
Scripting LanguagesScripting Languages

Shane BlackettShane Blackett

Bioengineering InstituteBioengineering Institute
University of AucklandUniversity of Auckland

24 November 200624 November 2006

• PERL

• Python

• Matlab

• TCL/TK

• Ruby

• VB

• Javascript

• PHP

PERL

•Used in CMISS

•Intended for text

•mod_perl in web servers

•resources in Institute

•Extensive libraries (although no longer
favourite)

•many ways to do things “does what you want”
hard to understand sometimes

•use strict;

Python

•Object Oriented

•Extensive libraries

•Plone/ZOPE

•Well defined behaviour

•Indentation delimits code blocks

•Some institute experience

Matlab

•Numerical arrays (although Perl and Python
have packages for arbitrary precision maths,
vectors and so on).

•Costs money (although Octave runs .m files)

•C like functions for strings

TCL/TK

•Designed to add control and scripting
to existing programs

•if is a function

•TK is badly supported in win32

Ruby

•Fad web scripting language

•Everything is an Object

•Ruby on Rails

VB

•Windows only (except Mono)

•BASIC syntax without line numbers

Javascript

•Browsers Mozilla/Firefox/XUL
and IE but different

•Some bad Object Oriented behaviour

•No typechecking except for new
versions

•ECMAScript

PHP

•Apache web server

•Inbuilt functions for form handling etc.

Features of languages

•Scripting

•Access to Operating System

•Regular Expressions (nedit, emacs)

•Arrays and Hashes

•Threads

•“Slurping of text”

Access to operating system

•open INPUT_FILE, “bob.txt”;
while (defined ($line = <INPUT_FILE>))
{
}
close INPUT_FILE;

•open PROGRAM_OUTPUT,
“my_program|”;

•opendir, mkdir, chmod, stat

•bind, accept, connect

•fork, pipe, wait

Regular Expressions

•Allow you to match pieces of text

•if ($variable =~ m/Node:\s+([\+\-\d]+)/)
{
 print “Node number $1\n”;
}

•Or substitute one string for another

•$variable =~
s/Node:\s+([\+\-\d]+)/Point: $1/;

•Hard to debug: build them up slowly

Hashes

•Indexed with a key

•$myhash{“fred”} = 10;
$myhash{“bob”} = 6;
$myhash{“ryan”} = 50;

•print join “ “, keys %myhash . “\n”;

•if (exists $myhash{“ryan”})
{
 print “ryan is $myhash{“ryan”}\n”;
}

Slurping of text

•print <<EOBLOCK;
This is my text
 I can lay it out however I want *
 I can include variables $x $y $z
 so it is great for writing node files
just put this in a loop and set \$x etc.
EOBLOCK

Comparison websites

•http://people.mandriva.com/~prigaux//la
nguage-study/syntax-across-
languages.html

•http://www.99-bottles-of-beer.net/

•http://merd.sourceforge.net/pixel/langua
ge-study/scripting-language/

http://www.99-bottles-of-beer.net/

Python Bottles of Beer
#!/usr/bin/env python
-*- coding: iso-8859-1 -*-
"""
99 Bottles of Beer (by Gerold Penz)
Python can be simple, too :-)
"""

for quant in range(99, 0, -1):
 if quant > 1:
 print quant, "bottles of beer on the wall,", quant, "bottles of beer."
 if quant > 2:
 suffix = str(quant - 1) + " bottles of beer on the wall."
 else:
 suffix = "1 bottle of beer on the wall."
 elif quant == 1:
 print "1 bottle of beer on the wall, 1 bottle of beer."
 suffix = "no more beer on the wall!"
 print "Take one down, pass it around,", suffix
 print "--"

PERL Bottles of Beer
#!/usr/bin/perl
Jim Menard jimm@{bbn,io}.com (617) 873-4326
http://www.io.com/~jimm/
$nBottles = $ARGV[0];
$nBottles = 100 if $nBottles eq '' || $nBottles < 0;

foreach (reverse(1 .. $nBottles)) {
 $s = ($_ == 1) ? "" : "s";
 $oneLessS = ($_ == 2) ? "" : "s";
 print "\n$_ bottle$s of beer on the wall,\n";
 print "$_ bottle$s of beer,\n";
 print "Take one down, pass it around,\n";
 print $_ - 1, " bottle$oneLessS of beer on the wall\n";
}
print "\n*burp*\n";

Matlab Bottles of Beer
a href=http://www.mathworks.com>Click for more information.

% MATLAB verion of 99 Bottles of beer
% by Bill Becker

function beer(n);
if nargin<1, n=99; end
for i=n:-1:1,
 disp([int2str(i) ' Bottles of beer on the wall,'])
 disp([int2str(i) ' Bottles of beer,'])
 disp('Take one down and pass it around,')
 if i>1, disp([int2str(i-1) ' Bottles of beer on the wall.']),end
 end
disp('No more bottles of beer on the wall!')

Matlab Bottles of Beer
a href=http://www.mathworks.com>Click for more information.

% MATLAB verion of 99 Bottles of beer
% by Bill Becker

function beer(n);
if nargin<1, n=99; end
for i=n:-1:1,
 disp([int2str(i) ' Bottles of beer on the wall,'])
 disp([int2str(i) ' Bottles of beer,'])
 disp('Take one down and pass it around,')
 if i>1, disp([int2str(i-1) ' Bottles of beer on the wall.']),end
 end
disp('No more bottles of beer on the wall!')

Ruby Bottles of Beer
There's more than one 'nice' way to do it ;-)
www.ruby-lang.org

puts; puts " It's beer song time!"; puts

def bottles(n)
 n == 1 ? "#{n} bottle" : "#{n} bottles"
end

@count = 99

@count.downto(1) {
puts <<BEERSONG
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   #{bottles(@count)} of beer on the wall
   #{bottles(@count)} of beer
   Take one down, pass it around
   #{bottles(@count -= 1)} of beer on the wall
BEERSONG
}
 
puts "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
puts; puts "   No more beer on the wall :-("



VB Bottles of Beer
   Dim n As Integer
   Dim s As String

   Width = 6000
   Height = Screen.Height * 2 / 3
   Top = (Screen.Height - Height) / 2
   Left = (Screen.Width - Width) / 2
   Caption = "99 Bottles of Beer"
   List1.Top = 0
   List1.Left = 0
   List1.Width = Form1.ScaleWidth
   List1.Height = Form1.ScaleHeight

   List1.AddItem s & "99 bottles of Beer on the wall,"
   List1.AddItem s & "99 bottles of Beeeer..."
   List1.AddItem "You take one down, pass it around..."
   For n = 98 To 1 Step -1
      s = IIf(n = 1, n & " final bottle", n & " bottles")
      List1.AddItem s & " of Beer on the wall."
      List1.AddItem ""
      List1.AddItem s & " of Beer on the wall,"
      List1.AddItem s & " of Beeeer..."
      List1.AddItem "You take one down, pass it around..."
   Next n
   List1.AddItem "No more bottles of Beer on the wall."



PERL

•Remove carriage returns
perl -pi’.orig’ -e ’s/\r//g’ myfile

•in-place edit of *.c files changing all foo 
to bar
perl -p -i.bak -e 's/foo/bar/g' *.c

•rename.pl s/(\w+).c/$1.c2/ *.c


