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1. INTRODUCTION

| The quasilinear approximation for unsaturated porous
] ‘media flow and its various applications are reviewed. This
‘approximation is the name given to an exponential relation-
ship between hydraulic conductivity and moisture potential.
The phrase *‘quasilinear”” was coined by Philip [1968b] for
| reasons outlined below. This term also has an older unre-
lated connotation from the theory partial differential equa-
i tions, but this should not give rise to any confusion.
We begin with a note on Richards’ equation and show how
| this can lead naturally, from a mathematical viewpoint, to
| the consideration of an exponential hydraulic conductivity-
| moisture potential relationship. This relationship produces a
| dramatic simplification in the Richards equation, and one
4 which is well suited to many flow problems, particularly
| those involving steady regimes. It is also less demanding in
| the matter of soil characterization, avoiding the use of a
complicated hydrological characterization for each soil un-
| der consideration which is necessitated when the full modern
theory of unsaturated water movement is applied directly.
| However, these gains are at a certain cost. In the words of
| Philip [1987b, p. 17] ““we are mostly limited to steady flows,
- | and we cannot pretend to predict their fine detail accurately.
| The plain fact is, however, that in most engineering contexts
and in most field applications of soil physics, we should be
| surprised and delighted if our predictions held to 10%.
| Against that background, the quasilinear analysis gives
- | ample accuracy.” This view is strongly supported by the
| author, so much is unknown and uncertain in the vadose
i | zone that to overmodel unsaturated flow phenomena appears
& | fruitless. It is surely better to concentrate on understanding
| the primary factors affecting unsaturated flow before at-
i tempting to include finer detail. Quasilinear analysis pro-
vides a mechanism for doing this, and a recent publication
| [Philip eral., 1989b], in which quasilinear and fully nonlinear
= solutions involving experimental data were compared, vali-
dates this claim.

2. Historical NOTE ON RICHARDS' EQUATION

The names of Buckingham and Richards are synonymous

-
" vith the foundations of modern soil physics. Buckingham
g [1907) proposed the concept of a moisture potential and
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demonstrated its functional relationship to the moisture
content in partially saturated soils. He also proposed, by
analogy to thermal and electrical conduction, what was, in
effect, a generalization of Darcy’s law applicable in the
partially saturated zone. Interestingly, it appears that Buck-
ingham (a physicist) had no previous knowledge of the
groundwater flux law of Darcy [Sposito, 1986].

Richards [1931] defined the total potential which was
originally proposed for saturated porous media and, by
‘physical reasoning, also obtained the generalized Darcy’s
law. Richards then applied the principle of conservation of
mass o obtain what is now recognized as the fundamental
equation governing the flow of water in a partially saturated
nonswelling porous medium and is consequently referred to
as the Richards equation.

Excellent review articles on the beginnings of soil water
physics are given by Philip [1970, 19725, 19744l and Sposito
[1986], and these offer interesting insights into the work of
Buckingham and Richards.

3. FORMULATION OF RICHARDS' EQUATION

We can write Darcy’s law for the flow of water through an
isotropic saturated porous media as

U=-Kv.® (84

where U is the vector flow velocity (units of length per time),
K is the hydraulic conductivity (units of length per time) of
the medium, @ is the total potential (potential per unit
weight, units of length) and V, is the divergence in physical
space coordinates. The asterisk is used here to denote
physical coordinates,

According to Richards [1931, p. 323], ‘‘the essential
difference between flow through a porous medium which is
saturated and flow through a medium which is unsaturated is
that under this latter condition the pressure is determined by
capillary forces and the conductivity depends on the mois-
ture content @ of the medium.” Consequently, we may
write, for an isotropic unsaturated porous medium,

U=—K(#V.d 2)

Richards [1931] was the first to provide experimental mea-
surements of a K(9) function. Experimental measurements
have since been made on K(+%) functions for many different
soils, and the general behavior of K(#9) is now well estab-
lished [Philip, 1969]. The total potential @ (often called the
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hydraulic head /) is defined here relative to the reference
state of water at atmospheric pressure and datum elevation
24 = 0. Here gz, is the vertical space coordinate taken
positive downward. The energy state of the water is com-
monly expressed by the moisture potential ¥ of Buckingham
(units of length). Using the standard assumptions for unsat-
urated media we have

D(F) = W(H) —z4 3)

It is important to note that ¥ is negative for unsaturated
media that are wet by water. Continuity of fluid velocity
results in

a9

aty

~Wri

which, using (2) and (3), yields the Richards equation.
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—=V, - - :

oy e KV~ (5)
This equation holds quite generally in the sense that it
applies to both homogeneous and heterogeneous soils, and it
does not depend on any requirement that relations between
K, W and ¢ be single valued. If, however, K and ¥ are
single-valued functions of ¥ and the soil is homogeneous
then it is often convenient to introduce the diffusivity D(+)
(units of length squared per time) defined by

A4V
D(B) = K(:) — (6)
9
and rewrite (5) as

a0 dK a9
T =V (DVy8) - — @]

aty d9 dz,
Buckingham [1907] was the first to provide experimental
measurements for both a W(+) and a D(+9) function.
The functions K(#9), W(9) and D(9) are highly nonlinear
and these nonlinearities cannot, in general, be ignored.
It is often convenient to introduce the variable @ (units of
length squared per time) defined by

o @
6= f Kdv f D(9)d9 @)
W 9

where 9 and W are reference values and ¥, = W(#,). Then
(7) becomes

a0 dK & 1 dK 4®

K(9) d¥ oz,

D) ar,

D(9) dzs

1 a0 1
v

9

The lower limits of the integrals of (8) are arbitrary. K
decreases so rapidly with W that the first integral of (8) exists
even when W, — —c and this is generally the adopted
reference value. Realistic empirical functions used for K(¥)
are such that these integrals converge [Raats and Gardner,
1971].

A transformation of the type in (8) was given by Kirchhoff
around 1880 [Raars, 1970] and is hence often called the
Kirchhoff transformation and © the Kirchhoff potential.
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Klute [1952] introduced the transformation into the soil
physics literature and termed © the *‘matric flux potential’
for reasons outlined by Raats [1970], Regardless of the name:
given to O, the transformation given in (8) is frequently,
encountered in conjunction with Richards’ equation due to
the simplifications it produces.

The limitations of the preceding developments have been
discussed in detail by Philip [1969]. These will not be
repeated here; we simply note that we are assuming a
homogeneous nonswelling unsaturated porous medium in
which Darcy’s law holds and the effects of temperature,
hysteresis and complications due to soil air can be ignored,
These assumptions may appear restrictive for practical ap-
plications. However, results obtained to date by various.
researchers using Richards' equation under these assump-
tions prove the worth of pursuing this line.

To solve (9) in general requires the specification of two of
the three functions K(19), W(3) and D(9) (whether as a set of
experimental points or some empirical function). Given two
of these functions, the third is uniquely determined.

The quasilinear analysis results from assuming
(UK)(dKId¥) is constant, which has the effect of linearizing,
the right-hand side of (9). This condition is equivalent to
requiring

K = o0V

(10)
where o is a constant (dimensions of per length). The
historical development and physical implications of (10) are
discussed in detail below. We note here the simplifications
this offers.
With (1/K)dK/d¥) = « (a constant) the steady state
version of (9) becomes
a6
VIO = (1)
which is the basic quasilinearized equation for steady state
flow in an unsaturated porous medium. For problems involy-
ing water sources of nonzero dimensions there are generally
at least two length scales involved, namely o' and L. a
characteristic length of the cavity. Consequently, dimen-
sionless coordinates have been defined previously in one of
two ways: (1) normalize lengths with respect to 2a~! [e..,
Philip, 1984a, e] or (2) normalize lengths with respect to L
[e.g., Wooding, 1968; Waechter and Philip, 1985]. If one
uses the second way and defines

(6] x

0=—
9

where s is dimensionless and @ is the value of © on the
supply surface, then (11) in dimensionless coordinates he-
comes

a6
Vi =25 —
az
The substitution [Wooding, 1968]
6 =He™ (14)

is often used and reduces (13) to the Yukawa (modified
Helmholtz) equation
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ViH = s’H (13)

which is convenient for mathematical analysis. Equation (15)
has often been referred to as the Helmholtz equation al-
though the classical Helmholtz equation involves a sign
change on the right-hand side of (15) (with a real s parame-
ter). The equation given in (15) has been termed the Yukawa
equation [Duffin, 1971]. Although the two equations are
superficially similar, some of the properties of their solutions
are very different (J. L. Schiff and W. J. Walker, University
of Auckland, personal communication, 1987).

4. THE QUASILINEAR APPROXIMATION

4.1, Historical Development

Gardner [1958, p. 229] was apparently the first to intro-
duce an equation analogous to (10). In his search for sepa-
rated solutions of the steady state version of (9) he noted that
one analytical relation between K and W which enabled
product solutions was that of an exponential, which for a
limited range of values of moisture potential, could be fitted
empirically to much of the experimental data then available
“*but it does not hold well over a wide range of values.™

The papers of Irmay [1966] and Rijtema [1965], unfortu-
nately unsighted by the author, apparently used a similar
exponential function. Irmay [1966] noted the particular case
of (10) with K « 9 and 9 = exp (aW/3) [Philip, 1974b].
Rijtema [1965] appears to have proposed a hybrid of the
Green and Ampt model [Green and Ampt, 1911] and (9)
[Raats and Gardner, 1971, with each function valid over
different ranges of moisture potential. Later reference to the
model of Rijtema [Mualem, 1978] has the moisture potential
range divided into three regions, with a Brooks and Corey
type mode [Corey, 1977, p. 104] valid in the new range. It
appears that the model of Rijtema was

K=K, V=,

K=Ke™W—V g <wv=w, (16)

o\
K=Ki|— v,
¥y

where K is the saturated hydraulic conductivity, ¥, is the
“air entry”” value of the moisture potential [Philip, 1969]
(i.e., the value of ¥ at saturation for which d6/d¥ # 0
[Mualem, 1978]), and Wy, n and K, are constants. If ¥, —
—, (16) agrees with the model given by Raats and Gardner
[1971).

Philip [1967, p. 314] noted that the steady state version of
(9) was linear in ® **provided (1/D)(dK/d#) is constant. This
condition is satisfied for a wide range of functional forms of
K(9) and ¥(%) which fit the empirical data reasonably well.”
The consequence of putting (1/D)(dK/d8) to be constant was
given by Philip [1968a, p. 523]: “simply that K be an
exponential function of W. There is no restriction set on the
shape of (). Philip [1968b] presented a paper based on
the linearized equation in which the term *‘quasilineariza-
tion"" was used for the first time. The field of quasilinearized
infiltration had now begun.

Philip [1969, p. 257] wrote “‘the pertinence of [the lin-
earised equation] has been recognised only recently . . . and
the exploration of relevant solutions has not been taken very

far.” Since that time research in this area has grown quickly
and appears far from abating.

4.2, General Discussion

The first detailed discussions of the exponential relation
(10) were given by Philip [1968b, 1969]. The following
excerpt, taken from Philip [1969, p. 256], gives a clear
picture of the importance of the relation and has been used
by many researchers in their justification of their quasilinear
studies.

Even though it cannot be claimed that Eq. (10) is universally
exact, it does model in a reasonably convincing way the quite
generally observed rapid and nonlinear decrease of K with W,
For many soils, Eq. (10) does, in fact, represent K(¥) fairly well
over W ranges of interest in soil-water studies, @ has the
dimensions [length] ~' and is conveniently expressed in cm .
Typically, a is about 0.01 cm ™", and the range of values 0.05 to
0.002 em ™! seems likely to cover most applications, a is a
measure of the relative importance of gravity and capillarity for
soil-water movement in the particular soil. Fine-textured soils,
where capillarity tends to predominate, have small « values;
and coarse-textured soils, where gravity effects manifest them-
selves most readily, have large « values.

The literature to date generally supports the views given
above, although it appears that the « range given was
perhaps a little conservative. Bimodal porosity can cause «
to often vary between 0.05 and 0.2 cm ™! [Weir, 1987a], and
there are sufficient reports in the literature of a values hoth
smaller than 0.002 cm ™' and larger than 0.05 cm™' [e.g.,
Bresler, 1978; Clothier et al., 1985). Philip [1984a] notes that
about one-third of the 28 values of Bresler [1978] are for sand
fractions and/or apply over small W ranges, and so may not
be representative of the full moisture range in real soils. Also
high @ values are often reported for laboratory experiments
with loosely packed soils [Thomas et al., 1977]. The range
0.001 em~" to 1 em ™! is stated as covering most of the
published a values [Morrison and Szecsody, 1985].

There are many experimental K- curves in the literature
that support the use of (10) [¢.g., Dirksen, 1978, but there
are also those that deviate significantly over W ranges of
interest, These experimental results are consistent with the
above excerpt from Philip [1969]. The exponential represen-
tation of K *‘fails miserably " for saturated regions of the soil
with positive hydrostatic pressure [Philip, 1984f]. The qua-
silinear analysis is thus restricted o unsaturated regions
where ¥ = 0: in the saturated region with ¥ > 0, K is
constant (this, in essence, is Rijtema’s model with ¥, =
—=0). This restriction is not a severe problem, since we are
generally interested in flow in the partially saturated zone.
We note here that we have used ¥ = 0 for the unsaturated
region. For soils with a nonzero air entry value W, [Philip,
1969] we must restrict attention to W < W, and use

K =Kye =V an

where K, is the conductivity value at W = W,

The excerpt quoted from Philip [1969] implies that in the
limit as a— 0 the influence of gravity on the flow approaches
zero and as @ — = gravity dominates the flow process. Thi
view has been supported in numerous subsequent publica-
tions [see Philip, 1984b] although it has presented some
confusion [Batu and Gardner, 1978; Batu, 1979, 1980]. This
meaning of « has been reaffirmed by Philip [1984b], and
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P. A. C. Raats (personal communication, 1988), although
Parlange and Hogarth [1985b, p. 1283] have recently
claimed that @ — 0 can yield either a saturated flow or a
purely capillary-driven unsaturated flow ““when the behav-
iour of ‘real’ soils is considered.”” This conclusion was
obtained by considering, for an exact K(¥) function, the
following definition of a:

1 dK d(n K)

a(¥) = ==
(v) v d¥

(i.e., « is considered to be a variable with moisture poten-
tial), which is the approach generally adopted by Parlange
le.g., Parlange, 1972 a, b: Hogarth et al., 1986]. 1t has been
stated that this is a more realistic approach to take when
modeling “‘real” soils. However, the simplicity of the qua-
silinear approximation is lost, and one is back to requiring
complicated hydrological characterizations for each soil
under consideration when applying this model. The results
and discussion of such variable @ modeling fall outside this
review, since they are not based on the quasilinear approx-
imation; rather, they are based on the Richards equation,
and a(¥) has been defined in order to compare the two
models. The reader should be aware that the two approaches
continue to cause debate between the constant a versus
variable a results and interpretations.

For K(V¥) arbitrary, Philip [1984b, f, 1985a] proposes

calculating a by
Wo
f K(¥) d¥
adl

~ 19

" K(¥g) - K(¥)

for flows involving the moisture range —= =< ¥, = ¥ =¥,
=, = 0 which should ensure a K(¥) representation that is
*‘at least correct in an integral sense’ [Philip, 1985a, p. 788]
and in consequence the *‘quasilinear analysis should, at the
least, give a very accurate estimate of integral properties of
the flow” [Philip, 19984b, p. 633]. When K(¥,) # 0 there is
a background flow at infinity which can be subtracted out
[Philip, 1957a, 1969]. Equation (19) is, in fact, exact when
(17) is exact. Philip [1985a, p. 789] showed that (19) gives
“‘optimal evaluation of o’ in the case of steady infiltration
from a spherical cavity and is in fact optimal for infiltration
from a three-dimensional cavity of arbitrary shape into an
infinite medium [Philip, 1987c].

From (19) and (8) we see that a~' is the negative of a
K-weighted moisture potential. This is analogous to the
*critical pressure head"’ /. used (and tabulated) by Bouwer
[1964] and discussed by Raats and Gardner [1971]. The h,
values quoted in Bouwer correspond to « values ranging
between 0.1 cm ™" and 0.01 cm ™', The parameter a ' is also
equivalent to the macroscopic capillary length A, defined by
Broadbridge and White [1988]. The quantity 2a' was
originally referred to as the capillary length [Philip, 1983]
although it is now called the sorptive length [Philip, 1985¢;
Waechter and Philip, 1985] and « is termed the sorptive
number in loose analogy to the wavelength and wave number
definitions in wave mechanics [Philip, 1985d, 1987¢].

Philip [1987b] related o to a characteristic capillary pore
radius R, through the equation

R,=74x10"" (20)
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where R, is expressed in meters and o in m~'. It has been
emphasized [Philip, 1987c, p. 5] that « is “*a parameter
characterizing the dynamics of capillary wetting under con-
ditions in which the initial moisture potential is ¥, whereas
that of the water source is W, (compare (19)). It follows
that & = a(¥y, ¥,). Often in practical applications, ¥, =

(¥, = 0) and ¥ is large and negative (as in dry landscapes)
with a virtually independent of such extreme ¥, values. This
allows for the assigning of a unique value of « to a particular
soil and W, = —= as a reference value [Philip, 1986d, 1987¢].

The constant of proportionality in (10) is just the saturated
hydraulic conductivity K, (if ¥, # 0 then this becomes K as
in (17)). Techniques for direct field determination of K and
« have been reported in the literature and are still under
active study [e.g., Stephens and Newman, 1982a; Dirksen,
1974; Philip, 1987c; Weir, 1987al.

While (17) provides for a linear steady state form of
Richards’ equation, from which analytical solutions may be
developed, it can also be regarded as simply an empirical
relation between K and W, and as such joins a large family of
empirical functions relating K, ¥ and §. Reference to an
exponential K- relationship as an empirical function can be
found from Bear [1979, p. 212] and Hoover and Grant [1983].
Raats and Gardner [1971, p. 689] proposed a basis for
comparing empirical K and ¥ functions and presented
detailed comparisons for seven different models, including
(10) which was termed a *‘useful model equation by Raats
[1976]. Of the three empirical models attributed to Gardner
in the work by Hoover and Grant [1983], the exponential
relationship (17) is stated as the last common.

There have been several publications in which an expo-
nential empirical model has been mentioned and used,
sometimes only in passing, for example, by Molz [1975] in
the study of water potential in a soil-root system and by
Selim et al. [1977] and Selim [1978] in relation to the
numerical and experimental study of reactive solutes
through partially saturated multilayered soils.

Recently, Jaynes and Tyler [1984, p. 300] proposed the
following empirical law, recognizing it as “‘a modification of
the one proposed by Gardner [1958]"":

K'=aexp (0\/[¥) o)

and this paper, along with Schuh and Sweeney [1986], tests
this on experimental data, with Schuh and Sweeney [1986]
concluding that (21) is at least as good as the empirical model
of Brooks and Corey [Corey, 1977, p. 104].

Perroux et al. [1982] produce an experimental log K-¥
curve which was not accurately represented by (17) over the
entire range of ¥ considered. They proceeded in  their
analysis by dividing the ¥ range of 0 to —1.5 m into three
divisions, 0 to —0.3, 0.3 to —0.6, and —0.6 to — 1.5, and used
three different exponentials (and hence three different o
values) to describe the curve. The resulting empirical fit was
seen to be very accurate, and indeed the value of a foran
experimental K-¥ curve is often found from linear regres-
sion [e.g., Bresler, 1978] instead of using (19).

Recently, Barnes [1986] has shown that solute movement
under a steady convective water flux is mathematically
equivalent to the unsaturated movement of water in a
material with an exponential K-V relationship, where a was
analogous to V/D, where V was the steady vertical conyec-
tive velocity, and D, one of the components of the diffusion
dispersion tensor.
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Philip [1972 a] proposed the exponential relationship

K=ke®™ B a>0 k>0 (22)

for the mathematical study of certain heterogeneous soils.
Its limitations were immediately stated but it was recognised
as “'simple, adaptable and mathematically convenient”
[Philip, 1972a, p. 268]. Here the constant K, in (17) has been
replaced by an expression varying exponentially with depth.
Results using (22) have been presented by Philip [1972a] and
Philip and Forrester [1975]. Merrill et al. [1978], in their
experiments on an undisturbed soil column, found (22) to be
a reasonable model of their natural (heterogeneous) soil
profile and compared analytical and experimental results,
while Taghavi et al. [1985] compared numerical results using
(22) to the experimental results of Merrill et al. [1978]. Philip
[19745] proposed

K = exp {a[V + B(Ax + py + v2)l} (23)

as a more general mode of heterogeneity with A, z, and v(A\*
+ u? +1* = 1) the direction cosines of the normal to planes
of uniform K(i).

Raats [1971b] investigated some of the consequences of an
exponential K-W function and presented an analogy between
viscous flows and quasilinearized unsaturated flows.

5. SoLuTioNs OF RICHARDS' EQUATION
USING QUASILINEARIZATION

The quasilinear approximation has mainly been used to-
gether with an assumption of homogeneity. Extensions to
the exponential hydraulic conductivity-moisture potential
relationship have led some workers to consider heteroge-
neous media, and most of these results are considered in
section 6.1, although some fit naturally in the following
discussion.

5.1.  Point, Line and One-Dimensional Solutions

The early to mid 1970s saw a large preponderance of
results published based on (11). Most of these dealt with
flows from point or line sources or with flows built up from
these basic singular solutions. As Philip [1984a, p. 271]
states “‘the concentration on such flows is understandable
since it leads to easy mathematics, involving adaption and
manipulation of known simple solutions.”” Point and line
source solutions were of particular interest at this time since
they were used in various ways to model trickle and drip
irrigation schemes which was “the fastest growing new’
technology in agriculture [Bresler, 1977] (with 100 acres
under drip irrigation in the United States of America in 1970
and over 70,000 in 1974).

5.1.1. Steady state solutions. The first point source
solution was given by Philip [1968b], who solved the prob-
lem of a single point source buried in an infinite three-
dimensional medium, using an adaption of known results for
heat conduction in moving media [Carslaw and Jaeger,
1959, p. 267] first given by Wilson [1904] [see Raats, 1977].
After defining a version of the Stokes stream function, Philip
presented distributions of @ and the flow pattern. It is clear
that lines of constant © are also lines of constant 9, K and .
The analogous solution for a single horizontal line source in
an infinite medium was briefly discussed by Philip [1969].
The partial differential equations for the plane and axisym-
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metric stream functions were derived by Raats [1970], and it
was shown that the stream function and © satisfy the same
governing equations and are connected through an analog of
the Cauchy-Riemann equatior The stream function ap-
proach was then utilized to solve the problem of steady
infiltration from an array of equally spaced line sources at
the surface of a semi-infinite soil profile. The boundary
conditions imposed on the stream function enabled separa-
tion of variables to be used, and the solution was found to be
a unique function of oL, where L was the spacing of the line
sources. Distributions of © and the stream function for
various values of aL were given, with streamlines and lines
of equal total potential being orthogonal. Streamlines and
lines of equal © are not in general orthogonal except the
limits r — 0 and/or z — .

Raats [1971a] investigated the steady infiltration from
buried and surface point sources, using the buried point
source solution to obtain the analogous solution for a surface
point source. The effect of gravity was examined and shown
to be stronger for a surface point source than a buried point
source. Soon after this, Philip [1971] presented a general
theorem which enabled the solution of any distribution of
surface sources to be found immediately from the corre-
sponding (mathematically simpler) solution for buried
sources. Particular emphasis was given to the surface point
and line source solutions. This theorem was extended by
Philip [1974b] to relate buried point or line source solutions
to the solution of the problem involving the identical source
located at the surface of a sloping soil. Philip [1972a], using
( analyzed buried point and line sources in heteroge-
neous media and extended the result of Philip [1971] to
deduce surface point and line source solutiens in certain
heterogeneous media. A similar result was given connecting
perched sourced solutions to their buried counterparts, and
these results were discussed in detail by Philip and Forrester
[1975]. who included graphs of a wide range of solutions.
The *'sloping soil”” result given by Philip [1974b] can also be
generalized to heterogeneous soils governed by (23) [Philip,
1974b).

The superposition theorem presented by Philip [1971] was
also generalized by Raats [1972] to allow for an arbitrary
distribution of sources at arbitrary depths. The solution for a
single point source at an arbitrary depth was given (a
corrected version of an equation obtained by Lauwerier
[1957] in his analysis of the problem of simultaneous linear
diffusion and convection), and this single point source solu-
tion served as the basic solution in the extended superposi-
tion theorem.

Zachmann and Thomas [1973, p. 303], with the aim of
developing equations which could be used in the design of
subsurface irrigation systems, looked at steady infiltration
from a distribution of line sources (buried or on the surface)
which lay in a horizontal plane and were parallel or equally
spaced. They included uniform infiltration and evaporation
at the soil surface and solved for © using some ‘‘rather
complicated arguments involving Green's functions”
[Raats, 1977]. The follow-up paper [Thomas et al., 1976]
solved the analogous problem with the line sources assumed
to be buried in an infinite medium, by superposition of single
line source solutions. This solution was compared to the
more complex solution of Zachmann and Thomas [1973], to
illustrate the influence of the soil surface above the line
sources on the steady state moisture distributions.
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The steady upward and downward flows of water in the
presence of uptake of water by plant roots was analyzed by
Raats [1974] who assumed a one-dimensional vertical flow
and an exponential decrease of the rate of plant uptake with
depth. A leaching fraction was defined, and results were
presented illustrating the various effects of water table depth
and leaching fraction on ©.

Gilley and Allred [1974] gave the steady state solution for
flow from equally spaced line sources buried in an infinite
medium, and presented *“*flow nets’ (distributions of @ and
total potential @) for various a L combinations. The effect of
a series of plane horizontal sinks, used as a model of plant
root extraction, was investigated, with the suggestion that
several two-dimensional line sinks could be used in place of
the plane sinks if a better model of root extraction was
needed. The buried line source solutions were used, without
adaption, in a semi-infinite medium, but Gilley and Allred
[1974] argued that this would cause serious error only if the
line source was very close to the soil surface.

Warrick [1974a] continued this line of study by presenting
solutions to the problem of Raats [1974] modified by includ-
ing an arbitrary “‘plant extraction” function which depended
only on depth and allowing both a deep (infinitely deep) and
a shallow water table. Evapotranspiration was modeled
through constant surface fluxes, and results for various plant
extraction functions were given in detail. This approach was
continued by Lomen and Warrick [1976] who presented a
large number of solutions for the situation when the plant
extraction was not only a function of depth, but also a
function of ® (termed an *‘implicit water extraction func-
tion™"). Results for seven such functions were given: five for
a semi-infinite medium and two for media with finite depth
water tables.

Raats [1976] investigated the steady flow from point and
line sources to point and line sinks, as well as the problem of
steady vertical flow subject to distributed uptake by plant
roots and a water table. Constant rates of infiltration, evap-
oration and transpiration were specified, and an exponential
extraction function [Raats, 1974] was again assumed. For
the sink and source solutions it was found that the “distor-
tion due to gravity for the source is opposite to that for the
sinks” [Raats, 1976, p. 685]. Further work on steady flows
from point and line sources at an arbitrary distance below
the soil surface and to line and point sinks at an arbitrary
distance above an impermeable base was undertaken by
Raats [1977], who commented on the lack of analysis of
flows to sinks. Results with and without uniform evaporation
and infiltration were given. Raats [1977] obtained solutions
by separation of variables, first solving for the stream
function and then deducing @, since he claimed the stream
function formulation was simpler. While it was recognized
that some of the results could have been derived on the basis
of the superposition theorems of Philip [1971] and Raats
[1972], it was noted that this procedure would be more
involved than the one given. This, in fact, had been the case
in many of the solutions for various point and line distribu-
tions; a direct solution had been seen to yield results more
quickly and economically than the superposition theorems.

Flow from a line source buried a finite distance above a
shallow water table (a constant potential surface) was ana-
lyzed by Warrick and Lomen [1977], and the influence of the
depth to the source and the depth of the water table on the
surface values of @ was illustrated.
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An exact mathematical solution for the steady flow froma
line source into an inclined porous medium with an imper-
meable lower boundary was given by Zachmann [1978]. The
solution, found by Green's function techniques, was illus-
trated in detail for both a 5° and a 20° slope

Further steady state results modeling plant uptake were
given by Warrick and Lomen [1981]. General two-
dimensional solutions were developed for surface and buried
line sources with two-dimensional plant uptake. Three types
of surface boundary conditions were examined: specified
surface flux, specified surface ®, and surface flux propor-
tional to ©. General results were obtained, the algebra for
specific examples quoted as *“Taborious," but *‘calculations
are fast once the algorithms are developed” [Warrick and
Lomen, 1981, p. 244].

All the results mentioned above that model plant or root
uptake have used various combinations of point or line
sinks. Warrick et al. [1980] amined radially symmetric
flows from a surface point or disc source with the uptake
modeled by various combinations of discs and cylindrical
sinks. Distributions of ® were given for various sink combi-
nations. The analogous two-dimensional problem with line
sources and various combinations of rectangular sinks was
examined by Warrick and Lomen [1983]. These, and previ-
ously mentioned steady state solutions, with point and line
sources and various sinks modeling plant uptake, were used
by Amaozegar-Fard et al. [1984] to develop design **nomo-

graphs,” which relate discharge rate, plant uptake and soil
water potential of a trickle irrigation system at a reference
point.

5.1.2. Time dependent solutions. 1t is apparent from (9)

that under constant diffusivity D.
dependent Richards equation is also lincar. The limitations
of solutions with constant diffusivity cannot be “*disregarded
or understated” in the words of Philip [1987¢, p. 24].
However, solutions under constant diffusivity tend to the
corresponding steady quasilinear solutions as time t, — %,
Warrick [1974b, p. 383] states “‘the linearised form hasa
particular merit when values of # vary over a small range or
at least a small range about a steady case.”” For early time
flow from the source is largely determined by one-
dimensional absorption [Philip, 1969]. When

the quasilinearized time

s?

P S S
4 (3= 9"

(24)

the small time flow rates will be determined correctly from
the quasilinearized constant diffusivity equation [Philip,
1969]. Here § is the sorptivity [Philip, 1969] and ¥, and
are the ranges of . This choice of D, means that **solutions
will then give to acceptable accuracy such integral properties.
of the flow process as infiltration rate both at small and large
1, and should yield a useful picture of the dynamics of both
flow rate and wetted region over the whole 7., range™" [Philip,
1987¢, p. 23].

To obtain time dependent analytical solutions of the
Richards equation, constant diffusivity has often been
sumed and the corresponding equation referred to as ‘‘lin-
earized.” Braester [1973], working directly with 9 as the
dependent variable, solved the problem of one-dimensional
infiltration into a semi-finite soil column and in a columa of
finite length with a water table at constant depth using
quasilinearization and constant diffusivity. The solutions
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were adaptions of results given by Carslaw and Jaeger
[1959, p. 388] and were compared to numerical finite element
results obtained with experimental soil properties with the
general conclusion that although the analytical solution did
not represent accurately the shape of the moisture content
profile, the variation of moisture content at the soil surface
and the location of the wetting front were predicted quite
accurately. Warrick [1975] extended these results to allow
for either a time-varying surface flux, a time-varying surface
water content or a surface flux varying as a linear function of
water content, using © as the dependent variable. Cyclic flux
input results were compared to numerical finite difference
results adapted from Hanks and Bowers [1962] for five
different soils and *‘encouraging™ agreement was obtained.

Raats [1976] examined the transient redistribution of
water following irrigation in a deep uniform soil profile.
Although this problem had been studied before, it was the
first time quasilinearization had been used. Lomen and
Warrick [1978b] presented one-dimensional solutions with a
time-varying surface fiux and a sink function for plant-water
uptake described by a sequence of depth dependent func-
tions which changed at specified times. They considered
examples relevant to drainage, infiltration, constant uptake
and cyclic uptake, with the qualification that the latter two
were the best applications since ranges of moisture content
are small.

The first constant diffusivity quasilinearized time depen-
dent point and line source solutions were given by Warrick
[1974b], who gave the solution for a buried point source,
again based on results by Carslaw and Jaeger [1959, p. 267].
The solution for a surface point source was deduced follow-
ing the method of Philip [1971] and both solutions were
shown to be consistent with the corresponding steady state
solutions of Raats [1971a] and Philip [1971]. Distributions of
© were given in detail showing the wetting front advance-
ment during infiltration, the moisture variation during cyclic
input (considered to model trickle irrigation) and the steady
state field for a two-source problem, and the trends were
found to be similar to the previously presented finite differ-
ence results of Brandt et al. [1971]. The corresponding
solutions for buried and surface line sources, obtained by
integrating the point source solution over a line, were given
by Lomen and Warrick [1974], who presented distributions
of © for a single and an infinite array of surface line sources
under various conditions. The point source solutions of
Warrick [1974b] were compared to a finite difference solution
of the full quasilinearized time dependent equation with
experimental (nonlinear) diffusivity of Ben-Asher et al.
[1978]. Several comparisons were made, with the overall
conclusion being that the *‘linearised solutions give reason-
able approximations to some nonlinear problems™ [Ben-
Asher et al., 1978, p. 6]. The solutions for point and line
sources buried a finite distance below the soil surface were
given by Lomen and Warrick [1978a]. They also allowed a
surface flux proportional to © to model evaporation and
investigated the resulting evaporative losses.

The linearized moisture flow equation was solved for an
infinite array of line sources (either buried at a finite depth or
on the surface) with a one-dimensional water extraction
function and an evaporation boundary condition by Warrick
et al. [1979]. Based on this solution “‘nomographs’* were
developed with the aim of using them as an aid in the design
and operation of appropriate irrigation systems.

5.1.3. Numerical and experimental studies. Many of
the previous papers have implied the application of the
solutions presented to trickle and drip irrigation and, to a
lesser extent, to experimental devices for measuring soil
characteristics. Some have made comments in passing, such
as these solutions *‘are of interest in connection with furrow,
subsurface and drip irrigation™ [Raats, 1977, p. 294], while
others have emphasized the applications from the outset, for
example, “‘the objective of this study is to develop equations
which can be used in the design of subsurface irrigation
systems™ [Zachmann and Thomas, 1973, p. 495]. Conse-
quently, there have been many papers written investigating
the validity of the equations, the assumptions used, and the
results obtained. Numerical solutions to the Richards equa-
tion, under varying degrees of simplification and various
experimental soil properties, have been used to check the
assumptions on which the analytical solutions are based,
while results of various laboratory and field experiments
have been used to investigate the usefulness of the point and
line source models.

Brandt et al. [1971] developed a numerical solution pro-
cedure to solve either transient plane flow or transient
cylindrical flow about a trickle source using a finite differ-
ence procedure. Finite differences were also used by
Madledj and Malavard [1973], who modeled irrigation from
canals by line sources. After comparing numerical results for
surface line sources to those of Raats [1970], they then went
on to investigate the effect of an impermeable screen (of
width less than the line source spacing) placed horizontally a
slight distance beneath the line sources.

Thomas et al. [1976, 1977] conducted an experimental
laboratory study of a system of buried irrigation laterals
which lay in a horizontal plane and were equally spaced. The
previous steady state analytical line source results of
Thomas et al. [1977) and Zachmann and Thomas [1973] were
compared to the experimentally observed distribution of ¥.
Experiments were conducted on two different field soils, first
without crops [Thomas et al., 1976] and then using two
different crops [Thomas et al., 1977]. Though it was stated
that subsurface irrigation systems could not be rigorously
designed with a steady state analysis, the experimental data
indicated that the steady state predictions of moisture po-
tential were fairly accurate over “‘a good portion of the
growing season in much of the root zone'’ [Thomas et al.,
1977, p. 67.

Merrill et al. [1978] compared theoretical and experimen-
tal distributions of ¥ for a point source at the surface of a
heterogeneous soil. Bresler et al. [1971] had previously
found generally good agreement between experimental and
numerical water content distributions for transient flow from
an array of surface point sources. Dirksen [1978) compared
the theoretical steady state results of Thomas et al. [1974] to
experimental line source solutions. The general lack of
agreement was put down to the anisotropic nature of the soil
they were using; the analytical results being valid only for
homogeneous profiles. The claim of anisotropy was well
supported by experimental evidence.

The applications of the known analyiical solutions to the
design of trickle and drip irrigation systems were discussed
by Bresler [1977, 1978], and limitations of point and line
source solutions were highlighted. It was stated that ‘‘the
actual trickle source does not behave as an idealised point
source since the water discharging from the emitter spreads
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over a finite saturated area of the soil surface’ [Bresler,
1977). This limitation was experienced by Merrill et al.
[1978] who noted ponded water during their experiments and
reasoned this to be at least partly responsible for their lack of
agreement with a point source solution. The growth of the
ponded area with time had previously been investigated by
Bresler er al. [1971], with transient numerical results being
compared to experimental results.

Jury and Earl [1977, p. 856] analyzed a field experiment
conducted on a single isolated emitter. Their conclusions
reinforced the point source limitation for this situation at
least one should avoid using models which do not include the
effect of surface ponding.™ Taghavi et al. [1985] used finite
elements to obtain the numerical solutions to the steady state
axisymmetric surface point source moisture flow (with sur-
face ponding) in a heterogencous soil medium assuming the
relationship (22). The heterogeneous soil medium was the
same as that used by Merrill et al. [1978], and good agree-
ment was obtained between numerical results and the exper-
imental and analytical results of that publication.

Lockington et al. [1984, p. 488] investigated the growth of
the saturated region about the emitter source using an
optimization technique which only required specification of
the diffusivity and not a K-V function. They stated that ““the
movement of the saturated zone and its steady state value
are obviously important factors to be considered when
implementing a trickle irrigation program’ and noted that
the ponded water size approached its steady state value
relatively early. Based on this observation, Shani et al.
[1987] used **drippers™ to estimate soil hydraulic properties.
The analysis was based on the solution to the problem of
quasilinearized steady state infiltration from a small (nonze-
ro area) pond (given by Wooding [1968] and discussed
below), and several experiments were conducted to illustrate

the effectiveness of the technique. Clothier et al. [1985],
through laboratory and field experiments, also concluded
that Wooding’s theory is more applicable than point source
theories because of the more relevant boundary condition of
a surface pond.

5.2, Sources of Nonzero Area

The limitations of point and line source solutions in
describing flows from regions of nonzero area have been
recognized, not only in the experimental studies mentioned
above, but also analytically. Although such solutions may
serve as a reasonable approximation in some situations, they
generally fall well short of giving realistic representations of
flows from physical sources of nonzero dimensions. While it
is possible to use point and line source solutions to approx-
imate flows from circular, semicircular, spherical and semi-
spherical supply surfaces of nonzero dimensions, this has
received relatively little attention.

Apart from flows built up from point and line source
solutions, quasilinearized solutions of infiltration from sup-
ply surfaces of nonzero dimensions can be divided into two
categories: those with flow velocity or flux specified at the
supply surface, and those with the moisture potential or
water content specified at the supply surface. Specification
of the moisture potential and/or water content is the more
natural boundary condition since in physical situations this is
generally known, whereas problems with the flow velocity
prescribed “‘tend to be of less physical (and mathematical)
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interest” [Philip, 1984a, p. 271]. The flux from a particular
supply surface is probably the single most important prop-
erty of the flow to determine, since many experimental
apparatus use measured fluxes to infer physical soil proper:
ties. This is especially true with the increasing interest in
borehole permeameters (and their variants) and the recent
development of the disc permeameter [Perroux and Whit,
1988].

5.2.1. - Flows built up from point and line source solution-
5. Philip [1986b], alter obtaining the solution for a buried
point source, used this to obtain detailed estimates of the.
steady infiltration from a spherical cavity with nonzero
radius based on equipotential surfaces about the point
source. It has subsequently been shown [Philip, 1984 ¢] that
this is accurate only for spherical cavities with dimensionless
cavity size s = 0.27. Philip [1984a] noted that the same
technique (that of using the equipotential surfaces to approx-
imate the cavity surface) is not as effective when applied to
circular cylindrical cavities and line source solutions since.
gravity distorts the distribution of ¥ (and ) much more
strongly for the line source than for the point source.

Raats [1970] commented that the solution for flow froma
line source is also exact for infiltration of water at a fixed
moisture potential from furrows whose contours coincide
with lines of equal total potential. He also noted [Raats,
1971al, in the context of point sources, that total potential
distribution is of particular interest since the solution will
also apply to infiltration from water-filled cavities whose.
boundaries coincide with a surface of constant total poten-
tial. However, despite these observations, no calculations of
the flux were given.

Flow near a porous cap water sampler was studied theo-
retically by Warrick and Amoozegar-Fard [1977). The cup
surface was approximated by an equipotential line of the
steady state flow to a point or line sink, first buried in an
infinite medium and then buried at a finite depth. Experi-
mental studies on porous cup soil water extractors were
reported by Talsma et al. [1979] who interpreted their results
using the theory of Warrick and Amoozegar-Fard [1977),
The solution for a finite vertical line sink was also given,
Further experimental results interpreted with the Warrick
and Amoozegar-Fard [1977) theory were reported by Mor-
rison and Szecsody [1985).

Raats and Gardner [1971] gave results for the flux from
steady p-dimensional symmetric flow without gravity. Using
these ideas, Dirksen [1974] developed a technique for mea-
suring hydraulic conductivity based on flows from small
buried spheres (modeled as point sources with gravity ne-
glected). Limited experimental verification of the method
was given, and the effects of cavity size and gravity were
examined theoretically (to justify their neglect) using point.
source solutions with the cavity surface approximated bya
constant © surface of the point source.

5:2.2. Constant flux boundary conditions. Parlange
[1973] derived approximate analytical expressions for the
time dependent absorption of water from cylindrical and
spherical cavities when the flux at the cavity is imposed
using a combination of singular perturbation and iterative
refinement without invoking the quasilinear approximation.
A gravity correction was calculated, using quasilineariza-
tion, and the results given were valid for cavities of small
dimensionless radius.

Warrick and Lomen [1976) integrated the point and line
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source solutions they had given earlier [Warrick, 1974b;
Lomen and Warrick, 1974] to obtain time dependent solu-
tions for surface strip and disc sources with specified con-
stant flux defined as a step function in time. Results for the
strip and disc sources were compared to the corresponding
point and line source solutions, and it was noted that the
moisture regime was independent of the source shape for
distances sufficiently far removed from the source. Evi-
dently, it was Wooding who had first remarked on this useful
fact that the solutions for point and line sources gave the
proper form of the solution at large distances from cavities
when the latter have finite sizes [Parlange, 1974). The reason
for this is that point and line source solutions are essentially
similarity solutions (there is no length scale in the boundary
conditions) and hence play the role of intermediate asymp-
toties for problems with length scales.

The solution for a finite length vertical cylinder was given
by Warrick et al. [1980], obtained by integrating the disc
source solution of Warrick and Lomen [1976] over a finite
vertical distance. Here the flux was taken to be either a
uniform function over the depth of the cylinder or an
exponential function of depth with total flux specified.

Two-dimensional flow resulting from a nonuniform irriga-
tion pattern was examined by Batu and Gardner [1978].
After the general solution had been given, some results were
presented for the special case where the nonuniform infiltra-
tion was represented by a ramp function. Philip [1984d]
reexamines the above problem with a sine function instead
of a ramp function for the infiltration rate. Further comments
on these results were given by Batu [1985] and Philip
[1985b).

Baru [1978] solved the problem of steady state infiltration
from single and periodic surface strip sources with variable
infiltration rate over the strip. For the special case where the
infiltration rate was constant, it was recognized that the
problem was simply the steady state version of Warrick and
Lomen’s [1976] strip source, although the solution tech-
niques used were different. Baru [1979] found the stream
function for the variable infiltration over a surface strip
source and presented distributions of streamlines and equi-
potential lines for a single strip source. The analogous
solutions for periodic strip sources with two different con-
stant flow rates specified between and on the strips were
given by Batu [1980].

Constant diffusivity time dependent two-dimensional infil-
tration and evaporation from nonuniform and nonperiodic
strip sources was investigated by Batu [1982]. The cases of
constant infiltration from a single strip [Warrick and Lomen,
1976], infiltration from two strips, and infiltration from two
strips with evaporation from between them were examined
in detail. Batu [1983a, b] considered the special cases of
nonuniform and equally spaced strip sources, and nonuni-
form and periodic strip sources, and Batu [1983¢] produced
“flow nets"" for the various strip sources previously consid-
ered.

Warrick [1985] examined the limiting size of the wetted
surface area about an emitter (point source) and a porous
pipe (line source) using the solutions given by Warrick and
Lomen [1976).

Experimental investigation of constant-flux infiltration
from a small hemispherical cavity was reported by Clothier
and Scotrer [1982], with comparisons made to the analytical
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results presented by Raats [1971al, Parlange [1973] and
Warrick [1974b).

5.2.3. Constant moisture content/moisture potential
boundary conditions. The most natural boundary condition
to use in many situations for any nonwetted surface is that of
no-flux or no-evaporation. This is physically realistic since
evaporative losses are generally very small when compared
to the flux; typically, evaporation is less than 1 cm d ~' while
K, is of the order of 1 em h™! [Bresler, 1977]. While various
extensions can be made to model the effects of evaporation,
for example, as in the work by Warrick [1974a), generally the
no-flux boundary condition is invoked. This means that
problems with flux specified at the cavity surface yield
Neumann type problems which are mathematically simpler
to solve than those with & or ¥ specified, which lead to
mixed boundary value problems if nonwetted surfaces are
present. This accounts for the comparatively large number
of solutions that were available in the 1970s for problems
with flux specified on the cavity in contrast to the relatively
few solutions with J or W prescribed.

The first application of quasilinearization to a problem
where & was specified on the cavity surface was given by
Wooding [1968]. The problem considered was that of a
shallow pond of finite area on the surface of a semi-infinite
medium. The solution technique involved a modification of
Tranter's method to solve a system of dual integral equations
**forced on him by the mixed boundary conditions inevitable
for infiltration from surface sources at fixed moisture poten-
tial”" [Philip, 1987¢c, p. 6]. It has since been described ‘the
mathematically most difficult problem tackled to date™
[Philip, 1984f, p. 33] and remains *‘one of the most sophis-
ticated to date™ [Philip, 1987c, p. 6]. The solution yielded an
apparent asymptotic expression for the flux, which has since
been applied to the design of trickle-drip irrigation systems
[e.g., Bresler, 1977, 1978; Russo, 1983b], and is also used as
the theoretical basis through which many experimental re-
sults are interpreted [e.g., Scotter et al., 1982; Fritton et al.,
1986; Shani et al., 1987]. It has been postulated that *‘the
complications of Wooding’s study have discouraged others
from attempting problems of steady infiltration from finite
supply surfaces with W (or 9) fixed at such surfaces” [Philip,
1984a, p. 271).

Another zsurface source problem with # specified was
given by Batu [1977] who examined the two-dimensional
steady state flow from a ditch. However, the boundary
condition adopted on the nonwetted surface was a constant
value of & corresponding to dry conditions, which yielded
simpler mathematics. It has since heen stated that *‘prob-
lems of infiltration from buried cavities at constant ¥ are
more amenable to analysis™ [Philip, 1987¢, p. 6] and publi-
cations in this area confirm this, although it is recognized
that surface sources are physically more interesting.

Parlange [1972a] presented an approximate solution to
the steady infiltration from two- and three-dimensional bur-
ied cavities, with specific details given for the spherical
cavity. The problem was solved using a singular perturbation
technique, and an approximation to the flux from the spher-
ical cavity was obtained. These have subsequently been
shown to be accurate only for very small s [Philip, 1984¢;
Parlange and Hogarth, 1985a]. Time dependence was incor-
porated into the solution of Parlange [1972b] using an
iteration technique, also accurate only for small s.

The literature remained devoid of any further relevant
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studies for the next 11 years, during which time point and
line source solutions were provided in abundance. The early
1980s saw attention again being given to sources of nonzero
area with realistic boundary conditions. Philip [1983] looked
at quasilinearized infiltration from fractionally wetted sur-
faces, with the moisture potential fixed on the wetted part
and no-flow specified over the rest of the surface. Here the
difficulties of a mixed boundary value problem were avoided
by replacing the fixed moisture potential condition by an
approximate flux condition, so that all boundary conditions
were expressed in terms of fluxes,

Philip [1984a] investigated the steady infiltration from
circular cylindrical cavities buried in an infinite medium,
Particular emphasis was given to the flux from the cavity and
the wetted region that develops around the cavity. The
“effective wetted region.” origin, lly defined by Philip
[19685], was examined in detail. The analogous problem
involving a spherical cavity was examined by Philip [1984c
the two papers emphasizing the effects of gravity. capillarity
and the shape and dimensions of the supply surface on
steady infiltration in two and three dimensions. Again the
flux was one of the central issues, and the limitation of
previous approximate solutions to the spherical cavity prob-
lem (given by Philip [1968b] and Parlange [1972a, b)) was
shown. Hogarth et al. [1986] gave their interpretation of the
spherical cavity solution using their *'variable o approach
and a finite difference technique, while Philip [1985a] and
Parlange and Hogarth [1985a] further investigated the flux
from the sphere.

The exact solutions for the buried circular cylinder and
sphere were obtained using separation of variables, but the
resulting solution for the steady infiltration rates involved
series which became increasingly computationally time con-
suming to sum as s increased. The practical limit of conver-
gence occurred at about s = 10 for the cylinder and s = 12 for
the sphere. It is interesting to note here that Wooding [1968]
also experienced difficulties for large s, and in fact his
solution broke down for s > 6.

Similar methods to those used for the cylinder and sphere
vield exact solutions for infiltration from elliptic-cylindrical
and spheroidal cavities [Philip, 1987¢) which lead to series
solutions for the infiltration rate involving Mathieu func-
tions, modified Mathieu functions with negative parameter
and spheroidal wave functions with imaginary parameter of
argument [Philip, 1987c]. These solution methods rely upon
the separation of the governing modified Helmholtz
(Yukawa) equation in the coordinate system defined by the
cavity surface. The two-dimensional Helmholtz equation is
known to have separable solutions in only four coordinate
systems [Wolf, 1979, p. 250] and the three-dimensional
equation separates in 11, and it appears that the Yukawa
equation will be similar.

Philip [1985c, p. 828] examined the steady absorption (a =
0) from spheroidal cavities. The flux was examined in detail
for the whole range of spheroids, from the “needle” to the
“disc.” These results provide ‘‘the leading term of the
expansion sought (for small and moderate s) for the steady
infiltration rate from such cavities,” although exact expres-
sions for these infiltration rates will be expected to lead to
convergence problems.

While the exact solutions for the flux given by Philip
[1984a, ¢] provided a great deal of information. it was
recognized that they *'left wholly unanswered the question,
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important in many engineering contexts, of the role of
capillary effects in seepage problems with large  length
scales [Phlip, 1987c, p. 9]. This was partly resolved by
Waechter and Philip [1985), who obtained the asymptotics of
the series representation of the flux for large s by using an
exact analogy between quasilinear flow in unsaturated soils
and porous media and the ttering of plane waves.
Through this analogy a *‘considerable body of established
results on wave scattering and the associated specialised
mathematical methods, became immediately available to the
soil-water field"™” [Philip, 19864, p. 141].

This analogy was further pursued by Philip [1985d] in
which important theorems, analogous to the Van de Hulst
theorems in wave scattering, were given. These theorems
were used in the examination of the steady infiltration from
a buried disc and its dependence on s by Philip [1986a].
Results were also presented for other buried cavities, and
the effect of capillarity and gravity was examined in detail,
An approximate analysis of the surface disc (the cayity
studied by Wooding [1968]), based on the buried disc solu-
tion, was also given. Another surface cavity was studied by
Philip [1985¢], but in this case the effect of the horizontal
surface on the flow from the cavity (a borehole) was ignored.

Weir [1986], motivated by the problem of infiltration from
large shallow ponds which fell outside the range of the exact
solution of Wooding [1968], studied the steady infiltration
from a half-plane pond. The effects of different boundary.
conditions on the pond and nonwetted surface were investi-
gated, with the physically realistic mixed boundary condi-
tion problem being solved by the Wiener-Hopf factorization
technique which, as in the work by Wooding [1968], required
a great deal of analytical mathematical expertise. Weir then
deduced an approximate expression for the flux from large
finite area ponds.

Wooding's results were further extended by Weir [1987b]
in which an approximate analytical expression for the flux
from a small circular surface pond was given, illustrating the
deviation in the flux for small s from the linear asymptote
given by Wooding [1968]. This result was of particular
importance, because the flux from small circular sources is
often approximated by the linear flux relationship [Scotter et
al., 1982; Bresler, 1977, 1978; Warrick, 19851, and it high-
lighted the errors in this approximation.

The accuracy of the approximate analytic fiux expression
was demonstrated by comparing it to numerical results
presented by Pullan and Collins [1987). These authors
demonstrated how well suited the boundary element method
(a numerical solution procedure which uses only a boundary
mesh as opposed to a domain mesh which is required by
finite element and finite difference work) at solving problems
involving quasilinearized infiltration. They then proceeded
to investigate numerically several different problems. The
infiltration from a circular cylindrical cavity buried in a
semi-infinite. medium was examined (i.e., the cavity was
buried at varying depths below an upper nonwetted surface
through which evaporation was ignored), and it was shown
how both the flux and the size of the wetted region were:
affected by the upper surface. The method was then applied
to various two-dimensional and axisymmetric surface cayi-
ties, and many results were presented showing how the flux
varied in these situations. These results represented ‘‘only a
small selection of those available™ [Pullan and Collins, 1987,
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p- 1641] and suggestions for other problems worth studying
with the boundary element method were given,

Steady three-dimensional absorption from spheroidal cav-
ities buried in anisotropic soils was studied by Philip [1987a],
and the steady infiltration from such cavities in both isotro-
pic and anisotropic soils was investigated by Philip [1986c].
Again the emphasis was on the cavity discharge and the
scattering analog was used to evaluate this for small and
large 5, providing extensions to the results of Philip [1986a].

All of the above studies have been for steady state
conditions. Recent experiments on unsteady flow from sur-
face sources (in particular small ponds [Youngs, 1972; Scot-
ter et al., 1982; Clothier, 1984; Clothier and Elrick, 1985] and
hemispherical cavities [Youngs, 1972; Clothier and Scotzer.
1982]) have noted that a steady flux from the source and a
steady moisture distribution near the source are obtained
relatively rapidly. In the words of Philip [1986b, p. 1717]
“this convenient property has meant that steady three-
dimensional flow theory has proved useful in the interpreta-
tion of essentially unsteady flows. The relevance and utility
of quasilinear solutions have thus been considerably wider
than might have been imagined at first glance.” Indeed, in
certain field and laboratory experiments, the procedures are
left to run until steady state conditions appear to prevail and
steady state formulae are then used to estimate soil proper-
ties of interest.

Philip [1986b], motivated by the question “*Why do three-
dimensional flows approach the steady state relatively rap-
idly?,"" used the Laplace transform technique to solve con-
stant diffusivity unsteady infiltration from buried cavities.
He found that the Laplace space equation and boundary
conditions were very similar to those of the corresponding
steady state problems, and consequently, Laplace space
solutions were readily obtained. Approximate inversions of
the Laplace space solutions were given and the approach of
the flux to steady state for various cavities illustrated. The
similarity of the Laplace space equation and corresponding
steady state problem was also noticed by Pullan [1988] who
extended his boundary element techniques to investigate the
transient infiltration from an axisymmetric pond. This prob-
lem is of particular importance [Raats, 1988] since it gives an
apriori indication of how quickly certain infiltrometer exper-
iments approach steady state.

Most of the previous quasilinear infiltration problems have
assumed deep soils in the absence of a water table or of
impediments to underdrainage. Philip has recently published
two papers [Philip, 1988¢, 19894] aimed at answering the
question of how solutions for perfect underdrainage might be
corrected to take into account the presence of a water table
or an impermeable base at a finite depth beneath the water
source. Weir has also investigated quasilinearized flow to a
water table [Weir, 1989], this time through a layered soil.
This paper is discussed further in section 6.1.

5.3. Coupled Saturated-Unsaturated Flows

The above papers have all assumed, either implicitly or
explicitly, that the depth of water over all cavity surfaces is
negligible (i.e., shallow conditions). Tt has long been recog-
nized in the studies of unsaturated flows that the presence of
anonzero depth of water over part of a soil surface induces
a region nearby in which the soil water is under a positive
hydrostatic pressure. i.e..

a saturated zone [Philip, 1957b,

19584, b]. Tn the context of point and line sources, with
water under pressure, or one-dimensional flows with ponded
water, there have been a few papers published in which the
saturated region is accounted for [Phil ip, 1958a; Zaslavsky,
1969; Parlange, 1972¢; Babu, 1980; Smiles et al., 1980;
Prasad and Romkens, 1982; Loc, ington et al., 1984; David-
son, 1985]. However, for two- and three-dimensional unsat-
urated flows from cavities of nonzero area, the depth of
Water over the cavity surface is usually neglected as a
simplifying assumption. The reasons for this are obvious:
solutions to the unsaturated flow equation have proved
difficult enough without introducing saturated zones with
unknown boundaries.

Parlange [1974] obtained an approximate expression for
the gravity correction due to the variation of head within a
spherical cavity, valid for very small s. This correction
indicated that the flux from a buried spherical cavity may be
too small. The limitations of the flux expressions for various
cavities, obtained by ignoring the head, have been noted
[Philip, 1985a]. Raats [1970] pointed out that often in prac-
tice the cavity surface will be clogged or consist of a thin,
relatively impermeable crust, resulting in a significant pres-
sure drop over a small distance. This will obviously affect
the size of the saturated region, but the fact that saturated
regions have been observed in practice [Philip, 1985¢; Smet-
ten, 1987] shows that they cannot always be ignored com-
pletely, especially for large s.

Coupled saturated-unsaturated flows, and the correspond-
ing saturated region (or ““bulb” in the notation of Philip
[1985e] have been studied in the context of borehole infiltra-
tion tests. This appears to have been initiated by Stephens
and Neuman [1982a] who demonstrated the inability of
saturated flow theory to adequately describe results of
borehole experiments. With this as a motivation, Philip
[1985e] formulated a coupled saturated-unsaturated system
to model the borehole permeameter. In the saturated bulb
the flow was governed by Laplace's equation and in the
surrounding soil the quasilinearized unsaturated analysis
was used. Since the position of the bulb’s surface was not
known a priori, an approximate boundary condition was
used in the saturated equation, which was designed to allow
for the capillary properties of the porous medium. The
position of the bulb’s surface was then determined before the
unsaturated analysis proceeded. Recently, Warrick and
Zhang [1987] have looked at simple approximate solutions fo
coupled saturated-unsaturated systems for two- and three-
dimensional surface cavities. Known saturated solutions for
the two- and three-dimensional surface cavities considered,
with a prescribed dimensionless flux, were essentially cut off
at the position at which the saturated solution values
“matched” the prescribed boundary conditions on the
buld’s surface. This position was taken to be the bulb’s
surface. Then an appropriate unsaturated solution, based on
point and line sources, was adjusted so that i values also
“matched” the prescribed boundary condition on the ap-
proximate bulb’s surface, thus determining a value of « (or s,
since L was known).

Warrick and Zhang [1987] appear to have been motivated
by such physical problems as the flow from ponded trenches,
irrigation furrows, impoundments and boreholes overlying a
deep water table. Philip's work [Philip, 1985¢] was moti-
vated by the problem of the borehole permeameter in
unsaturated soil. The borehole permeameter and its variants
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have received a great deal of attention recently, both ana-
Iytical, numerical and experimental [Stephens and Neuman.
1982a, b, c. d; Reynolds and Elrick, 1985; Reynolds et al..,
1983, 1985; Philip, 1985¢; Elrick and Reynolds, 1986]. These
works have been designed to increase theoretical under-
standing of a borehole experiment and to develop realistic
relationships between the total flux, the saturated hydraulic
conductivity, ewand borehole size. Warrick and Zhang [1987)
also concentrated on developing such a relationship for the
cavities they were investigating.

Couple saturated-unsaturated quasilinearized flows have
also been investigated by Pullan and Collins [1989] and
Pullan [this issue] who employed the boundary element
method to investigate flows from buried cylindrical and
circular surface cavities. They showed that severe erTors are
introduced into the calculation of the flux and flow field when
the depth of water was neglected. In particular, it was shown
that the percentage error in the flux from a buried circular
cylinder with the water depth neglected increases from 20%
10 220% as the dimensionless cavity size s increases from 0.1
to I, and that the saturated zone extends to a depth of
approximately 7.9 times the cavity radius for s = 1.

Flow Around Obstacles

Quasilinearization has been applied to problems involving
flow around obstacles. Madledj and Malavard [1973] exam-
ined, using finite differences, the flow from an array of
surface line sources below which were buried impermeable
barriers. Babu [1979] considered a similar problem with
water supplied either through a disc, or an entire surface.
Babu also recognized an important application of such
problems: to describe flow surrounding burial sites for
radioactive wastes.

Problems involving flow around obstacles have recently
attracted the attention of Knight, Philip and others of the
Environmental Mechanics Division of the Commonwealth
Scientific and Industrial Research Organization, although
the original studies of Madledj and Malavard [1973] and
Babu [1979] were initially unknown to them. These research-
ers have been studying steady downward seepage in a
uniform soil, interrupted at some level by a subterranean
hole. Reference to such studies in progress was given by
Philip [1986d. 1987b, ¢, 1988a, b]. The first major paper on
this topic by these workers was published recently [Philip et
al., 1989a). It lay the groundwork for the later papers
[Knight et al., 1989; Philip et al., 1989b; Philip, 1989, c] as
well as detailing the important applications of such prob-
lems. One such application is that they illuminate the role of
macropores in unsaturated flow, important to agronomists
and hydrologists in recent years. These studies also lead to
design criteria for the most efficient exclusion of seepage
water from tunnels and cavities in unsaturated zones. The
consequences of this are numerous, a major one being that
hinted at by Bane [1979], namely the optimal design of
underground repositories for nuclear wastes in unsaturated
zones in arid areas.

Philip et al. [1989a] considered in detail the
exclusion problem for circular cylindrical cavities.
and simple asymptotic results were given and the general
behavior of the flow about the cavity was illustrated. In
general, when the downward secpage is fast enough and/or
the hole is large enough, water pressure will increase to the

point where a seepage surface forms and water enters the
cavity. Their work enabled Philip et al. to determine, for a
given downward seepage velocity and given values of K, and
s, whether or not seepage water would enter a cylindrical
cavity. The analogous problem involving spherical cavities
was considered by Knight et al. [1989]. As well as determin-
ing failure criteria for various cavities, these two papers
illustrate the general behavior of two-dimensional and three-
dimensional flows around subterranean holes.

The third paper in the series [Philip et al., 1989b] consid-
ered parabolic and paraboloidal cavities and presented two
very important results. Fi it was shown that for a cavity
in the shape of a parabolic cylinder or a paraboloid, the
moisture potential at the cavity wall is spatially uniform.
This result was found to be true even when the full Richards
equation (without quasilinearization) was applied. to the
problem. This means that such cavities either exclude or
admit seepage everywhere, and this has obvious implica-
tions in the optimal design of cavity configuration for exclu-
sion of seepage water,

Second, solutions of the full nonlinear Richards equation
could be found readily for these cavities. Experimental data
were used to evaluate these, and the results were compared
to the corresponding quasianalytic solutions. The agreement.
was remarkable, even between comparisons of moisture
content, a flow detail that proponents of the quasilinear
analysis have never claimed was accurately predicted. These
results give solid support to the claims in this review. and of
many papers mentioned herein, that the quasilinear analysis
gives ample accuracy in practical situations.

The work on flow around cylindrical cavities was ex-
tended by Philip [1989b] to allow for the case when the
cavity was sloping, as is the case with natural macropores
and many tunnels and mining drafts. Further work on
subterranean holes was presented b Philip [1989¢], where
the asymptotic (large s) roof boundary layer solutions were
presented for flow around a variety of cavities. While exact
quasilinear solutions had earlier been found, the difficulty
experienced with solutions involving unsaturated flow from
cavities resurfaced, namely that the solutions were ex-
pressed as series whose summation became difficult as s
increased, and other techniques for evaluating the solution
need to be considered.

6. OTHER USES AND EXTENSIONS OF
QUASILINEARIZATION

There have been various problems studied to date that
have used the quasilinear approximation at some point or.
other in the investigation and that have not yet been men-
tioned.

6.1.  Heterogeneous Porous Media

One of the main extensions of quasilinearization has been
to the study of heterogeneous porous media, an area that is
largely unexplored. Distinction has been made between two
types of field heterogeneity: deterministic heterogeneity and
stochastic heterogeneity [Philip, 1980]. Deterministic heter-
ogeneity is the case where soil properties vary spatially in a
known way. This situation has partially been discussed in
section 4.1 in relation to (22) and (23) and also in section
5.1.3. A variation of (22) was used by Weir [1989] to
investigate the one-dimensional flow through a layered po-
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rous medium above a water table. The exponential variation
of saturated hydraulic conductivity with depth in (22) was
replaced with a step function which was constant in each
layer. Weir introduced the idea of an effective conductivity.
This was used to extend the results of an earlier paper [Weir,
1987] by calculating the contribution to the one-dimensional
intercept on cumulative infiltration versus time graphs re-
sulting from infiltration through a uniform half space for a
layered medium.

Whereas Weir [1989) had assumed the quasilinear param-
eter @ to be constant throughout the layered medium,
Zaslavsky and Sinai [1981] considered the case of a sloping
layered medium and allowed « to take different constant
values in each layer. This was used to calculate the effect of
rainfall on the moisture potential in a medium containing a
cyclic repetition of two layers.

Stochastic heterogeneity is the harder type to deal with.
The spatial variation of soil properties is irregular and
essentially random. In the study of such media an exponen-
tial relationship between hydraulic conductivity and mois-
ture potential has been used by several workers [e.g., Russo,
1983a, b, 1984a, b; Yeh et al., 1985a, b, ¢; Mantoglou and
Gelhar, 1987a, b). In these works, one or other (or both) of
«and K has been assumed variable with position and/or ¥,
and stochastic analysis was used to investigate the conse-
quences of this. Readers interested in such an approach are
encouraged to consult the above mentioned works.

Although important, this work, as with the “‘variable a’*
approach of Parlange [1972a], lies outside the scope of this
review. The quasilinear approximation was initially pro-
posed as a simple, mathematically convenient way to ana-
lyze Richards’ equation. It has since been shown that this
approximation has far greater appeal, application and bene-
fits than at first thought possible. However, when one starts
to consider situations which involve varying « or K in a
stochastic manner, then the simplifications of the Richards
equation offered by the quasilinear approximation have been
lost and for this reason such work will not be considered
further.

6.2, Other

Quasilinearization has been used in a stability analysis of
infiltration [Philip, 1975a] and in the growth of disturbances
in unstable infiltration flows [Philip, 1975b]. It has also been
used to study the travel times of particles from point and line
sources [Philip, 1984e; Clothier, 1984], the nonuniform
leaching from nonuniform steady infiltration [Baru and
Gardner, 1978; Philip, 1984d] and in an experimental study
of soil water diffusivity [Clothier and Wooding, 1983]. Re-
cently, it has been used in the study of periodic systems to
describe the mean properties of approximate cyclic pro-
cesses of wetting and drying [Philip, 1987c].

7. CONCLUDING REMARKS

The quasilinear approximation has been used extensively
in the study of unsaturated flow problems. This survey has
attempted to review this approximation, from the time of its
creation to the research fronts of today. The use of the
quasilinear approximation has steadily expanded, from the
consideration of simple point and line source solutions to
two- and three-dimensional infiltration from supply surfaces
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of nonzero dimensions under realistic boundary conditions.
These have yielded valuable insights into multidimensional
unsaturated flows. However, the use of the quasilinear
approximation appears far from abating. It has spilled into at
least two areas where research is still in its infancy, that of
coupled saturated-unsaturated flows and of unsaturated
flows around obstacles. These two fields alone should ensure
that the quasilinear approximation continues to attract the
interest it has been accorded to date.
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