the channel to be fully open. Both variables are governed by a
differential equation of the form of Equation (4.7), which gives

AN (1 m) B
ﬁﬁ (4.14)
T on(1—h) —Brh

where the rate constants « and 3 are functions of voltage, but not of time, and have

1

units of s—'. Hodgkin and Huxley describe the kinetics of this system by defining

the rate constants as

0.1(Viy £ 25)
%= exp (0.1(Vin + 25)) 1
Bm =4exp(Vin/18) (4.15)

o = 0.07 exp(Vm/20)
Br = lexp (0.1(Vi +30)) + 11"

where these values were obtained by fitting curves to experimental data. These
functions have the form shown in Figure 4.2. Note that this data is for nerve fibre
only, but equations of similar forms are used in other descriptions of the cardiac
ionic currents in other models described later.
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FIGURE 4.2: Form of the rate constants for the m and h gating variables of the

Hodgkin-Huxley sodium current.
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FIGURE 4.3: Form of the gating variable n for the Hodgkin-Huxley potassium

The potassium conductance

current.

The potassium channel is an activation-only type channel, with four activation gates

present in the channel. The total potassium conductance of this channel is

gk = n'gx
dn

Ezocnﬂ —n)—Ban

(4.16)

where the variable used to represent the passage of potassium ions is n and g is the
maximal potassium conductance. The following functions give the form of the rate

constants, which are graphed in Figure 4.3.
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Constant | Units Value
Cm uF - cm™2 1.0

Er mV —75
Ena mV Er + 115
Ex mV Er—12
Er mV Er +10.613
INa mS - cm 2 120

(TR mS - cm 2 36

gL mS - cm 2 0.3

TABLE 4.1: Values of the constants in the Hodgkin-Huxley equations.

_0.01(Vim + 10)
T exp (0.1(Vin + 10)) — 1 (4.17)
Bn = 0.125exp(Vin/80)

Hodgkin and Huxley acknowledged that their equations may describe the basic
mechanism of conduction in tissues other than the nerve axon they were defined for,
but the values of the parameters would be substantially different. Models outlined
in the following sections show the applicability of the HH model for cardiac tissue,
and the modifications that need to be made to the model.

The complete Hodgkin-Huxley model

In addition to the two ion channels, Hodgkin and Huxley proposed a background
leakage current iy which maintains the membrane at a constant resting potential in
the absence of any depolarisation.

Thus the full HH model has the following relations:

:LNa — m m3h (vm - ENa) (418)
ik =gen! (Vo Ey) (4.19)
it = gu(Vin—Er) (4.20)

where the reversal potentials are related to the resting potential Er of the membrane.

The values given by Hodgkin and Huxley for the constants in the above equations
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FIGURE 4.4: The Hodgkin-Huxley model results in the above action potential,
which is maintained by the In, and Ik ionic currents shown, together with a
leakage current, and these currents are defined by a combination of the gating

variables m, h and n.
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are presented in Table 4.1. Other researchers give slightly different values,
especially for the reversal potentials due to difficulties in measuring intracellular
and extracellular concentrations of the various ions accurately. Using the values
given in Table 4.1, the Hodgkin-Huxley nerve model gives an action potential of the
form shown in Figure 4.4. Note that the units used to measure current (LA - cm ?)
are not SI units, but are the most commonly used units. Similarly, the values given
for the constants in Table 4.1 and other tables are taken from the original papers
where non-SI units are used. It seems preferable to use SI units, although the wealth
of literature suggests otherwise. The discontinuity in the current in Figure 4.4 is due
to the removal of the activating stimulus at that point as can be seen from the voltage

diagram.

4.1.2 Noble (1962) Model

Cardiac cells have some ionic properties which are quite different from those of
nerve cells, and this also varies between the different types of cardiac cell (see
Section 2.2.2). The first models of cardiac action potentials were descriptions of
Purkinje fibres for two reasons. Firstly the cells are most like nerve cells which
means that the existing theories could easily be adapted, and secondly the large

size of Purkinje cells made for easier experimental measurement of ionic properties.

Noble (1962) developed the first mathematical model of a cardiac cell, which was
based directly on the 1952 model of Hodgkin and Huxley. The changes made fell into
two categories. Firstly, the form of the model itself was changed slightly to describe
the observed behaviour of the Purkinje potassium channel. Secondly, values of the
constants were empirically fitted to new data acquired from Purkinje fibres. The
HH electrical model of the cell membrane shown in Figure 4.1 was updated to the
equivalent electrical circuit shown in Figure 4.5, and defines the total membrane
current [, in the same way as the HH model to be the sum of the ionic currents and

the capacitive current.

avm . . .
In = me +ine +lk+ 1L 4.21)

The convention developed for describing current flow conforms to that used in
experimental work with intracellular electrodes. The transmembrane potential is the

potential of the inside with respect to the outside, and therefore the action potential is
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FIGURE 4.5: Equivalent electrical circuit for Purkinje fibre membrane. Derived from
Noble (1962, Fig. 1).

a positive variation with respect to a negative resting potential, and positive currents
are outward. This is opposite to that originally proposed by Hodgkin and Huxley,

but is the convention most often used for describing cardiac cell membranes.

The sodium current

The form of the sodium current equation as proposed by Noble is almost identical to
Equation (4.13) developed by Hodgkin and Huxley. The values of the rate constants
have been altered to agree with the experimental measurements of Purkinje fibre
depolarisation conducted by Weidmann (1952) and (1955). The revised equations
describing the rate constants are

0.1(—V,, — 48)
Om = T
exp( 15 ) —1
5 — 0.12(Vyn + 8)
Toexp (M) —1 (4.22)
o = 0.17 exp (_VmT)%>
1
Br =

e () +
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In addition, a small component of gnq is assumed to be independent of V;, or t, in
order to maintain an increase in sodium current during a long-lasting depolarisation.
This results in the sodium current being described by the equation

i'Na = (m m3h+ gC)(vm_ ENa) (423)

where g is a constant conductance.

The potassium current

Noble observed that depolarisation decreases the membrane conductance and,
because the chloride conductance of normal resting cardiac tissue is very small, the
leakage current cannot be totally responsible for it. In order to explain this, Noble
proposed two types of potassium channels in the cell membrane. The first channel
has a time-independent current, and the conductance (gk;) falls as the membrane
depolarises. The other is an activation-only type channel of the same form as
the potassium channel described in the HH model, and the conductance (gx.) of
this channel slowly increases as the membrane depolarises. This is represented in
Figure 4.5 by two rectifiers in parallel, the first “inward rectifier” K*channel passing
inward current, and the second “delayed rectifier” K*channel allowing outward

current to pass after a delay.

The conductance of the first channel is described by the empirical equation

—Vn—90 Vi + 90
g1 = 1.2exp (T) +0.015exp (T) (4.24)

which describes an instantaneous function of V,,. The conductance of the
second channel is described exactly by the HH potassium current equations in
Equation (4.16) with 100-fold smaller rate constants in order to take into account

the slower onset in Purkinje fibres as opposed to nerve. The rate equations become

~0.0001(—Viy —50)

o _ Vim—50)\ __
exp (—5>) — 1 (4.25)

B =0.002exp <M>

80
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FIGURE 4.6: The Noble (1962) model results in the above action potential, and the

gating variables produce the graphs shown above.

The complete Noble (1962) model

The Noble model also has a background leakage current I; with the same form as in

the HH model. Therefore, the complete model is

ina = (Gna M+ ge) (Vin — Ena) (4.26)
ik = (gx1 + g2 ) (Vin — Ex) (4.27)
it =0 (Vim— Er) (4.28)

with values assigned for the constants shown in Table 4.2. Various values of gp
were used in the paper to produce different effects on the form and duration of
the action potential. Using the above values of the constants, the Noble model
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FIGURE 4.7: Ionic currents defined by the Noble model for Purkinje fibres.
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Constant | Units Value
Cm uF - cm™2 12
Ena mV 40
Ex mV —100
Er mV —60
ONa mS-cm 2| 400
gc mS-cm 2 | 0.14
OK2 mS-cm 2| 1.2
gL mS-cm 2 | 0.075

TABLE 4.2: Values of the constants in the Noble model.

produces an action potential and time course of the gating variables as shown in
Figure 4.6. Notice that the action potential changes shape and duration slightly due
to the rate constants being unable to fully recover before the pacemaker nature of
the Purkinje structure cause a spontaneous depolarisation. This pacemaker is not
totally counteracted by the leakage current as the constant is much smaller than in
the HH model. The time courses of the three ionic currents are shown in Figure 4.7.

4.1.3 McAllister-Noble-Tsien Model

The next significant development in cardiac membrane modelling occurred when
McAllister, Noble and Tsien (1975) published a paper which formulated new ionic
current equations that would describe the experimental information available at that
time for Purkinje cells. The description of the kinetics of the currents is still based
upon the Hodgkin-Huxley formalism, but the currents themselves incorporate some
significant new changes. A second inward current, carried at least partly by calcium
ions, is added to the fast sodium current of the Noble (1962) model. The single
time-dependent potassium outward current is replaced by three time-dependent
potassium currents, and there is now a transient outward chloride current. The
single leakage current of the original models have been further decomposed into
three separate background currents.

The resulting McAllister-Noble-Tsien (MNT) model is written as the sum of these
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Reversal potentials | Maximum conductances
(mV) (mS - cm?)

Ena 40 ONa 150

Eg 70 st 0.8

E, — 52 Jst 0.04

Ex —110 Oqr 2.5

Ect — 70 ONab 0.105

Ex, — 30 gclo 0.01

Cm 10 uFem 2

TABLE 4.3: Constants used in the MNT model.

Voltage (mV)

_100 | | |
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FIGURE 4.8: McAllister-Noble-Tsien action potential for a Purkinje fibre.

various ionic currents
LonMNT) = ina + 1si + k2 + 1 + b + 1gr + k1 + ingp + e (4.29)

and becomes the most complex model to date.

Constants

The MNT model has assigned values for various constants which appear in the ionic
equations as detailed in Table 4.3. The resulting action potential, shown in Figure 4.8
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FIGURE 4.9: McAllister-Noble-Tsien sodium current, and associated gating
variables m and h. The current is scaled in order to see the small fluctuation at the

end of the action potential, and the largest current is around —1000 pA - cm 2.

matches the experimental measurements closely, as is detailed further in their paper.
The model again models the pacemaker nature of the Purkinje fibre. The diagrams
depicting the time-course of the various gate variables and the ionic currents are

drawn at the place the appropriate current is described.

Inward currents

1. The fast sodium current (ing)
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The sodium current is basically the same as that given by Noble, except that further
experimental work by Dudel and Riidel (1970) had enabled a more detailed study
of the time course of the current. These experiments contributed to an updated
definition of the m kinetics, with the h rate constant still based on the experiments
of Weidmann (1970), with a few modifications from the Noble model. There are
however still many uncertainties at this stage regarding the exact form of the sodium
current, and the value of the maximal Na* conductance. The equations for the rate
coefficients as defined in the MNT model are

. — Vi +47

" e (D)

Vin+72
BTTL =40 exp <—W)
Vin + 71 (4:30)
By — 2.5
" e (Y 4
and the sodium current equation is the same as in the HH model

iNa = ONa m’h (vm — Ena) (431)

Using the constants defined in Table 4.3 gives a maximum rate of depolarisation
of approximately 500 Vs~!, which is better than Noble’s (1962) model, but still not

sufficient to describe observed rates of closer to 800 Vs!

. The resulting sodium
current is shown in Figure 4.9 along with the time-courses of the sodium gating
variables m and h. The sodium current is only drawn to —50 pA - cm 2 so that the
small fluctuation at the end of the action potential can be seen, but the full current

reaches approximately —1000 LA - cm 2.

2. The secondary inward current (is;)

In the MNT model, the secondary (or sometimes slow) inward current activates much
more slowly than the sodium current, and is responsible for holding up the plateau
after the initial activation and controlling the duration of the action potential. This
current is not as well-defined in Purkinje fibres (for which this model is constructed)
as it is in some other types of cardiac muscle. At this time, it was assumed that the
passage of both Na* and Ca*" ions through the cell membrane was responsible for
this current. In the absence of the fast sodium current, the magnitude of i; may be

sufficient to sustain an action potential.
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FIGURE 4.10: McAllister-Noble-Tsien secondary current, and associated gating

variables d and f.

The channel responsible for this secondary inward current has an activation gate d
which is similar in form to the m gate of the sodium current but somewhat slower,
and also an inactivation gate f. It was observed in earlier experiments that some
portion of this current would not completely inactivate, and this is represented by

the second term which has an activation variable d’, but no deactivation variable.

I =0g df (Vim—Eg) + 05 d' (Vi — Esi) (4.32)
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The equations for the rate constants are

L Vi + 40
" 500 (T—exp (—V35))
Vi +40
Vin + 60 '

0.02

exp (—4y57) +1

Br =

There are several possibilities for d’. One option is to set d’ = d, or alternatively, the

time-independent equation

-1
d' = [1 + exp <%>}

gives an appropriate behaviour. The authors note that the final choice of expression

(4.34)

will be determined by further experiments. Using Equation (4.34) and the above
equations for the rate constants, the diagram of the secondary current shown in
Figure 4.10 is obtained.

Outward currents

In contrast to the inward currents, there is a relatively complete understanding of
the kinetics of the outward currents, though the description of the currents has
changed slightly from the Noble (1962) model. Firstly, the time-independent current
has been isolated into a separate background current ix,. Secondly, it was found in
experiments performed by Noble and Tsien (1968) that there are components of the
original ix, which are dependent on ions other than just potassium, and these are
identified by the symbol i,.

1. The pacemaker potassium current (ix,)

This component of the outward current is activated in the pacemaker range of
potentials, and therefore controls pacemaker activity. In contrast to the Noble (1962)
ik, current, this current has a much more negative threshold making it a pacemaker

rather than a repolarising current. The current is described in terms of a single gate
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variable s
ik, = E S (4.35)

where s has rate coefficients
N 0.001(V — Eg)
ST exp (—Yuts)

m Es
Bs = 0.00005 exp (V 5 >

(4.36)

The fully activated current flow iy, is a highly non-linear function of the transmem-

brane potential

exp (7\/”‘ EK) —1

exp (¥357) +exp (¥55%)

ik, = 2.8 (4.37)

with a reversal potential at Ex.
2. The plateau potassium currents (i, and iy,)

Each of these two currents are governed by simple first-order processes with gating

variables x; and x,, respectively,
i,X1 = Lx_1 X1 (438)
i, = i, X2 (4.39)

similar to that of ix,. The fully activated currents are

exp (V%) — 1

exp ( Vm+45 )

1, =25+ 0.385V,, (4.41)

=12

(4.40)

which are based on experiments performed by Noble and Tsien (1969) which show
additional potassium currents which are activated in the plateau range of potentials.

The rate constants for the two gate variables are governed by the equations

_ _4 exp(%)
B = (a0
Vm+20

B, — 0.0013— P L)
1 T +exp ( v,gzo)

(4.42)
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FIGURE 4.11: McAllister-Noble-Tsien potassium currents, and associated gating

variables s, x7 and x>.

and

Vi +19\17"
o, =127 x107* {1 + exp (TJF)}

i (4.43)
sz =3 x 1074 exp (_\/]GJ(FS%O)

T+ exp (—Vai2)

If these two currents are removed from the model, the upstroke and notch are
unchanged, but repolarisation fails to occur. The 1i,, current seems also to be
responsible for a decreased APD and the disappearance of the notch if a second
action potential is initiated during the period of restitution.
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FIGURE 4.12: McAllister-Noble-Tsien chloride current, and associated gating

variables q and r.
The form of the above three currents is shown in Figure 4.11 together with the gating
variables s, x; and x;.
3. The transient chloride current (iqy)
In addition to the previously observed time-independent background chloride-
based current, experimental evidence pointed towards the existence of a large

transient chloride current was responsible for the rapid repolarisation from the peak

of the spike to the start of the plateau. i, is an activation-inactivation type equation

lgr = Gar q7 (Vin—Ec) (4.44)
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with two gating variables q and 1, which are governed by the equations

o = 0.008—— ™
1—exp (—72)
Bq = 0.08exp <_1:/—11216)
Vo4 80 (4.49)
o = 0.00018 exp ( m25 )

B 0.02
Coexp () +

A more extensive later study by Fozzard & Hiraoka (1973) redefined the behaviour
of the inactivation kinetics according to the equations

o, = 0.000033 exp (—\]/—;1>

0.033 (4.46)

oxp (-7 2) 11

In conjunction with the onset of iy, a notch is developed in the action potential,
where the chloride current causes a sudden repolarisation to about 15 mV, and
the secondary inward current repolarises the membrane to about 5 mV. If g, is
decreased, then the notch disappears, and there is a smooth transition from the
upstroke to the plateau.

This current is shown together with the gate variables q and r in Figure 4.12, using

the original definition for r as detailed in Equation (4.45).

Background currents

The leakage current defined in both the Noble (1962) and the Hodgkin & Huxley
models is more appropriately titled a background current in the MNT model, and
has been split into components carried by Na*tor Cl . This splitting is somewhat
tentative due to the lack of reliable experimental observations.

1. The outward time-independent potassium current (i, )
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FIGURE 4.13: McAllister-Noble-Tsien background currents.

Most of the outward component is carried by K* ions, and is represented by i, .

: "
ik, = X2 402 v VKL)E (4.47)
2,8 -I o eXp <7 111,25 Ky )

2. The inward background current (ingp)

This current is responsible for maintaining the resting potential of the membrane at
a point some 10 to 30 mV above the potassium reversal potential, and has at this
stage been attributed to Na* ions.

iNa,b = ONab (Vm_ ENa) (448)

3. The background chloride current (icip)

This current contributes to maintaining the plateau and helps to determine the action
potential duration.

icte = 9cto (Vim— Ect) (4.49)

These three background currents are shown in Figure 4.13.
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FIGURE 4.14: Beeler-Reuter model of the ventricular action potential.

41.4 Beeler-Reuter Model

In contrast to the earlier Purkinje fibre ionic current models of Noble (1962) and
McAllister et al., the Beeler and Reuter (1977) model was developed to describe
the mammalian ventricular action potential. It was found that not all of the ionic
currents relevant to a Purkinje fibre model are present in ventricular tissue, therefore
this model is somewhat simpler than the MNT model, in that it describes only four
ionic currents. A sodium inward current is included, together with an additional
Ca®*-based inward current, along with the background potassium current ik, and
the plateau potassium current i,,. Left out of the Beeler-Reuter (BR) model are a slow
component of the sodium current which is shown to be indistinguishable from other
currents, the dynamic chloride current i, in Equation (4.44) which does not appear
to be present in ventricular studies, and the two additional outward currents i,
and i, from Equations (4.35) and (4.39) seem not to be active in ventricular muscle
either. ik, is the pacemaker current and ventricular cells do not exhibit spontaneous
depolarisation. Also i, is very slow and seems to be masked by other currents, if
it exists at all. A model including i, found that this current only has a noticeable

influence during very rapid stimulation.

The result is an ionic current composed of four parts

Lion(Br) = Ina +1s + 1y, + 1k, (4.50)
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FIGURE 4.15: Beeler-Reuter sodium current and associated gating variables m, h

and j.

which produces an action potential such as is shown in Figure 4.14. The
main additional feature of the BR ionic current model is a representation of the
intracellular Ca?* concentration [Cal;.

1. The fast inward sodium current (ing)

At the time at which this model was formulated, techniques had still not been
developed to study the activation kinetics of the sodium channel using voltage
clamp techniques, and the equations used for the m gate are identical to those given
in the MNT model. Further experiments had, however, shown that the re-activation

process of the Na* channel is much slower than the inactivation process, therefore
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requiring two inactivation variables. In the BR model, this is done by including a

second variable j, such that the description of the maximal sodium current is

iNa = Ona MPhj (4.51)

where j has a slower time-course than h, and both are much slower than m. The
equations for the rate constants of these three variables are HH-type rate equations.
B —(Vin+47)
o = exp (—0.1(Vyn +47)) — 1
Bm =40exp (—0.056(Vym + 72))
o, = 0.126 exp (—0.25(Vin + 77))
B, — 1.7 (4.52)
" exp (—0.082(Viy 4 22.5)) + 1
~_ 0.055exp (—0.25(Vy + 78))
 exp (—0.2(Vy +78)) + 1
B 0.3
~exp (—0.1(Vy +32)) +1

In addition to the time-dependent current, a steady-state background sodium

B;

current is included into the Na* current model which corresponds to the MNT

current in Equation (4.48). The complete sodium model is therefore
ina = (Gnam’hj + gnac) (VM — Ena) (4.53)

where gng is the fully activated sodium conductance, gnqc is the steady-state
sodium conductance and Eyq is the sodium reversal potential. The resulting current

is shown in Figure 4.15 together with the time-courses of the rate constants m, h and
j.

2. The slow inward current (i)

This transient inward current is largely responsible for maintaining the plateau
of the action potential, and as in the MNT model, has an activation gate d and
an inactivation gate f. Experimental work shows that this current is carried

predominantly by calcium ions.
iy = g5df(Vin — Es) (4.54)

where g; is the fully activated conductance and E; is the channel reversal potential,
which is defined by the Nernst equation for internal Ca®* concentration

E,= 82.3 13.0287In[Cal; (4.55)
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FIGURE 4.16: Beeler-Reuter action slow inward current and associated gating

variables d and f, together with the outward current gate variable x;.

The change in [Cal; (units mMol) is given in terms of the slow inward current as

d[Ca] i

T —10"*, +0.07(10~* — [Cal;) (4.56)

and is shown in Figure 4.17. In the original paper, the units for [Ca]; were given as
Mol, but this has been changed to correspond with later models. The gates d and f
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FIGURE 4.17: Beeler-Reuter representation of the intracellular calcium

concentration.

obey the first-order HH-type equations, with parameters

~0.095 exp(—¥3552)

1 +exp(—35)

O 07 exp( Vm+44)
- Vm+44 )

T+ exp(-35—

B O.O12exp(—vq‘T§28)

1+ exp( vggs )

~0.0065 exp(—¥=t30)
1+ exp(— V‘“+3°)

(4.57)

This results in the ionic current shown in Figure 4.16. The form of the rate constants
is also shown, together with the form of the x; rate constant for the outward current.

3. The time-dependent outward current (iy,)

The description of this current has the same form as for the MNT model, with a
rescaling to account for a extracellular potassium concentration of 5.4 mM rather
than the 2.7 mM used in the MNT model. Thus the equation for i,, becomes

(exp[0.04(Vi +77)] — 1)

b = X108 S 0.04(Von 1 35] (4.58)

where the rate constants for x; are identical to those in Equation (4.42) for the MNT

iy, current shown in Figure 4.16, and the resulting current is shown in Figure 4.18.
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FIGURE 4.18: Beeler-Reuter time-dependent outward current i, .

4. The time-independent outward potassium current (ix,)

This current is again similar to the MNT model, with rescaling also applied to
account for the change in extracellular potassium concentration

exp[0.04( Vi, + 85)] — 1

i, = 0.35|4
b =035 |4 0.08(Vin + 53)] + expl0.04(Vyn 1 53]

Vin+23

0.2
T T P 0.04(V,r 1 23)]

(4.59)

resulting in the graph drawn in Figure 4.19.

Constants

The constants used in the BR model are presented in Table 4.4, and these values have

been used to produce the accompanying diagrams.

4.1.5 Ebihara-Johnson Model

The Ebihara-Johnson (EJ) model was the first to specifically target a single channel

and attempt to quantify its parameters. A series of experiments performed by
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FIGURE 4.19: Beeler-Reuter time-independent potassium current i, .

Constant Value
Cn(uFem2) 1
Eng (mV) 50
ONa (mS - cm™2) 4
gnac (MS-em2) | 0.003
Js (mS - cm?) 0.09

TABLE 4.4: Constants used in the Beeler-Reuter model.

Ebihara, Shigeto, Lieberman and Johnson (1980) obtained voltage-clamp data of the
fast sodium current in cardiac muscle. The model was fitted to the experimental
data, and showed a faster rise in potential during depolarisation, and this model
exhibits a faster sodium current than the BR model. The EJ] model follows the HH
formulation (Hodgkin and Huxley 1952) and is represented by the equation

:LNa - m m3h (vm - ENa) (460)

where gn, is the maximal sodium conductance, m is the activation gate parameter,
h is the inactivation gate parameter and En, is the sodium equilibrium potential.
Spach and Heidlage (1993) gives values of gng = 28 mS - ecm 2 and Eng = 3345 mV
for normal conditions.

The m and h gates obey the standard first order equations with rate coefficients
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FIGURE 4.20: Beeler-Reuter Ebihara-Johnson action potential.
given by

o — 0.32(Vi +47.13)
™ 1T —exp(—Vm —47.13)

Bm = 0.08exp(—Vy/11)

0 if V. > —40 mV
X = B Vm = =3VMV 4 .61)

0.135exp[(—80.0 — V) /6.8] if Viu < —40mV

‘I .
0.13(expl (Vi +10.66)/11.11+1) if Vip > —40 mV

3.56 exp(0.079V,,,) + 3.1 x 10°exp(0.35V,,,)  if Vi < —40 mV

The equation for «,,, was incorrectly stated in the original EJ paper (Ebihara and
Johnson 1980), but appears as shown above in Spach and Heidlage (1993), who cite
a later paper by Johnson as their source (Johnson 1983). This corrected value of
am corresponds with the graph of the function for «,, given in the original paper.
There is no variable corresponding to the j variable used in the BR model because

the experimental results showed no need to include a second deactivation variable.

Spach et al.pair this model of the depolarising sodium current with a repolarisation,
or leakage, current which is linearly dependent on the membrane voltage, and is
identical to the HH leakage current given in Equation (4.20)

it =90(Vm—Er) (4.62)
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FIGURE 4.21: Beeler-Reuter Ebihara-Johnson sodium current and associated gating

variables m and h.

where gr is the leakage conductance, which is the reciprocal of the membrane
resistance. They set E; to the value of the resting potential.

In other simulations, such as that of Pollard, Hooke and Henriquez (1993) the EJ
model is coupled to the BR model as a direct replacement for the sodium current.
When this is done, the resulting action potential looks as shown in Figure 4.20, and
the sodium current and gate variables are graphed in Figure 4.21. The other currents
are very similar to those found using just the BR model.
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FIGURE 4.22: Beeler-Reuter Drouhard-Roberge action potential.

4.1.6 Drouhard-Roberge Model

The Drouhard-Roberge (DR) model was especially constructed by Drouhard and
Roberge (1987) to improve the HH-type formulations to date of the Na* current
in ventricular myocardial cells. Their improvements have ensured that the action
potential upstroke is much faster, and the peak depolarisation is close to the Na*
potential to be more in line with experimental observations. This is similar to the EJ
model in that it can be used as a direct replacement for the sodium kinetics of the BR
model.

The DR model used the HH formulation for the sodium membrane current
(Equation 4.18) with only one inactivation variable h rather than the two of the
BR model, because there was still much uncertainty regarding the existence and
function of the j gate. The rate constants for the gates were fitted as in the other
models described above to obtain the following expressions:

- 0.9(Vyy + 42.65)
1 expl-0.22(V,, +42.65)]

B = 1.437 exp[—0.085(Vy, + 39.75)]
o = 0.1exp[—0.193(Vin + 79.65)]

8 — 1.7
" T+ exp[0.095( Vi, + 20.5)]

Xm

(4.63)
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FIGURE 4.23: Beeler-Reuter Drouhard-Roberge sodium current and associated gate

variables m and h.

They have chosen to use gng = 15 mS - cm 2 and En, = 40 mV as the values for the
parameters in the sodium equation as being representative of the range of values
found experimentally. Similar plots to those shown for the E] model are shown in
Figure 4.22 and Figure 4.23 where the DR action potential and sodium kinetics are
graphed respectively.

A comparison between the BR model, the BR-E] model and the BR-DR model shows
that the BR-DR model exhibits a much faster rise in potential during depolarisation
(\./max is almost twice as large as for the BR-E] model and more than three times as
much as the original BR model) which is much closer to some values reported for
the ventricular cell membrane at room temperature, though a little larger than some
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FIGURE 4.24: Di Francesco-Noble model of the action potential in Purkinje cells.

other measurements. In addition, the peak In,, the peak gng and Vi, qx are somewhat

increased over the other models.

4.1.7 Di Francesco-Noble Model

During the years following the formulation of the MNT model in 1975 and the BR
model in 1977 a large number of experiments were performed which provided a
greater insight into the working of the ion channels in cardiac tissue. Di Francesco
and Noble (1985) constructed a new model of cardiac electrical activity which sought
to incorporate much of this new data and, as the paper states, aims to

“fully integrate the electrophysiological description of gated channels

in the heart with a description of the ionic pump and sequestering

processes” (Di Francesco and Noble 1985, p. 392).
They do acknowledge that their representation of some of the currents are unlikely
to remain the best available for very long, but this model has remained the most

complete of all Purkinje fibre ionic current models to date.

The Di Francesco-Noble (DFN) model is a direct replacement for the MNT model in
its description of Purkinje fibre electrical activity. In particular, it takes into account

changes in interpretation of the ix, system, incorporates more accurate experimental
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data concerning the fast sodium current for Purkinje fibres (Colatsky 1980), and
takes account of some intracellular and extracellular ion concentration changes by
including various ion concentrations as variables and tracking some of the ionic
pumps and exchange mechanisms. In addition, a start is made on accounting
for calcium movement within the cell between the sarcoplasmic reticulum and the

myoplasm.

Ionic currents

The total ionic current is now the sum of up to 12 individual components depending
on the tissue being modelled.

IDN - if + iK + ifK] + ifto + i'b,Na + ib,Ca + Lp + iNaCa + iNa + i'Ca,f + iCa,s + ifpu,lse
(4.64)

These currents are described in more detail in the original paper, and only a brief
description of the important features of each current is given here. 1,5 describes
the applied current.

The model has been implemented as a translation from the OxSoft HEART! package
and used with appropriate constants as specified in the original DFN paper and
other sources for Purkinje cells. The resulting action potential as calculated using
this form of the DFN model is graphed in Figure 4.24.

1. Hyperpolarizing-activated current (i)

This is a Na"-K* current which is the nearest equivalent to ik, in the original MNT
formulation. Contributions by each ion are approximately equal, so that the normal

net reversal potential is around 20 mV. The current is given by
ir = yis (4.65)

where y is a gating variable representing the degree of activation of i; and 1i; is the

fully activated current, and is given by

_ K.
T = ([K]%Kmf) (91x(Vin — Ex) + 0tnalVin — Ena) (466)

1Originally developed at Oxford University



96 IoNIC CURRENT MODELS

10 T T T T T T T
5 —
i
£ 0r
9]
i st
=
=
5 -10F
O
15
_20 | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 16

Time (s)

FIGURE 4.25: The i¢ current described by the DFN model.

where [K], is the cleft potassium concentration, Ky, ¢ is the concentration of the bulk
potassium required for half activation of the current, and gfx and g¢nq. are the
sodium and potassium conductances for the i; channel respectively. Ex and Eng
are the reversal potentials of sodium and potassium, respectively, as in previous

models.

The gating variable y is related to the s parameter in the MNT modelasy =1 —5,
and behaves according to the HH-type gating differential equation (Equation 4.7)
with coefficients

o, = 0.025exp(—0.067(Viy, + 52))
5, —  05(Vim+52) e
Y1 —exp(0.2(Vi +52))

The resulting form of the i; current is shown in Figure 4.25.
2. Time-dependent (delayed) K* current (ix)

This is an outward current which is equivalent to the i,; current from the MNT
model and is controlled by a single gate given the symbol x, and a simple model of
the kinetics

ix = xig (4.68)

where ix is the fully-activated value of ix and is derived from rate theory (Jack,
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FIGURE 4.26: The time-dependent potassium current ix described by the DFN

model.

Noble and Tsien 1983) to give

T = ik o ([K]i — K] eXP(Vm/25)>

0 (4.69)

This time dependent activation gate x has rate constants described by the same
equations as the x; gating variable has in the MNT model. The resulting form of
the time-dependent potassium current is shown in Figure 4.26.

3. Time-independent (background) K* current (iky)

A new equation for this current was developed and is an empirical formulation that
is formulated from a variety of experimental work during the late 1970’s and early
1980’s:
e = T - K¢ _ Vin— Ex
[Kle + K1 1+ exp((Vin — Ex + 10)2F/RT)

(4.70)

The resulting form of the time-independent potassium current is shown in
Figure 4.27.

4. Transient outward current (i)

This current replaced the I, chloride-based current of the MNT model, which was
shown to be flawed. This current is an outward rectifier which is [Cal;-activated,
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FIGURE 4.27: The time-independent potassium current ix; described by the DFN

model.

and which depends on [K],. The inactivation process of this channel was still not
well understood at this stage, and was modelled with a first order equation for a

rate variable 1, so that

i,to - Tifto (471)
where i, is the maximal current given by

0.2+ K], . [Cal; _ Vi + 10 .
Km,to + [K]c Kact,to + [Ca]i 1— exp(—OZ(Vm + ]O))
(K] exp(0.02Vin) — Ko exp(—0.02V,)) (4.72)

1o = 0.28

5. Background sodium current (i Na)
This is a simple background current very similar to ingp of the MNT model
described by

) [Nal, )
lp,Na = mgb,l\la(vm — Ena) +ibch (4.73)

where [Nal, . is a control level of external sodium (usually 140 mM) and iy cn is
a background current due to choline, or some other sodium substitute, and the

conductance gy ng iS set to 0.18 uS.
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FIGURE 4.28: The Na*-Ca?* exchange current inqcq described by the DFN model.

6. Background calcium current (ip cq)

Another simple background current of the same form as iy nq:

:Lb,Ca - gb,Ca(vm - ECa) (474)

7. Na*-K* exchange pump current (i,)

This pump exchanges 3 Na™ ions out for 2 K* ions into the cell producing a net
outward current. The assumption is made that the pump is activated by external K*
and internal Na* by first-order processes, such that

— Kl [Nal;

= . 4.75
e e Km,K + [K]c Km,Na + [Na]i ( )

where K, x and K;,, N are the respective concentrations required for half-activation.

8. Na™-Ca?* exchange current (inaca)

The formulation of this current assumes that ingcq depends solely on the Na* and
Ca’* gradients and the transmembrane potential. The stoichiometry of the exchange
is 3Na™ : 1Ca** producing a net outward current.

iNaCa - kNaCa Sinh((vm - ENaCa)F/RT) (476)
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FIGURE 4.29: DEN sodium current and associated gate variable m and h.

where the reversal potential of the exchange is given by

a aE a ZE a
Enaca = —aCa=N = 4.77)
MNaCa — 2

where nnqcq is the stoichiometry of the exchange. Using these parameters, the
current develops a form shown in Figure 4.28.

9. Fast sodium current (ing)
The DFN model reverts once again to a two-variable model of the sodium kinetics

with new equations for m and h. It is acknowledged, however, that the model does
not represent the slower components of Na* inactivation and recovery. It is also
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assumed that the sodium channel shows a 12% permeability to potassium ions:
iNag = m3hm(vm — Emh) (478)

where the channel reversal potential is given by
RT . [Na], + 0.12[K].

Emnh=—1 4.7
"7 F " Nal + 0.12[K]; ke
and the gating variables m and h are governed by the rate constants
B 200(Vin +41)
o T expl0.1(Vi + 41)]
m = 8000 exp[—0.056(V , + 66)]
§ p ( ) (4.80)

o, = 20 exp[—0.125( Vi + 75)]
8, — 2000
" 320exp—0.1(Vim + 75)]

The resulting current is shown in Figure 4.29 together with the time-course of the
gate variables.

10. Second inward current (is;)

The kinetics of the secondary inward current are still described in terms of two gate
variables d and f, but the time constants for both the activation and inactivation
processes are much shorter than those used in either the MNT or the BR models. It
is debatable whether the slow component of this current, ic, s is present in Purkinje
fibre, and has not been included in the model. The fast component, ic,, of this
current was divided into the individual ion movements of Ca?t, Kt and where

necessary Na™*.
:LCa,f - df(isi,Ca + 1.-si,K + 1.-si,Na) (481)

where constant field formulations for the individual ion movements were used. The
shorter time constants give rate constants for the gating variables as

3 Vo + 24
T —exp(—(Vin + 24) /4)
Vo + 24
Pa= 12exp((Vm+24)/10) 1
(4.82)
s Vo + 34
T exp (Vi + 34)/4) — 1
50
B¢

T T+ exp(— (Vi +34)/4)
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FIGURE 4.30: Changes in intracellular calcium concentration as determined by the
DFN model.

Ion concentrations

Additionally, the DFN model attempted to quantify the changes in several ion
concentrations, as well as the [Cal; of earlier models.

1. Intracellular sodium concentration

The model of change in [Nal; is defined as the sum of the various sodium currents
divided by the intracellular fluid volume:

d[Nal; . : . . . MNaC
dt - = *(‘Lna +lb,Na +1f,Na +lsi,Na +31'p + NaCa

iNnaca)/ ViF 4.83
N aca)/ (4.83)

where V; is the intracellular fluid volume.
2. Intracellular calcium concentration

Changes in [Cal; were first modelled in the BR model, and this process has been
taken one step further in the DFN model, although this model still provides only
a simple model of calcium movement within the cell. The Ca’*" is assumed to be
sequestered by the sarcoplasmic reticulum, and the amount stored here is [Cal.,.
Some fraction of the calcium is transferred to a release store in the junctional SR

([Calye1) before being released into the intracellular space, this release being induced
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by calcium. The concentration of calcium in each of these various stores is modelled,
together with the transfer between the calcium sites and the Ca’t transfer across
the cell membrane via the other ionic currents. These seem to be the minimum

assumptions required to model the calcium transient.

The associated currents are defined as

ifu,p = &up [Ca]i([ca]up - [Ca]up) - Bup [Ca]up
e = (Xtrp([ca]up — [Calyer) (4.84)

_— [Cal}
lrel = Ocrel[ca]rel([ca]{_i_—Km)

where [Cal,,;, is the maximum value of [Cal,,;, and is set to 5 mM, r is the number of
Ca*" ions assumed to bind to the release site (usually 2), and p is governed by a first
order HH-type equation with rate constants identical to those for f (Equation (4.82))
but slowed by a factor of 10. K;;, ¢ is usually set to 0.001 mM. The « parameters are
determined from time constants measured for the movement of calcium from one
space to another.

This results in the change in concentrations being given by

d[Cal,, : .
dt L = (Lu,p - ltr)/Z\/upF
AUt _ iy, — i) 2ol 455)
d[Ca]i . . ZiNaCa . .
dt - *(1si,Ca + ,Ca — m + Tup — Lrel)/zviF

where V,,,, = 0.05V; is the volume of the uptake stores (approximately 5% of the
total intracellular volume) and V., = 0.02V; is the volume of the release stores. The

change in concentration of intracellular Ca*" is shown in Figure 4.30.
3. Extracellular potassium concentration

Assuming a homogeneous K" concentration in a three-compartment model, the

change in extracellular potassium is given by

d[Klc
dt

where [K], is the bulk extracellular K* concentration, P is the rate constant for

= —P([Kl¢ — [Klp) + tmx/VeF (4.86)

exchange (between 0.2 and 1 s, V. is the extracellular space volume, and the total
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potassium membrane flux i,  is given by

imk = k1 +ik + ek + ik + ok — 21 (4.87)

4. Intracellular potassium concentration

This is related to the total K membrane flux.

d[Kl;
dt

— i/ ViF (4.88)

where V; is the volume of the intracellular space.

Extensions to the model

The DFN model was subsequently altered and extended, firstly to describe the
behaviour of the SA node (Noble and Noble 1984) and later to the ionic processes
observed within rabbit atrial cells (Hilgemann and Noble 1987). The Hilgemann
model significantly extended the DFN model in terms of the movement of
Ca®*within the cell, and particularly in relation to the uptake and release through
the sarcoplasmic reticulum.

4.1.8 Luo-Rudy I Model

The Luo and Rudy (1991) model is the next significant update to the BR mammalian
ventricular model. It is known as the Luo-Rudy I (LR-I) model because it is the first
of the two Luo-Rudy models.

The ionic current I;,,, is the sum of six different currents: in, a fast sodium current;
isi, a slow inward current; ik, a time-dependent potassium current; ix;, a time-
independent potassium current; ix,, a plateau potassium current; and iy, a time-
independent background current.

1. ina: Fast Sodium Current. The LR-I model adopts the same activation (m)
and inactivation (h) gate variables as the EJ model, and also incorporates a slow
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inactivation gate (j) as suggested by the BR model. The sodium current has the form
Na = ONa msh] (Vin— End) (4.89)

where gng is the maximum conductance of the sodium channel (given as
23 mS-cm ?), and Ey, is the reversal potential of the channel (which they set
to 54.4 mV). The m and h gates have identical rate constant coefficients to those
given above in Equation (4.61) except that o, has an additional factor of 0.1 in the
denominator in order to provide a realistic activation threshold for this current in a
mammalian ventricular cell. The slow inactivation gate j rate constant coefficients
are given by

0 if Vi, > —40mV
%G =\ _1.2714x100 ex -5
—1. p(0.2444V ) —3.474x 107> exp(—0.04391V ) :
Trexp(0.311 (Vo1 79.23)) (Vi +37.78) if V,y < —40 mV
0.3exp(—2.535x10"7 Vi) :
B, = { (Hep(-0T(Vini32)) if Vi > —40mV
) 0.1212exp(—0.01052V ) V. < -40mV
m

(T4+exp(—0.1378(Vm+40.14)))
(4.90)

2. ig: Slow Inward Current. This current is the same as in the BR model, which has
the form

i = g df (vm — Egi) (491)
where Eg; is given by
Esi =7.7 —13.0287 In ([Cal;) (4.92)

The rate constants d and f are governed by the rate constants in Equation (4.57). The

concentration of intracellular calcium is governed by

d([Cal;)
dt

= —10"*4 + 0.07(10~* — [Cal;) (4.93)

and the concentration is measured in units of mMol.

3. ik: Time-dependent Potassium Current. This channel is controlled by a time
dependent activation gate (X) and a time independent inactivation gate (X;), neither

of which are dependent on [K],.

ik =gk X Xi (Vin— Ex) (4.94)
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where the maximum conductance of the potassium channel gk is dependent on [K],

and is given by

gk = 0.282+/[K],/5.4 (4.95)

X is the inward rectification parameter, and is given by

{ 2.837(exp(0.04(Vi+77) 1) 4/ < 100mV
Xi = "

((Vin+77) exp(0.04(Vin+35))) (496)
1 if Vi, < —-100mV

The rate constants for X are governed by the same equations as for the MNT and BR

models and are given in Equation (4.42).

4. ixy: Time-independent Potassium Current. This channel contains a single inactivation
gate (K1) whose time constant is small enough that it can be approximated by its
steady-state value K1.

k1 = mK1 oo(vm — Bk ) (497)
where the maximum conductance of the potassium channel gx; is given by

g1 = 0.6047+/[K],/5.4 (4.98)

and the reversal potential Ex; is given by

EK] = g In (%IIE]]O> (499)

The rate constants for K1 are given by

1.02

MK 1 ¥ exp(0.2385(Vin — Exq — 59.215))) .10
o 0.49124 exp( Vm*EEL;SrS.AWG) 4 exp( meE]]<(153594.3] ) .
1+ exp(—0.5143( Vi, — Exq +4.753))
and the steady-state value K1, is given by
XK1
Klpg = ———— 4.101
o1 + Bxa ( )

5. ikp: Plateau Potassium Current. This current has been created in order to describe
the contribution of a time independent [K],-insensitive channel at plateau potentials.

ixp = 0.0183Kp (Vi — Exp) (4.102)
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FIGURE 4.31: Schematic diagram of the LR-II model of ionic currents, pumps and
exchangers (derived from Luo and Rudy (19944, Fig. 1)). The sarcoplasmic
reticulum (SR) is divided into two compartments: the network SR (NSR) and the
junctional SR (JSR).

where Eg,, = Ex;, and

1

7488 Vi) (4.103)

Kp =
1 +exp(~ 353

6. iy Background Current. This is an additional current which contributes at plateau
potentials.

i, = 0.03921(V,, + 59.87) (4.104)

419 Luo-Rudy II Model

A subsequent pair of papers by Luo & Rudy (1994a; 1994b) further developed the LR-
I model by addressing some of the issues which were not investigated in the original
model. In particular the LR-I model incorporates a more thorough description of the
processes which regulate [Cal; and the movement of Ca?* through the cell and to and
from the sarcoplasmic reticulum. The various currents that comprise the LR-Il model
are summarised in Table 4.1.9, and show the gate variables associated with each
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Currents Gates Ions Comments
Activn Inact.n

1) ina {m3} h,j} Nat Fast Na*channel

2) icat=1icat {d} {f,fca} Ca’?",Na' K" L-typeCa?* channel
ica,Na +1icak feca ~1/(1+ ([Cal;)?)

3) ik (X2} X} Kt delayed rectifier; gmax ~ v/[Klo

xi is Vin-dependent only

4)  iNnacCa Nat,Ca2* 3Na*:Ca?* exchanger

5) iv =1ix1 +ixp +ip(ca) T iNa,b Ficab +iNak total time-independent current
ik1 {Kq} K+ inward rectifier; gmax ~ v/ Klo
ixp K* plateau K* channel
ip(ca) Ca?* Ca?" pump in sarcolemma
iNa,b Na™ background Na* leakage
icab Ca?t background Ca?* leakage
iNak Na* K* ATP-dep. 3Nat:2K* pump

6) ins(Ca) =ins,Na +1ins,k Na* K* non-specific Ca?* activated

7) Ca’*cycling
irel CaZ* CICR from JSR to myoplasm
fup Ca?t Ca?* uptake from myoplasm to NSR
Heak Ca?t Ca?* leak from NSR to myoplasm
ier Ca?t Ca?* transfer from NSR to JSR

TABLE 4.5: Description of the ionic currents defined by the LR-II model.
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FIGURE 4.32: Action potential from the LR-II model definition.

current and the ions which are involved. A schematic describing the ionic currents
defined by the LR-II model is drawn in Figure 4.31. Henry Liu, an undergraduate
student at Auckland University, implemented this second Luo-Rudy model as part
of an assessed project, and subsequently discovered that the equations provided in
the papers were incomplete, and after some dialogue with the authors the model
still required some intelligent predictions to be made in order to obtain a reasonable
solution. Using values for constants as defined in the paper together with some help
from the authors resulted in the ventricular action potential graphed in Figure 4.32.

Ionic currents in the sarcolemma

The full equations for all of the ionic currents will not be given here, but rather a
brief discussion of each current which indicates how it differs from the previous
LR-I model. The full equations may be found in Luo and Rudy (19944).

1. ing: Fast Na*t current. The formulation of this current is identical to that in the
earlier model in that it describes three gate variables (m, h and j) with identical rate
constants, except that the maximum conductance has decreased to compensate for
the increased reversal potential due to a lower [Na]; which matches observed values

in more recent experiments.
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2. icqy: lonic currents through the L-type Ca** channel. This current is the sum of three
individual currents relating to the passage of Ca*", Na* and K" ions through this
channel in a manner similar to the i; current of the DFN model. The channel is
permeable to these three ions in the ratio of 2800:3.5:1 respectively, and therefore the
largest individual current is ic,. The model also adds a second inactivation gate fc,
in addition to the standard activation gate d and inactivation gate f. The kinetics of
these gates also differs from any previous model to match with recent experimental
data.

3. ik: Time-dependent K+ current. This current now includes an X* dependence on
the activation gate which was suggested as necessary in the earlier model, but was
unable to be successfully incorporated until the ic, current was properly formulated.
The X; inactivation gate is present, however both gates have new kinetics.

4. inaca: Nat-Ca** exchanger. This current has a new formulation from the original in
the DFN model which corrects several deficiencies in its dependence on the various

ions.

5. ix1: Time-independent K* current. This current is identical to the original except
that, again because of the accurately formulated ic,, the maximum conductance can
be increased slightly to a more realistic level.

6. ikp: Plateau K* current. Identical to the LR-I model.

7. ip(ca): Sarcolemmal Ca** pump. An additional mechanism for removing Ca®* from
the cell to help maintain a low [Cal; at rest.

8. inap: Na' background current. Similar to the background sodium current in the
DFN model.

9. icap: Ca** background current. The same as for the DFN model except for a

difference in the maximal conductance.

10. ingk: Na™-K* pump. This is reformulated from the equations in the DFN model
to correctly simulate the voltage dependence of this current on the level of [Nal,.
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The previous six currents are combined into a single time-independent, purely
voltage-dependent current called iy, which is the equivalent of iki(r) from the LR-I
model.

11. is(ca): Non-specific Ca*"-activated current. This current describes a channel which

is activated by Ca*", but is permeable to only Na* and K*.

It is important to note that the i;, chloride-based current has not been included in

this model, presumably still due to its poorly understood mechanisms.

Calcium fluxes in the SR

A much more sophisticated model of calcium movement to and from (and within)
the SR has been developed for this model which is substantially different from the
calcium transport model formulated in the DFN model. It includes an additional
current ijqx which describes the leakage for Ca?* from the NSR to the myoplasm as
well as a detailed model of the process of calcium-induced calcium release.

In addition, the model begins to define the Ca’" buffers in the myoplasm,
though apparently the definition of the kinetics of these parameters (troponin and
calmodulin) is incomplete.

Enhancements to the Luo-Rudy II Model

Zeng, Laurita, Rosenbaum and Rudy (1995) recently updated the LR-II model to
incorporate a number of additional refinements determined following the earlier
paper. There were four main enhancements to the model:

1. The time-dependent K*current ix was shown to be composed of two distinct
component currents. ik, (“rapid”) is a fast activation current incorporating both a
time-dependent activation gate X, and a time-independent inactivation gate R in
order to approximate the fast inactivation process of this channel, and the inward-
rectification property which it has. iks (“slow”) has similar characteristics to the

original ix with a squared dependence on the activation gate X, but as neither



112 IoNIC CURRENT MODELS

inward rectification nor inactivation of this gate were observed, there is no time

independent inactivation gate.

2. The maximal conductance of the plateau K*current was altered slightly to
conform to recent experiments.

3. In addition to the currents through the L-type Ca’*channel, a T-type Ca**current
icq(r)y was added, which is a low-threshold fast inactivation calcium current. It
has a squared dependence on the activation gate b and linear dependence on the
inactivation gate g.

4. An analytical expression was derived to compute Ca*"buffering in the junctional

SR, and in the cytosol under steady state conditions.

The authors do note in the paper that the results generated are specific to the guinea-
pig ventricular cells, and cannot be extrapolated to other animals, as the contribution
of each of the various currents is markedly different.

4.2 Simplified Ionic Current Models

In the above biophysically motivated models, empirical formulae have been fitted
to experimental data in an attempt to define an equation which will exactly replicate
the features of the measured voltage clamp data. This results in a large number
of complicated formulae and a lot of flexibility in their response to variations in
cellular properties such as concentrations or cell size. This flexibility can be traded
for computational speed by formulating simplified models which use a few equations
to describe the gross features of activation and recovery. These simplified models
usually only have a single variable and equation which models the recovery process
together with an function of the transmembrane potential providing a model of
activation.

A simplified model must at least describe the following features to some extent:

Excitability The mechanism by which a stimulus which exceeds some threshold
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value initiates an action potential.

Refractoriness The fact that the heart cannot be reexcited immediately after an
action potential. A subsequent fully normal action potential can usually not

be initiated until well after the membrane regains its resting potential.

Restitution The dependence of action potential duration on the recovery time. If
the time between action potentials is shorter then the second APD will also be
shorter.

Dispersion The dependence of wavefront speed on recovery time. Again, the

wavefront will slow if it is travelling into more recently recovered tissue.

The simplified models defined below model each of these features in varying ways
and with differing levels of success. Naturally, none of them describe the processes
as well as a physiological model does. The models are still very useful because
of their smaller size and greater speed, but cannot be used to model the effect of

chemical or physiological changes to the system.

4.2.1 Polynomial Models

The starting point for many of the simplified models is a polynomial function,
usually a cubic. The suitability of polynomial functions for modelling cardiac
activity is discussed in a paper by Hunter, McNaughton and Noble (1975) in which

various polynomial models are compared to Hodgkin-Huxley-type equations.

A single polynomial function on its own provides a crude model of membrane
depolarisation, but doesn’t describe any features of repolarisation, such as changes
in refractory period. It is therefore only useful for studies of activation or
propagation, but cannot be used to study reentry or other multiple excitation
phenomena. A cubic is often used for modelling propagation because of its
simplicity, especially in comparing with eikonal models which specify only

activation time.

The polynomial function is defined so that it crosses the zero line at three distinct

points. These three characteristic voltages are the resting potential of the cell
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FIGURE 4.33: Form of the polynomial models. The higher order models are scaled

to give approximately the same negative peak current as the cubic model.

membrane V,, the threshold potential Vi, and the peak or plateau potential V.
Without loss of generality, we can rescale all potentials to be with respect to the
resting potential, in effect shifting the curve so that the resting potential is at zero
millivolts. The simplest and most common polynomial model is an order three
(cubic) equation of the form

A% A%
Iion =0gm Vm 1— — 1— — 4.1

where g, has dimensions of conductance (mS - cm 2), and is the slope of the cubic
at the origin, but also scales the entire function.

The cubic model can be extended to use higher order functions, in particular
functions of order five or seven. The formulation of these models is

2 2

Iion(O5) :g_mvm <] - <VVT:) ) <] - <\\//_m) ) (4106)
3 3

Iion(O7) :g_mvm <] - <v7n:) ) <] - <\\//_m) ) (4107)

which also both have zeros at the same threshold and peak potentials as shown in
Figure 4.33.

and
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A piecewise-linear approximation to this cubic form may also be taken by specifying
the derivatives of the function as an angle at the characteristic voltages. Kogan,
Karplus, Billett, Pang, Karagueuzian and Khan (1991) describes this in terms of a
FitzHugh-Nagumo (FHN) model.

There are two assumptions which are made when transforming a complete model
(such as the Beeler-Reuter or Luo-Rudy model) to a simplified form, and these are
summarised in Karpoukhin, Kogan and Karplus (1994). The first assumption is
that the activation gate variables m and h are changing rapidly enough that they
immediately reach their steady state values. This assumption results in a decrease in
the maximal rate of depolarisation. The second assumption assumes that there are
no time-independent components of the outward current, which results in changes
in the early part of the repolarisation phase of the action potential. In their paper,
Karpoukhin et al. derive a general form of a simplified model from the Noble model
based on the above two assumptions, which reduces the complete model to

v
Ys

dVin
m? - _ILTLW(VTTL) - (

TY(Vm) = Yoo(vm) —-Y

k
> IO'LLtW (Vm)
(4.108)

where Ii,,, is an inward current corresponding to Equation (4.26) and I,y is an
outward current corresponding to Equations (4.27) and (4.28). Y is the generalised
recovery variable, and the parameters Y and k control the APD and the shape of
the action potential during repolarisation. The authors then consider the following
models in terms of this general equation, from which each can be derived.

4.2.2 FitzHugh-Nagumo Model

One of the simplest activation models that incorporates a recovery process was
developed several decades ago by FitzHugh(1961) in the United States, Nagumo
in Japan, and Bonhoeffer in Germany, and has become known as the FHN model
(Winfree 1990a). This extends the cubic model described above with the addition of

a recovery variable.

The FHN model has been written in a number of different forms (Winfree 1990a;
Winfree 1991; Rogers and McCulloch 19944). For this model, the transmembrane
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FIGURE 4.34: Action potential generated by the FitzHugh-Nagumo model and

shape of the recovery variable time course.

potential is often normalised so that it lies between zero and one using the relation

p= Ym = Vies (4.109)

Vplateau - Vrest

where the resting and plateau potentials are as in the cubic ionic equation definition
above and u is the normalised potential. The most useful form of the FHN model for
application to the bidomain equation is given by Keener (1988) in which he defines

the ionic current as
Lion(rrn) = cru(u — o) (1 —u) — cov (4.110)

where c; and c, are the excitation rate and excitation decay constants respectively.
The activation portion is again a cubic with zeros at 0, « and 1. « is the activation
threshold value and lies between 0 and J, with typical values of between 0.1 and
0.15. The recovery variable v is updated by the equation

d

d—: —b(u— dv) (4.111)
where b and d are the recovery rate and recovery decay constants respectively.
The resulting form of the action potential and the recovery variable is shown in

Figure 4.34.

Rogers and McCulloch (1994a) have proposed an extension to the standard FHN
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FIGURE 4.35: Action potential generated by the FitzHugh-Nagumo model with

Rogers and McCulloch (1994a) extensions. The recovery variable is also shown.

model in which they rewrite the ionic current as
Liongrrng) = cru(u — o) (1 —u) — couv (4.112)

The rationale for this change is to remove the undershoot of the transmembrane
potential at the end of the action potential as is shown in the graph generated from
this equation in Figure 4.35.

Aliev and Panfilov (1996) have further updated this form of the FHN equation by
modelling the change of the recovery variable as

dv =e(u,v)(—v—ku(lu—a—1))

dt
N (4.113)
e(u,v) = €0+ Wy

U+ 2

where €, 11, 1 and k are constants. The rationale for this was to provide a more
realistic restitution period and allow for reentrant phenomena.

Other modifications are made to the model by Kogan et al. (1991) in an attempt
to modify the restitution curve of the model so that the time course of recovery is
slowed down and the model exhibits some degree of APD shortening for successive
stimuli.
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FIGURE 4.36: Form of the functions iy and i; in the Van Capelle-Durrer model.

4.2.3 Van Capelle-Durrer Model

The van Capelle-Durrer (VCD) model is another simplified model which was de-
veloped independently from the FHN model, yet also follows the same generalised
formula.

Original model

The basis for the VCD model was proposed by van Capelle and Durrer (1980) as a
simple model that displays some of the crucial features of propagation required for
the study of focal tachycardias and circus movement tachycardias. It uses only two
variables, the transmembrane potential V., and an excitability parameter Y. From

their equations we can write the ionic current as
Lion(vep) = =Y — (1 = Y)ip (4.114)

Y is updated according to

vy 1
=7V Y) (4.115)
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where T is the time constant of the activation/inactivation process. The other

functions Y, 1y and i; are given by

;

0 if Vi, < —-80mV

Yoo =141 if Vi, > —60mV

\ (Vin+ 80)/20 otherwise

(54 0.5(Vin+70)  if Vi < - 70mV
11 =<6+ 0425V if Viu > 0mV

\5 + (Vim+70)/70 otherwise

="f+h (4.116)
7.84 4+ 2(Vin+74.3) if Viu < —74.3mV
f=¢-9884+171(V,,+27.8) if V> —27.8mV
asV3 +bV2 + ¢V +d;  otherwise

ar = 3.837854 x 1073

bs = 0.584649
where

cs = 25.32834

d¢ = 235.6256

For anormal activation the action potential and time course of Y take the form shown

in Figure 4.37.

Modifications to the original model

Modifications to the VCD model have been made by Garfinkel (1994) which aim to
make the model more realistic. In particular, it increases the value of \./max to be
more in line with observed values, and it provides an alternative set of parameters
which change the APD slightly in order to mimic an ischemic condition. In order to

achieve this, they make the following changes:

1. Change C to a more realistic one-tenth of its original value.

2. Change f to f* = Kf where K = 4 (this increases \./max).
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FIGURE 4.37: Form of the action potential and recovery variable as generated by the
VCD model.

3. Change T to T* where
Ty i V>0
T = Tz ifY > Ylim
T3 otherwise

which changes the APD and gives restitution to the action potential. Yy is

given as 0.85.
4. Change i to
i if V>0
(APDC)i; if V<0

i] =
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APD | 112ms | 209 ms
T, 0.33 0.5
T, 0.066 0.1
T3 3.31 3.0

APDC 2 1

TABLE 4.6: Parameter constants for normal tissue (APD = 209 ms) and ischemic
tissue (APD = 112 ms)

Activation
Wavefront
® s S; @ |
Refractory
Zone
Recovery
Wavefront

FIGURE 4.38: “S1-S,” stimulus protocol as defined by Garfinkel (1994).

which alters the APD under ischemic conditions.

Values are given in Table 4.6 for a normal APD of 209 ms and an “ischemic” condition
of 112 ms. With these modifications to the VCD model and using the parameter
values given, spiral waves can be induced for the “ischemic” case, but not for the
values given for “normal” tissue. Multiple waves can be created with multiple
stimuli, but even the “ischemic” condition does not lead to a severely fractionated
state with many small spirals.

They give an “S4-S,” stimulus protocol which is similar to an experimental protocol
in order to produce spiral waves. S; is a single short stimulus as shown in Figure 4.38
which produces a single wave. S, is another single stimulus of much greater current,
and is delivered in the refractory zone behind the first wave. Timing and placement
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FIGURE 4.39: Characteristic action potential form generated by the Karma model
for small C,, and large M.

of this stimulus is critical, and this produces a pair of spiral waves in ischemic
tissue only. Further stimuli in similar positions at the back of these spirals produce
additional spirals.

4.2.4 Karma Model

The model proposed by Karma (1993) is a simplification of the original Noble model
which has, according to Karpoukhin et al. (1994), three essential properties of the
Noble model that are not in the original FHN model:

1. The maximal change in transmembrane potential (4¥=) is insensitive to the

change of the slow gate variable n when repeatedly excited.

2. The fast repolarisation period is much longer than the fast depolarisation

period.

3. When repeatedly excited, there is an alternans in the APD.
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The model contains two variables E which is a scaled potential, and the recovery
variable n, where the ionic current is given as

Iion = _vm +

M 2
A— <1> ] 1 — tanh(V,, — 3)] 2m (4.117)
np 2

and the change in recovery variable n is given by

M HVw 1) (4.118)
where H(x) is the standard Heaviside step function, and A = 1.5415, M and ng are
constants. M controls the wavefront sensitivity, and in the limit, where C,, < 1
and M > 1, the front velocity is independent of n and approaches a step function.
The parameter ng controls the APD of an isolated pulse which generally increases
with ng. Typical values for these parameters are M = 30 and ng = 0.507. With
these parameters, a typical action potential is shown in Figure 4.39 together with the

shape of the recovery variable.






Chapter 5

The Collocation Model

Cardiac activation models based on the bidomain framework as derived in Chapter 3
are described mathematically by a set of coupled partial differential equations and
require a time-stepping integration technique which updates the values of state
variables at all points throughout the solution domain at each time step. There
are several such techniques which have been developed for solving general sets of
partial differential equations, but each has some disadvantages for this particular
problem. These techniques are called discretisation techniques because they break
the global problem down into a number of smaller problems by discretising
(partitioning or subdividing) the solution domain into a number of smaller (still
coupled) regions and formulating the equations within each region. Because of this
process, the continuous partial differential equations are not solved exactly, and the
behaviour of the solution may be somewhat different depending on whether the
solution is calculated in a continuous or discrete sense (Keener 1987; Keener 1988).
The other issue is that a continuous differential equation may not be the best
model of propagation because it does not model the discontinuous cellular structure
of cardiac muscle, and it may be necessary to develop a discontinuous partial
differential equation (Plonsey and Barr 1987) in order to model the cell-to-cell
propagation delays more accurately. However, recent papers by Trayanova and
Pilkington (1993) have shown that, for a field stimulation, the effects caused by
including a model of cell-to-cell coupling is negligible in terms of the overall
activation solution, and a continuum model which does not specifically account

for individual cells, though incorporates the junctional resistance in the local
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conductivity tensor, is a reasonable assumption.

Some of the features of cardiac propagation, and especially of reentrant behaviour,
are different to those observed in a continuous excitable media such as the Belousov-
Zhabotinsky chemical reagent (Agladze et al. 1994). This gives sufficient justification
for using a discretisation technique, though care must be taken not to include

additional numerical artifacts in the solution process.

5.1 Existing Solution Techniques

There are three main numerical techniques which are used to integrate a set
of coupled differential equations over a defined geometry — the finite difference
method, the finite element method and the boundary element method. Each
technique has advantages and disadvantages for the cardiac activation problem, and
the first two have been fairly widely used. The boundary element method is not
suitable for the activation problem for reasons explained later. This section outlines
some of the previous use of the other two methods, and shows that, because of
problems which they have in different areas, neither of them are ideally suited to the
cardiac electrical problem. A new technique is then proposed which overcomes the

deficiencies of previous techniques.

5.1.1 The finite difference method

The finite difference method is a well established discretisation technique for solving
general classes of partial differential equations on a regular grid of solution points,
and has been applied to the cardiac activation equations in many studies. The
finite difference method constructs a grid of solution points over the domain of
interest as shown in a two-dimensional example in Figure 5.1. In this example
an irregular domain is covered with a regular grid of solution points at which the
activation equations will be satisfied exactly. In a similar way the time-dependent
component is discretised into a number of time steps and at each time step the

equations are incrementally solved. The domain boundary is approximated on the



5.1 EXISTING SOLUTION TECHNIQUES 127

X X X — X X X X X X X
e T T~
X ¥—A—X X X X X K= e—x X X X X
/ \\
X /( X X X X X X X X X ¥~ X X X
N
/ N
X X X X X X X X %X X X
/ \

\
N XX X X X X X X ox X ox o x ¥t
\ I
XX X X X X X X X X X X X 3 x
\ -
x X X X X X X X > X X
Ay $ h S~ -
X X S X X X X
/
Ax Approximate  Domain boundary
Boundary

FIGURE 5.1: Two-dimensional finite difference grid defined to cover an irregular
domain. Note that solution points do not lie on the true boundaries, but an
approximate rectilinear geometry is defined. Some solution points are not

contained within the region of interest.

grid of solution points, often by determining which points are within the domain
and taking the external boundary of those points. The finite difference formulation
approximates each partial derivative by a finite difference formed from a truncated
Taylor’s series expansion of the variable in terms of values at neighbouring points.
This approximation is accurate to within some truncation error dependent upon
the spacing between solution points Ax and the time step At. Solution techniques
based upon the finite difference method are the easiest to construct and solve, and
consequently the finite difference method is the most frequently used technique for

solving cardiac activation equations.

There are two related forms of the finite difference method which determine the
way in which the differential equations are integrated. The most common of these is
called explicit finite differences in which a forward difference formula is used such that
the value of a variable at a given time is determined explicitly from the values of that
point and neighbouring points at the previous time step, and each solution point
may be updated independent of all other points. This method has the advantage
that it is computationally simple and fast but it requires a very small time increment

in order for the solution to remain stable and accurate. Various Euler and Runge-
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Kutta methods and other predictor-corrector techniques are used to perform the
time integration. Keener (1988) defines one- and two-dimensional explicit finite
difference schemes using a FitzHugh-Nagumo activation model to investigate the
mechanism for the formation of reentrant waves of excitation in anisotropic media.
Papers by Kogan et al.(1991; 1992) illustrate the solution of their modified FHN
model over a two-dimensional 128 x 128 finite difference grid on a massively parallel
computer using an explicit finite difference scheme with a Runge-Kutta-2 integration
in order to look at restitution and unidirectional block due to narrow pathways.
In order to develop a stable solution they required an integration time step size
of 0.025 time units, where each time unit corresponded to 2 ms. One such model
which solved for 500 time units required about 6.5 minutes of computing time on
a Connection Machine 2! using 16,384 processing elements. Courtemanche and
Winfree (1991) construct an Euler finite difference technique which is used on a
400 x 400 point grid with a grid spacing of Ax = 0.25 mm and a time step of
At = 0.025 ms. The more advanced ionic model of Beeler and Reuter was used,
and the solutions were performed on a CRAY-YMP supercomputer?, with 400 ms
of simulated activity requiring 30 minutes of computational time. Panfilov and
Holden (1993) defines a two-dimensional technique which solves the van Capelle-
Durrer equations using an explicit Euler scheme on grids of up to 100 x 100 points.
A three-dimensional simulation of a scroll ring was rewritten in the cylindrical
polar coordinate system, but due to the cylindrical symmetry of this particular
investigation, the problem becomes a two-dimensional problem with a modified

Laplacian operator.

The alternative finite difference technique is called implicit finite differences in which a
central difference formula is used and the resulting algebraic equations are implicitly
coupled at the new time step. This means that the new value of a variable at one
point is additionally dependent on the new values at neighbouring points, resulting
in a dependent set of linear equations. Using an appropriate solution technique
results in a solution which is stable for any time step At, and therefore larger
time steps may be taken during periods in which the values of the variables are
not changing rapidly. By incorporating a scheme for temporal adaption this can be
taken advantage of, and the size of each time step can be computed so that the

most accurate and efficient solution is obtained. The disadvantage with an implicit

IThinking Machines Corp.
2Cray Research Inc.
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METHOD Ts N Tcru Vpeak 0
EM 6 3,001 1,359 1420  0.535
EM-DTAR 6 3,001 558 13.60 0.542
IM 6 115 1,021 13.89 0.543
EB 6 3,001 1,762 13.84  0.542
IB 6 115 3,840 13.89 0.543
EM 500 250, 000 238,520 16.65 0.506
SM 500 2,546 4,848 16.60  0.506
IM 500 179 4,502 16.26 0.504

TABLE 5.1: Comparison of finite difference formulations (adapted from Pollard
et al. (1993, Table 2)). Tg = simulation time (ms). N = number of iterations. T cpy =
total CPU time (s). Vpeak = peak transmembrane potential (mV). 6 = conduction
velocity (ms~1). Methods: “E” — Explicit, “S” — Semi-implicit, “I” — Implicit,

“M” — Monodomain, “B” — Bidomain.

formulation is that the solution matrices are large (though banded) and require more
computational time to construct and solve.

Pollard et al. (1993) compare explicit and implicit solution techniques, together with
a semi-implicit method which alternates explicit and implicit expressions in the x and
y directions at each time step in order to improve the stability of the explicit method
without the more considerable overhead of a fully implicit scheme. They constructed
an 80 x 80 point grid with isotropic conduction and used the ionic current model
defined by the Ebihara-Johnson equations to describe activation and the Beeler-
Reuter equations to describe the repolarisation. An IBM RS/6000 ®> workstation
was used in the comparison, and both monodomain and bidomain activation
models were simulated for 6 ms using the Ebihara-Johnson ionic current model, and
monodomain repolarisation defined by a combined Ebihara-Johnson/Beeler-Reuter

membrane model for a time period of 500 ms. For the explicit technique, a fixed time
step of 2 us was used in order to maintain stability, but the time step was allowed to
vary for the implicit and semi-implicit formulations. Their results (summarised in
Table 5.1) show that there is little difference in the solution values (as measured by
the peak transmembrane potential and the computed conduction velocity) between

SInternational Business Machines Corp.
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the various finite difference implementations. Substantial differences do exist in the
solution times, where the explicit method is similar or faster for a short simulation
of activation only, but requires much more computing time for a longer simulation
of activation and repolarisation. The implicit method takes advantage of the fact
that the solution variables are changing slowly during the repolarisation phase and
therefore a larger time step can be used. An explicit method can be speeded up
by using a spatially adaptive technique to restrict computation to points close to the
activation wavefront. This is shown in the above simulation results by the line “EM-
DTAR”, where DTAR is an acronym for Dynamic Tracking of the Active Region. A
similar method is described later in Section 5.3.4.

5.1.2 The finite element method

An alternative solution method for solving a system of differential equations is the
finite element method which has been widely used in engineering problems involving
a complex geometry. However, the evaluation of element integrals for the Galerkin
method on a structured mesh is a relatively much more expensive process and
probably explains why the finite element method has found little application yet
in modelling myocardial activation. The finite element method (which is discussed
in more detail later in this chapter) discretises the region into small areas or volumes
(rather than the points used in finite differences) and approximates the solution from
nodal values over these elements using interpolation functions or basis functions. Due
to this interpolation between nodes, a finite element mesh can accurately represent
the nature of a complex geometry by defining nodes on the boundary of the region,
and using automatic mesh generation to create the internal nodes. The finite element
method has not been used in modelling cardiac activation to any large extent, mainly
due to the difficulties in constructing such a formulation, and the computational
expense in evaluating the integral equations and assembling and solving the large
matrices generated by the Galerkin finite element technique. Smith and Cohen
(1984) claims to use a low order finite element model but in fact their method
resembles a cellular automata type model with no evaluation of the differential
equations. Sepulveda, Roth and Wikswo (1989) use a finite element mesh consisting
of almost 1000 eight-noded quadrilateral and six-noded triangular elements meshed
from almost 3000 nodes, and solve the anisotropic bidomain equations over a two-

dimensional quarter circle. Their results show excellent agreement with analytic
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solutions with less than a 1% error at all nodes. Unfortunately they give no
indication of the computational effort required for the solution. A review paper by
Miller and Henriquez (1990) discusses the general use of finite element techniques
in the analysis of different forms of bioelectric phenomena, with mention made
of cardiac activation models to that date, and show that finite elements have not
been used significantly in this field. They have been quite successful in solving
other bioelectric problems, particularly in their ability to accurately represent the
geometry, though most models use only low order linear or quadratic basis functions

for interpolation.

A more comprehensive finite element based formulation is described by Rogers
and McCulloch (19944) which constructs a high order finite element representation
of the geometry. In this model the finite element equations are generated by
using a collocation method which satisfies the equations exactly at a set of points,
whereas the traditional Galerkin method solves the equations by minimising an
integrated error. This results in a faster assembly of the solution matrices which
are in turn much sparser than Galerkin generated matrices. Given an optimum
placing of the nodal points, the collocation method produces results which are
comparable with the Galerkin method. A problem with the collocation approach
is that fewer equations are generated than are required to satisfy the number of
degrees-of-freedom of the problem, and complex boundary conditions are difficult
to incorporate. These problems have been overcome by using a Galerkin approach
to generate additional equations to satisfy the boundary degrees-of-freedom. Such a
method is easily applied to two- and three-dimensional problems. Results presented
so far have shown only application to simple two-dimensional meshes (Rogers and
McCulloch 19944; 1994b). The method was implemented on a DECstation 5000/200
workstation* and a Cray Y-MP 8/864 supercomputer > with a transparent socket
link between the two machines. For a 10 x 10 element mesh using a modified
FitzHugh-Nagumo model of the membrane kinetics with a model of the anisotropic
fibre direction fields and conductivities, assembly of the finite element matrices took
approximately 2 seconds on the workstation, factorising the matrices required 5.6
seconds and integration of the equations for a sufficient time to allow a wave to
propagate through the mesh required 38 seconds. On the Cray supercomputer,
the factorisation and integration times reduced to 1.2 seconds and 2.6 seconds,

*Digital Equipment Corp.
>Cray Research Inc.
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respectively.

5.1.3 The need for a new technique

Other traditional solution techniques based on integral equations such as the
boundary element method are not suitable to use for this problem due to the non-
uniform anisotropy of the tissue and the inhomogeneity of the electrical structures,
which the boundary element method is unable to deal with. Both finite difference
and finite element methods are shown to work, though there are advantages and
disadvantages with each. A finite difference formulation of the differential equations
is simple to construct, and the solution of each iteration tends to be very fast.
The method defines a grid of solution points over a region, and holds parameters
and unknowns at each of these points. In general, a grid with even spacings
between solution points is required, which means that it is difficult to account for the
complexity of the geometry of the solution domain. It also makes it difficult, if not
impossible, to obtain a solution for a deforming domain, such as will occur in whole
heart activation models combined with models of the mechanical behaviour. Finite
element models are conceptually more difficult to construct than finite difference
models, because they solve for an unknown potential over an area or volume rather
than simply at a point. This can also be a disadvantage for cardiac problems as
the steep slope of the action potential means that there can be a sharp discontinuity
in potential at a point, where the finite element method would try to smooth this
out. Additionally, when using a Galerkin finite element technique, the effect of
a change at one point in the mesh is instantly applied to all other points in the
mesh given an implicit integration procedure (for an explicit integration scheme the
effect is propagated by one node every time step). In problems such as mechanical
deformation this is what happens physically, but in the cardiac activation process a
change in potential has only a local effect. The collocation finite element approach
overcomes these two difficulties. Finite element models have the advantage that they
can easily model a complex geometry, and therefore could be applied to a deforming
region, and the model by Rogers and McCulloch (19944) could support this although
they have not chosen to do so. This would require a re-assembly and factorisation
of the matrices for each change in the geometry, which may be computationally

significant.
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There are several distinctive features of the cardiac activation problem which need
to be adequately addressed in any model.

e The heart has a complex shape, and measurements of the location of ventricular
wall boundaries (especially the endocardial surfaces) is difficult — Accurate
measurements must be made of the cardiac geometry and the location of
important structures, and incorporated into the model. The mathematical
description of the geometry should be fitted as accurately as possible to the
measured data.

o Ventricular tissue has a branching interconnected network of fibres and sheets which
continually vary in direction and branching ratios throughout the wall — The
orientation of the ventricular microstructural axes must be measured at a
large number of points throughout the heart and an accurate model fitted to
this data. It will be used in the activation model to compute a orthogonal

description of the local conductivity at each point.

e During the activation and repolarisation process the tissue may deform, changing
the geometry and the orientation of the microstructure — The model needs to be
able to cope with a deforming geometry governed by the equations of large
deformation elasticity theory so that state variables are tracked at material

points in the heart rather than at fixed points in space.

e The nature of ionic movements within the cell and the cell membrane is still only
partially understood, with various simplified and biophysically based models of ionic
behaviour providing different levels of accuracy — An appropriate ionic current
model for a given problem should be able to be used according to the accuracy
required and the computational time available, and the solution process not
tied to one particular model but able to incorporate new models as they are
developed.

e Cellular activation has a very small space constant, potentially smaller than cellular
dimensions, and a very small time constant due to the fast rate constants of the gating
variables in the activation currents — In order to be computationally tractable,
a model needs to incorporate available space-averaging and time-averaging
techniques to reduce the size of the problem.

Because of these constraints, a new method for solving partial differential equations
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has been developed which is specifically tailored towards addressing the issues
involved in the cardiac activation problem. This method is called a Collocation-
Derived Finite Difference method because it solves the transmembrane equation
evaluated at distinct points, and draws on strengths of both the finite difference
and finite element techniques described above. The finite element method is
used to efficiently describe the cardiac geometry and microstructure, and is the
most suitable method for describing these quantities for two reasons. Firstly, a
finite element mesh is easy to fit to experimental measurements of geometry, and
provide accurate interpolation of microstructural information. Secondly, models of
mechanical deformation most often use the finite element method for solving the

resulting system of equations.

In order to provide a local behaviour with a small space constant the activation
equations are not solved using the finite element method, but a non-uniform
regular finite difference grid is defined from the finite element mesh at material
points and a collocation method resembling explicit finite differences is used to
solve the monodomain equations. This has the advantage of using a fast finite
difference based solution scheme which does not smooth out the solution over a
volume, yet the grid is defined by the geometry of the problem and will track any
geometrical deformation because the solution points remain attached to the same
physical material point during deformation. If the second extracellular equation
is also to be solved for, then another more appropriate technique is used. The
description of cardiac geometry and microstructure comes from the most accurate
source (Le Grice 19924), and the ionic current model can be chosen from any of those
listed in Chapter 4 according to the features which are required to be modelled.

This method is described in the rest of this chapter by firstly outlining the finite

element method, and then detailing how the collocation scheme is imposed on this

framework.

5.2 The Finite Element Method

The finite element method was developed as a technique for solving a large range

of engineering-related problems for which some mathematical model was defined.
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It has found particular application in the field of continuum mechanics, solving
problems associated with such things as heat conduction, structural behaviour,
elasticity, fluid flow and many other fields. The finite element method works
by discretising the domain of the problem into a number of smaller elements
and approximating the continuous mathematical model in each of these discrete

elements by using a simple interpolation function.

5.2.1 Notation

The description of vector and tensor quantities in this chapter is through the use of
index notation and the Einstein summation convention. A good reference on the
form and application of index notation is found in Kikuchi (1986). The Einstein
summation convention states that where an index appears exactly twice in an
equation, then the variables are implicitly summed over a range defined either by
the context of the equation or by explicitly stating it. Most often the range is defined
by three-dimensional geometry, and thus the index steps from one to three. Where
summation over a range is not required for a pair of indices, parentheses “()” are
used surrounding these indices. There is also no summation if an index is repeated
more than twice, or if two or more pairs of repeated indices are present in each
multiplication. In the following examples, the index notation is on the left and the

expanded form is on the right. In this equation

yx' =)y

i=1.3

=yix! +ynt +ys3x’

the index i is implicitly summed over for the values of 1, 2 and 3. Similarly,

x{i‘(l)y}‘m = Z x{i‘ly}‘l (no implicit summation)
k=13
= xﬁ"lyjll + xglyfl + xg‘lyfl (no implicit summation)

where the index k is summed over, but neither of the non-repeated indices o and
j nor the parenthesised index | are summed over. Arabic letters are generally used
for indices related to a reference coordinate system, and Greek letters are used for

indices that refer to a local material coordinate system.
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5.2.2 Basis functions

Given some domain Q over which some set of equations is to be solved, the
finite element method approximates these continuous functions by discretising the
domain. Let O be divided into a number of elements, where (). is a typical element.
The element is constructed by joining a set of points, called the nodal points of the
element, and the number and position of these nodes depends on the type of element

used. The sequence of nodes in an element define the connectivity.

In order to approximate the function over an element (., the functions are
interpolated between the nodes. Special interpolation functions called basis functions
are used to interpolate some function or field variable over Q. from values specified
at the nodes of the element. The field variable or function may be any quantity of
interest, most often geometric variables (such as x; coordinates) or solution variables
(such as potential or temperature or [Cal;). Basis functions also have the alternate
names interpolation functions or shape functions.

Basis functions can be functions of any form, but are specially chosen with certain
desirable properties. In this thesis, all basis functions are defined by sets of
polynomial functions, distinguished only by the order of the polynomials. Low
order basis functions are used where there is little variation in a quantity between
nodes, and higher order functions are used when the interpolation is required to be
more accurate, or where there are large spatial gradients in the quantities of interest.
Further explanation can be found in Oden (1972).

Linear Lagrange basis functions

The simplest basis function is a linear Lagrange basis function which provides a linear
interpolation between nodes. Consider the one-dimensional element with arc-length
s shown in Figure 5.2 which has some scalar quantity u defined on it, such that
u = ug atnode 1 at the left hand end and uw = u, at node 2. A normalised measure of
distance along the element is introduced, called &, which is defined such that & = 0
atnode 1 and & = 1 at node 2. The mapping between the global x coordinate and

the local & coordinate is determined by the arc-length s of each element, and the
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FIGURE 5.2: A one-dimensional element with nodal quantities u; and ;.

mapping is defined by

dx

=T 1

g = ° G
and therefore

_d&
&= v (5.2)
dx

X = d—aé (5.3)
where $& = { is the inverse of $¥. A linear interpolation (&) of u along the element
is defined as

LL(E,) = \P]LL] + quz (54)

with basis functions (or weighting functions) ¥; and ¥,. These weighting functions
are defined so that 1(£) is satisfied exactly at the two end nodes, i.e. 1(0) = u; and

u(1) = uy, and therefore ¥; = 1 at node 1 and 0 at node 0, and vice versa for W¥,.

L v,

e T (5.5)
R\

W, =¢ d—g =1 (5.6)

These weighting functions are the linear Lagrange basis functions.

Basis functions for domains of higher order dimensionality may be constructed by
taking the tensor product of one-dimensional basis functions. For example, a two-
dimensional element has four nodes as shown in Figure 5.3, and therefore a set of
four bilinear basis functions needs to be constructed where V¥,, is one at node n and

zero at the other three nodes. The interpolation of a variable u is given by

w(&r, &) =W (&, &)wr + Wal&r, E)ur + W3 (&, Ex)us + Wa(&r, E2)ua (5.7)
where the four bilinear basis functions are

Yi(&, &) =(1-&)(1—-&) Yi(&r,&2) = &(1 = &)

(5.8)
Y3(&1, &) =(1—-&)& Wu(&1, &) = &1&
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node 3 node 4
node 1 node 2
0 — @ o
\ \ &1
0 1

FIGURE 5.3: Bilinear element

Three-dimensional basis functions are defined in the same way. For example a

trilinear basis function has 8 nodes with basis functions

Wi(&1,6,8)=(1=&6)1=&)(1 =&) Wa(&,&,8) =& (1 —&)(1 — &)

( ) =( ) ( )
W3(&1,82,83) = (1 = &)&E(T — &) W&, &2, 83) = £:86:(1 = &)
Ws(&1,82,83) = (1 = &) (1 = &2)&3 We(&1,&2,83) = &1(1 = &)&;
W (&1,82,83) = (1 =&1)&8; Ws(&r, &2, 83) = £1E2&3

(5.9)

if the nodes are numbered most quickly in the &; direction and most slowly in the

&3 direction.

If the variable of interest varies more than linearly over the domain, there are several
options. One is to subdivide the domain into multiple elements, each which may be
of differing lengths, and interpolate linearly within each element. Figure 5.4 shows
an example one-dimensional problem where the domain has been subdivided into
three elements of unequal length. A solution variable U is defined over the domain,
with nodal values as shown in Table 5.2. Element (); maps global values of U,

and U, onto local values u; and u,, and then according to Equation (5.4) the linear
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node 1 node 2 node 3 node 4
U, S5 [SE! Uy
Global nodes ® o o ® —
uq uz uq uz uq uz
Local
o—©O o—©O o—©O
Elements 0—&1 0— &1 0— &1
element 1 element 2 element 3
A U,
5 ——
u
47T 4
Solution U u
3+ 3
Variable
] —4
| | | | | |
1 1 1 1 1 =
0 1 2 3 4 5

FIGURE 5.4: Three one-dimensional linear elements with linear Lagrange basis

functions applied to the solution variable U.

Node | Position (x) | U
1 0 5
2 2 3
3 3 25
4 4.5 3.5

TABLE 5.2: Nodal values of the solution variable U.

interpolation of u within the element becomes
u(&) =5(1 - &)+ 3§ (5.10)

and from this we can compute the value of U at any point within element 1 by
transforming to the &-coordinates using Equations (5.1) and (5.2), where the arc-
length of element 1is s = 2. For example, the value of U at x = 1 corresponds to the
value of u(§ = 1/2) which, according to Equation (5.10) is

u(&=0.5) =5(1—-0.5) + 3(0.5)

5.11
4 (5.11)
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node 3

FIGURE 5.5: Quadratic element definition.

as can be seen from the graph at the bottom of Figure 5.4. Similarly, we can construct
expressions for each of the other elements, and thus have an interpolation of U at
all points in the domain. Note that U is continuous throughout the domain, due to
the fact that nodal values are common to neighbouring elements. Continuity of the

solution variable is known as C° continuity.

In some cases it is sensible to use higher order basis functions rather than linear
functions. This reduces the number of elements required, and increases the accuracy
of the interpolation, though the equations used are somewhat more complex. There
are two other basis functions which have been used in this work. The first are
quadratic Lagrange basis functions, which are similar to the linear Lagrange functions,
and the second are called cubic Hermite basis functions, and have a different form with

advantages over Lagrange bases.

Quadratic Lagrange basis functions

Higher order Lagrangian bases are constructed by adding more nodes to each
element, and applying the same rules as for constructing the linear basis. Therefore,
in a quadratic basis, an element is constructed as shown in Figure 5.5 with three nodes
at& =0, =0.5and & = 1. There are three corresponding basis functions ¥;, ¥, and

Y3, where ¥,, is one at node n and zero at the other two nodes. This gives equations

of the form
y
W= (1—&)(1—28) ‘L—E‘ =48 -3 (5.12)
a1 a2 _,
Y, =4E(1-¢) Qi 4 — 8¢ (5.13)
W3 =&(26 1) s _ 48 —1 (5.14)

dE
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FIGURE 5.6: Quadratic Lagrange basis functions ¥, ¥, and ¥3

which are also graphed in Figure 5.6. The quadratic interpolation of a field variable

u over the element is given by
LL(E,) = \P]LL] + quz + \ygug = \Pnll/n (515)

which once again has only C° continuity between elements.

Two-dimensional biquadratic or three-dimensional triquadratic basis functions are
constructed by taking the tensor product of the one-dimensional basis functions in
a similar manner to that shown earlier for linear basis functions. The biquadratic
basis functions are given in Equation (5.16), where the nodal positions are defined
as in the diagram in Figure 5.16b.

u (&, &) =VYau,

(5.16)

Higher order Lagrange basis functions may be constructed with increasing numbers
of nodes, but this quickly becomes an inefficient way of interpolating over a domain,
because all Lagrange functions are only C°-continuous (values are continuous, but

derivatives are not).
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u uz

(82), : (8),
@ @ — X
0 3 1

Node 1 Node 2

FIGURE 5.7: Cubic one-dimensional element, defining both the value and

derivative of the variable at each node.
Cubic Hermite basis functions

A more useful basis function provides not only a continuous interpolation between
elements, but also defines continuous derivatives, which is especially useful when
defining geometrical surfaces. This C'-continuous behaviour is obtained by using
cubic Hermite basis functions which are a new class of basis functions. Cubic Hermite
functions require only two nodes per element, but both the value and derivative of
the field variable are specified at each node.

Consider a one-dimensional element Q. as in Figure 5.7 which has nodes at £ = 0
and & = 1. In order to interpolate values of some field variable u over Q. using a
cubic Hermite basis, four nodal quantities are required. The first two are the values
of u at each node as for Lagrangian bases, and are written as u; and u,. Additionally,
the derivative of u with respect to the local element coordinate & must be defined at

each node, and are denoted by (g—‘g)] and (3—‘5)2 at nodes 1 and 2 respectively.

The cubic Hermite interpolation of u within the element is then given using four
basis functions

w(&) = Y + You, + ¥ (%)l +¥) (%)2 (5.17)
where W9 is associated with the value of u at node 1, ¥§ with the value at node 2, Y]
with the derivative of u at node 1, and ¥} with the derivative at node 2. Thus the
superscript refers to the type of basis function, and the subscript refers to the “local”
node as before. These basis functions have the following properties: ¥ is equal to
one at node n and equal to zero at node 1 — n. % is zero at both nodes so that it
does not weight the derivatives. For the basis multipliers of the derivatives at each

. 1 .
node, V! is zero at both nodes, and d:iy—g‘ is one at node n and zero at the other node.
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FIGURE 5.8: Cubic Hermite Basis Functions.

This gives rise to the equations given in Equation (5.18) and plotted in Figure 5.8.

WO — 1382428 ‘%ﬁ = —6& + 682 (5.18)
W9 = £2(3—28) ‘z—\? = 6§ — 687 (5.19)
Wi =E(E—1)° ‘% =382 48+ 1 (5.20)
W =&2(g 1) ‘% =38 2% (5.21)

One difficulty arises when using cubic Hermite basis functions in practice, and this
relates to the derivative of the solution at the nodes. If neighbouring elements have
different arc lengths, then the value of (%)n will be different in each element for
the same node. It is more useful to define a global nodal derivative with respect to

the arc-length (%) , and then use

du du ds
(a—akw - (a>n (a?)m -22)

where (g-;) is an element scale factor which describes the mapping between s
Qemn

and & at node n for element Q.. This enforces continuity on % between elements

which is more useful practically.

Two-dimensional cubic Hermite basis functions can be constructed using a similar

method as used for the Lagrange functions, except that the cubic Hermite basis
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requires the four quantities listed in Equation (5.23) to be defined at each node,
totalling 16 nodal parameters per element.

W woou g Ou
’ &’ 0&; 0£10&;

(5.23)

The last term is a second-order cross-derivative term which is additionally required
in order to maintain derivative continuity with respect to the &-coordinates. The full
bicubic Hermite interpolation of a quantity u is given in Equation (5.24) using the

nodal parameters and the one-dimensional basis functions.

w (&, &) = WO(ENWI(E2)wy + WO (E)WI(E2)wn
+ W (E) WS (E2)us + WO(E1 WS (E2)us

+ Wi (&9 (&)

N

(), (2
0&;
0
+ W (&)W (E) <a—;>3 + W(E)WO(&,) <Tu)4
0
W (£ W) (£2) (a—;> e, (5) (T‘*) (5.24)
1
(W () (a—“> R W () ( “)
082/ 3 2
+¥)(E W‘(a)( u ) Wl (&)W (£2) < )
1161) %, (62 36,08, ), 1 2\ 3505, .
wewe) (son) +¥iEemE) (sou)
FERS 0&10&; 3+ 2eEi 08, ,

In addition, the scaling factors need to be specified for each & direction according
to the arc lengths s; and s,, together with a cross-derivative scale factor. In order to
ensure C' continuity across element boundaries these scaling factors are required to
be nodally based (Bradley, Pullan and Hunter 1997), and in general are chosen to be
the average of adjacent arc lengths so that the & coordinate is most evenly spaced.
Further explanation can be gained from Hunter, Smaill, Nielsen and Le Grice (1996).

Mixed basis functions

It is often useful to take combinations of the various basis functions in order to
interpolate a quantity of interest most accurately and efficiently. For example, a

quantity may vary quickly in the &; direction, but slowly in the &; and &, directions.
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FIGURE 5.9: Curvilinear &;-coordinate system defined using finite elements.

This is efficiently represented using linear Lagrange interpolation in the first two
directions and cubic Hermite interpolation in the third, and is constructed by
taking the tensor product of the bilinear Lagrange basis functions described in
Equation (5.8) together with a cubic Hermite basis function (Equation (5.18)). This

basis is conveniently referred to as a bilinear-cubic basis function.

5.2.3 Base vectors

A finite element is described in terms of local &;-coordinates, using some set of basis
functions ¥, (&1, &) which require the definition of n nodes per element. Using
these basis functions, we can generalise an interpolation such as Equation (5.4) to an

arbitrary number of dimensions k, and derive a mapping from &;-space to xx-space
xic(&) = Wn(&)xg (5.25)

where x| is the xy coordinate for node n of the element, and an implicit summation
is used over the number of nodes. This mapping defines a curvilinear coordinate
system such as the two-dimensional example shown in Figure 5.9. This two-
dimensional mapping using the bilinear basis functions defined in Equation (5.8)
is determined by Equation (5.25) as

x1 (&1, &) = W1 (&1, &) xq + W2 (&1, E2) xT + W3 (&1, E2) %3 +Wa (E1,82) %] (5.26)
X2 (&1, &) =W (&1, &) x5 + Va2 (E1, &) x5 + W5 (&1, &) %3 +Wa (E1,E2) x5 (5.27)
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We will use this two-dimensional mapping to define further quantities related to the
local coordinate system, although all quantities generalise easily to three (or more)
dimensions as required. Flugge (1972) presents a more thorough derivation of the

various quantities.

Covariant base vectors g; and ¢, tangent at a point to the element coordinates &; and
&, are defined by

d
Lt (5.28)

0 &,

and locally define the coordinate system. Using the finite element mapping
in Equation (5.25) then the relationship between global coordinates and local
coordinates is

ox Y,
. ; T (5.29)

A set of contravariant base vectors g* are defined to be orthogonal to g; by
g9, =5 (5.30)

and are an alternative measure of the local coordinates as shown in Figure 5.9. Note

that g' is orthogonal to g, and vice versa.

Figure 5.10 shows a vector quantity u which may be defined relative to the local
coordinate system by either using contravariant components u' relative to the
covariant base vectors g;, or by using covariant components 1, relative to the
contravariant base vectors gl

u=u'g, =wg" (5.31)

5.2.4 Metric tensors

The relationship between covariant and contravariant components of a vector is
given by the metric tensor which is a measure of the incremental physical distance
associated with the &;-coordinates. Covariant and contravariant components of the

symmetric metric tensor are obtained from the inner products of the base vectors by



5.2 THE FINITE ELEMENT METHOD 147

&2
1
u 1
AN

N |
N |

2
N u=g,

y - m| -
S 1 I
N u 91 1 £1
s |
N
N 1 2
N |u-29
AN
N |
A 1
1Y I
wgs Ny |
N I
AN

N 1
N |

N
N |
\ 1
A
X\

FIGURE 5.10: Description of a vector u in terms of vector components and base

vectors.
the equations
g = go-g — OxOx
Y i Y 0&; 0 E,j (5.32)
gy = gt-g = 0&: 0&;
an an

This gives the relationship between between the covariant and contravariant

components of a vector u as
ut = gi"uj- and u; = gijy; (5.33)
and similarly the relationship between forms of the base vectors is given by
g'=gYg; and g; = gyg; (5.34)
The metric tensor derives its name from measuring the physical distance ds?
associated with incremental changes d&! and d&? in the &;-coordinates
ds? = dxedxie = gyyd&ldéE)

= gnd&'dE! + g12dENdE? + g1dEFAE + g dEPAE?

(5.35)
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For skewed cartesian &;-coordinates subtending an angle «, this reduces to the cosine

rule for triangles

(ds)? = (d&")? + (d&?)? + 2 cos «xdé'dE? (5.36)

5.2.5 Measures of curvature

ou

The partial derivative of a scalar quantity u with respect to the &;-coordinate is 3

)
irrespective of the nature of the coordinate system. However, the partial derivative
of a vector u is dependent upon the coordinate system and must consider the change

of the base vectors with the &;-coordinate. The covariant and contravariant forms are

ou _ ou'g; auig _I_uiagi
0E; o0& g7 0§ (5.37)

owgt 0wy i og

g, 059 M3

where gg? and g—g_l are vector quantities. The components of this vector projected onto
) )

the base vectors g, are called Christoffel symbols and denoted I'{ by the relationship

09; _ ok
a—Ej = I50 (5.38)

and are a measure of the curvature of the &;-coordinates. If the &;-coordinates are
rectangular cartesian, then the base vectors are constant and orthogonal, and these

partial derivatives and the Christoffel symbols are all identically zero.

Substituting Equation (5.38) into Equation (5.37) gives

ou out

— =__q: irk
aaj aE,] gl+u 1,]gk
ouk .
_ (a—a_ i wrg;) 0. (5.39)
)
=u"l;gy
where
LI
wFy = S Tk (5.40)

0, Y
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are called the covariant derivatives of u*. Using a comma to denote partial

differentiation, we can write
u,;=u“g, where u";=u*;+u'lT§ (5.41)

Alternatively, using the contravariant base vectors and the covariant components of
u, we have

u,; = LL~L|]~gi where u—i|j = Uiyj *U«kri]; (5-42)

The Christoffel symbols can be calculated by taking the inner product of g;,; with

the contravariant base vectors g~

5= 0.9 (5.43)
where
aZXk
=Tkg, = —— i 44

Note that the partial derivative of a scalar is identical to its covariant derivative
Uu,; = uli. Also, the metric tensor may be used to define the contravariant derivative as

ul' = ul;g".

5.2.6 Reference coordinate systems

The nodal points of a finite element mesh need to be defined with respect to some
reference coordinate system. In order to efficiently define the nodal positions one of

a variety of coordinate systems can be used.

The rectangular cartesian coordinate system

In two dimensions (2D) , orthogonal rectilinear axes x and y are defined, and an
additional orthogonal axis z is defined in three dimensions (3D) . In the cardiac
model which we use, the axes are defined so that the x-axis coincides with the
central axis of the heart and passes through the intersection of the aortic and mitral
valve rings, and through the apex of the left ventricle, and is therefore defined to be
positive in the downwards vertical direction. The y-axis passes through the centre

of the right ventricle, and the z-axis is defined to be orthogonal to those two.
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(A) 2D: coordinates r and 0 (B) 3D: coordinates 1, 6 and z

FIGURE 5.11: Definition of the cylindrical polar coordinate system.

The cylindrical polar coordinate system

A 2D cylindrical polar coordinate system defines each point in terms of a radius r
and an angle 6. These values are related to the rectangular-cartesian (r.c.) values by
the equations

T=4/Xx%+y?

6 — tan ! <%> (5.45)

and inversely

X =T1cos0 (5.46)
y =r1sin0 .

In 3D, a linear z axis identical to that in r.c. coordinates is added, and the
geometrical representation of both 2D and 3D is shown in Figure 5.11. When
used in modelling the heart, because of the orientation of the heart with respect
to the cartesian coordinate system, the x-axis is vertical, and therefore the mapping
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FIGURE 5.12: The cardiac prolate spheroidal coordinates (A, y, 0)in relation to the

r.c. coordinates (x,y, z), where d is the focus of the prolate spheroid.

between cartesian coordinates (x,y, z) and the polar coordinates (x, ,0) is given by

X =X
Yy =T1cosH (5.47)
z=rsinb

The prolate spheroidal coordinate system

It is more convenient to use a prolate spheroidal coordinate system (as shown in
Figure 5.12) when modelling cardiac geometry. This is because a reasonable first
order approximation (a confocal ellipsoid) to the left ventricle may be obtained with
a single element. Accurate solutions to simple problems are easy to compare to
analytic solutions to verify the accuracy on simple meshes that are a similar shape
to the cardiac model. In addition, the problem of fitting a surface to measured data
points is simplified if the fit is performed in prolate spheroidal coordinates, and
becomes a linear problem rather than the much more complicated non-linear fit in r.c.
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coordinates. The prolate spheroidal coordinate system defines a curvilinear radius
A and two angles p and 0. The relationship between prolate-spheroidal coordinates
(A, i, 8) and r.c. coordinates (x,y, z) is given by:

x = dcosh A cos
y = dsinh A sin pcos 0 (5.48)

z = dsinh Asin psin 0

where “d” is the focus position on the x-axis, A is the radius, and p and 0 are angles as
shown. Two additional benefits of this system become obvious. Firstly, it becomes
possible to use lower order basis functions for describing the parameters 1 and 6
while still retaining a high order cubic Hermite basis for A which varies much more
over the surface. Secondly, the focus parameter d provides a convenient means of
scaling the overall size of a heart.

5.2.7 Material coordinates

The nature of the cardiac microstructure is inherently orthotropic and inhomoge-
neous. Equations describing activation contain terms which depend on the local
conductivity tensor, and therefore a model of the local microstructural orientations
is required. The definition of the diffusion term in the bidomain equations assumes
that conductivity can be specified in particular directions within the tissue.

The heart model which is used incorporates a set of three axes which reflect the
microstructural orientation at any point in the ventricular myocardium. These define
a tensor quantity % which describes the change in material parameters with respect
to the reference coordinate system. These are the direction cosines of the material
coordinates at a given point.

One-Dimensional Elements

For one-dimensional elements, there is no concept of a directional conductivity, and
the propagation direction is aligned with the element. Thus the direction cosine
simply relates the element orientation to the global (x,y, z) coordinate system.
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For elements defined in rectangular cartesian coordinates, the direction cosines are

aXi
0v; 0&;

(5.49)

The cylindrical-polar coordinate system defines coordinates in the (r, 6, z) space as
given by Equation (5.46) and the coordinate derivative transformation is given by

2 = icose—rsime—

08, 09§, 0&;

oy or 00

— = —5sin0 + rcos0— 5.50
0§ 0§, 0&4 =)
0z _ 0z

08, 09§,

and the same equations above are used as for the r.c. case.

Two-Dimensional Elements

For two-dimensional elements, we can introduce the concept of a fibre angle «. This
is defined at each point within the geometry as the angle at which the fibres are
aligned relative to the local & coordinates. The local element &;, coordinates are

oriented at an angle ¢ to the global (x,y) coordinate system where

an (2900
¢ = tan (a& aE]) (5.51)

and the direction cosines come from the projection of the sum of these angles onto

the global (x,y) coordinates:

3 cos(x+ ¢) sin(fa+d) 0
a; = |—sin(x+ ¢) cos(ax+ d) O (5.52)
' 0 0 0

By definition, the two directions are orthogonal while in an undeformed state, but

as the material deforms, the material coordinates may become skewed.
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FIGURE 5.13: Definition of the wall coordinate system vectors (f, g, h) with respect

to the finite element material coordinates (&1, &2, &3).

Three-Dimensional Elements

In order to describe cardiac microstructural information it is necessary to define two
coordinate systems. The first is the microstructural material coordinate system which
is defined by the orientation of the fibres and sheets at a point in the myocardium.
The coordinate system is represented by the base vectors (a, b, c), where a is the
fibre axis and is defined to be aligned with the local fibre direction, b is the sheet axis
and lies perpendicular to the fibre axis in the plane of the sheet, and c is the sheet-
normal axis defined to be normal to the plane of the sheet. Therefore, by definition,
the microstructural material coordinate system is defined to be orthonormal in the
undeformed reference state (equivalent to zero ventricular transmural pressures)

though under deformation the axes are in general non-orthogonal.

The second coordinate system is the wall coordinate system defined by orthonormal
base vectors (f, g, h) which are defined in terms of finite element material coordinates
(&1, &2, &3)as shown in Figure 5.13. The &; coordinates are in general non-orthogonal,
but it is more useful to define other properties with respect to an orthonormal
system. The first vector f is defined to coincide with the local &; coordinate
direction at a point. The second vector g lies within the (&;, &,) tangent plane and is
perpendicular to f, and not necessarily aligned with &,. The last vector h is defined to
be normal to both f and g as h = f x g to ensure that the wall vectors are orthonormal
and form the basis of a right-handed coordinate system.
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A series of three successive coordinate rotations of (a, b, ¢) specifies the transforma-
tion of the microstructural material components of the fibrous-sheet vectors into wall
coordinates.

Firstly, (a, b, c) are rotated about the fibre vector, a, into (a, b’, ¢') where b’ lies in the
(&1, &2)-coordinate plane. The angle between b and b’ is referred to as the sheet angle,
Y. A positive sheet angle represents a right-handed (anti-clockwise) rotation about a
from b’ to b. The associated coordinate transformation is expressed mathematically
in Equation (5.53).

a 1 0 0 a
b'| = |0 cosy —siny| |b (5.53)
d 0 siny cosvy C

Secondly, (a,b’, ¢') is rotated about the b’ axis into (a’,b’, h) as a’ now also lies in the
(&1, &2)-coordinate plane. The angle between a and a’ is referred to as the imbrication
angle, 3. A positive imbrication angle depicts an anti-clockwise rotation from a’ to a

about b'. Equation (5.54) defines the coordinate transformation.

a’ cosp 0 —sinf| |a
b|=| 0 1 0 b’ (5.54)
h sinf 0 cosp d

Lastly, (a’, b’, h) is rotated about h into (f, g, h). The angle between a’ and f is referred
to as the fibre angle, x. This coordinate rotation is defined in Equation (5.55).

f cosx —sinx Of |a
g| = |sinad cosa Of |b (5.55)
h 0 0 1 h

In a mathematical model the fitted microstructural directions are stored with respect
to the finite element coordinate system so that they deform appropriately under
ventricular deformation, and it is useful to construct the microstructural material
vectors at any given point from these. This is achieved by firstly constructing
the wall vectors, (f, g, h), from the finite element material coordinates, (&;, &;, &3),
and subsequently transforming (f, g, h) into (a, b, c) using interpolated fibre (x),
imbrication () and sheet (y) angles. Equation (5.56) defines this coordinate
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transformation, which consists of the inverse operations to those described in
Equations (5.53)—(5.55), performed in reverse order.

a 1 0 0 cosp O sinf cosx sina Of |f
b| = [0 cosy siny 0 1 0 —sinx cosx Of |g
C 0 —siny cosy| |—sinp O cosf 0 0 1| |h

(5.56)

This brief outline is expanded more fully in a paper by Le Grice et al. (1994) and
turther again by Hunter, Smaill, Nielsen and Le Grice (1996) and Nash, Sands,
Bullivant and Hunter (1996).

5.3 Definition of the Collocation-Derived Finite Differ-
ence Method

This finite element framework, which has been developed in the previous sections,
is useful for describing the geometry of a problem. However, as has been outlined
in Section 5.1.3, the finite element method is not an ideal scheme for solving the
activation equations. This has led to the development of a new technique which
is called a Collocation-Derived Finite Difference method. This method is based upon a
finite element framework, but possesses some advantages over it. The collocation
method uses a finite element mesh to accurately describe the geometry of the
solution domain, and to solve equations of motion when a deforming model is
required. A grid of solution points is defined on top of the mesh, and collocation
equations satisfy the equations exactly at these collocation points. Where a bidomain
model is being solved for, a finite element formulation is used for the additional
equation. In this section the formulation of the collocation method is described, and

for illustration purposes a simple four element two-dimensional mesh is used.

5.3.1 Collocation point definition

The collocation grid is constructed using the basis functions which describe the finite

element mesh. Each grid point is defined at some &; position within an element, and
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FIGURE 5.14: Creation of collocation points at even & spacings from a finite element
mesh. (a) 9 grid points are defined in the &1 direction, and 7 points in the &,
direction within each element. (b) The collocation grid - a curvilinear regular grid

with uneven spacing of grid points.

local metric values are obtained from the element basis functions at that point. Either
Equation (3.11) or Equation (3.12) can be solved for on any regularly connected grid
with arbitrary spacing between grid points, though all grid points must lie within the
finite element mesh. For convenience, we place the grid points at equal &; spacings as
shown in Figure 5.14. A necessary condition is that we have a regularly connected
grid which is one in which each grid point (except a boundary point) has a set of

unique neighbouring points in each of the &; directions.

As shown in Figure 5.14, a different number of grid points may be defined in each &
direction, in this case 9 points in the &; direction and 7 points in the &, direction,
totalling 221 grid points in this four element mesh. Note that although points
are defined on element boundaries (£ = 0, 1) duplicate points from neighbouring

elements are removed so that there are no coincident grid points.

The microstructural fibre orientation is defined over the mesh, as shown in
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FIGURE 5.15: Definition of material coordinates from fibre direction. (a) Fibre
directions interpolated from nodal values using basis functions. (b) Local material

coordinates vy aligned with local fibre direction and v, defined orthogonal to v.

Figure 5.15a. For the mesh illustrated, a fibre angle of 10° is defined at the lower left
corner, 35° at the lower right corner, 30° at the upper left and 47° at the upper right.
The fibre angle « is defined relative to the &; coordinate as shown in Figure 5.15b.
Local material coordinates are defined at all collocation points by interpolating the
nodal values using the element basis functions. v; is aligned with the fibre direction,
and v, is defined to be orthogonal to v; in the global (x1, x2)-coordinate system. In
three dimensions, v, is aligned with the sheet direction (still orthogonal tovy), and v3
is defined to be orthogonal to both v; and v,. The conductivity tensor o is assumed
to be diagonal in the material coordinate system, i.e. the principal directions of
conductivity are the material axes. The tensor therefore has three components: o
in the fibre direction, o in the sheet direction, and o, in the sheet-normal (or cross-

sheet) direction.

The metric quantities gij, g% and T'§ are computed from the values of 3 at each
point. The grid is regularly connected, so that every point has eight neighbours in
two dimensions and 26 neighbours in three dimensions, but, unlike a conventional
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finite difference scheme, the spacing between grid points may be irregular or
skewed.

5.3.2 Solution method

This grid of collocation points provides the framework on which the bidomain
equations, Equations (3.9) and (3.11), may be solved. The collocation scheme for
solving Equation (3.11) is described first, and is essentially the same if the problem
is formulated as a monodomain problem, with all references to the extracellular
potential being ignored. The solution of Equation (3.9) uses a different approach,
and is discussed in Section 5.3.2.

Equation (3.11) may be rewritten as

0V

V- (Giv(vm+ d)e)) = Am <me

+ Iion) - Is (557)

and therefore, for simplicity, this section is written so that it refers to both the
bidomain and monodomain formulations with the symbol u used to refer to the
potential, such that u = V,,, + ¢, for the bidomain formulation and u = V,, for the
monodomain formulation. The left hand side of the equation is referred to as the
diffusion term as its form is the same as that of a diffusion equation. Due to only
a single conductivity being used in either case, that of the intracellular domain, the
conductivity tensor in this section will be referred to simply as o in order to reduce

the number of subscripts required.

This conductivity is defined as a diagonal tensor defined in terms of microstructural
material coordinates, that is, a conductivity is specified in the fibre direction, and
additional conductivity values defined in orthogonal directions in the undeformed
state, one in the plane of the sheet, if working with a three-dimensional preparation,
one in a direction orthogonal to the first two. These microstructural axes are not
required to be aligned with the elemental £ coordinates, and under deformation the
material axes may become non-orthogonal. If we use the symbol ¢’ to represent the
diagonal conductivity tensor defined in terms of the microstructural axes (where &

and 3 range over the number of material axes), then the mapping from the material
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coordinates to the local £ coordinates is given by

aEyi %OJ“
Ovx JE, B

oy =

(5.58)

where o} is in general a fully populated matrix, and where i and k range over the
number of elemental material coordinates.

In addition, the full conductivity tensor oi may vary with &; over the domain, and
this variation needs to be accounted for in the computation of the diffusion term.
Using the metric components defined in Section 5.2.4 this term is rewritten as

V- (oVu) = (oku,) ‘j g’k

= [(O'iu,i) ¥ —F&] (G%u,i )] gjk (559)
= (o-lioj WU,i —|—0']i<u,ij _FIE] G.{u)i ) gjk

and in this form, it is defined in terms of the material coordinates, and is therefore
independent of the reference coordinate system, and of changes in geometry due to
deformation or contraction.

Combining Equations (5.57) and (5.59) and rearranging results in an equation for the
incremental change in transmembrane potential at a point given some small time
step At

At 1 . : . :
Avm = C— <_Iion + A— [(O-Ilo]' u,i —|-0']l<u,ij _rlljo-{uwi) g]k + Is]) (560)
where the metric values and diffusion tensor values and derivatives can be
computed once for a given geometry, and only the first and second derivatives of
the potential u must be computed at each time-step.

The metric values required (I}; and ¢’*) are computed using Equations (5.32)
and (5.43) from the basis function information defined by the finite element mesh,
and this is one of the reasons for deriving the collocation grid from a finite element
mesh. The local derivative of o} with respect to &; is computed by taking first order
finite differences about a point, in a similar way to Equation (5.61). Using this
method, different conductivities may be specified at each point, allowing for easy
definition of cardiac tissue exhibiting some degree of activation block.
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FIGURE 5.16: From the 9 neighbouring collocation points shown in (a), a local

biquadratic element is defined in (b).

Collocation scheme

Because of the irregular spacing within the grid, a traditional finite difference scheme
will not work with the collocation grid. However, we can apply the method
illustrated in Figure 5.16. At some collocation point not on the boundary of the grid
(an internal collocation point, shown shaded in black as point 5 in Figure 5.16a), we
take the eight neighbours of that point and form a 9-noded finite element centred
on that point as shown in Figure 5.16b, and use biquadratic basis functions ¥,
as defined in Equation (5.16). This local element is not the same as the finite
element from which the collocation grid was derived, but is used simply to discretise
Equation (5.60) at a point. For a three-dimensional grid, we take the 26 neighbours
and use triquadratic basis functions to form a local triquadratic element, but the
procedure is identical. Note that the microstructural axes, which were defined to
be orthogonal in the global coordinate system, become non-orthogonal in the local
element coordinates.

Using this biquadratic element, we can compute the derivatives u,; and u,;; required
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tfor Equation (5.60). The equations for the central point are

Us,1 = Us — Uy

Us,2, = Ug— U

Us, i1 = 4{ug — 2us + uy) (5.61)
Us,2 = 4(ug—2us +uy)

Us,12 = U — U7 — U3+ Uy

These computations are equivalent to taking finite differences about point 5 in
the local coordinate system. Using an explicit forward Euler solution scheme,
Equation (5.60) is solved at a given time step for all internal collocation points.
Computationally, the most expensive term to calculate at each step is the ionic
current Ii,,,, which may be chosen from any of the ionic current models presented in
Chapter 4.

The size of the time step is governed by the stability criterion for the explicit Euler
solution technique used. As shown by Pollard et al. (1993) the stability threshold for
this method is proportional to

At o (AX? + Ay + AZ2) (5.62)

which places severe restrictions on At when a high spatial resolution is required.
Use of a semi-implicit technique significantly improves the stability threshold
and is a possibility for use where a high density of collocation points is desired.
Other methods will give even better convergence, though at some expense of the
computational time. Multigrid solution methods are an obvious choice, with other

possible techniques including a wavelet solution method.

Boundary conditions

Values at grid points on the boundary of the domain are solved for using a separate
technique to that used for the interior points due to the fewer neighbouring points.
The intracellular domain is effectively surrounded by a non-conducting medium,
and therefore a no-flux or Neumann boundary condition is applied at each point
on the boundary of the domain. In the solution process, the boundary points are
updated at each time step after new values for all the internal points have been

computed. For an orthogonal geometry, the no-flux boundary condition can be
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(a) (b) (©

FIGURE 5.17: No-flux boundary condition implementation. Point 0 is the boundary
point and points 1 and 2 are the internal points as given in Equation (5.63). (a) Edge

boundary condition. (b) and (c) 2D corner boundary conditions.

written as

4LL] — Uy
Uy = 73

where grid point 0 is the boundary point and grid points 1 and 2 are internal points

(5.63)

perpendicular to the boundary at point 0 as shown in Figure 5.17. This approach
generalises to three dimensions with more possible variations of the number of
neighbouring points. Current may be applied at the boundary by defining a specific

flux rather than enforcing zero flux.

When the solution domain is non-orthogonal, Equation (5.63) does not exactly give
zero flux on the boundary. In a more general case, the no-flux condition is derived

as

Ozau

on
- Vu-
wen (5.64)
= ulnt

u,;nt

where n = n'g; is the vector normal to the boundary. Any error introduced by using
the approximation given in Equation (5.63) is present at a boundary point only as
the wavefront passes that point, and is proportional to the skew in the geometry;
that is, the angle between the elemental £ direction and the normal n. A worst-case
situation exists when a step wavefront is moving directly along a boundary at 1 grid
point per iteration, and for a severe skew of 45°, the boundary value computed using
Equation (5.63) leads or lags the wavefront by a single time step. Additionally, the

previous time step (in which u; is zero and u, is maximal) results in a maximum 33%
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error. At all other times the value calculated from the simplified boundary condition
is accurate. All simulations performed for this thesis would exhibit smaller errors
than this worst-case scenario, and Equation (5.63) has been used to describe the no-

flux boundary condition in all instances.

Integrating the bidomain equation

The above methods are sufficient to solve the monodomain formulation, however
the complete bidomain model contains an additional equation, Equation (3.9), which
is quasi-static rather than time-dependent. It is possible to solve the complete
system of equations (the transmembrane equation and the extracellular equation:
Equations (3.9) and (3.11) respectively) as a coupled system, as is done by Pollard
et al. (1993), using an explicit or implicit solution technique. We chose not to couple
the equations together in order to retain more flexibility in the methods by which
the equations were solved and the time-scales appropriate to each equation. In this
case, the extracellular equation is being considered to be an update equation which
updates the extracellular potential to match the computed transmembrane potential.
The equation is solved subsequent to the transmembrane equation, and therefore the
left hand side of Equation (3.9) is already known. It can therefore be rewritten as a

Poisson equation

V({014 0)Vde) = f (5.65)
where the source term on the right hand side

f= V- (0:VVp) (5.66)

is known.

In many cases, the solution of the activation wavefront position and the value of the
transmembrane potential is unchanged whether or not the extracellular potential
is computed. This allows us to only compute the extracellular potential when it is
required, which is a good reason for not coupling the two equations together. One
of the main requirements for the extracellular potential is that it provides the source
for a model describing the electric field within a torso and on the body surface. This

model is often solved using either a finite element method or a boundary element
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method, or a combination of both (Pullan, Bradley and Hunter 1993b; Pullan, Bradley
and Hunter 1993a), for the governing Laplace’s equation in three dimensions

V2ho =0 (5.67)

Because the geometry of the bidomain problem is defined already using a finite
element mesh, our initial intention was therefore to use the finite element technique
(Zienkiewicz and Taylor 1994) as the solution method for the extracellular potential.
This would provide an easy coupling to the torso model, and in fact the solution
for the extracellular and the extramyocardial domains could be achieved using a
single coupled solution process. The implementation of this method is relatively
straightforward, and the bidomain equation could be solved using a 3 Gauss
point per & direction integration scheme. However, it was soon realised that the
extracellular potential varies on the same scale as the transmembrane potential as
they are in fact related by their second derivatives, and the resolution of finite
elements required would need to be much greater than needed for defining the
collocation grid. This is an inefficient use of resources for this problem, and negates
much of the philosophy behind using only as many finite elements as needed to
describe the mechanical deformation of the geometry, and constructing a collocation
scheme from that.

The alternative is to use another solution technique which is more applicable at
the small scales needed. An obvious choice is the multigrid technique (Briggs 1987)
which is a very fast iterative solution technique which uses a hierarchy of grid point
refinements to approximate the solution and reduce the errors as it moves through
a range of grid densities. The Poisson equation is particularly suited to a multigrid
technique, and we have found in other studies that anisotropic conductivities of the
order of 10:1 do not pose a problem. This technique has the advantage that the
same set of grid points used to solve the monodomain equation may be used in the
solution of the bidomain equation.

The main concern which dictated the method which we used at this time was the
ease of coupling to the extramyocardial solution (or torso solution). The solution
scheme we use for this problem is a combined finite element-boundary element
scheme (Pullan et al. 1993b; Pullan et al. 1993a), and therefore coupling to a finite
element bidomain solution scheme for the extracellular potential was much more
convenient. Using this method, the extracellular and extramyocardial potentials

could be solved for simultaneously using a coupling between different solution
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regions. Coupling a multigrid scheme to the boundary element scheme would be
much more difficult, but there are advantages in terms of spatial resolution which

the multigrid scheme provides, and this will need to be considered in the future.

5.3.3 Tracking a deforming geometry

There are many instances when a deforming geometry becomes part of the problem,
due either to an imposed deformation or due to the contraction process. This
deformation is easily tracked (or computed) using the finite element mesh, using
appropriate equations to describe the deformation. The collocation grid is then
redefined from the new nodal positions according to the same original mesh, in
the same way as described in Section 5.3.1, along with new measures of the metric
variables. Because the finite element nodes are affixed to material points, the new
position of each collocation point corresponds with the same material point prior
to the deformation, and therefore the state variables carried at that point apply
to the same physical region of tissue. The material coordinates may change as a
result of the deformation, which means that the relationship of the diffusion tensor
to material coordinates must be updated. In general the mechanical deformation
occurs on a much slower time scale than the electrical activation, and therefore the
equations describing contraction need to be solved less regularly. There needs to be
a balance in the relative solution times between keeping the mechanical deformation
accurate, and redefining the collocation grid and geometrical information. Because
different techniques are used for each model, the two sets of computations are
essentially independent, allowing the freedom to choose an appropriate time scale

for each.

5.3.4 Dynamic tracking of the active region

One of the disadvantages of using an explicit collocation scheme is that a solution
must be generated at every time step for every solution point, and the time step
needs to be quite small in order for the solution to be stable. During the cardiac
activation process, only a small number of points are active at any one time, and

therefore computational time is wasted on points which do not change. Barr and
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Plonsey (1984) proposed a scheme called Dynamic Tracking of the Active Region
(DTAR) in which they only solve for points which are already active, or may become
active in the next time step. A point may become active if it has a neighbour whose
potential exceeds some preset value above the resting potential (0.1 mV for example),
or if current is injected at that point. The conditions under which points are removed
from the solution domain are less clearly specified, and depend on the ionic current
model used. Usually this will be when the potential has resumed a steady value,

and any ionic currents or recovery variables have returned to their resting value.

The DTAR scheme is implemented here by initially only solving at points where
current is injected. After each time step, the currently active points are scanned, and
if their potential exceeds the preset value, then all neighbours of that point are added
to the list of active points. The point is then flagged so that it will not be scanned
again. This particular scheme does not allow reentrant wavefronts to be tracked, but
in most cases where a reentrant wave is propagating, a large number of the solution
points are active at any one time, and the computational overhead of tracking the

active points outweighs any savings from computing fewer points.






Chapter 6

Two-Dimensional Activation using the
Collocation Method

It is important that the solution technique used to solve the activation equations is
both accurate and fast, and that it incorporates descriptions of the features (such as
a varying fibre field) that are properties of ventricular myocardium. In addition,
the particular model which we chose to use sought to satisfy another requirement,
namely that it should be easy to integrate the activation model into a larger, global
model of cardiac function which incorporates such features as models of mechanical
deformation in the myocardium and electric field in the torso cavity, and models of
other important processes which may be added in the future. This chapter uses a
series of simple examples to illustrate the suitability of the collocation technique to

achieve these requirements for problems in two dimensions.

Section 6.3 begins with some simple examples using a monodomain model on a
square membrane, and performs simulations using a variety of solution geometries,
ionic current models, fibre orientations and conductivity ratios. It is shown that
the method is convergent with both decreasing spatial and temporal resolution.
Section 6.4 extends the models to show the behaviour of the technique for
reentrant waves occurring as a result of multiple stimuli. In Section 6.5 the
monodomain formulation is extended to a full bidomain model, and the solution
of the extracellular equation is illustrated. The process is then shown for a simple
example involving coupling the activation model to a model of the electrical field
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in the body cavity. Another application is shown in Section 6.6 in which a one-
dimensional network of fibres is used to activate a two-dimensional region, in an
initial concept model of the activity of the Purkinje fibre network. Finally, Section 6.7
uses an optimisation technique which makes use of the activation model in order
to interpret experimental results by determining tissue conductivities based on

electrode recordings.

In Chapter 7, solutions are given for a variety of three-dimensional geometries, in-
cluding an anatomically accurate model of ventricular myocardium. Electromechan-
ical coupling is explored in Chapter 8 where the activation model is coupled to a sim-
ple model of mechanical deformation. Firstly a weakly coupled system shows the
wave propagating in a mesh which is being externally deformed, and then a stricter
coupling is shown in which the contraction of the membrane is in response to the
activation of the tissue by the wavefront.

6.1 Accompanying Movie Files

All of the simulations presented in the following three chapters have either two-
dimensional or three-dimensional geometries, and are, by the nature of the problem,
time dependent. This three- and four-dimensional output is difficult to reproduce
on two-dimensional sheets of paper, and three main forms of output are used. For
solutions in which a single wavefront activates a two-dimensional domain, then a
map of contours of activation time represents the passage of the wavefront. For
reentrant waves and solutions on three-dimensional geometries, the results are
shown in two forms. Firstly, the time sequence is represented in this thesis as a
time series of snapshots of the domain showing the transmembrane potential at
each interval. In these cases, the images begin at the top left, and the time sequence
increases left-to-right in rows.

Even this representation makes it somewhat difficult to determine the activation
characteristics, and so some of the examples are additionally reproduced in movie
format on the accompanying CD, and, at least temporarily, on the World Wide Web.

specifies the name of the directory and the name of the file, where the directory is
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relative to a base directory. The CD is written in ISO-9660 format, and is readable
on Macintosh, IBM-PC compatible and Unix systems. For each system the base
directory is: “/CDROM/” under Unix, “D:\” on a PC (where “D” is the CDROM drive)
and “MOVIES” on a Macintosh. On the WWW the base directory is given by the URL
“http://lwww.esc.auckland.ac.nz/People/Students/Sands/Thesis/Movies/” and is accessible
using Netscape or any similar Web browser with a password available from the
author (g.sands@auckland.ac.nz). The contents of the movie files is documented
using an HTML interface, and may be accessed from the CD or through the Web
by pointing a browser to movies.htm.

The movies are available in several formats, and many of the files are large. All of the
movies were initially generated as Silicon Graphics Movie format files, and are on
the Web in a compressed version of this form (extension “.mv.gz”). These files have
been compressed using gzip which is freely available. These files can only be played
on SGI workstations using their built-in movie player, movieplayer. Two standard
formats have been used for portability — the MPEG! format and the Quicktime?
format, for which viewers are freely available for most modern computers. On
the accompanying CD, the movies are reproduced at its original resolution (which
ranges upwards from 400 x 400 pixels) with file extensions of “.mpg”. This is
larger than the standard MPEG format, and consequently some viewers may have
difficulty with these resolutions, and so the movie is additionally available on the
Web in the standard 320 x 240 resolution with file extensions “.mpv”. Although
the MPEG format is significantly lossy, and does especially poorly at compressing
computer generated movies, it generally produces the smallest files, hence its use.
The CD also contains the movies in the Quicktime format with extension “.mov”,
and scaled to a standard size of 640 x 480.

Table 6.1 shows the location of the available files for an example movie denoted by

= square/epicard | Several utility programs are also included on the CD and on

the Web. An Stuffit-encoded archive of Sparkle, an MPEG player for the Macintosh
is located in the macutils/ directory, and MPEG and Quicktime archives for IBM-

compatible PCs running Windows (3.1 or 95) are in the winutils/ directory. Source

code for two Unix viewing programs is located in the unix/ directory.

http://www.mpeg.org/index.html/
Z*http://quicktime.apple.com/
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IBM-PC Compatible

D:\square\epicard.mpg

D:\square\epicard.mov

Macintosh

MOVIES:square:epicard.mpg

MOVIES:square:epicard.mov

Unix

/CDROM/square/epicard.mpg

/CDROM/square/epicard.mov

World Wide Web
http://www.esc.auckland.ac.nz/People/Students/Sands/Thesis/Movies/square/epicard.mpg
http://www.esc.auckland.ac.nz/People/Students/Sands/Thesis/Movies/square/epicard.mpv
http://www.esc.auckland.ac.nz/People/Students/Sands/Thesis/Movies/square/epicard.mv.gz
http://www.esc.auckland.ac.nz/People/Students/Sands/Thesis/Movies/square/epicard.mov

TABLE 6.1: Location of movie files for the example file description square/epicard.

6.2 The CMISS Solution Environment

A set of computer subroutines has been written which define the equations
describing the bidomain model and the various activation models, and implement
the collocation method for solving them. These routines have been coded in Fortran
77, and are integrated into a larger, general purpose program called CMISS® which
has been developed over many years by a number of people in our research group
at the University of Auckland. According to the WWW page, CMISS is

... a mathematical modelling environment that allows the application of

finite element analysis, boundary element and collocation techniques to

a variety of complex bioengineering problems. It consists of a number

of modules including a graphical front end with advanced 3D display

and modelling capabilities, and a computational backend that may be

run remotely on powerful workstations or supercomputers.
Many existing routines were used in the development of these examples, particularly
those dealing with finite element mesh generation and mechanical deformation

solution, and the collocation routines which have been written for this problem are

$*http://www.esc.auckland.ac.nz/Groups/Bioengineering/CMISS/
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designed to be integrated with these other routines.

The majority of examples were solved on a Digital Alphastation 200 4/233 * which is
a 233 MHz Alpha-based workstation running VMS V6.1. A new, high performance
supercomputer was installed at the University of Auckland towards the end of
the work done for this thesis, and some of the larger three dimensional problems
were solved on this new computer. The supercomputer is an SGI Power Challenge®
comprising 16 MIPS R10000 CPU units, each with 2 Mb of secondary cache running
at 195 MHz, with 2 Gb of physical memory.

The code presented some unique difficulties when being adapted to run on multiple
processors. At each time step, the use of the explicit finite difference method
means that computations at each solution point are independent, and therefore the
total computations are easily divided among the processors which are available.
However, the computational time required for a single time step at each collocation
point is very small, on the order of 0.01 s, and the overhead required for partitioning
the problem over multiple processors dominates the solution time for a small
number of collocation points. For a problem using approximately 16000 collocation
points, the speedup in going from one processor to two results in a speed increase
by a factor of 1.74. Further increasing the number of processors to four, eight and
sixteen results in speed increase factors of 3.04, 4.88 and 6.63 respectively. For this
reason, solution times are given solely for simulations run on the Alpha workstation
in the format 5m36s (CPU) according to the number of minutes and seconds of CPU
time used. Solution speeds are also indicated in terms of collocation point iterations
per second (cpi/s) where a speed of 1 cpi/s states that one iteration of one collocation
point takes one second of CPU time to solve.

6.3 Single Stimulus Activation

In this section, the results of a number of simple test problems are shown which
illustrate the flexibility of the collocation solution method and demonstrate its
suitability and accuracy. Each problem is derived from the previous by making

*Digital Equipment Corp.
>Silicon Graphics Inc.
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FIGURE 6.1: Solution points on square membrane used as an example.

small changes, and the results show the effect of that change.

6.3.1 The initial problem

The solution domain for the problem consists of a square, two-dimensional finite
element mesh with 16 elements in each direction. Each element is a square with a
side-length of 8 mm, and therefore the entire domain covers 128 x 128 mm? with
256 elements and 289 nodes. The square mesh is shown in Figure 6.1, and several
points are labelled with names A to I. In some parts of the examples shown further
on, these points are used as references for either initial conditions or solutions. An
extended linear Lagrange basis specifies a 9 x 9 gauss point scheme within each
element, which results in a collocation grid of 129 x 129 = 16641 collocation points at
aregular 1 mm spacing. A monodomain solution is considered on a homogeneous,

isotropic domain, i.e. o = 0. A cubic equation is used to describe the ionic model
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Parameter Value

Cm 10 nF-mm™
Anm 200 mm™!

Of,s 1T mS -mm!
Viest -85 mV
Vinreshold —75 mV
Viplateau 15 mV

Om 4 %103 mS-mm?

TABLE 6.2: Values of the constants for an isotropic domain and a cubic ionic current

model.

(a) Solution without DTAR (b) Solution with DTAR

FIGURE 6.2: Isochronal contours of activation time on a isotropic square mesh using

a cubic ionic current model. (a) Dynamic tracking (DTAR) not used. (b) DTAR used.

(see Equation (4.105) on page 114), with parameters as given in Table 6.2. The initial
conditions specify a single pulse of amplitude 0.1 mA - mm™> and duration 1 ms
to be applied at a collection of 9 collocation points centred on point A in the centre
of the mesh. More than one collocation point is activated in order that the applied
current does not immediately leak away from the stimulus site. Zero-flux boundary
conditions are applied for all points on the boundary. An explicit collocation scheme
with a time step of At = 0.1 ms is used to solve for the transmembrane potential V.,

for a total of 150 ms.



176 TWO-DIMENSIONAL ACTIVATION USING THE COLLOCATION METHOD

Isochronal contour lines describing the activation time are shown in Figure 6.2a, and
as expected the resulting wavefront propagation is circular from the stimulus point.
For the purpose of these comparisons, the activation time for a collocation point is
defined as the time at which that point experiences the largest depolarising change in
V. The solution for 1500 iterations was achieved in 6m33s (CPU) which translates to
63, 515 collocation point iterations per second (cpi/s). In order to obtain the contour

lines, a finite element field was fitted to the resulting point values of activation time
using the bilinear elements which defined the solution domain. The RMS (root mean

square) error for this fit was 0.208 ms.

6.3.2 Use of DTAR

The second example is identical to the first, except that in this case an algorithm
known as DTAR (see Section 5.3.4) has been used to solve only the points contained
within an “active” region near the wavefront. The variation from resting potential
before a neighbouring point was included in the solution process was set to 0.1 mV,
and a collocation point was removed from the solution once its transmembrane
potential attained a value within 0.01 mV of the plateau potential. The resulting
isochronal contours are plotted in Figure 6.2b and show no apparent difference from
those of the standard solution. The difference in activation time between the DTAR
and non-DTAR solutions at every collocation point in the mesh is no greater than
0.1 ms, which is the resolution due to the time step. The total solution time is
1m41s (CPU) which required 1244 iterations until all points were removed from
the solution process. This translates into an effective speed of 205,000 cpi/s, or a
3.2-fold increase in solution speed. A maximum number of 3200 collocation points
were in the solution process at any one time step, and the extra time was used in
housekeeping for the DTAR method. The RMS error in fitting the activation field
was again 0.208 ms.

6.3.3 Convergence

As with any model, a number of assumptions need to be made at various stages

of the solution. The following sections examine the assumptions required in the
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FIGURE 6.3: Correlation between wavefront velocity and the square root of the

conductivity

numerical implementation of the model relating to the trade-off between a fully

converged solution and the computational time required to solve to that level.

One important aspect of convergence to check is that the wavefront velocity is
proportional to the square root of the conductivity. The above non-DTAR model
was used with an isotropic conductivity tensor ranging between 0.05mS - mm ' and
10 mS - mm!. The resulting correlation between the square root of the conductivity
and the wavefront velocity is shown in Figure 6.3, where a linear relationship is
demonstrated for all except the final value. This value of 10 mS- mm™ is outside

1 and is in error

the range of conductivities which are used (0.1 to 2.0 mS - mm~™
solely because of the time step used. Reducing this time step maintains the linear

relationship for this conductivity also.

6.3.4 Size of time step

For the explicit solution technique, there is an upper limit for the time step At
beyond which the solution of the equations is unstable. For values of At below

this maximum, the collocation method should converge to more accurate values
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as the time step decreases. In order to determine this, we stimulate at point A as
above, and measure the time at which the wavefront reaches some other point. In
this case, we choose to use point I (at coordinates (16, 16) on the leading diagonal)
because it is relatively far from the stimulus, but away from the boundary so that any
possible boundary effects will not influence the results. A series of simulations were
performed in which the time step varied from At = 0.5 ms down to At = 0.001 ms.
The activation time of point I, in milliseconds, is plotted against the value of the time
step in Figure 6.4a, and shows that the solution converges quickly as the time step
reduces. This increase in accuracy from a small time step is at the cost of CPU time
required for the solution as Figure 6.4b shows, where the solution CPU times are
measured in seconds. The other simulations in this thesis are performed with time
steps mostly in the range of 0.01 ms to 0.1 ms depending on the collocation grid
spacing.

6.3.5 Resolution of collocation points

It is a more difficult problem to examine convergence resulting from an increase
in collocation point density. Increasing the spatial resolution of the solution points
changes the solution in two main ways. Firstly, the current density injected into the
domain decreases if the current size and number of stimulation points both remain
the same. Secondly, a time step which produces a converged result for one grid point
spacing, as shown in the previous section, will give a less converged solution at a
higher grid point resolution. This is due to the fact that the maximum allowable
time step is governed by the stability criterion (Equation (5.62)) for the explicit Euler
solution method.

For these reasons, if the spatial resolution is increased while either or both of the
temporal resolution and the stimulus current remain the same, then the solution of
the equations begins to diverge at very high solution point densities. In order to

address these issues, the following problem was constructed.

It seems that a solution of one-dimensional propagation gives us enough informa-
tion about the accuracy of the problem, and this is effectively achieved by using a
line stimulus which bisects the solution domain through point A. The isotropic do-

main ensures that the resulting wave remains planar throughout the mesh. Once
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again the activation time is measured at point I and compared for a range of collo-
cation point spacings. In order to compensate for the changes caused by a change
in spatial resolution, the time step and the stimulus intensity are altered. The time
step is changed so that At o« Ax? and the current so that Iy, o (Ax2) . Therefore,
for a decrease in Ax by a factor of 2, the time step decreases by a factor of 4 and the

stimulus current increases by a factor of 4.

The results of this problem are presented in Figure 6.5, where the first two graphs
show the change in solution time at point I with a variation in spatial resolution for
both the simplified cubic equation, and the more realistic Beeler-Reuter equation.
The last pair of graphs show the relationships between Ax and the two other input
variables, At and I,,,. For the cubic equation the solution has seemed to converge,
until the final two data points, represented by spacings of 0.288 and 0.25 mm
respectively. The results show a slight increase (~ 0.3% at the final point) in the
computed activation time over those spacings. If the value of the applied current is
increased further for this last example, this has little effect on the computed solution
time (< 0.1% for a 2.5 times increase in I,,,), while an additional decrease in At
has a marginally greater effect (a decrease in At to 0.0005 gives a 1.5% change in the
computed activation time). The Beeler-Reuter model is much slower to converge

than the cubic model, and at the finest resolution it has converged to only about 1%.

6.3.6 Convergence implications

Section 6.3.4 shows that the explicit solution technique for the equations generated
using the cubic ionic current model in a monodomain context converges as the
solution time-step is reduced. Other ionic current models show a similar rate and
degree of convergence. Section 6.3.5 shows that both the cubic ionic model and
the Beeler-Reuter ionic model converge as the spacing between collocation points
is reduced, though the BR solution is much slower to converge, and considerable

computational solution time is required at high collocation resolutions.

Because of this exponential relationship between the resolution of the time and space
variables in the solution, and the computational solution time required, many of
the following examples have parameters chosen for their solution which are not

fully converged. In a number of cases in which the result looks slightly different
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FIGURE 6.6: Contours of activation time for a trapezoidal mesh.

from what would be expected in a fully converged solution, the result has been re-
solved using smaller values of either At or Ax, or both. In every case looked at, the
solution has indeed become as expected, demonstrating that the underlying models

are accurate.

6.3.7 Non-orthogonal geometry

In order to check that the metric tensors correctly specified the distortion of geometry
between collocation points, a trapezoidal mesh provides a skewed geometry. The
resulting mesh contained the same number of elements as in the previous examples,
but the top of the mesh was shifted by half its width, i.e. 64 mm. The same
parameters and initial conditions were used, and DTAR was employed. The solution
required 1467 iterations which took 1mb55.7s (CPU) and the resulting isochrones of
the activation time are shown in Figure 6.6. These isochrones are almost exactly
circular, with the slight elongation in the direction of the long axis due to the extreme
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distortion, which is substantially greater than would normally occur.

6.3.8 Anisotropy with a constant fibre angle

The original square mesh was modified to include a constant 0° fibre angle at all
points throughout the domain. The conductivities were modified such that the

I'and

ratio between them was 5:1. The conductivities used were oy = 1 mS- mm~
0s = 0.2 mS - mm ™. Isochronal contours of activation time for this setup are plotted
in Figure 6.7a. The mesh took just over 240 ms to fully activate. When the fibre
angle was changed to a constant 45° the ellipsoidal pattern was similar, but aligned
with the new fibre axes as shown in Figure 6.7b. In this case, the mesh required only

220 ms to fully activate.

The next pair of diagrams show the activation patterns as the conductivity ratio
is changed. Both examples have a constant fibre angle of 30°. For the diagram
on the left in Figure 6.8a the conductivities are the same as above. The right-
hand diagram of Figure 6.8 shows the contours for a 10:1 conductivity ratio which
l'and o, = 0.15 mS- mm™!. The fibre
conductivity was increased so that the mesh was fully activated in approximately

uses conductivities of oy = 1.5 mS - mm~

the same time, though the greater elongation of the ellipses can still be seen.

6.3.9 Point stimulus with varying fibre angle

The next pair of simulations use the material properties defined above with a domain
which includes a varying fibre angle. In Figure 6.9a the fibre angle varies linearly
from 10° at the top and bottom edges of the mesh to a maximum of 90° in the
centre of the mesh. The second example on the right, the fibre angle varies linearly
from 50° along the lower edge through 90° in the centre to 130° along the top
edge of the mesh. In each example, the domain was activated in the centre, and
the ratio of conductivities was 10:1 with values as given in the previous example.
The RMS errors in fitting the contour fields of activation time were 0.56 ms and
0.52 ms respectively. As expected, the contour lines follow the fibre directions as the

wavefront propagates most quickly in these directions.
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FIGURE 6.7: Contours of activation time for a constant fibre angle and anisotropic

conductivities. (a) 0° fibre angle. (b) 45° fibre angle.

(a) 5:1 conductivity ratio (b) 10:1 conductivity ratio

FIGURE 6.8: Contours of activation time for a constant 30° fibre angle and varying
anisotropic conductivities. (a) 5:1 conductivity ratio. (b) 10:1 conductivity ratio. The

fibre conductivity is greater in the 10:1 case than in the 5:1.
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FIGURE 6.9: Contours of activation time for a constant conductivity ratio and

and back to 10°

from bottom to top throughout the mesh. (b) The fibre angle varies from 50°

varying fibre angles. (a) The fibre angle varies from 10° through 90°

through 90° to 130°.

(b) Stimulus on right edge
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FIGURE 6.10: Contours of activation time showing the effect of fibre curvature on
Propagation). (b) Line stimulus on the right hand edge of the mesh (TW
Propagation)

wavefront propagation. (a) Line stimulus on the left hand edge of the mesh (TA
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6.3.10 Line stimulus with varying fibre angle

Using the second of the above meshes, we can investigate the effect of fibre curvature
on wavefront propagation. Figure 6.10 shows the activation isochrones of two
stimuli to the domain, the first from the left and the second from the right. Rogers
and McCulloch (1994b) discuss this phenomenon and define two terms to describe
the direction of propagation. The propagation against the fibre curvature shown
in Figure 6.10a is called TA (Transverse Against) propagation, and the alternate is
termed TW (Transverse With) propagation. The results shown here confirm the
conclusions of Rogers and McCulloch who show that the TA wave propagates up to
65% more quickly than the corresponding TW wave. In this case here, the TA wave
(left stimulus) activated the entire domain in 245 ms, and was 40% faster than the
TW (right edge) activation which took 345 ms. The RMS errors in fitting the contour
tields of activation time were 0.23 ms and 0.34 ms respectively.

6.3.11 Using the FitzHugh-Nagumo model

A number of ionic current models have been implemented which integrate with
the collocation activation model. The simplest change from the cubic model is the
FitzHugh-Nagumo model (see Section 4.2.2). © The FHN model was used with
parameters given in Table 6.3 and gave identical results whether or not the DTAR
algorithm was used, with point F in the lower left corner being activated 118.5 ms
after a central stimulus for each technique. The non-DTAR solution required
7m20s (CPU) to achieve 1500 iterations, which is 56,768 cpi/s. This indicates that

the computation required for the FHN model is approximately 11% greater than
that for the cubic model. While the non-DTAR solution rate was constant at 29 s per
100 iterations, the DTAR solution varied between 4s (CPU) and 38s (CPU) per 100
iterations, showing the computational overhead of up to 25% required by the DTAR
method. The effective solution rate for the DTAR technique was 75, 649 cpi/s, which

is considerably slower than the cubic solution, and is due to the additional time each
point is active due to the recovery processes.

Activation time isochrones are drawn in Figure 6.11a and a colour plot showing the

transmembrane potential at 50 ms is drawn in the right hand side of the same figure.
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FIGURE 6.11: Isotropic activation of a square using the FHN ionic current model
(a) Contours of activation time. (b) Value of the transmembrane potential at

t =50 ms. (c) The colour scale for the transmembrane potential.
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FIGURE 6.12: Isotropic activation of a square using the modified Rogers-FHN ionic
current model. (a) Contours of activation time. (b) Value of the transmembrane
potential at t = 50 ms.
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Parameter Value

Cm 10 | nF - mm 2
A 200 | mm™!

Of,s 1| mS-mm!
Viest —85 | mV
Vihreshold —75 | mV
Vplateau 15| mV

Cq 6x 1073

Cy 5x 1073

b 0.02

d 1

TABLE 6.3: Values of the constants for an isotropic domain and the

FitzHugh-Nagumo ionic current model.

Figure 6.11c shows the colour scale used in this and subsequent figures involving
transmembrane potential. The RMS error for the contour field was 0.301 ms.

The FHN model with Rogers-McCulloch modifications

The identical problem was solved using the form of the FHN model developed by
Rogers and McCulloch (19944) which has a shorter recovery process due to the lack
of undershoot of the transmembrane potential. The difference in activation times at
the furtherest corner of the mesh was negligible (0.1 mV) depending on whether or
not DTAR was used. Figure 6.12 shows activation contours and a colour map of the
potential at t = 50 ms, with an RMS error on the contour fit of 0.178 ms. A complete
activation using the DTAR technique took 4m8s (CPU) to complete 1440 iterations,
with an estimated 96, 508 cpi/s. The non-DTAR solution took 7m16s (CPU) for 1500

iterations, which is almost identical to the original FHN model.
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Parameter Value

Cm 25 | nF-mm?
A 200 | mm™!

Of,s 1| mS -mm!
T 5

TABLE 6.4: Values of the constants for an isotropic domain and the van

Capelle-Durrer ionic current model.

(a) Contours of activation time (b) Transmembrane potential

FIGURE 6.13: Isotropic activation of a square using the modified van
Capelle-Durrer ionic current model. (a) Contours of activation time. (b) Value of the

transmembrane potential at t = 50 ms.

6.3.12 Using the van Capelle-Durrer model

The van Capelle-Durrer (VCD) model (see Section 4.2.3) was also employed on the
isotropic square domain, with the parameters given in Table 6.4. The modified form
of this equation was used, with parameters as defined in Table 4.6 for “ischemic”
conditions. Using these parameters and conditions, the solution took 8m5s (CPU)
for 1500 iterations, which is 51,467 cpi/s, and about 20% slower than the cubic
model. An efficient algorithm for removing points from the DTAR active list had
not been formulated, and therefore the DTAR model ran about 15% slower than the
non-DTAR model. Activation isochrones are drawn in Figure 6.13a with a RMS on

the field fit of 0.105 ms, and a complete activation of the mesh in 53 ms. The second
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diagram shows the transmembrane potential at t = 50 ms, at which point the mesh
is almost entirely activated. The reason for using this particular modified version
of the VCD model is that it is designed to facilitate the creation of reentrant spiral

waves.

6.3.13 Biophysically-based models

The next stage of activation modelling involves using a biophysically based ionic
current model to describe the membrane kinetics, such as one of those presented in
Section 4.1. One of the simpler models relating to ventricular tissue is the Beeler-
Reuter model (Section 4.1.4), and this was implemented in the activation model,
together with options for sodium kinetics described either by Ebihara and Johnson
(Section 4.1.5) or by Drouhard and Roberge (Section 4.1.6) in addition to the standard
Beeler-Reuter model of the sodium current.

The standard isotropic example used throughout this chapter was solved using the
BR model. The nature of the BR model defines an action potential (Figure 4.14)
which is considerably longer than a FHN or VCD action potential. Therefore in
order to view an entire action potential (including recovery) on the mesh at a
single time instant, the conductivities were reduced by a factor of ten to a value

of 0.15 mS- mm 1.

Other constants were defined as in Table 4.4, except that the
membrane capacitance was defined to be the same as used in the above examples. A
full solution of the activation totalled 19000 iterations at 0.1 ms time step increments,
and required 216m40s (CPU). This is equivalent to 24,321 cpi/s which is less than

half the speed of the VCD model, and just over a third of the speed of the cubic
model. A large portion of this additional time is due to the computation of exponents
for the rate equations which were determined as required. A quicker method would
be to compute the values once only, and store them in a lookup table for later use.
Solutions using the DTAR method were, as in earlier examples, indistinguishable

from the full solution.

Activation isochrones are drawn at 100 ms intervals in the left-hand diagram in
Figure 6.14, and on the right is a map of transmembrane potential throughout the

mesh at t = 500 ms, with the same ranges on colour shadings as above.
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(a) Contours of activation time (b) Transmembrane potential at t = 500ms

FIGURE 6.14: Isotropic activation of a square using the Beeler-Reuter ionic current
model. (a) Contours of activation time. (b) Colour field of the value of the

transmembrane potential at t = 500 ms.

(a) Contours of activation time (b) Transmembrane potential at t = 500ms

FIGURE 6.15: Isotropic activation of a square using the Beeler-Reuter ionic current

model with sodium current modifications by Drouhard and Roberge. (a) Contours

of activation time. (b) Colour field of the value of the transmembrane potential at
t = 500 ms (with range of —120 mV to 40 mV).
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The same example was repeated using the BR-DR model (Section 4.1.6) which varies
from the above only in the implementation of the sodium current. The constants
used were as above, except that the sodium conductance (gng) and sodium reversal
potential (Eno) were changed to match the values given in the original paper by
Drouhard and Roberge (1987). Similar plots of activation time and potential are
shown in Figure 6.15 with the only difference being a range of —120 mV to 40 mV
on the colour map of membrane potential at t = 500 ms.

6.4 Reentrant Waves from Multiple Stimuli

Using some of the ionic current models with certain parameters, it is possible
to generate reentrant waves, either by setting appropriate initial conditions (of
potential and other state variables) or by defining appropriate stimuli on an
initially quiescent region. The latter approach is preferred because it is potentially
reproducible in an experimental situation. In general, these waves are constructed
by using two stimuli. The first excites the region, and then a second stimulus is
added during the refractory period of the first activation wave, which allows for
re-stimulus in a single direction only.

In this section, the van Capelle-Durrer equation is used with the modifications
described in Section 4.2.3 for ischemic behaviour (producing shorter APD and
therefore a greater possibility for a self-sustaining reentrant wave). Because we use
the VCD model for these simulations the DTAR algorithm is not employed, but even
if a different ionic current model had been used it would still be unwise to use DTAR
as most of the points are active at any one time, and the housekeeping procedures
would increase rather than decrease the total solution time. An example is also
shown using the Beeler-Reuter ionic model and incorporates a more physiologically
reasonable restitution period.
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6.4.1 Point re-stimulus

The first example defines an isotropic square mesh as used above, with the same
VCD model and parameters as defined in Section 6.3.12. An initial plane wave is
initiated along the left hand edge of the mesh at t = 0 ms with a stimulus as above
of duration 1 ms and amplitude 0.1 mA - mm—>. A second stimulus of duration 1 ms

and amplitude 0.5 mA - mm 2

is made at t = 75 ms at a group of 9 collocation points
surrounding point A. Due to the isotropy of the material and the precise timing of
the second stimulus to lie within the restitutive period of the first wave as it passes

this point, a pair of symmetric spiral waves are initiated. A time series showing the

development of the spiral waves is shown in Figure 6.16. | JC reentry/vcdisopt| Note

the unidirectional block caused by the recovering tissue in frames t = 80 — 110 ms,
and the collision of the wavefronts in frame t = 180 ms. If the second stimulus is
initiated 5 ms earlier, then no propagated wave results, as the region surrounding
the second stimulus has not recovered enough to support reactivation, and a 5 ms
delay in the second stimulus produces bi-directional propagation, and the (near)
circular wavefront propagates throughout the domain and then dies. The spiral
waves have a period of just under 90 ms. As expected for an isotropic medium and
an ionic model based on a cubic-type activation, the paths of the wavetips of the

spiral waves are almost exactly circular.

6.4.2 Line re-stimulus

A single spiral wave can be generated if the second stimulus is a line, rather than
a point. In this example a line of points between point A and point H is used
as the re-stimulus line, with the second stimulus again being at t = 75 ms with

an amplitude of 0.5 mA - mm™—>. This produces a single spiral wave as shown in

Figure 6.17. | ZCE reentry/vcdisoln | As above, the second stimulus has a magnitude of

0.5 mA - mm 3, and is applied at t = 75 ms for a duration of 1 ms. In an isotropic
domain such as this, the stimulus produces a single rotating spiral whose tip traces a
stationary circular path. Note that a partial wave is initiated (frames 90 ms to 130 ms)
propagating behind the first wavefront. Because it is propagating into recovering
tissue, it propagates more slowly than the other second wave, reaching the external

boundary after 50 ms, whereas the spiralling wave reaches the boundary after 35 ms.
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The partial wave quickly dies out. Again, the path traced by the wavetip of the spiral

is circular, and the cycle period is around 90 ms, as in the previous example.

6.4.3 Reentry and anisotropy

A number of factors influence the shape and passage of reentrant waves, including
anisotropic material parameters and a deforming geometry. This section briefly
considers the effect of varying fibre orientations on spiral waves. Each example is
similar to the previous example, except that the initial activation wave is propagated
from the right hand edge of the domain. In each case, the stimulus has an amplitude
of 0.5 mA - mm 2 and a duration of 1 ms, though the application time of the stimulus

varies. A conductivity ratio of 2:1 is used with conductivities of o = T mS- mm™!

1

and o; = 0.5 mS-mm~". The VCD model is again used with all other material

constants being the same as in Table 6.4.

Constant fibre orientation

The fibres are aligned to be constantly horizontal throughout the mesh, and with the
wave initially propagating along the fibre direction, the second stimulus is applied
slightly earlier than above at t = 70 ms in order to lie within the restitutive zone.

The resulting spiral wave is shown in Figure 6.18. | ZEL reentry/vcdconst | The wavetip

now traces a slightly elliptical path aligned with the fibre direction, and the spiral
period is substantially lengthened to about 180 ms due to the slower propagation
across the fibres.

A similar example using a constant 30° fibre angle throughout the mesh produces
a similar result, though the ellipse traced by the wavetip is rotated so that the long
axis is aligned with the fibre direction.
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FIGURE 6.18: A constant fibre orientation causes the path of the spiral tip to

elongate.
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FIGURE 6.19: Spiral wave propagation in a curved fibre field.
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Curved fibre orientation

The fibre direction changes from 50° at the bottom of the domain to 130° at the
top, in the same pattern used in the simulation in Figure 6.9b. The initial wave
is propagating across the fibre direction and is therefore slower, which means that
the second stimulus is applied later at t = 90 ms. The resulting spiral wave is shown

in Figure 6.19. | ZZI reentry/vedcurve | With this orientation of the fibre direction, the

ring about which the wavetip is circling drifts to the right.

S-shaped fibre orientation

For this example we use again the fibre field shown in Figure 6.9a which is 10° at
the top and bottom of the domain and varies linearly through an angle of 90° in the
centre of the mesh. In this case the appropriate time for the second stimulus to be
applied is at t = 75 ms, which results in the spiral wave shown in Figure 6.20.

. reentry/vcd-s| This shows the wavefront deforming in shape because of the

varying anisotropy, but the wavetip follows an almost stationary path, drifting only

very slowly to the left.

Beeler-Reuter model

Reentrant phenomena are described more accurately using a biophysical ionic cur-
rent model, due to the additional variables which help to describe the repolarisation
of the membrane, and model the refractory processes and membrane restitution.
The Beeler-Reuter model is used here in an almost identical scenario to the previous
example, with the same fibre field. Due to the fact that this model has a considerably
longer action potential than either the FHN or VCD models, the same conductivities
as above would have resulted in the wave being active over the whole region simul-
taneously, and there is no time at which a second stimulus could be applied to cause
a reentrant wave. In order to produce a wavefront with a shorter spatial length the
conductivities were reduced to o; = 0.2 mS- mm ! and o, = 0.1 mS - mm~! while

maintaining the above-used 2:1 conductivity ratio.
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FIGURE 6.20: Spiral wave propagation in an S-shaped fibre field.
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FIGURE 6.21: Spiral wave propagation in an S-shaped fibre field using the

Beeler-Reuter ionic current model.
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FIGURE 6.22: Previous figure continued
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A similar activation protocol to the VCD model example above is employed, in
which the right-hand edge of the mesh is stimulated with a 0.1 mA - mm 2 pulse for
1 ms, followed by a stimulus to the lower half of the centre line with a magnitude
of 0.2 mA - mm™ for a period of 4 ms. Due to the nature of the wave on the
anisotropic domain it was difficult to determine a time for the second stimulus
which would produce a single rotating wave, and the most appropriate stimulus
time was at t = 1250 ms. The resulting activation is shown in a time sequence in
Figures 6.21 and 6.22, and in the following analysis, the frames are referred to for

convenience as frames 0 through 80 with each frame being at 100 ms increments.

== reentry/br-sline | Each frame of the movie required approximately 13m (CPU) to

compute and draw on the Alpha workstation.

Following the second stimulus, a pair of resulting waves can be observed in frame
14. The smaller wave, propagating to the left, propagates more slowly than the other
wave due to it travelling into less-recovered tissue. The left-hand wave reaches the
left-hand boundary in frame 20, whereas the other wave has reached the opposite
boundary by frame 18. The interactions of the multiple wavefronts can be clearly
seen in the subsequent frames. The influence of the waves meeting in the centre of
the domain (as in frames 29 and 30) is shown in the subsequent passage of the right
hand wave in frames 33 to 38 in a vertical fashion, without entering that central
zone. The cause of the final extinction of the wave is shown in frames 60 to 62
where a small portion of the wave becomes separated from the rest, and this single
dot behaves as a point stimulus, producing a final wave which travels throughout

the entire domain.

6.5 Using The Bidomain Model

In some situations a measure of the extracellular potential is required, and therefore
it is necessary to solve the coupled system of bidomain equations (Equations (3.9)
and (3.11)). Modelling of the potential field generated in the torso and on
the body surface is one such example, in which the models are coupled across
the epicardial surface through the extracellular potential to the extramyocardial
potential. Alternatively, an electric field may be applied in the extracellular space

as a means of stimulating the myocardium, and the coupling to the transmembrane
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potential is through the extracellular equation. This is a common method of applying

a stimulus in an experimental situation.

The initial approach to solving the extracellular equation made the assumption that
the extracellular potential is both small relative to the transmembrane potential, and
that it is relatively smooth. Using this assumption, the solution method was to solve
the extracellular equation using the finite element method on the mesh from which
the collocation grid had been generated. This gave the spatial resolution of the
extracellular equation to be approximately 5 to 10 times greater than required for
the transmembrane equation. The solutions using this method were ill-converged,

and developed a divergent oscillation.

This lack of convergence is because the extracellular potential has spatial gradients
of the same order as the transmembrane potential. While the above assumption is
true for the potential measured some distance from the cell membrane, it is certainly
not true at the scale on which the bidomain equations are constructed. Therefore the
extracellular equation needs to be solved on the same scale as the transmembrane

equation.

6.5.1 The coupled bidomain model

There are a number of possible solution methods for solving the coupled bidomain
equations. The most elegant would be to use a solution technique based on the same
collocation points used for the transmembrane solution, and one possible approach
would be the use of a multigrid technique. The disadvantage to this technique is
that it would be difficult to couple the extracellular potential across the myocardial
boundary to a model of the field potential in the torso which, in our case, uses a
combination of finite elements and boundary elements. Because of this restriction,
the extracellular solution in this thesis uses a highly refined finite element mesh and
the finite element technique to solve the equation. This is an inefficient method, and

consumes unnecessarily large amounts of computer memory.

The series of simulations on which we determined the effectiveness of the bidomain
model used a plane wave propagation across a square mesh as used in the previous
problems. With isotropic conductivities, this approximates the solution of a one-
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dimensional core conductor model. This meant that the mesh needed to be refined
in one direction only, reducing the memory requirements. The mesh used had
64 elements in the x direction (in which the wavefront was propagating) and 16
elements in the y direction along which there were not large spatial gradients.

Two ionic current models were used. First, the cubic model tested simply the effect of
activation on the wavefront, and subsequently the FHN model examined the effect
of both activation and recovery. For the each model, an isotropic conductivity of
1 mS-mm~! was used for the intracellular domain. The extracellular conductivity

was 5 times this value, at 5 mS - mm™!.

This would give a maximum value of
de as about % of the range of values of ¢;, or about £20 mV. All other material
parameters had the same values to those defined in Tables 6.2 and 6.3 for these
two ionic models. In addition, two sets of boundary conditions were applied to

the extracellular domain.

Zero boundary conditions

The first set of boundary conditions specify that the extracellular potential is
zero on all external boundaries. This is equivalent to placing tissue in a bath of

highly conducting solution. The resulting time sequence is shown in Figure 6.23

. bidomain/cubzero | for the cubic model and in Figure 6.24 | -5z bidomain/fhnzero

for the FHN model. These figures show a series of snapshots of the solution domain,

with potential field maps of both the transmembrane and extracellular potentials at
each time step. The transmembrane potential (on the left) varies between —90 mV
and 20 mV, and the extracellular potential varies between —20 mV and 20 mV as
shown in the colour scales along the bottom of each figure. Contour lines drawn on
the extracellular field maps are at 2 mV intervals. Frames are shown at 5 ms intervals

in rows from top to bottom.

For the cubic model under this set of boundary conditions, the extracellular potential
forms a negative “cone” in front of the wavefront and a positive “cone” behind it.
The potential values are heavily influenced by the boundary conditions, and the
potential difference across the wavefront remains at less than 20 mV throughout the

activation.
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FIGURE 6.23: Plane wave stimulation using the cubic ionic equation in the

bidomain model. The extracellular potential is fixed to zero on all boundaries.
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FIGURE 6.24: Plane wave stimulation using the FHN ionic equation in the

bidomain model. The extracellular potential is fixed to zero on all boundaries.
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The FHN model produces a very similar picture, with a negative extracellular
potential in front of the wavefront, a positive potential during the wavefront and

then a negative one again in the region which the wavefront has passed through.

For each model, the one-dimensional approximation is most valid along the
horizontal centre line of the mesh, although the values are greatly influenced by
the boundary conditions. As expected, the action potential velocity is not changed
whether or not the extracellular potential is computed.

No-flux boundary conditions

The second set of boundary conditions again specify a zero potential on the left and
right edges of the mesh, but specify a no-flux boundary condition on the extracellular
potential on the top and bottom edges. This provides a solution which gives a

better approximation of one-dimensional propagation, as can be seen for the cubic

model in Figure 6.25 | ZZ bidomain/cubnofix | and for the FHN model in Figure 6.26

In these figures, the isopotential contour lines are vertical, and the extracellular po-
tential is again negative before the wavefront, and positive while the transmembrane
potential is high.

The degree of resolution of the finite mesh that was required for the extracellular
equation, and the amount of computer memory that was needed to store the
information, made it too difficult to construct a similar mesh that would allow for an
arbitrary stimulus, or for changes in the anisotropies of each domain. These studies
will be possible when a more appropriate solution method is implemented for the
extracellular equation.

In both the above examples, the boundary conditions required on the extracellular
domain impose a significant constraint on the shape and behaviour of the final
solution. Ideally, the extracellular solution should not be constrained at all, though
a technique for doing so was not implemented for this thesis.
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FIGURE 6.25: Plane wave stimulation using the cubic ionic equation in the
bidomain model. The extracellular potential is fixed to zero on the left and right
boundaries, and a no-flux boundary condition is applied to the top and bottom

boundaries.
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FIGURE 6.26: Plane wave stimulation using the FHN ionic equation in the bidomain

model. The extracellular potential is fixed to zero on the left and right boundaries,

and a no-flux boundary condition is applied to the top and bottom boundaries.
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(a) Cardiac Monodomain Potentials (b) Torso Field Potentials

FIGURE 6.27: Partially coupled bidomain model.

6.5.2 Coupling to a torso model

Because of the difficulty in this implementation of the bidomain model of coupling
the extracellular solution to a torso model, this process has not been completed. The
process is, however, shown to be feasible in the following example in which the
monodomain potential is computed at a single time step, and used as the input to
a model of the torso potential. This example was constructed solely to demonstrate

proof of concept.

The cardiac geometry used is the same as defined for a later example in Section 8.2.5,
in which the initial epicardial position is taken from an MRI scan. The solution
in the cardiac region is as described in this section, and at 75 ms the geometry
and transmembrane potential have reached the stage shown in Figure 6.27a. The
geometry and transmembrane potential on the epicardium at this time instant is

used as the input for the torso model.

The torso model was created by digitising key regions from the same MRI image,
and fitting finite element and boundary element meshes to the digitised points.
The lungs are meshed using 8 boundary elements for each lung, and the regions
characterised by fat and skeletal muscle are meshed using a total of 24 finite
elements. The epicardial surface is meshed by 160 boundary elements which
correspond to the lines between grid points located on the epicardial boundary of

the finite elements used for the activation model. Conductivities are assigned in
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each domain, and in this case are homogeneous and isotropic throughout the cavity,
with a conductivity of 0.1 mS - mm . The potentials within the torso are solved for
using a coupled finite element-boundary element method, resulting in the map of
potentials shown in Figure 6.27b, where the colour scale of torso potentials is the

same as for the cardiac map.

The method by which this solution was achieved is inefficient, and is not suitable
for obtaining a large number of these coupled solutions for a complete activation
process. Both the solution method for the extracellular bidomain equation, and the
interface to the extramyocardial torso activation equation need to be improved so

that useful results may be obtained.

6.6 Purkinje Fibre Network

This section shows only the very first stage of an ongoing study into the mechanisms
by which the Purkinje fibre network activates the ventricular myocardium. This
model builds on the work done in this thesis, and is being performed by a fellow
graduate student, Martin Buist.

Using a simple algorithm for determining the structure of a branching tree, a four-
generation, one-dimensional finite element mesh is constructed using a Monte Carlo
method (Wang, Bassingthwaighte and Weissman 1992) with varying branching
angles and branch lengths as drawn in Figure 6.28. Grid points are defined along
the fibre elements, and also in the two-dimensional “tissue” mesh, which in this
example measures 10mm square. In this example, ¢ grid points are used in each
&-direction in each region. The regions are coupled at fibre endpoints using a simple
algorithm which links the grid point at the end of the fibre to its closest neighbour in
the two-dimensional mesh. Because of the high density of grid points in the tissue,
the greatest distance between coupled points is less than 0.06mm, and this distance

is not considered significant.

A constant fibre field at a 0° angle to the mesh is defined in the tissue, and

an anisotropic conductivity tensor is used with a 5:1 conductivity ratio. The

1

values used are 0 = 0.2 mS-mm ! and o, = 0.04 mS-mm '. The Purkinje
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FIGURE 6.28: Purkinje fibre mesh with defined grid points, and the

two-dimensional tissue.

fibres are given a slightly greater conductivity of 0 = 0.5 mS-mm!. The cubic
activation-only ionic current model is used with the same parameters as in previous

examples. The primary endpoint of the Purkinje network is activated with a 2ms

pulse of 0.5mA - mm 3.

The resulting activation wave is drawn in Figure 6.29.

As the movie sequence shows, the initial stimulus conducts at a constant velocity
through the fibre network, and activates at eight discrete points on the tissue surface
at slightly different times, depending on the length of the fibre to that point. This
causes an activation wave on the tissue which spreads over the entire block very
quickly.

There are many other examples which can be investigated using the activation model
within this structural context. Issues such as bundle branch block, partial block, or

unidirectional block can easily be modelled, and an ionic current model which is
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FIGURE 6.29: Purkinje fibre network activates two-dimensional myocardium.
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targeted to the Purkinje fibre network (such as the DFN model) can be used in this
region only.

6.7 Optimisation of Material Parameters

Most experimental research and clinical diagnosis in the field of cardiac activation
is performed on an empirical basis, and computer modelling is not often used.
This is for two main reasons: firstly that it is difficult to adequately describe the
experimental or clinical situation in mathematical terms, and secondly that the
model is usually very slow to compute. There is, at this stage, more potential for a

model to be used on previously collected data where the solution time is not critical.

One particular example for which this model has been used is in determining the
anisotropic conductivities in a small region of tissue based on electrode recordings
of membrane potential. The modelling uses data from an experiment performed
at Cedars Sinai Medical Center by Peng Chen on canine myocardium. 509 surface
electrodes were arranged in a rectangular fashion as shown in Figure 6.30 and placed
on the epicardial surface of an excised canine heart. The electrodes are placed at
1 mm spacing in 24 rows of 21 electrodes plus several additional electrodes at the
bottom. A stimulus is applied near electrodes 148,169,190 and 211 which are at the
upper left hand edge of the region. The activation and resulting epicardial potentials
were recorded on the EMAP® acquisition and analysis system (see Section 2.4)
configured with 512-channels, and sampled at 1 kHz.

Some of the resulting signals are shown in Figure 6.31, and the quality of the signals
ranges from excellent to poor. A poor signal may result from a bad electrical
connection or movement during acquisition. The signals are manually checked to
eliminate poor quality signals and the activation time at each remaining electrode is
automatically determined using a gradient method which finds the largest absolute
change in potential. These values are used to fit a field map of activation times,
shown in Figure 6.32, for which the colour range is from 0 ms to 70 ms and the
individual electrode activation times are overlayed. Missing numbers on the plot

indicate that the electrodes have been removed from the field fit. The average

®Electrophysiological MAPping system developed by the University of Auckland and M.LT.
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FIGURE 6.30: Electrode layout configuration for material parameter optimisation

problem, with 1.6 mm spacing between each electrode in both the x and y

directions.
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FIGURE 6.31: Several electrode recordings. Electrode 440 was rejected because of a

poor recording.

absolute error of the fit is 0.8044 and the maximum absolute error is 9.139, where
times are fitted in milliseconds. A few facts may be gleaned from this map.
Electrode 97 has an activation time (22 ms) which is significantly smaller than those
surrounding it, however the signal from that electrode is well-formed and there is
no reason to doubt it, as can be seen in Figure 6.31. An electrode which is activated
much later than those surrounding it is electrode 321, with a similar distortion of
the field. Other than these two electrodes, the field has a very reasonable fit to the
data and is relatively smooth. Contour lines on this field are drawn in 1 ms and 5 ms

increments in Figure 6.33.

Based solely on this level of output it is difficult to manually determine conductiv-
ities, and therefore an automatic optimising method is developed. A rectangular
domain is defined which covers the electrodes and this domain measures 36 mm
wide by 42 mm high, and is subdivided into 378 finite elements, each 2 mm x 2 mm.

A 9 x 9 extended Lagrange basis function is defined in each element which con-
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FIGURE 6.32: Field map showing activation time throughout the region based on

recorded electrode activation.
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FIGURE 6.33: Field maps of activation time with overlaid contour lines at (a) 5 ms

increments and (b) 1 ms increments.

structs a grid of 24505 collocation points at 0.25 mm spacings. An stimulus region
is defined consisting of groups of collocation points surrounding the 4 activating
electrodes. Because this problem is solely concerned with activation time, a simple
cubic model of the ionic currents is used, and the material parameters used are the
same as defined in Table 6.2 for the above problems using a cubic model. The fibre
angle is not known within the tissue, but based upon the fitted maps of activation

time, a constant fibre angle of 0° is used throughout the domain.

The solution of the problem requires the use of a nonlinear optimising technique
such as Levenberg-Marquardt or sequential quadratic programming (Bard 1974),
and in this case we use specifically the EO4UPF routine from the NAG library
(NAG 1993) which is designed to minimise an arbitrary smooth sum of squares
problem subject to constraints using a sequential quadratic programming method.
Initially, a set of approximate conductivities is estimated, and the activation problem
is solved. We consider a residual to be the difference in activation time between
an electrode and its nearest collocation point, and compute a residual for each

electrode. The average distance between an electrode and its nearest collocation



220 TWO-DIMENSIONAL ACTIVATION USING THE COLLOCATION METHOD

point is 0.1 mm, with a maximum distance of 0.14 mm. There are 461 electrodes
remaining in the problem, and therefore the optimiser requires the estimation of
922 objective Jacobian elements at each gradient evaluation. The optimiser must
determine derivatives of the problem, that is, how the residuals change as the
conductivities vary. This cannot be computed analytically, and the optimiser must
compute the derivatives using a finite difference technique which involves solving
the problem for small changes in conductivity. Because of this, the solution is very
slow, as a number of activation problems need to be solved at each time step in order

to establish a search direction and step length for the optimisation.

The bounds set on the material conductivities are

02x103<0;<06x103 6.1)
0.1x103<0,<04x103 (6.2)

and these bounds were determined approximately from the map. The optimiser
required 12 major iterations which involved 11 computations of the gradient and
49 evaluations of the function by solving an activation problem. The value of the
conductivities estimated by the optimiser was oy = 0.49187x 1073 and o, = 0.32288x
103, with the sum of squared residuals at these values of 1.96 x 10%. The final
nonlinear objective value was 9801.9. The optimisation required 321m40s (CPU),
or almost 51 hours. The resulting map of activation time from the optimised
parameters is shown in Figure 6.34 with the colour scale ranging from 0 ms to 90 ms.
Overlaid on this are the electrode activation times as data points coloured according
to their magnitude. Where the fit is accurate, the colours should be the same as the

underlying map, and large residuals can easily be seen.

The optimised conductivities give a conductivity ratio of only 1.5:1 which is much
smaller than commonly observed in cardiac tissue. Figure 6.34 shows that, initially,
the computed wavefront is ahead of the data points (the green points in the blue
region), and then later the wavefront is behind the actual activation (the yellow
points in the red region). Looking at the contour plots in Figure 6.33 makes it easy to
see why this is the case, as approximately the first 40 ms is fairly constant in terms of
propagation, and then the rest of the region is activated fairly quickly. This could be
explained by the fact that the two-dimensional map that is measured is in fact only
the surface of a three-dimensional section of ventricular wall. After about 20 ms
the wavefront has reached the endocardial surface and spreads out quickly over the
surface through the Purkinje fibre network, and therefore the rest of the epicardium
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FIGURE 6.34: Field map showing activation time using computed material
conductivities of oy = 0.49187 x 1073 and 0 = 0.32288 x 10—3. Measured activation
times from electrodes are drawn as data points on the same colour scale. The scale

ranges from 0 ms to 90 ms.



222 TWO-DIMENSIONAL ACTIVATION USING THE COLLOCATION METHOD

is quickly activated another 20 ms later. This indicates that a better prediction of the
true conductivities may be achieved if just the top left corner of signals is modelled
on a smaller finite element mesh, and the three-dimensional effect is minimised.

The first 15 columns and 19 rows of electrodes are used in this second optimisation,
which is the rectangle cornered by electrodes 1 and 393. 272 acceptable electrodes
remain in this region. A smaller finite element mesh covers this area, with 208
elements in total covering 26 mm x 32 mm, and giving 13545 collocation points.
The same material parameters and initial conditions are used, and the bounds on

the conductivities are also the same.

This second problem solved much more quickly than the first, and resulted in
substantially different optimised values for the conductivities. The solution took
168m10s (CPU), and took 17 iterations of the nonlinear solver. This included 16
gradient evaluations and 50 solutions of the activation problem. Approximately
1m40s (CPU) were required for each solution of the activation problem, comprising
around 50% of the total solution time, and therefore the time is split evenly between

the optimiser and the activation model.

The resulting optimised values for the conductivities were o; = 0.43023 x 103 and
05 = 0.16493 x 103 These values give a conductivity ratio of 2.6:1 which is within
the range of experimentally measured values. The resulting field map is shown
in Figure 6.35, and the measured electrode activation times are much more closely
matched to the optimised field. The sum of squared residuals is much smaller at
5473, and the nonlinear objective value decreased from 11214 at the start of the
optimisation to a value of 2736.3. Some of the decrease in these values over the

previous optimisation comes from the fewer number of electrodes used in this case.

Although the optimised values seem to fit the measured data reasonably well ,
there are several improvements which would be possible to make. Firstly, the
estimated fibre angle may not be accurate. This would be easily overcome by having
a photograph of the activation region which shows the fibre directions, and these can
easily be incorporated into the finite element model, and thereby into the collocation
grid. Attempting to optimise a varying fibre field as well as the conductivities
would be extremely slow, and even a constant fibre angle would require a much

greater computational time. Secondly, the method is slow, with most of the solution
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FIGURE 6.35: Field map showing activation time on the upper right hand corner of
the previous problem using new optimised material conductivities of
of = 0.43023 x 103 and o, = 0.16493 x 103. Measured activation times from
electrodes are drawn as data points on the same colour scale. The scale ranges from

0 ms to 90 ms.
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time being taken with repeated solution of the activation problem. Because only
activation time is required, a better approach may be to solve an eikonal equation
(Colli Franzone, Guerri and Rovida 1990) which determines only the activation time
of each point. Thirdly, no account has been taken of the electrotonic spread of the
activation wave from the initial stimulation point to neighbouring regions which
may cause the wavefront to seem to travel quickly near the stimulus, but more
slowly a few millimetres away from it. This possible effect could be tested for
by removing from the optimisation a number of points close to the stimulus and
resolving for the conductivities.



Chapter 7

Three Dimensional Collocation
Solutions

The nature of the collocation method defines a solution method which is essentially
identical for domains defined in one, two or three dimensions. One-dimensional
propagation occurs in the central septal bundle and through the Purkinje fibre
network as illustrated in Section 6.6. Ventricular propagation is three-dimensional,
and this chapter presents results obtained both in simple three-dimensional
domains, and in an anatomically accurate model of the ventricular geometry.
Atrial propagation is also three-dimensional, though some preliminary studies by
an undergraduate student has considered the thickness of the atrial wall to be
sufficiently small such that the propagation can be modelled as a two-dimensional

activity.

The main difference in a three-dimensional solution is the nature of the material
coordinate vector v; which now has three principal directions. Three forms of the
conductivity tensor exist in a three-dimensional domain. An isotropic tensor contains,
as before, the same conductivity in all directions. A transversely isotropic conductivity
tensor specifies one conductivity in the fibre direction, and the conductivity is the
same (and usually smaller) in all directions normal to the fibre axis. The most general
form of the tensor is an orthotropic conductivity tensor in which a separate value of
the conductivity is defined in each of the three directions defined by the fibre, sheet

and sheet-normal axes. These material axes are related to the element coordinates
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through a series of transformations defined by the fibre angle, the sheet angle and
the imbrication angle as defined in Section 5.2.7.

Once the geometry and microstructure have been defined, then the process by
which the collocation equations are constructed and solved is similar to the two-

dimensional examples in Chapter 6.

7.1 Activation in a Cube

This series of examples demonstrates the collocation method in a simple three-
dimensional domain. A cube is constructed with sides of length 8 mm and 33
collocation points along each side, totalling 35937 collocation points. The resulting
grid is regularly spaced with points at 0.25 mm intervals. The domain is activated by
either a stimulus at a cluster of 27 points in the centre of the domain, or at a cluster
in one corner. The central stimulus requires 0.2 mA - mm ° for a period of 1 ms,
whereas the corner stimulus only requires 0.1 mA - mm 2 because the effect of the
no-flux boundary condition on the nearby edges is to allow propagation in fewer
directions, increasing the available current. A timestep of At = 0.02 ms is used.

The cubic model is used first to demonstrate three-dimensional activation, with
parameters as used above in Section 6.3.1, except for the values of the conductivity
tensor. For each of the first three pairs of examples, the fibre axis is aligned with the
x-axis (in the diagrams which are drawn, this is normal to the right-hand face of the
cube), sheet axis is aligned with the y-axis (vertically through the top face), and the
sheet-normal axis runs in the direction of the z-axis (normal to the left-hand face).

7.1.1 Isotropic activation

The first pair of activations use an isotropic conductivity tensor for which the

1

conductivity in each direction is 0 = 0.1 mS-mm~. A colour field showing

activation times is drawn in Figure 7.1 for both stimulus protocols.
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(A) Centre stimulus (B) Corner stimulus

FIGURE 7.1: Activation in a cube with an isotropic conductivity tensor. Red
represents earliest activation, and blue represents latest.

(A) Centre stimulus (B) Corner stimulus

FIGURE 7.2: Activation in a cube with a transversely isotropic conductivity tensor.
Red represents earliest activation, and blue represents latest.
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For the central stimulus, as expected, the wave forms a spherical shape within the
domain, and the wavefront reaches the external boundary first at the centre of each
face, and activation appears to spread outwards across each surface in a circular
fashion from each central point as the sphere continues to expand. The earliest
activation on the outside surface is at 22.1 ms, and the latest occurs at 32.7 ms at
the corners of the domain. The colour range for the plot in Figure 7.1a displays red
at 22.1 ms through to blue at 32.7 ms.

The corner stimulus also produces circular wavefronts on each face, with the
furthermost corner from the initial stimulus being activated at 58.0 ms. The colour
ranges on the plot in Figure 7.1b displays red at 0.0 ms through to blue at 58.0 ms.

7.1.2 Transversely isotropic conductivities

The second pair of activations define a transversely isotropic conductivity tensor,
for which the fibre conductivity remains the same as above (o = 0.1 mS-mm™1),
and the sheet and cross-sheet conductivities are reduced by a factor of 5 to o5 =
0.02 mS - mm . The resulting wave forms an ellipsoid with a circular cross-section

along the fibre axis, and an elliptical cross-section along the other major axes.

This change in the conductivity ratio causes the activation wave to propagate more
quickly along the fibre direction than it did in the previous example because less
current is transmitted in other directions due to the lower conductivities. For the
central stimulus, this results in the earliest activation time on the surface being
reduced to 17.4 ms, while the latest activation is correspondingly delayed to 58.2 ms
at the four corners of the cube. The resulting map of activation times is shown in

Figure 7.2a with the colour range being defined between these two values.

Figure 7.2b shows the corresponding activation map for a stimulus in the corner,
with the latest activation time now being 113.1 ms at the diagonally opposite corner.
An elliptical cross-section can be seen on the left-hand face, and a circular cross-
section on the right.
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(A) Centre stimulus (B) Corner stimulus

FIGURE 7.3: Activation in a cube with an orthotropic conductivity tensor. Red

represents earliest activation, and blue represents latest.

(A) 30° fibre angle (B) 45° fibre angle

FIGURE 7.4: Rotation of the fibre angle throughout the cube causes the activation

pattern to change. Red represents earliest activation, and blue represents latest.
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7.1.3 Orthotropic conductivities

The third pair of activations define an orthotropic set of conductivities in which the
fibre conductivity is the same as before, the sheet conductivity is one quarter of that
and the sheet-normal conductivity is one half of that again. The actual values used
are 0f = 0.1 mS-mm™, o, = 0.025 mS-mm ! and 0. = 0.0125 mS- mm~!. The
wavefront resulting from this stimulus produces an ellipsoid which has an elliptical

cross-section through every axis.

The activation field from a central stimulus is shown in Figure 7.3a with the earliest
activation on the right hand surface at 17.2 ms, and the latest activation occurs at
the corners at 66.0 ms. The field is coloured between these values. The wavefront is
only marginally faster along the fibre direction than it was in the previous example,

but the wavespeed in the sheet-normal direction is markedly slower.

A corner stimulus as shown in Figure 7.3b shows elliptical wavefronts on the two

faces adjacent to the stimulus, and the opposite corner activates after 129.0 ms.

7.1.4 Variation in fibre angle

The final pair of simulations show the results of orthotropic activation on a mesh
for which the fibre angle has been rotated, which alters the angle of the fibre-sheet
plane. Figure 7.4a shows the result of a 30° rotation and Figure 7.4b illustrates a 45°
rotation, both examples having a central stimulus. For the first example, the surface
activation times range from 19.6 ms through to 58.7 ms, and the 45° example ranges
from 23.2 ms through to 57.8 ms at the corners.

7.1.5 A reentrant scroll wave

A reentrant wave is initiated in the cube by a similar method to those which created
a spiral wave in two dimensions. The FHN ionic current model is used as a simple

model of activation and recovery. For this simulation, an isotropic conductivity

1

tensor was used with a value of 0 = 0.01 mS - mm™", which is much smaller than
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FIGURE 7.5: Transmembrane potential on cube surface resulting from an internal

scroll wave generated using the FHN model.
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FIGURE 7.6: Scroll wave wavefront is approximately drawn by defining surfaces
where V,;, = -5 mV.
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usual in order to allow the reentrant wave to develop within the limited confines

of the cube. The resulting wavefront is represented in two figures. Figure 7.5

- cube/sp-poten | shows the transmembrane potential on the surfaces of the cube

nearest to the activating stimuli. Figure 7.6 | ZZL cube/sp-front| shows the cube from

the same vantage point, but with transparent walls to show the internal movement
of the activation wavefront. The position of the wavefront is approximately defined
by constructing a surface through all points where the transmembrane potential is
Vi = —5 mV. This leads to a doubling of the surface on either side of the spike of
the action potential, though the pair of surfaces are close together. Where the action
potential peaks short of the —5 mV threshold value, the wavefront appears to have

“holes” in it, though this is only an artifact of the graphical surface generation. Both

movies are combined into a single movie in| ZZE cube/sp-both |

Two stimuli are used to construct the reentrant wave in a similar way to those
defined in two dimensions. The initial stimulus is applied along one half of a
corner edge, as shown in the first frame of each of the movies. The magnitude of
this stimulus is 1 mA - mm 2 and it lasts for 1 ms. The fifth frame of the series, at
160 ms, shows the cube just after the application of the second stimulus. This second
stimulus is applied for 15 ms from t = 140 ms with a magnitude of 1.1 mA - mm 3.
As seen in Figure 7.6 the stimulus extends into the cube by approximately one
quarter of its width. This stimulus initiates a spiral on the right-hand surface as
shown in the remaining frames in Figure 7.5, but the activity beneath the surface
is more complex, as shown both by the change in transmembrane potential on the
left-hand surface in this figure, and the internal movement of the wavefront in the

subsequent figure.

7.2 A Finite Element Model of Ventricular Anatomy

We now solve the activation equations on an anatomically accurate domain defining
ventricular myocardium. The mathematical model describing this domain is
concerned only with ventricular geometry and microstructure, and does not model
the atria, or any internal conducting pathways. The anatomical finite element model
of the left and right ventricles consists of two quantitative fields — the ventricular
geometry, and the fibrous-sheet structure orientations throughout the ventricular
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X

FIGURE 7.7: The finite element material coordinates (&1, &7, £3) for the ventricular

model.

myocardium. The latter is naturally split into the muscle fibre and sheet orientation
fields as outlined in Section 5.2.7. Each field has been fitted using least squares
techniques based on the finite element method (Nielsen et al. 1991), using data
collected from careful anatomical studies of canine hearts (Le Grice 1992b).

7.2.1 Ventricular geometry

The first set of field variables to be defined at the nodes of the finite element mesh
are the geometric coordinates (A, u,0). We use a prolate spheroidal coordinate
system (see Section 5.2.6) rather than rectangular cartesian coordinates because the
prolate spheroid provides a good initial approximation to ventricular boundary
geometry and therefore reduces the required number of nodal parameters. The
finite element material coordinates &;, &; and &3 (see Section 5.2.2), are chosen to
lie in the circumferential, longitudinal (apex-to-base) and transmural (through wall)
directions, respectively (refer to Figure 7.7). Note that the &;-coordinate increases
in the opposite direction to that of 8 to ensure that (&, &;, &3) is a right handed

coordinate system.
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To describe the complex shape of the endocardial and epicardial surfaces the model
uses bicubic Hermite interpolation for the radial coordinate, A, in the (&;, &;)-wall
plane and linear Lagrange interpolation for A in the transmural &;-direction, or in
other words, A is represented using bicubic Hermite/linear Lagrange interpolation.

This provides smoothly continuous ventricular boundary surfaces. In contrast, p
and 0 are described using trilinear Lagrange functions as there is little to be gained

by using higher order basis functions in any of the &;-directions.

Using these interpolation schemes, the model uses 60 three-dimensional elements
connecting 99 nodes to accurately represent the geometry of the ventricles. Figure 7.8
shows the outlines of the element configuration, with endocardial and epicardial
surfaces separately shaded.

There are ten elements in the circumferential direction and three levels of elements
in the longitudinal direction. The model is comprised of two layers of elements —
the inner layer encompasses the septal wall and inner portions of the left ventricular
free wall, while the outer layer of elements makes up the right ventricular free wall
and the outer portions of the left ventricular free wall.

7.2.2 Myocardial fibre orientations

To model the muscle fibre orientations, it is assumed here that the fibres lie
in (&;,&;)-coordinate planes so that they are tangential to the endocardial and
epicardial surfaces. This is reasonable throughout the ventricular myocardium
except at the left ventricular apex where the fibres spiral from epicardium to
endocardium. Throughout this model, the fibre angle is defined with respect to the
&1-coordinate which is directed along 0 coordinate lines and increases as 8 decreases
(see Figure 7.9). The fibre angle at any point in the model is given by an interpolation
of fibre field parameters defined at the same nodal positions used to define the
ventricular geometry.

The basis functions used to interpolate the fibre angle within an element are
chosen to reflect the extent of the spatial variation of fibre orientation. Generally,
fibre orientations rotate steeply in the transmural direction and so cubic Hermite

interpolation is used for the &;-coordinate. In contrast, fibre orientations generally
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(B) Epicardium

FIGURE 7.8: Finite element model of the ventricular wall geometry.
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FIGURE 7.9: The fibre angle, o.

vary more slowly in the plane of the wall, thus requiring only linear Lagrange
interpolation in the &; and &, directions. Figure 7.10 shows line segments on the

endocardial and epicardial surfaces that are aligned with the local fibre orientation.

Special attention is required at the junction of the left and right ventricular free
walls and the ventricular septum. In the right ventricular free wall, fibre orientation
typically varies from —60° at the epicardium to +90° at the endocardium, whereas
in the septal wall the fibre angle ranges from approximately —90° at the right
ventricular endocardium to around +80° at the left ventricular endocardium. Thus
on either side of the right ventricular border, the principal angle for endocardial
fibres with a common orientation differs by 180°. In addition, there is a discontinuity
in fibre angle due to the merging of right ventricular free wall and septal fibres with
left ventricular fibres. To accommodate these abrupt changes in fibre orientation
three versions of the fibre angle (plus arc-length derivatives) are stored at each of the
nine nodes at the junction between the left and right ventricular walls. There is one
version of the fibre angle for the right ventricular free wall, one for the septal wall
and one for the adjacent left ventricular free wall. Errors due to these discontinuities

have been localised by using smaller elements at these sites.

This model uses 234 degrees of freedom (20 nodes with 2 DOF/node and ¢ nodes
with 6 DOF/node) to fit the fibre field and provides an accurate and efficient
representation of the experimentally measured fibre orientation field since the fitting
and measurement errors are of a similar magnitude (Nielsen et al. 1991). Moreover,

it has been demonstrated that there is a high level of consistency between fitted fibre
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(A) Endocardium

(B) Epicardium

FIGURE 7.10: Fibre orientations at the ventricular surfaces.
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FIGURE 7.11: 66303 collocation points make up the grid from the ventricular finite

element mesh.

orientation fields in different hearts, defined relative to their measured and fitted
geometry (Le Grice, Smaill and Hunter 1993). It is worth noting that this model
shows significant changes in the transmural variation of fibre orientation at different
ventricular sites.

7.3 Ventricular Activation

A refinement of the finite element mesh described in the previous section is used as
the solution domain for a series of activation simulations. The above mesh is refined
once in the &,-direction (represented by the coordinate ) to give 120 elements and
195 nodes, and a collocation scheme using ¢ x ¢ x ¢ collocation points within each
element is applied to this mesh, giving a total of 66303 collocation points within the
mesh, as shown in Figure 7.11. This section compares the activation patterns through
the ventricles depending on the nature of the conductivities, and to clearly highlight
this, a standard endocardial stimulus is not used. A localised point stimulus gives a
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FIGURE 7.12: Epicardial activation time is shown using a Hammer projection for an

isotropic ventricular model.

clearer picture of the effect of the fibre and sheet microstructure, and a small cluster
of points is chosen which are located on the left ventricular septal wall near the apex.

The FitzHugh-Nagumo model is used with the Rogers modifications in each of
the three simulations, and the model parameters are the same as are used in
Section 6.3.11, except for the conductivities. The first simulation determines the
wavefront propagation through an isotropic domain, the second considers the
microstructure to be transversely isotropic, and the third simulation examines the

effect of defining an orthotropic microstructure.
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FIGURE 7.13: Activation in an anatomically accurate model of the ventricles using

isotropic conductivities.
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7.3.1 Isotropic conductivities

The first example defines an isotropic conductivity tensor to be 0 = 1.0 mS - mm™*
in the direction of each of the three principal axes. The activation time on the
epicardial surface is shown using a Hammer projection in Figure 7.12. The definition
of the Hammer projection is explained in Appendix A. The two regions at the
top of the map, where there is a sharp discontinuity in the potential, are in fact
projections of the RV septal wall where it extends beyond the epicardial surface, and
as such, are unrelated to the rest of the diagram. A movie has also been created

which shows the animation of the wavefront moving across the epicardial surface

~1. heart/hapispot| but the individual frames have not been reproduced in the

thesis. A time series shows the movement of the wavefront through the myocardium

at 2 ms time increments in Figure 7.13 | 72 heart/hapiswav | for which the wavefront

position is determined from the activation times of the internal collocation points.

The initial spread from the activation point is within the septum, and epicardial
breakthrough is on the apical RV wall at about 21 ms. From this point the activation
spreads throughout the ventricular wall, and final activation is near the basal ring
in the centre of the RV at approximately 93 ms.

7.3.2 Transversely isotropic conductivities

The above conductivity is maintained in the fibre direction, but this example reduces
the conductivity in the directions normal to the fibre axis by a factor of 5, so
that 0, = 0.2 mS-mm™! in the sheet and sheet-normal directions, giving a 5:1

conductivity ratio. Epicardial activation time is drawn in Figure 7.14, and the

movie showing the potential on the epicardium is in | ZZZ heart/haptrpot| The

resulting activation wavefront is shown at 4 ms time increments in Figure 7.15

o heart/haptrwav |

Due to the fibre directions within the ventricular wall, which are in general circum-
ferential, the activation wave takes considerably longer to reach the epicardium. Ini-
tial epicardial breakthrough is very close to the apex, and aligned approximately
with the anterior LV-RV boundary, with the activation time delayed to approxi-
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FIGURE 7.14: Epicardial activation time is shown using a hammer projection for a

transversely isotropic ventricular model.

mately 40 ms. The point of final epicardial activation has moved towards the poste-
rior RV at the basal ring, with a final activation time of approximately 172 ms.

7.3.3 Orthotropic conductivities

There are not yet any experimental studies which quantify the ratios for an
orthotropic conductivity tensor, and it is at this stage uncertain as to whether
or not any variation in transverse conduction needs to be implemented in an
activation model. Given these uncertainties, it is difficult to make predictions
regarding the effect of incorporating a fully orthotropic description of the cardiac
microstructure. This section changes the conductivity in the sheet-normal direction
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FIGURE 7.15: Activation in an anatomically accurate model of the ventricles using

transversely isotropic conductivities.
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FIGURE 7.16: Epicardial activation time is shown using a hammer projection for an
orthotropic ventricular model.

by only a factor of 2 over that used in the previous section so that any variation
can be obviously seen as being due to the nature of the microstructure rather than

the extreme values of the conductivities. This results in the conductivity tensor

comprising values in a 10:2:1 ratio, where the values used are or = 1.0 mS- mm™’,

0, = 02mS - mm ! and 6. = 0.1 mS-mm™'. Illustration of the activation times
is drawn in Figure 7.16, and shows a slightly different pattern from the previous

two. The associated movie of the epicardial transmembrane potential is in the movie

== heart/haporpot} and the corresponding passage of the wavefront is shown in

Figure 7.17 | I heart/haporwav |

The total activation time is slightly slower again, as would be expected, with initial
epicardial breakthrough at approximately 48 ms, and final at around 195 ms. The
initial breakthrough is spread more evenly over the apical region, with the main
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FIGURE 7.17: Activation in an anatomically accurate model of the ventricles using

orthotropic conductivities.
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initial thrust being towards the anterior edge of the LV. The activation shown at the
top of the picture is a projection of the RV septal wall where it extends beyond the
epicardial surface, and therefore is not relevant to the discussion, except to note that
it also is activated somewhat earlier than in the previous two examples. The final
activation is again confined to a region on the posterior RV basal ring.






Chapter 8

Coupled Electromechanics

In the process of cardiac activation, there are mechanical processes at work in the
cardiac tissue, which influence and are influenced by the electrical processes. In
spite of the large-scale deformation which occurs in a heartbeat, the mechanical
deformation is ignored in most activation models. The collocation method described
in this thesis has been designed to be easily integrated with a model of deformation,
and this section illustrates the flexibility of the method in an electromechanically

coupled problem.

There is a two-way interaction between electrical and mechanical processes.
Electromechanical coupling describes the influence of electrical activity on the
mechanical deformation, and occurs because the depolarisation of the membrane
causes calcium to be released from the sarcoplasmic reticulum within the cell,
and this acts on the actin and myosin myofilaments causing the cell to contract.
In a normal heart, the wavefront from one heartbeat has propagated through
the ventricles without reactivating any portion of the tissue, and the contraction
does not affect wavefront propagation (though it may affect the recovery process).
Mechanoelectrical coupling is the influence of contraction on the excitation wave,
and if a reentrant loop is formed, such that the subsequent wavefronts pass
through pre-excited tissue, then the muscle may have a deformed geometry
and microstructure, and these wavefronts will almost certainly propagate with
a different speed, and perhaps direction. It has been seen for some time that

mechanical changes can initiate electrophysiological changes by a process known
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as contraction-excitation coupling or mechanoelectrical (ME) feedback (Penefsky
and Hoffman 1963; Lab 1982; Lerman, Burkhoff, Yue and Sagawa 1985; Kohl,
Kamkin, Kiseleva and Noble 1994), and a summary of the concepts is found in
Lab (1991). Some recent papers have proposed the existence of stretch-activated
ion channels (Bustamante, Ruknudin and Sachs 1991; Hagiwara, Masuda, Shoda
and Irisawa 1992; Sigurdson, Ruknudin and Sachs 1992; Ruknudin, Sachs and
Bustamante 1993) which alter the membrane potential through the transfer of ions
when the membrane is stretched.

To whatever extent the electromechanical coupling occurs, there needs to be a greater
ability to include it in models of cardiac activity, especially in the investigation of
reentrant behaviour. The first stage is to show that the collocation method works
correctly given a deforming geometry, and this is discussed in Section 8.1 in which
there is only mechanoelectrical coupling (without stretch activated channels) and
no electromechanical coupling. Following this, we use a simple coupling and
contraction model to allow the membrane to deform in response to the stimulus

wave.

8.1 Weakly-Coupled Electromechanics

A weakly-coupled electromechanical system is one for which there is minimal
coupling between the two processes. In this example the only effect is the influence
of path-length changes and material axis deformations caused by the movement of
the tissue. A deformation is imposed on the geometry, and the change in material
axes is defined by a finite element model of membrane theory finite elasticity for
an incompressible medium which uses a pole-zero representation of the forces
generated along material axes (Hunter, Nash and Sands 1996). This geometric
deformation defines a change in the location of collocation points, which track
material positions as they move, and a change in the material axes and therefore

conductivities at the point.

A similar smaller problem was developed for Hunter, Nash and Sands (1996) to

show propagation in a deforming membrane, and first published there.
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A

FIGURE 8.1: Definition of the square membrane showing fibre angle variation.

Proposed displacements are shown as arrows.

We outline here a simple example designed to show the ability of this collocation
scheme to solve the activation equations on a deforming region. Figure 8.1 shows
the initial geometry, which is initially exactly the same as the problem defined above
in Section 6.4.3 with an S-shaped fibre orientation.

The following deformation is applied to the mesh. Point 1 is fixed in both x and
y, although the mesh is able to rotate about this point. Point 2 is fixed in y and
point 3 is fixed in x, meaning that these two points are constrained to remain on the
coordinate axes. Point 4 is defined to move by 0.3 mm in both x and y directions at
each load step, and points 5 to 8 move by 0.15 mm in a diagonal fashion as shown
by the arrows in Figure 8.1 at each load step. 50 load steps were precomputed
using the finite element program with the convergence criterion being that the
sum of solution vector increments has fallen below 10~* mm and that the ratio of
unconstrained residuals to constrained residuals has also fallen to less than 10%.
The deformation of the mesh is computed using a large deformation model of the
membrane mechanics using an orthotropic constitutive law, and taking into account
the defined fibre directions. The final mesh at 50 load steps is shown in Figure 8.2,
with the computed deformed fibre orientations shown on the right hand side of the
figure.

In the undeformed mesh, the conductivity tensor is diagonal because the local
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FIGURE 8.2: (a) Deformed mesh, with undeformed mesh shown using dotted lines.
The imposed deformation is shown as arrows of displacement. (b) Deformed finite
element mesh showing orientation of deformed fibre directions.

material coordinates are by definition orthogonal, but it becomes more non-diagonal
as the stretch distorts the membrane, and thus changes the mapping from material
coordinates to global coordinates. The precomputed load steps are applied at
10 ms intervals throughout the activation process, and the local metric tensors
and conductivities are updated for each solution point at their new positions. The
stimulus protocol used is the same as for the VCD example described for Figure 6.20

in Section 6.4.3. The resulting spiral wave is presented in the time series in Figure 8.3.

In comparing this sequence with that shown in Figure 6.20 for the similar non-
deforming setup, we notice one main difference. The rotation time for the spiral
wave has decreased from about 110 ms for the non-deforming mesh to around 70 ms.
This is solely because the central portion of the mesh is being rotated in the same
direction as the spiral wave is propagating. If the central rotation was in the opposite
direction to the spiral wave rotation, we would expect a corresponding increase in
the rotation time.
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FIGURE 8.3: Spiral wave on a deforming mesh with an S-shaped fibre field.
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8.2 Strongly-Coupled Electromechanics

A strongly-coupled electromechanical model has a much tighter coupling between the
electrical processes and the mechanical processes, as the name implies. In most cases,
the coupling between electrical activation and mechanical deformation is assumed
to be through the concentration of intracellular calcium ([Cal;). It requires two
additional groups of equations: one which computes the change in [Cal;, and one
which describes how these changes in [Cal; produce deformation of the tissue.

Many of the biophysical ionic current models incorporate a measure of changes in
[Cal;, with the Beeler-Reuter model having a simple description (Equation (4.56)),
and later models such as the LR-II having a much more complex description of
intracellular calcium transport (Section 4.1.9). The simplified models, such as the
FHN and VCD models used in earlier examples, do not include such a parameter,
and if one of these models needs to be used, then a simple model of calcium change
must be developed. In some of the examples presented in this chapter, we choose
to use the modified van Capelle-Durrer model (Section 4.2.3), and construct an
equation which effectively describes the level of activation by the transmembrane
potential, and defines the change in [Cal; to be
d[Cali _ Viorm — [Cali
dt Tca

(8.1)

where V,om is a normalised transmembrane potential relative to the resting
potential and T¢, is a time constant for the calcium release process. A similar
equation may also be included in the FHN model.

There are several possible models which could be used to describe excitation-
contraction coupling. These are models which describe the relationship between
the level of [Cal; and the developed tension. The simplest model is a quasi-static
model describing only the steady-state behaviour of the muscle, and defines a
direct relationship between [Cal; and tension by assuming that the cell is allowed
to reach a steady-state solution for a given value of [Cal;. However, cardiac muscle
contracts dynamically, and a more sophisticated model of the dynamic properties
of myocardium in which there is a nonlinear function of tension must be defined
if this needs to be taken into account. One such model is the fading memory model
(Bergel and Hunter 1979), however this model will not be used in this thesis due to

its complexity.
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8.2.1 Steady-state [Ca]i-tension relationship

We use a steady-state [Cal;—tension relation such as given in Hunter, Smaill, Nielsen
and Le Grice (1996) which describes isometric tension as a linear function of [Cal;.

By subtracting the passive component of tension from the measured total tension
(for [Cal, = 2.5 mM), Hunter, Smaill, Nielsen and Le Grice (1996) found that

the maximally activated isometric tension Typ(A) is a linear function of the muscle

fibre extension ratio A with slope <&¢ = 145 kPa or a non-dimensional slope of
B = [Tlo %—T{’] = 1.45. At resting sarcomere length (1.9 um or A = 1 corresponding
A=

to no passive tension), the measured tension was Ty = 100 kPa. This leads to the

To(A) relation in Equation (8.2) for given level of activation.
To(A) = Therl T + BU\ — 1) (8.2)

where T, = 100 kPa is the isometric, actively developed tension at A = 1 and
saturating [Cal;.

The variation of isometric tension with [Cal; under steady state conditions and
constant A, is described by the sigmoidal Hill relation for dose-response behaviour
in Equation (8.3).

[Call

TO([Ca]i) = m

(8.3)
where csp is the [Cal; at which the isometric tension is 50% of its maximum, and h is
the Hill coefficient, determining the shape of the saturation curve.

The combination of Equations (8.2) and (8.3) results in an expression for the isometric
tension in terms of the extension ratio and intracellular calcium, in Equation (8.4).

[Ca]l*

To (A [Cal;) = m

*Trer T4+ BA—1)] (8.4)

Note that in general [Cal; is also length dependent, since the release of calcium from
the sarcoplasmic reticulum is influenced by stretch. A fuller description of this model
may be found either in the chapter cited above, or in Nash et al. (1996).
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8.2.2 Plane wave propagation

For this example, we use the same problem definition as outlined for the S-shaped
fibre field in Section 6.4.3, where the fibre angle at the top and bottom of the
mesh is initially 10°, and smoothly curves through 90° in the centre of the mesh.
The boundary conditions on these first electromechanical problems restrict the
movement of all boundary nodes on the finite element mesh, while allowing the
internal nodes to move as necessary according to the contraction of the element.

Alternative boundary conditions are specified for later problems as required.

The VCD model is used as above, with a 2:1 conductivity ratio and a Ca*'time
constant of 1c, = 30. Two waves are initiated at the right-hand edge, the first at 0 ms
and the second at 55 ms, which is after the right-hand edge has recovered sufficiently
to propagate a second stimulus, but while the first wave is still travelling through
the mesh.

It was determined that the equations describing the mechanics would be solved
every 2 ms, and the position of the nodes remains constant during that time step.
The size of this time step is determined largely by balancing the solution time of
the equations against the need to track the deformation. Due to large changes in
element size and shape during the simulation, and therefore to large changes in the
collocation point spacings, the activation equations need to be solved with a time
step of 0.01 ms, or 10% of that used in previous examples, in order to maintain
stability using the explicit collocation technique.

The mechanics equations are solved using a Newton-Raphson iterative method
which linearises the nonlinear system of equilibrium equations. The method of
generalised minimum residuals (GMRES) is used to solve the resulting system of
linear equations. Each solution of the mechanics equations requires around 6 or
7 tull Newton iterations in order to reduce the two accuracy measures (ratio of
unconstrained to constrained residuals, and sum of solution vector increments) to
below 10 '© mm, with each minor iteration taking approximately 30s (CPU). The
activation solution of 200 time steps to give 2 ms of activation took 1m1l6s (CPU).
The total time required for a 2 ms simulation was around 5m10s (CPU), where the
additional time is used in computing deformed grid point positions and metric
tensors, and in writing out solution files and graphical output. Each 100 ms of
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FIGURE 8.4: Plane waves with electromechanical coupling causing deformation.

Frames are shown at 4 ms intervals.
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FIGURE 8.5: Plane waves with electromechanical coupling causing deformation.
7Ca = 50.
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simulation therefore required 258m20s (CPU), or approximately 4.3 hours.

A time series of the resulting activation waves is drawn in Figure 8.4

i membrane/vcdsin30| where frames are shown at 4 ms intervals. The second

wave is propagating through tissue which is still deformed following the passage

of the first wave, and therefore it follows a slightly different path. In particular,
the curve in the second wave is less angular than the first, and is several elements
higher, as seen by examining the last part of the left-hand wall to be activated for
each wave. Note that the elements contract primarily along the fibre direction, so
that the central elements are shortening vertically and the top and bottom elements

are contracting horizontally in the vicinity of the wavefront.

Figure 8.5 | ZZE membrane/vcdsIn50| shows the same activation pattern when the

calcium coupling coefficient is increased to Tc, = 50 and consequently the
deformation is smaller. Each wave is initiated at the same time as in the previous

example.

8.2.3 Spiral wave propagation using the VCD model

Applying the second stimulus at a point just behind the initial wavefront will
produce one of three possible second waves, as already shown in Section 6.4.3.
If the stimulus arrives just before the tissue is recovered sufficiently to support a
second wave, the stimulus will die out. A second stimulus arriving during a small
window of time immediately after the tissue will generate a second wave produces
a unidirectional wave travelling in the opposite direction to the first propagating
wavefront. A still later stimulus may cause a pair of wavefronts to propagate, one
following the initial wave and one in the opposite direction. If, in addition, the tissue
on which the waves are propagating is deforming, then the path of the spiral wave

is altered further.
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FIGURE 8.6: Propagation of a spiral wave in a coupled system, where t¢, = 30.
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FIGURE 8.7: Propagation of a spiral wave in a coupled system, where ¢ = 50.
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A single rotating wave

Figures 8.6 and 8.7 | JZi. membrane/vcdssp30 | | -Zi. membrane/vcdssp50 | show the

results of a second stimulus at t = 70 ms in the same way as previously applied
to generate spiral waves in Section 6.4.3. Both time sequences show almost identical
propagation of the initial wave and the start of the second wave up until frame 160.
Because the 1c, = 50 system is deforming less than the first system, the subsequent
progress of this wavefront is more similar to the non-deforming propagation in
Figure 6.20, with the main difference being that the wave on the deforming mesh
travels somewhat faster, due to the forces on the mesh from one wavefront pulling
the next rotation of the spiral wave around more quickly. The tc, = 30 system
displays a more irregular behaviour, and the wave almost dies out in frames 210
and 290. The period of rotation is less constant, and the wave travels a different
path in each rotation.

Two independent wavetips

If the second stimulus is delayed by 10 ms (that is, the stimulus is applied at t =
80 ms) then it is sufficiently late to allow the formation of a pair of secondary waves.
Three examples are shown which have varying degrees of coupling. Figure 8.8

. membrane/vcdstwo2 | shows the effect of defining tc, = 20 which causes a

large mechanical contraction. Figure 8.9 | ZZE membrane/vedstwo3 | gives a slightly

smaller contraction due to the coupling being tc, = 30, and the final example in

Figure 8.10 | ZZi. membrane/vcdstwo5 | shows the result of setting tc, = 50, in which

the membrane contracts the least.

In all three examples, frames 90 and 100 show a similar pattern which leads to the
creation of the two waves. The initial wave has followed a similar path through the
tissue, though the deformation of the elements at the time of the second stimulus
varies considerably between each example. In each case, the wave initiated which
is propagating to the left is much smaller and travels more slowly than the other
initiated wave travelling to the right, due to the fact that it is propagating into tissue
which is less recovered from the first wavefront. Due to the variation in contractility

of the tissue into which the waves are propagating, the resulting interaction of the
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FIGURE 8.8: Two spiral waves are created with a second stimulus 10 ms later.
TCa = 20.
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FIGURE 8.9: Two spiral waves are created with a second stimulus 10 ms later.

TCa = 30.
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FIGURE 8.10: Two spiral waves are created with a second stimulus 10 ms later.
TCa = 50.



266 COUPLED ELECTROMECHANICS

waves is substantially different.

After a longer time period than drawn in the figures, but as shown in the movie files,
the three simulations have a different result. The first example (t¢, = 20) continues
to propagate a pair of rotating waves, with considerable deformation of the mesh.
The last (tc, = 50) example turns into a single rotating spiral wave, while in the
middle example created using tc, = 30, the waves die out completely. This clearly
shows that there is a large degree of interaction between the evolution and lifespan

of a reentrant propagating wave and the deformation of the underlying geometry.

8.2.4 Using a physiological model of [Ca];

An ionic current model which is based upon physiologically measured parameters
contains a description of the change in [Cal; during an action potential. In this
section, we use the Beeler-Reuter model of membrane kinetics which has a simple
model of the calcium change (Equation (4.56)), though it is still much more realistic
than the model used with the VCD equation. Later models such as the LR-II and
DFN models have an even fuller description of the calcium concentration, and add
equations which describe the transport of Ca*" ions between the myoplasm and the
different portions of the sarcoplasmic reticulum.

This section presents a number of scenarios which have identical initial conditions
and boundary conditions, starting from an activation wave on an isotropic, non-
deforming mesh. This mesh is identical to those used above, with the following

parameters.

In the isotropic activations, the conductivity is uniformly 0.15 mS- mm !, and the
anisotropic conductivities have a 2:1 ratio with values of 0.15 mS - mm™! in the
direction of the fibre and 0.075 mS - mm ! in the cross-fibre direction. The stimulus
protocol is identical for all simulations. The first stimulus is on the right hand side
of the mesh, with an intensity of 0.1 mA - mm— and a duration of 1 ms. The second
stimulus has the same intensity, and is applied along the lower half centre-line for a
period of 10 ms at a time 1300 ms following the initial pulse. A solution time step of
At = 0.05 ms is used in all cases, and the DTAR method is not employed. All other
parameters for the BR model are the same as used in Chapter 6.
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Even though this is a physiological model of the intracellular calcium concentration,
the steady-state mechanics model is derived for concentrations of extracellular
calcium which are much easier to obtain. The [Cal; is several orders of magnitude
smaller than the [Cal, and so for these simulations we scaled the value of [Cal; by
10° in the mechanical model in order to give a realistic contraction. A better solution
would be to reformulate the mechanical model so that it generates correct results for
an input of [Cal;, but this is not available in the formulation of the model which we
are using.

Three membrane definitions are used. The first is isotropic, the second uses the
anisotropic conductivity tensor on a constant (° fibre field and the third uses the
same anisotropic conductivities on a fibre field which varies in an “S”-shaped pattern
in the same way as described in Section 6.4.3 on page 199. These three options
are firstly solved for a non-deforming geometry producing similar results to those
shown earlier. The same three cases are then solved in a coupled model under
each of two sets of mechanical boundary conditions. The first is as before, in that
all boundary points are fixed and all internal points are free to move in order to
minimise strains. Secondly, the conditions are relaxed slightly so that only the corner
points are fixed, and the boundary points are only constrained to remain in straight
lines between the corner points, that is, the external boundaries of the domain remain
straight.

Each example is represented in the thesis by a time sequence of 48 images at 100 ms
intervals showing the first portion of the activation, and by movies on the CD and

the Web which are approximately twice as long.

Non-deforming geometry

These sequences are very similar to those created for the BR model in Chapter 6,
except that the conductivities and stimulus times are slightly different. The results

of using isotropic conductivities is shown in the first movie sequence in Figure 8.11

~1. membrane/brisnd | and shows the evolution of an almost circular spiral, which

continues with little variation throughout the observed time.

The sequence shown in Figure 8.12 | ZZi. membrane/br21nd00 | shows the effect of
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including a 2:1 anisotropy ratio with a constant 0° fibre angle. The wavefront is
elongated in the direction of the fibre field, and the wavetip wanders throughout
the region.

The third sequence includes the varying fibre angle, and is drawn in Figure 8.13

ZZ. membrane/br2ind| The initial wavefront propagates less quickly in the cross-

fibre direction in the centre of the mesh, as shown in the first frames up to frame

1400, and because of this the second wave only activates at the bottom of the mesh
as the central region has not yet recovered sufficiently at this stage to support a
second activation. The resulting wavefront takes on a slanted oval shape due to the
underlying fibre field.

Deforming geometry with fixed boundaries

The same three above examples are now solved for a deforming mesh, in which the
boundary nodes remain fixed, and the elements contract along the fibre direction
according to the released [Cal;. This produces spiral waves which differ markedly

from the non-deforming examples above.

The first simulation uses the same isotropic conductivities as above. Although
no fibre field is defined for the activation, the elements need to contract along a
fibre axis, and therefore the constant 0° fibre field is used only for the mechanical
deformation calculations. This results in the time sequence shown in Figure 8.14

Joic membrane/brisd| Because of the fibre field used, the mesh contracts in the

direction of the initial wavefront propagation in the centre, though not at the edges

due to the fixed boundary nodes, and produces a “V”-shaped activation pattern as
the contracting mesh retards the propagation in the centre of the domain. Because
the second stimulus is applied on the element boundary, which has moved with
the contraction, rather than at the physical centre of the domain, the stimulation
is shifted to the left, with a curve back to the boundary. This lower portion of the
domain has had more time to recover, and therefore a double spiral is formed. The
spiral initially travelling to the left is somewhat slower than the main spiral, after
some 8000 ms of interaction (after the diagrams shown in the associated figure, but
within the movie file) one wavetip does not continue to propagate, and the spiral
reverts to a single wave rotating anti-clockwise.
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FIGURE 8.11: Isotropic conductivity using the Beeler-Reuter model on a

non-deforming mesh.
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FIGURE 8.12: 2:1 conductivity using the Beeler-Reuter model on a non-deforming

mesh which has a constant 0° fibre field.
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FIGURE 8.13: 2:1 conductivity using the Beeler-Reuter model on a non-deforming

mesh which has a varying “S”-shaped fibre field.
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An anisotropic conductivity with the same fibre field produces a very similar result,

as shown in Figure 8.15 | ZZic membrane/br21d00} in which a pair of spiral waves is

initially created, but the formation of single wave comes earlier in the evolution of
the wavefront, and the death of the second spiral can be seen in the final 9 frames of
the figure. The anisotropy tends to elongate the spirals as they rotate.

Altering the fibre field changes the wavefront propagation significantly. The

sequence in Figure 8.16 | I, membrane/br21d |shows this clearly. Because the initial

wavefront causes the mesh to contract vertically in the centre of the mesh and
horizontally towards the top and bottom edges, the “V”-shape is less pronounced,
and the wavefront is more rounded. The wavefront as a whole propagates slightly
slower, which encourages the formation of a single spiral. As this spiral rotates,
the fibre directions change considerably within an element as it contracts, and the
fibre field serves to square the edges of the wavefront. The variation in fibre angle
throughout the mesh cause the contraction to be more severe, as each element is
contracting in a slightly different direction and affecting each of the other elements,

but the rotation of the spiral wave is still very stable.

Deforming geometry with sliding boundaries

The boundary conditions are relaxed in the following three examples, for which only
the corner nodes are fixed, and all nodes on the external boundary are restricted to
lie in a straight line between the corner nodes. This maintains the geometric shape,

but allows a much greater freedom of movement within the finite element mesh.

The result of an isotropic simulation is shown in Figure 8.17| ZZZ membrane/brisds |

The initial wavefront remains planar as the mesh contracts uniformly in a direction
perpendicular to the propagation, and the elements elongate away from the
wavefront and shorten immediately behind the wavefront. The second stimulus
is again shifted to the left of the domain due to the contraction. The resulting single
spiral wave is similar to the non-deforming example, except that the horizontal
contraction from the 0° fibre field causes the almost-circular wave to shorten in the
horizontal direction.

Incorporating anisotropic conductivities gives a very similar result, as seen in
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FIGURE 8.14: Isotropic conductivity using the Beeler-Reuter model on a deforming
mesh with fixed edges. A constant 0° fibre field is used for aligning the element

contraction.
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FIGURE 8.15: 2:1 conductivity using the Beeler-Reuter model on a deforming mesh

which has a constant 0° fibre field and whose edges are fixed.
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FIGURE 8.16: 2:1 conductivity using the Beeler-Reuter model on a deforming mesh
with fixed boundaries, which has a varying “S”-shaped fibre field.
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Figure 8.18 | 7. membrane/br21d00s| A single spiral again results, though in this

case the anisotropy compensates for the horizontal contraction of the finite element
mesh, and the wavefront varies between a circular shape in the 5% and 7% rows, and
a horizontally elongated shape in the 6" and 8" rows. An example command file
for this problem is given in Appendix B as the first example.

The final example uses a varying fibre field and is shown in Figure 8.19

=z membrane/br2lds| Because of the vertical variation in fibre angle the ini-

tial wave does not remain planar, but curves slightly. The second stimulus is only

just late enough to produce a second wave, and the resulting spiral is similar in
appearance to the earlier example which used the fixed boundary conditions. The
movie shows a couple of occasions where the wave almost dies out as the wavetip
travels very close to the boundary.

8.2.5 Coupled electromechanics on a 2D cross-section

This simulation is performed on a geometry taken from an MRI image taken across
the torso at approximately two-thirds of the distance from the apex to the base. From
this, the position of the epicardium is sufficiently resolved to be defined, and the
position of the left and right endocardial surfaces is approximated by eye. From
the lines defining these boundaries a finite element mesh is created containing 80
elements, with 20 element circumferentially and 4 elements through the LV wall, as
shown in Figure 8.20. There are 2 elements through each of the septal and RV walls.
No exact information was available for this slice concerning the fibre field, and so
the fibre field was defined to be circumferential at all points by aligning it with the
elemental &;-coordinate.

A two dimensional simulation does not contract in a manner similar to a three
dimensional heart, and the boundary conditions on the mechanical deformation
cannot be specified in a similar way. A model of a full heart would specify cavity
pressures against which the mesh would contract, but this cannot easily be translated
to a two dimensional model. In this simulation, we resort to a number of force
boundary conditions at the points highlighted in Figure 8.20. Point 5 is fixed in
space to prevent arbitrary movement of the mesh, and point 2 is restricted to move

only parallel to the x-axis which prevents rotation of the mesh. One simulation was
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FIGURE 8.17: Isotropic conductivity using the Beeler-Reuter model on a deforming

mesh with sliding edges.
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FIGURE 8.18: 2:1 conductivity using the Beeler-Reuter model on a deforming mesh

which has a constant 0° fibre field and whose edges are sliding.
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FIGURE 8.19: 2:1 conductivity using the Beeler-Reuter model on a deforming mesh
with sliding boundaries, which has a varying “S”-shaped fibre field.
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FIGURE 8.20: Undeformed finite element mesh for heart cross-section.

run without any additional forces specified, but the finite element mesh contracted
much further than physically possible, with the RV wall contracting until it lay over
the top of the septum. Two modifications were made, each of which reduced the
contraction. Firstly, the calcium coupling coefficient was reduced by a factor of two
to 5 x 10%. This reduced the level of contraction in the finite element mesh. Secondly,
several small forces were applied to points on the endocardium to constrain the
contraction slightly. Outward forces of 1 x 10°° kN were applied at points 1 through
4 and 0.5 x 107® kN at point 6.

Parameters on the activation model were similar to those used above, with a

1

2:1 ratio in the conductivities given as 0.2 mS-mm™" in the fibre direction and

0.1 mS-mm™! in the cross-fibre direction. In order to demonstrate the wave of
contraction following the activation wave, we use a non-physiological stimulation.
The stimulus is applied along the element boundary line which goes through points
2, 5 and 6. The resulting activation and deformation is shown in a movie sequence

in Figure 8.21 | J5& 2dheart/2dh |

Because none of the boundary conditions restrict the movement of the epicardium,

the mesh displays a much greater degree of contraction than the earlier examples
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FIGURE 8.21: Activation on a 2D heart cross-section with mechanical deformation.
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using squares with fixed boundaries.

8.3 Coupled Electromechanics on a Ventricular Domain

Solving a three-dimensional coupled electromechanics problem is considerably
more difficult than the above two-dimensional examples. Whereas the previous
examples use membrane theory to describe the mechanical properties of the tissue
sheet, the ventricular myocardium requires a different set of material laws and
parameters in order to construct a realistic model. The method of constructing this
model, and its details can be found in Nash et al. (1996).

Mechanical models are constructed of both the passive and active mechanics
present in myocardium. The nonlinear elastic properties of passive myocardium
are modelled using a fully three-dimensional orthotropic relationship between the
components of the second Piola-Kirchoff stress tensor and Green’s strain tensor
according to the pole-zero relationship, as in the two-dimensional example. The
axial and shear parameters in this model are correlated by a fibre distribution model,
which describes the strain energy which is stored in collagenous fibres and other
connective tissue. In addition, a fluid shift model is constructed which describes the
biphasic properties of ventricular muscle, and allows movement of fluid (mainly
blood) through the ventricular walls. This model describes both the movement of
fluid within the muscle and the intramural hydrostatic pressure variation, which
is assumed to vary in the transmural direction only. Unloaded myocardium is
not stress-free, and these residual stresses, and the corresponding strains, are also
included in the passive model. As in the two-dimensional examples, the active

mechanics are described by a steady-state tension-length-Ca*" relationship.

The methods of applying boundary conditions to the myocardium are also more
complex, and include the maintenance of incompressibility, as well as methods
of restricting the movements of the ventricular surfaces. The model used for the
example below held the apex fixed in p, and fixed the base in A. Many other
possibilities exist for constraining some, or all of the nodes, such as a pericardial
constraint which fixes the A coordinate of all epicardial nodes. Additionally, cavity

pressures must be modelled, as they additionally determine the level of contraction
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of the myocardium.

The ventricular finite element model used for this coupled problem is less refined
than that used in the previous chapter to describe cardiac activation, and contains
60 elements and 99 nodes. A 9 x 9 x 9 collocation scheme on this mesh produces
a total of 33136 collocation points. The CMISS command file which produces this
example is given as the second file in Appendix B. The stimulus position is on the
upper RV wall, although this is somewhat arbitrary, and makes little difference to
the results that are obtained. Even with this refined mesh, each 5ms iteration of both
the activation and mechanics models required around 3 hours of CPU time on the

SGI supercomputer. This made it difficult to study more than a few simulations.

In order for a visible contraction to be obtained, the calcium coupling coefficient was
required to be set to 5 x 10°. Even with this high level of calcium, the contraction
is difficult to see in a series of static images, and therefore the results are displayed

only in a movie sequence. |7 emech3d/h60em | The movie consists of 17 frames

taken at 5ms intervals, with the initial activation seen on the RV wall. Contraction
becomes apparent after several frames, however at the 75ms solution, the mechanical
deformation solution fails to converge. This is not remedied if the number of
iterations allowed to determine convergence is increased. For this reason, the final
two frames portray a non-converged geometry, hence the more abrupt movement.
At between 90ms and 100ms, the activation solution also fails, possibly due to the
deformation. The solution of the activation equation will solve independently, as
demonstrated in Section 7.3, and the deformation equations also converge using
a simulated level of calcium, however the combination of the two causes some
difficulties at this stage.






Chapter 9

Conclusions and Future Work

There are different stages in the process of understanding cardiac structure and
function. At the basic level, anatomists and physiologists examine the morphology
of cardiac muscle, quantify the energetic function, and measure the mechanical,
electrical and ionic changes. Because of the intricacy and complexity of the
heart, the knowledge of structures and understanding of function are continually
under development. At a slightly higher level, other researchers seek to develop
mathematical models of the processes and implement them, usually with the aid of

modern computing resources.

These models of different structures and functions are usually developed indepen-
dently, and are usually also implemented and solved independently. This allows
only one function to be examined, even though this function may influence, and be
influenced by, a number of other functions. Although in many cases this interdepen-
dency may be significant, it is usually ignored. One such interdependency, which is
known to be important but is almost always overlooked, is the interaction between

the electrical and mechanical processes within cardiac muscle.

The research presented in this thesis develops a framework for solving the cardiac
activation equations in the context of a coupled electromechanical system, and
recognises the need for integration of the two separate models into a unified
structure. In order to solve the activation equations as part of a coupled system
of integrated models, a new solution method has been developed. This collocation
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method is designed around the particular aspects which are characteristic of cardiac
activation, and is suitable for the solution of the model on geometries defined in
one, two or three dimensions as required. When modelling ventricular activation,
the geometrical model is built upon one of the best, currently available, descriptions
of ventricular geometry and microstructure, and both the geometry and the local
microstructure are described using high-order basis functions on a finite element
mesh. The activation equations themselves are solved at material points defined
at fixed & positions within the finite element mesh, and because of this method
of definition, the collocation points track any deformation specified by the finite
element mesh. The activation model uses a bidomain formulation of cellular
activation which describes the processes at a macroscopic level using a continuum
approach. The ionic currents are computed using any of a number of available
cellular ionic current models, and can flexibly incorporate new descriptions of
cellular behaviour as the processes are more accurately determined. The particular
ionic current model can be chosen so that it provides the required level of
information that is desired in the solution, and so that it is solvable in the available

computational time.

The collocation method has been designed to integrate easily with models of other
aspects of cardiac function, and in this thesis, the main focus has been the coupling
of the activation model with a model of mechanical deformation. There is a two-way
coupling between these two processes. The activation model includes a description
of the intracellular calcium concentration which the mechanical model uses to
determine the magnitude of contraction. This contraction causes deformation of the
finite element mesh, and consequently moves the grid of collocation points. By using
metric information at the collocation points to specify local slope and curvature, the

equations can be solved on an irregularly-spaced, deforming grid.

Because the bidomain model of cellular activation is used, the collocation-based
activation model on the cardiac geometry can be integrated with a model of torso
geometry enabling the computation of the electric field potential within the torso
and on the body surface, as has been shown in a proof of concept in this thesis.
Presently, this can only be used to compare body surface potentials calculated using
the models with ECG and body surface electrode recordings, but the long-term
aim is to construct an inverse model by which the activation parameters can be

determined from the measured body surface potentials.
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The model has also been shown to be useful in determining material parameters
using a nonlinear optimising technique, although the convergence to the solution is
quite slow. Improvements in the solution time and the accuracy would provide a

useful laboratory, or even surgical, tool.

There are a number of areas in which the model could be enhanced further in the
future. One of the main deficiencies at this stage is that there is very little knowledge
of the values of the components of the three-dimensional conductivity tensor, and
whether or not an orthotropic description is required. Experimental measurement
of activation in small, three-dimensional blocks of ventricular myocardium will be
required to determine these parameters. Standard techniques using an array of
plunge electrodes will provide a coarse level of detail, and will need, in the future,
to be supplemented by optical mapping methods. These are currently used for two-
dimensional studies, but will need to be extended to three-dimensional recordings
as well.

There is also a need for more detailed measurement of cardiac microstructure,
especially the nature of the branching between adjacent sheets which may give
clues as to whether a transversely isotropic or and orthotropic description of the
conductivity tensor is required. The structural orientation, as well as the properties
of the cardiac cells, has a substantial influence on the propagation of the activation

wave.

Modifications to the newer ionic current models are continually being developed,
such as recent investigation into the nature of cells in the mid-wall, called m-cells,
whose properties may play a role in the development of reentrant arrhythmia by
varying the ionic channel density of the i, and ix currents. These, and other
ionic currents whose channel densities vary spatially, produce a change in the
magnitude and effect of the current depending on location, such as the apparent
decrease in the transient outward current i;, as you move from the epicardium to
the endocardium. This spatial variation of ionic current information can be easily
added to the activation model in its current form. Various other molecules may
influence the ionic currents, such as an ATP-dependent K*current, which activates
at low levels of ATP. There are also reports of an ACh-dependent (Acetyl-Choline)
K*current which is activated by vagal stimulation, leading to hyperpolarisation.
Many of these extensions can be made to the more advanced existing ionic current
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models, but require the computation of a larger number of parameters, and therefore

an increase in computational time.

The use of an explicit finite difference solution technique to solve the activation
equations, as used in this thesis, provides sufficient accuracy in many cases, but the
timestep is often required to be very small in order for the solution to remain stable
and accurate. A useful extension would be to investigate the use of other solution
techniques, especially implicit methods which allow a wider range of timesteps.
The multigrid technique is one which seems very promising in its ability to reduce
solution errors of differing frequencies at a range of collocation grid spacings. The
solution method for the extracellular equation present in the bidomain model is also
insufficiently accurate at this stage, and a new method is required which maintains
the necessary spatial resolution while enabling coupling of the bidomain model
to a model of extramyocardial (or torso) potential. In this situation as well, the
multigrid technique is a strong contender, although there may be other finite element

or wavelet based techniques which are suitable.

The ventricles are activated through the Purkinje fibre network which spreads into
the subendocardial region, and a more sophisticated model of initial ventricular
activation is required. This will involve determining the location of Purkinje fibre
branches and describing activation through the network, which stimulates the
ventricular model. At a higher level, the pacemaker activity in the heart is most
strongly provided by the SA node in the atrial region, and the construction of an
atrial mesh would be a useful continuation in modelling the complete propagation
of the wavefront. This would be necessary if the model sought to compare its results
with an ECG recording, as the atrial contraction defines the location and magnitude
of the “P” wave. This would allow the model to be more useful in a clinical context.
Also important in a clinical setting would be the ability to use the activation model

to confirm a supposed condition based on body surface recordings.

Tissue metabolism is another important aspect of cardiac function, and may
influence the nature of activation and the propagation of the action potential.
This would involve modelling the concentration fields of additional chemicals
(such as H* (pH), ATP, ADP, adenosine and so on) throughout the heart, as well
as a description of energy expenditure and oxygen consumption. Once such

mathematical models have been generated, they could equally be solved on a
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collocation grid, as the behaviour may be very localised.

Each of these additions will also need to be designed to be integrated into a larger
model, but given this structure the implementation is conceptually straight-forward.
This modular approach also allows the problem complexity to scale with advancing

computing technology.






Appendix A

Hammer Projection

The Hammer projection (Raisz 1962) is formed by making an imaginary cut from
base to apex through the centre of both the right ventricle and the septum. The
epicardial surface is then laid flat and viewed from the outside. The LV is shown in
the central half of the map, and the RV is split across the remaining two quarters.
This projection preserves both relative surface area and retains the apex as a single

point. The Hammer projection is given by

x = —kcos (u— g) sin <e%7t> (A1)

y = ksin (u— g) (A.2)
where

k = [1 + cos (u— g) Cos (9771)} - (A.3)

In the projections shown in the thesis, a small portion of the septum shows above

the ventricles, and can easily be seen where there is a discontinuity in the field map.






Appendix B

CMISS Command Files

B.1 Two-dimensional coupled electromechanics

The following file is a list of CMISS commands which are used to solve the problem

outlined in Section 8.2.4, and for which a constant 0° fibre angle is defined and the

boundary nodes are sliding. The resulting output is shown in Figure 8.18.

assign MECH=1
assign ACTVN=2

fem define parameter;r;membrane
fem reallocate

fem define node;r;square16x16
fem define base;r;membrane
fem define element;r;square16x16
fem define fibre;r;sq16x16-00
fem define window
Set up mechanical deformation problem
fem define equation;r;stress class MECH lock

fem define material;r;membrane class MECH

Two problem classes are defined — one which solves the
mechanics equations and one which solves the activation
equations

Define the parameter sizes for this problem and allocate
memory for the arrays

Define the 289 nodes for the finite element mesh

Bilinear basis functions are defined for both the mechanics
and the activation problem

Define the 256 finite elements used as the geometry
Define a constant 0° fibre field

Create a graphical output window

The equation is a finite elasticity model using membrane
theory, and the domain is incompressible

A pole-zero material law is used
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fem group node external as bdy nodes

fem group element 1..16 as bot_elems

fem group element 241..256 as top elems

fem group element 1..241:16 as lhs_elems

fem group element 16..256:16 as rhs elems

fem group node xi1=0 element Ihs elems as
Ihs_nodes

fem group node xi1=1 element rhs elems as
rhs_nodes

fem group node xi2=0 element bot elems as
bot_nodes

fem group node xi2=1 element top elems as
top_nodes

fem define initial;r;slide class MECH

fem define solve;r;membrane class MECH

fem define active;r;stress class MECH

Set up the electrical activation problem

fem define equation;r;br class ACTVN

fem define grid;c class ACTVN deformed

fem define material;r;br class ACTVN

fem update grid material class ACTVN

fem group grid xi1l=1 oneoff as rhs-line

fem group grid line 7873 xidirn 2 negative as cline

fem define initial;r;sq16x16-rhs-cline class ACTVN

fem define solve;r;sq16x16 class ACTVN

fem solve class ACTVN to O

Solve the coupled electromechanics problem
DO HUND=0..9
DO TEN=0..9
DO UNIT=0,2,4,6,8

fem solve class ACTVN restart to
HUND//TEN//UNIT

fem update gauss calcium from_class ACTVN
fem solve class MECH incr 0. iter 99
fem update grid strain class ACTVN
fem update gauss deformed fibres collocation

fem define grid;c class ACTVN deformed
from_class MECH

All nodes on the boundary — this is used if the boundary
conditions specify fixed boundary nodes

Element groups along each of the four edges of the mesh

Determine which nodes are on the external boundaries of
the mesh along each of the four edges

Initial conditions have fixed edges with sliding nodes

The equations are solved using GMRES with diagonal
preconditioning

A steady-state tension-length-Ca** model describes the
active parameters

The Beeler-Reuter ionic current model is used
Define the collocation points on the finite element mesh
Read in the Beeler-Reuter material parameters

Precompute conductivity tensor values

Group all collocation points on the right-hand boundary of
the mesh

Group all collocation points which lie in a line below the
central point

Initial conditions specify the timing of the stimulations

Define the solution parameters, including the timestep
used

Write out initial information to the output files

Loop from Oms to 998ms in steps of 2ms

Solve the activation equations up till the current timestep

Update the mechanics equations with the current [Caly
from the activation model

Solve the mechanical deformation equations until the
solution has converged

Update the values of strain at collocation points — this is
used only if there are stretch-dependent channels
Recompute the deformed fibre field based on the new mesh
position

Redefine the collocation grid given the deformed mesh
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fem update grid material class ACTVN
fem update gauss potential class ACTVN

fem draw field deformed gauss 1 class MECH
basis 2 zmin=-120 zmax=20 noscale

fem draw lines deformed rgb=white

fem draw fibre deformed dxi 0.5,0.5,0.5
rgb=black

refresh graphics

print;ved-1//HUND//TEN//UNIT portable h=500
w=500

ENDDO

deassign UNIT
ENDDO
deassign TEN

fem define grid;w;vcd-sp-30-//HUND//99 class
ACTVN

fem define init;w;vcd-sp-30-//HUND//99 class
MECH

ENDDO
deassign HUND

Recompute conductivity tensors in local material
coordinates

Transfer transmembrane potential to a gauss-point array
for display

Draw the transmembrane potential field on the deformed
mesh

Draw the deformed element boundaries
Draw the deformed fibre field
Update the graphics window

Save the window to a PPM file

Every hundred milliseconds...

Save the current quantities associated with the collocation
points

Save the current deformation of the finite element mesh

End of loop
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B.2 Three-dimensional coupled electromechanics

The file below is a command file for the program CMISS which constructs and

solves the coupled electromechanics problem on the anatomically accurate

ventricular finite element mesh.

assign MECH=1
assign ACTVN=2

assign MYOCARD=1
assign LVCAV=2
assign RVCAV=3

fem define parameters;r;full
fem reallocate

Define the geometry
fem define coordinates;r;prolate region MYOCARD
fem define node;r;fullheart region MYOCARD
fem define base;r;fullheart
fem define fibre;r;fullheart region MYOCARD
fem define sheet;r;fullheart region MYOCARD

fem define element;r;fullheart region MYOCARD

Two problem classes are defined — one which solves the
mechanics equations and one which solves the activation
equations

Three separate solution regions exist — the myocardial
region, and a region for each ventricular cavity

Allocate memory for arrays required for this problem

Define prolate spheroidal coordinate system

Read the finite element nodes of the ventricular region

Define the required basis functions — there are 12 of these
in all

Read the measured fibre field throughout the myocardium
Read the sheet field throughout the myocardium

Read the finite element mesh for the myocardium

Define element groups — These groups are used for defining initial conditions and boundary conditions

Basal Elements:

fem group elem 3..8 as base Ivfree epi region
MYOCARD

fem group elem 33..38 as base Ivfree endo region
MYOCARD

fem group elem 31,32,39,40 as base septal region
MYOCARD

fem group elem 1,2,9,10 as base rv region
MYOCARD

fem group elem base _Ivfree epi,base Ivfree endo,
base_septal,base rv as base region
MYOCARD

Equatorial Elements:

fem group elem 13..18 as equator Ivfree epi region
MYOCARD

LV freewall epicardium

LV freewall endocardium

Septum

RV wall

All elements adjacent to the basal ring

LV freewall epicardium
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fem group elem 43..48 as equator lvfree endo region
MYOCARD

fem group elem 41,42,49,50 as equator septal region
MYOCARD

fem group elem 11,12,19,20 as equator rv region
MYOCARD

fem group elem
equatorIvfree _epi,equator lvfree endo as
equator lvfree region MYOCARD

fem group elem
equatorlvfree,equator septal,equator rv
as equator region MYOCARD

Apical elements:

fem group elem 21..30 as apex_epi_elems region
MYOCARD

fem group elem 51..60 as apex-endo elems region
MYOCARD

fem group elem apex_epi_elems,apex_endo elems as
apex_elems region MYOCARD

Other groupings:

fem group elem
base_lvfree_endo,equator lvfree endo,
apex_endo_elems as Ivfree_endo elems
region MYOCARD

fem group elem base Ivfree_epi,equator Ivfree epi,
apex_epi_elems as Ivfree_epi_elems region
MYOCARD

fem group elem base rv,equator rv as rv_elems
region MYOCARD

fem group elem base septal,equator septal as
septal_elems region MYOCARD

fem group elem base,equator,apex elems as
all_elems region MYOCARD

Define node groups

fem group node 13,28,41 as apex nhodes region
MYOCARD

fem group node 1,44,2,56,47,3,50,59,4,53 as
base_epi_nodes region MYOCARD

fem group node 29,62,30,74,65,31,68,77,32,71 as
base_lv_endo_nodes region MYOCARD

fem group node 15,85,18,87,17,83,14,80 as
base_rv_endo_nodes region MYOCARD

LV freewall endocardium

Septum

RV wall

LV freewall elements

All elements located in the equatorial region

Epicardium

Endocardium

All elements adjacent to the apex

All LV freewall endocardial elements

All LV freewall epicardial elements

All RV elements

All septal elements

All elements

Apical nodes

Basal epicardial nodes

Basal LV endocardial nodes

Basal RV endocardial nodes
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fem group node
base_lv_endo_nodes,base rv_endo nodes
as base_endo_nodes region MYOCARD

fem group node xi2=1 external elem base as
base_nodes region MYOCARD

fem group node xi3=1 external elem
equator lvfree _epi,equator rv as
equator_epi_nodes region MYOCARD

fem group node xi3=0 external elem
equator lvfree_endo,equator septal as
equatorv_endo nodes region MYOCARD

fem group node xi3=0 external elem equator rv as
equator_rvfree_endo nodes region
MYOCARD

fem group node xi3=1 external elem equator septal
as equator_rvsept_endo _nodes region
MYOCARD

fem group node equator rvfree endo nodes,
equator_rvsept_endo _nodes as
equator_rv_endo_nodes region MYOCARD

fem group node xi3=1 elem
equator lvfree_endo,apex endo elems as
equatorv_mid_nodes region MYOCARD

fem group node xi3=1 external elem
Ivfree_epi_elems,rv_elems as epi_nodes
region MYOCARD

fem group node equa-
tor_lv_mid_nodes,equator rv_endo nodes
as equator_mid_nodes region MYOCARD

Define dependent variable/material information

fem define equation;r;finelas tch incomp region
MYOCARD lock class MECH

fem define material;r;orth_incomp _active residstrain
region MYOCARD class MECH

fem define active;r;active0_00 region MYOCARD
class MECH

fem define initial;r;fullheart inflate baseepifixlambda
region MYOCARD class MECH

fem define solve;r;newton region MYOCARD class
MECH

Save scale factors for the ventricular wall elements
fem define base;r;fullheart readse

fem def line;w;fullheart region MYOCARD

All basal endocardial nodes

All basal nodes

Equatorial epicardial nodes

Equatorial LV endocardial nodes

Equatorial RV freewall endocardial nodes

Septal nodes

Equatorial RV endocardial nodes

Equatorial LV midwall nodes

All epicardial nodes

All endocardial nodes

The equation which describes the mechanical deformation
is 3D incompressible finite elasticity

The mechanics material parameters is orthotropic and
incompressible, with active stress modelling and residual
strains specified by a pole-zero law. This material law has
16 parameters

The active mechanics use a steady-state

tension-length-Ca” " relationship

Initial conditions specify that internal cavity pressures are
1kPa in the LV and 0.2kPa in the RV. The apex is held
fixed in u, and the epicardial base is fixed in A

The mechanics equations are solved for using the
Newton-Raphson method

redefine bases to read in scale factors

write out scale factors for wall elements
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fem define base;r;fullheart

redefine bases to calculate scale factors

Define geometry and dependent variable information for LV and RV cavities

fem define region;r;coupled

fem define coordinate;r;lvcavity region LVCAV
fem define coordinate;r;rvcavity region RVCAV

fem define node;r;lvcavity region LVCAV
fem define node;r;rvcavity region RVCAV

fem define element;r;lvcavity region LVCAV
fem define element;r;rvcavity region RVCAV

fem group element 61..90 as Iv_cavity elems region
LVCAV

fem group nodes xi2=1 elem 61..70 as
Iv_cavity_base_nodes region LVCAV

fem group nodes 29,71,32,77,68,31,65,74,30,62 as
Iv_endo_base_nodes region LVCAV

fem group elem 91..100 as rv_cavity elems region
RVCAV

fem define equation;r;coupled region
MYOCARD,LVCAV,RVCAV class MECH
lock

fem define material;r;cavity region LVCAV class
MECH

fem define material;r;cavity region RVCAV class
MECH

fem define initial;r;lvcavity region LVCAV class MECH
fem define initial;r;rvcavity region RVCAV class
MECH

Define cavity/wall coupling and solution information
fem define coup;r;coupled class MECH

fem define solve;r;coupled coupled region
MYOCARD,LVCAV,RVCAV class MECH

fem update solution coupled source region
MYOCARD class MECH

fem update solution cavity reference average 100 in
2 node Iv_endo_base _nodes region LVCAV
class MECH

fem update solution cavity reference average 104 in
2 node 14,18 region RVCAV class MECH

Define regions for LV and RV cavities

Define prolate spheroidal coordinate system for LV and RV
cavity

Read LV and RV cavity nodes

Read LV and RV cavity elements

Group of all LV cavity elements

Group of LV cavity basal nodes

Group of LV endocardial basal nodes

Group of all RV cavity elements

Equation is incompressible finite elasticity for the wall,
and maintaining constant volume using a fluid mechanics
model in the cavities

Constant volume constraint for fluid mechanics

Basal and apical nodes are held fixed in n

Coupling is through surface pressures

Wall mechanics are solved using Newton-Raphson, and
the cavity fluid mechanics are solved using a nonlinear
GMRES algorithm with diagonal preconditioning

Update internal solution variables for coupled problem

Updates reference state of cavity problem

Read back in scale factors for the ventricular wall elements
fem define base;r;fullheart readse redefine bases to read in scale factors

fem def line;r;fullheart region MYOCARD read in scale factors for wall elements
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fem define base;r;fullheart
Define activation problem
fem define equation;r;br class ACTVN
fem define grid;c class ACTVN
fem define material;r;br-ortho class ACTVN
fem update grid material class ACTVN
fem group grid cube 600 as stimulus
fem define initial;r;heart-activation class ACTVN
fem define solve;r;heart-activation class ACTVN
fem solve class ACTVN to 0.0
Solve the coupled electromechanical problem
DO HUND=0..3
DO TEN=0..9

DO UNIT=0,5

fem define solve;r;heart-activation class
ACTVN

fem solve class ACTVN restart to
HUND//TEN//UNIT

fem export point;heart-ref-coupled-brorth-
1//HUND//TEN//UNIT grid class
ACTVN

fem update gauss calcium from_class ACTVN
to_class MECH factor 10000.0

fem define solve;r;coupled coupled region
MYOCARD,LVCAV,RVCAV class MECH

fem solve increment 0.0 iter 15 error 1.e-4
coupled class MECH

fem define initial;w;heartmech-
brorth_def1//HUND//TEN//UNIT region
MYOCARD,LVCAV,RVCAV class MECH

fem export node;heartmech-
brorth_def1l//HUND//TEN//UNIT field offset
7500 region MYOCARD class MECH

fem define grid;c class ACTVN deformed
from_class MECH

fem update grid material class ACTVN

redefine bases to calculate scale factors

Equation used is a Beeler-Reuter ionic current model

Calculate position of collocation points and associated
metric tensors and connectivity

Use and orthotropic conductivity tensor

Precompute derivatives of the conductivities and metric
tensors

Use a cube of collocation points as the stimulus
Initial activation occurs at this group of points
Define the solution parameters for the activation model

Write out initial information to output files

Set up a loop from 0 to 395 milliseconds in steps of 5 ms

Update activation solution parameters

Solve the activation problem to the appropriate time

Save collocation point information at this timestep

Update the mechanics equation with new values of [Cal; at
the gauss points

Update mechanics solution parameters

Solve the mechanics equations until the error measure is
below 10~ * or the interations exceed 15

Write out the displacement field at this timestep

Write out nodal positions at this timestep

Recompute collocation point positions based on new finite
element mesh

Update the conductivity tensors and metric tensors
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ENDDO
deassign UNIT
ENDDO
deassign TEN
ENDDO
deassign HUND

End of solution loop
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