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Abstract

This research develops a detailed, anatomically-based model of the human
pulmonary circulatory system from the large scale arterial and venous vessels, to
the microcirculatory alveolar-capillary unit. Flow is modelled through these networks
enabling structure-function simulations to be conducted to increase our understanding
of this complex system.

Voronoi meshing is applied in a novel technique to represent the three-dimensional
structure of the alveoli, and the corresponding capillary plexus intimately wrapped
over the alveolar surface. This technique is used to create the alveolar-capillary
structure of a single alveolar sac, closely representing the geometry measured in
anatomical studies.

A Poiseuille type flow solution technique is implemented within the capillary
geometry. The solution procedure incorporates calculations of red and white blood
cell transit time frequencies. Novel predictions of regional microcirculatory blood
cell transit in the anatomically-realistic alveolar-capillary model compare well with
experimental measures.

An anatomically-based finite element model of the arterial and venous vessels,
down to the level of their accompanying respiratory bronchioles, is created using a
combination of imaging and computational algorithms, which includes generation of
supernumerary vessels. Large arterial and venous vessels and lobar geometries are
derived from multi-detector row x-ray computed tomography (MDCT) scans. From
these MDCT vessel end points a volume-filling branching algorithm is used to generate
the remaining blood vessels that accompany the airways into the MDCT-derived host
volume. An empirically-based algorithm generates supernumerary blood vessels -
unaccompanied by airways that branch to supply the closest parenchymal tissue. This
new approach produces a model of pulmonary vascular geometry that is far more
anatomically-realistic than previous models in the literature.

A reduced form of the Navier-Stokes equations are solved within the vascular
geometries to yield pressure, radius, and velocity distributions. Inclusion of a
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gravitational term in the governing equations allows application of the model
in investigating the relative effects of gravity, structure, and posture on regional
perfusion.

Gravity is shown to have a lesser influence on blood flow distribution than
suggested by earlier experimental studies, and by comparison between different model
solutions the magnitude of the gravitational flow gradient is predicted. This study
clearly demonstrates the significant role that asymmetric vascular branching has in
determining the distribution of blood flow. The influence of branching geometry is
revealed by solution in symmetric, human, and ovine vascular models.



Preface

This thesis builds on established techniques for accurately modelling the geometry
of the bronchial tree, and on previous models of blood flow through simple
representations of the pulmonary microcirculation and through coronary blood
vessels. It includes the following original developments:

• a novel Voronoi/Delaunay meshing technique developed to generate geometric
representations of the 3D alveolar structure, and the accompanying capillary
plexus;

• investigation of regional variations in microcirculatory flow and cellular transit
phenomena in an anatomically-based geometry;

• the first anatomically-based model of the human pulmonary arterial and venous
trees including supernumerary vessels;

• solution of Navier-Stokes flow equations - incorporating a gravitational term - in
the large vascular geometries to provide the most detailed model of pulmonary
blood flow developed to date;

• application of the blood flow model to investigate the relative influence of
structure and gravity on blood distribution.

The research presented in this study has resulted in four papers to date. These
papers have either been published or submitted for publication to peer reviewed
journals:

1. M H Tawhai, K S Burrowes. (2003) Developing integrative computational
models of pulmonary structure. The Anatomical Record (Part B: The New
Anatomist). 275(1):207-218.



iv

2. K S Burrowes, M H Tawhai, and P J Hunter. (2004) Modeling RBC and
neutrophil distribution through an anatomically-based pulmonary capillary
network. Annals of Biomedical Engineering. 32(4):585-595.

3. K S Burrowes, M H Tawhai, and P J Hunter. Anatomically-based finite
element models of the human pulmonary arterial and venous trees including
supernumerary vessels. Submitted to Journal of Applied Physiology.

4. K S Burrowes, M H Tawhai, and P J Hunter. (2005) Evaluation of arterial blood
flow heterogeneity in an image-based computational model. Physiology, Function,
and Structure from Medical Images: Proceedings of SPIE medical imaging conference.
Volume 5746.

The first paper provides an overview of the microcirculatory model, the second
paper has been divided into chapters 2 and 3, the third paper forms the basis of chapter
4, and the fourth paper is a small component of the work described in chapter 5.

Chapter 1 Introduction: Contains an introduction to pulmonary physiology and
details of the morphology of the pulmonary circulatory system. This chapter also
discusses previous modelling work done in this area.

Chapter 2 Geometric modelling of the pulmonary microcirculation: Describes the
development of the alveolar and capillary geometric models.

Chapter 3 Microcirculatory blood flow: Details the blood flow solution method
used to model flow through the pulmonary capillary network.

Chapter 4 Geometric modelling of the large pulmonary vessels: Describes the
techniques used to create an anatomically-based model of the human pulmonary
arterial and venous vessels.

Chapter 5 Blood flow in the large vessels: Contains a description of the numerical
methods used to solve for blood flow distribution through the larger arterial and
venous vessels. This model is used to conduct structure-function investigations.

Chapter 6 Summary: Contains a summary of the work provided in this thesis and
future directions for the model.



Acknowledgements

This work would not have been possible without the help and support of so many
people. Completing a thesis has turned out to be an endurance test which cannot be
faced alone.

First of all I want to thank my supervisors, Dr Merryn Tawhai and Professor Peter
Hunter, for all the time and effort they have put into me and this work, and for believing
that a Chemical Engineer can come through with the goods. I am indebted to them
both and none of this work would have been possible without them. I am glad to have
been Merryn’s first student, and hopefully have not discouraged her from repeating
the process.

The first three years of this work was supported by a doctoral fellowship provided
by the Foundation for Research, Science and Technology (FRST) and Auckland
Uniservices Limited. The final year was funded by a RSNZ Marsden grant (01-UOA-
070). I am very grateful for the support provided by these three agencies.

There have been several other people at the Bioengineering Institute (which has
been a wonderful place to work demonstrating why people never seem to leave) who
have provided me with a lot of help. This includes Nic Smith and Jack Lee for helping
me with the Navier-Stokes flow solution, Maria Fung and Nirosha Herat for everything
administrative (and for organising all the parties), Shane Blackett for visualisation
techniques, and David Bullivant for assisting with the Voronoi meshing technique.
Also to David Nickerson for pretty much knowing everything there is to know and
being able to fix any problems I had along the way, and equally as importantly for his
coffee making skills.

Thank you to my family for offering me so much love and support, and to my mum
for always being able to feed me when I needed it! I also owe a lot to my Chris who
has been with me for the majority of this project and has managed to keep my feet on
the ground and give me so much support, love, and patience.

Finally I want to thank my friends, in advance, for hopefully helping to relocate me
back into the wild.





Contents

List of Figures xi

List of Tables xvii

Glossary of Acronyms xix

List of Symbols xix

1 Introduction 1
1.1 The lungs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Alveolar-capillary network geometry . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Pulmonary alveoli . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 The blood-gas barrier . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Pulmonary capillaries . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Mechanical support . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Capillary blood flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Properties of blood in the microvascular network . . . . . . . . . 14
1.3.2 Zones of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Capillary perfusion: recruitment versus distension . . . . . . . . 17
1.3.4 Neutrophil Margination . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 The pulmonary vasculature . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 Supernumerary blood vessels . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 Classification of branches in tree-like systems . . . . . . . . . . . 25

1.5 Pulmonary blood flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1 Pressures in and around the pulmonary blood vessels . . . . . . . 28
1.5.2 Changing perspectives on blood flow distribution . . . . . . . . . 29
1.5.3 Ventilation-perfusion relationships . . . . . . . . . . . . . . . . . . 30

1.6 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



viii CONTENTS

1.6.1 Alveolar-capillary geometric models . . . . . . . . . . . . . . . . . 30
1.6.2 Capillary flow models . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.3 Pulmonary vascular models . . . . . . . . . . . . . . . . . . . . . . 37
1.6.4 Pulmonary blood flow models . . . . . . . . . . . . . . . . . . . . 37

2 Geometric modelling of the pulmonary microcirculation 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Voronoi diagrams and Delaunay triangulation . . . . . . . . . . . 40
2.2.2 The alveolar geometric model . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 The capillary geometric model . . . . . . . . . . . . . . . . . . . . 45

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Alveolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Capillary geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 Alveolar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 Capillary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Microcirculatory blood flow 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Dimensional changes of the capillary cross-section . . . . . . . . . 54
3.2.2 Flow in a single vessel . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 The network flow model . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Hematocrit distribution . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.5 Cell transit time models . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.6 Parameters used in the model . . . . . . . . . . . . . . . . . . . . . 68
3.2.7 Normal simulation conditions . . . . . . . . . . . . . . . . . . . . 68
3.2.8 Cell transit time distributions in the upright lung . . . . . . . . . 69
3.2.9 Variation in blood pressure in the upright lung . . . . . . . . . . . 69

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Blood flow results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Analysis of the flow model . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Corner vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.4 Breathing cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS ix

3.3.5 Neutrophil traversing . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.7 Cell transit time distributions in the upright lung . . . . . . . . . 83
3.3.8 Variation in blood pressure in the upright lung . . . . . . . . . . . 88

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Cell transit time distributions in the upright lung . . . . . . . . . 92
3.4.2 Variation in blood pressure in the upright lung . . . . . . . . . . . 94

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Geometric modelling of the large pulmonary vessels 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Vessels from MDCT images . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Accompanying vessels . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Supernumerary vessel algorithm . . . . . . . . . . . . . . . . . . . 108
4.2.4 Analysis of branching geometry . . . . . . . . . . . . . . . . . . . 109

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Vessels from MDCT . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Accompanying vessels . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.3 Supernumerary vessels . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.4 Geometric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.1 MDCT vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.2 Accompanying blood vessels - VFB algorithm . . . . . . . . . . . 119
4.4.3 Supernumerary vessels . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.4 Geometric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Blood Flow in the Large Vessels 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Navier-Stokes flow equations . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 The Lax-Wendroff numerical scheme . . . . . . . . . . . . . . . . 129
5.2.3 Calculating flow through bifurcations . . . . . . . . . . . . . . . . 135

5.3 Single vessel results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Full model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



x CONTENTS

5.4.1 Blood flow distribution as a function of vascular branching . . . 142
5.4.2 Blood flow distribution as a function of gravity . . . . . . . . . . 146
5.4.3 Solution at different resolutions . . . . . . . . . . . . . . . . . . . . 163
5.4.4 Pleural pressure versus blood flow distribution . . . . . . . . . . 166
5.4.5 Effect of body posture on blood flow distribution . . . . . . . . . 168
5.4.6 Effect of vessel distensibility . . . . . . . . . . . . . . . . . . . . . 174
5.4.7 Network transit times . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.4.8 Pulsatile flow solutions . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.9 Comparison of model results with functional imaging . . . . . . 184
5.4.10 Comparison of flow in the human versus sheep lung . . . . . . . 185

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6 Summary 203
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A CMISS command files 207
A.1 Creating the alveolar model . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.2 Generating the capillary model over the alveolar surface geometry . . . 208
A.3 Solving for flow through the capillary network . . . . . . . . . . . . . . . 209
A.4 Generating the arterial and venous geometries . . . . . . . . . . . . . . . 209
A.5 Creating the supernumerary vessel geometry . . . . . . . . . . . . . . . . 211
A.6 Solving the Navier-Stokes flow equations through the arterial and

venous models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B Movies 213



List of Figures

1.1 SEM of alveoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 SEM of an alveolar duct and surrounding alveoli, and the capillary layer

between adjacent alveoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 TEM of the alveolar-capillary barrier . . . . . . . . . . . . . . . . . . . . . 7
1.4 SEM of a section of the pulmonary capillary network . . . . . . . . . . . 9
1.5 Photomicrograph of a section of the rabbit capillary network . . . . . . . 9
1.6 Schematic of the fibre continuum weaving throughout the capillary

meshwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Schematic illustration of the balance between alveolar surface tension,

fibre tension, and capillary pressure . . . . . . . . . . . . . . . . . . . . . 12
1.8 SEM of rabbit capillaries in zones 2 and 3, illustrating the patency of

corner vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Schematic illustration of the four different ‘zones’ of flow in the lung . . 17
1.10 Schematic demonstrating locations of the main pulmonary arterial and

venous vessels emerging from the heart . . . . . . . . . . . . . . . . . . . 22
1.11 Photograph of a cast of the human pulmonary arteries and airways,

illustrating the presence of supernumerary vessels . . . . . . . . . . . . . 24
1.12 Illustration of generation, Horsfield, and Strahler ordering schemes on a

simple tree network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.13 Oblique section of a human alveolar duct and surrounding alveoli . . . 31

2.1 Illustration of the Voronoi meshing technique . . . . . . . . . . . . . . . . 41
2.2 Alveolar mesh generation using 3D Voronoi meshing technique,

illustrated in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Full alveolar model in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Generation of the capillary geometric model using a 2D Voronoi

meshing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



xii LIST OF FIGURES

2.5 Finite element computational Voronoi alveolar mesh . . . . . . . . . . . . 49

2.6 Finite element computational Voronoi capillary mesh . . . . . . . . . . . 49

3.1 Schematic of capillary cross-section, illustrating dimensional model
development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Flow solution in the alveolar sac model . . . . . . . . . . . . . . . . . . . 71

3.3 Pressure and hematocrit solutions in the alveolar sac model . . . . . . . 72

3.4 Flow, diameter, and hematocrit distributions with respect to the
percentage of pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Plot of alveolar volume and septal elasticity coefficient versus
transpulmonary pressure during inspiration and expiration, determined
using the alveolar dimensional model . . . . . . . . . . . . . . . . . . . . 74

3.6 Comparison of constant versus non-linear viscosity models: apparent
viscosity and resistance versus hydraulic diameter . . . . . . . . . . . . . 75

3.7 Relationship between RBC fluxes and flow rates (Qi/Q0) at a bifurcation
as defined by the sigmoidal function (G), investigating changes in the
flux cut-off parameter (r) and the preferential flux parameter (b) . . . . . 76

3.8 Cell transit time results with and without the hematocrit model . . . . . 77

3.9 Cell transit time results with different initial hematocrit values . . . . . . 78

3.10 RBC, flow, and hematocrit distributions at different stages of breathing . 80

3.11 WBC transit time distributions and stoppage at different stages of
breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.12 WBC transit time distributions and stoppage with varying cell cortex
tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.13 Comparison of WBC stopping frequency in the upper, mid, and lower
regions of the lung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.14 Blood flow solutions in the alveolar sac model in the upper, mid and
lower regions of a vertical human lung . . . . . . . . . . . . . . . . . . . . 86

3.15 Model cell transit time frequency distributions with respect to the
percentage of pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.16 Model cell transit time frequency distributions with respect to the
percentage of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.17 Model capillary diameters and flow in relation to lung height . . . . . . 89

3.18 Cell transit time results for simulations at 2 cm intervals over the height
of a 30 cm lung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES xiii

3.19 Comparison of model results with measured experimental values of
RBC transit time and blood flow (relative to mean) with respect to
gravitationally-dependent height . . . . . . . . . . . . . . . . . . . . . . . 91

3.20 Alveolar sac capillary volume and average capillary sheet height in
relation to vertical position in the lung . . . . . . . . . . . . . . . . . . . . 92

4.1 Grayscale bitmap masks of the large arterial and venous vessels
segmented from MDCT data of a normal human male . . . . . . . . . . . 104

4.2 Schematic diagram illustrating the relationship between the three
conducting trees in the lung . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Definition of lobar volumes via reconstruction of rendered iso-surfaces
from MDCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Illustration of the volume-filling branching (VFB) algorithm used to
generate the geometry of the accompanying arterial and venous vessels 107

4.5 Schematic illustration of the supernumerary algorithm . . . . . . . . . . 110
4.6 Arterial and venous vessels obtained from MDCT scan data . . . . . . . 111
4.7 Resulting arterial and venous models generated using the volume-filling

branching (VFB) algorithm, including major vessels from MDCT scan data112
4.8 Close in view of the model supernumerary arterial blood vessels

emerging from the larger accompanying blood vessels . . . . . . . . . . . 113
4.9 Strahler order number versus number of branches showing the

progression of the model towards anatomical data for the arterial
and venous networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.10 Strahler order number versus branch diameter showing the progression
of the model towards anatomical data for the arterial and venous networks116

4.11 Strahler order number versus branch length showing the progression of
the model towards anatomical data for the arterial and venous networks 116

5.1 The velocity profile defined across a vessel cross-section . . . . . . . . . 127
5.2 Plot of pressure versus radius demonstrating the form of the pressure-

radius relationship incorporated into the Navier-Stokes flow solution . . 128
5.3 Comparison of analytic solution versus numerical Navier-Stokes

solution in a single vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4 Schematic diagram of a vessel junction showing nomenclature used for

grid point locations, flows, and pressure at a junction . . . . . . . . . . . 135
5.5 Comparison of pressure, radius, and velocity profiles within a single

vessel oriented vertically with and without gravity . . . . . . . . . . . . . 139



xiv LIST OF FIGURES

5.6 Comparison of steady-state pressure, radius, and velocity profiles in a
single vessel oriented vertically with and without gravity . . . . . . . . . 140

5.7 Convergence analysis in a single vessel including gravity . . . . . . . . . 141
5.8 Pressure, velocity, and flow solutions in a symmetric arterial model

compared with solutions in the anatomically-based arterial model
without gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.9 Comparison of pressure, radius, velocity and flow solutions with
respect to vertical height in the symmetric versus the anatomically-
based arterial model without gravity at all terminal nodal locations
averaged within 1 and 50 mm slices . . . . . . . . . . . . . . . . . . . . . . 145

5.10 Comparison of path lengths and transit time solutions in the symmetric
versus anatomically-based arterial model without gravity . . . . . . . . . 146

5.11 Pressure, velocity, and flow solutions in the symmetric and
anatomically-based arterial models with gravity . . . . . . . . . . . . . . 147

5.12 Comparison of pressure, radius, velocity, and flow solutions with
respect to gravitationally-dependent height at terminal nodes in the
symmetric and anatomically-based models averaged within 1 and 50
mm slices with and without gravity . . . . . . . . . . . . . . . . . . . . . . 149

5.13 Comparison of path lengths and transit time solutions in the symmetric
versus anatomically-based arterial models with gravity . . . . . . . . . . 150

5.14 Comparison of pressure, velocity, and flow solutions in the
anatomically-based arterial model with and without gravity . . . . . . . 151

5.15 Comparison of pressure, radius, velocity, and flow solutions with
respect to gravitationally-dependent height at terminal nodes in the
anatomically-based arterial model with and without gravity . . . . . . . 153

5.16 Flow (relative to mean) with respect to vertical position in the
lung, including least squares regression line of flow as a function
of gravitationally-dependent height for the arterial model with and
without gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.17 Comparison of model flow results (relative to mean) with experimental
measurements of blood flow in the supine pig and upright baboon lungs 154

5.18 Comparison of pressure, velocity, and flow solutions in the
anatomically-based venous model with and without gravity . . . . . . . 156

5.19 Comparison of pressure, radius, velocity, and flow solutions at
terminal nodes with respect to gravitationally-dependent height in
the anatomically-based venous model with and without gravity . . . . . 157



LIST OF FIGURES xv

5.20 Flow (relative to mean) with respect to vertical position in the lung,
including least squares regression line of flow as a function of
gravitationally-dependent height in the venous model with and without
gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.21 Comparison of pressure, radius, velocity and flow solutions with
increasing amounts of gravity (0G, 1G, 1.8G) in the arterial model . . . . 159

5.22 Comparison of pressure, radius, velocity and flow solutions with
increasing amounts of gravity (0G, 1G, 1.8G) in the venous model . . . . 161

5.23 Flow (relative to mean) with respect to vertical position in the lung,
including least squares regression line, for the arterial and venous trees
with increased gravity (1.8G) . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.24 Comparison of model flow results (relative to mean) with respect to
gravitationally-dependent height with flow measurements from supine
pig lungs with increased gravity (1.8G) . . . . . . . . . . . . . . . . . . . 162

5.25 Pressure, radius, velocity, and flow solutions at all terminal locations in
the arterial model averaged within different slice thicknesses . . . . . . . 164

5.26 Pressure, radius, velocity, and flow solutions at all terminal locations in
the venous model averaged within different slice thicknesses . . . . . . . 165

5.27 Pressure, radius, velocity, and flow solutions at terminal locations in the
arterial model averaged within 1 and 50 mm slices with varying amounts
of pleural pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.28 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 50 mm slices in the arterial model in
different postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.29 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 30 mm slices in the arterial model in the
prone versus supine positions . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.30 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 50 mm slices in the venous model in
different postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.31 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 30 mm slices in the venous model in the
prone versus supine positions . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.32 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 mm slices in the arterial model with various
vessel distensibility values . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



xvi LIST OF FIGURES

5.33 Transit time results through the arterial model with normal gravity (1G)
and pleural pressure (-0.49 kPa) conditions . . . . . . . . . . . . . . . . . 178

5.34 Transit time results through the venous model with normal gravity (1G)
and pleural pressure (-0.49 kPa) conditions . . . . . . . . . . . . . . . . . 179

5.35 Transit time, path length, and number of vessels per path for all
pathways plus averages within 1 and 50 mm slices plotted with respect
to gravitationally-dependent height for the arterial and venous models . 180

5.36 Pulsatile pressure boundary conditions applied at the pulmonary trunk
inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.37 Series of images displaying the pulsatile pressure solution (kPa) over
time in the arterial model . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.38 Series of images displaying the velocity solution (mm s−1) over time in
the arterial model with pulsatile pressure boundary conditions prescribed183

5.39 Example of blood flow data extracted from MDCT functional imaging
of sheep and human lungs . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.40 Comparison of model results with flow information extracted from
MDCT imaging of normal human males in the supine position . . . . . . 186

5.41 Finite element model of the sheep lung, airway branches detected from
MDCT, plus additional branches generated using the VFB algorithm,
used to obtain an arterial flow solution . . . . . . . . . . . . . . . . . . . . 187

5.42 Flow results in the sheep arterial model without gravity and with
gravity in the prone and supine postures . . . . . . . . . . . . . . . . . . 189

5.43 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 30 mm slices plotted with respect to
gravitationally-dependent height in the sheep arterial model without
gravity and with gravity in the prone and supine postures . . . . . . . . 190

5.44 Comparison of pressure, radius, velocity, and flow solutions at terminal
locations averaged within 1 and 30 mm slices plotted with respect to
gravitationally-dependent height in the sheep and human arterial model
in the supine posture with gravity . . . . . . . . . . . . . . . . . . . . . . 191

5.45 Comparison of flow solutions (relative to mean) in the supine sheep
model compared with experimental measurements from the supine pig 192



List of Tables

2.1 Comparison of model alveolar dimensions with published anatomical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Comparison of model generated dimensional data with published
anatomical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Parameters used in the capillary model . . . . . . . . . . . . . . . . . . . 68
3.2 Pressure boundary conditions used in regional variation simulations . . 69
3.3 Pressure boundary conditions applied in flow simulations at 2 cm height

intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Comparison of model results with and without the hematocrit model . . 77
3.5 Alveolar and pleural pressure conditions at different stages of breathing,

for comparisons of WBC stoppage . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Average model results at different stages of the respiratory cycle . . . . . 80
3.7 Sensitivity analysis of model parameters and boundary conditions . . . 84

4.1 Strahler-based branching, diameter, and length ratios for the three
stages of model development: MDCT vessels, plus VFB vessels, plus
supernumerary vessels, compared with anatomical data . . . . . . . . . 114

4.2 Branching angles of the model generated using a combination of MDCT-
derived vessels, VFB algorithm, and supernumerary vessel algorithm,
compared with model and anatomical data for the conducting airways . 115

5.1 Average transit times through the arterial and venous networks in
various conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177





Glossary of Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

CT computed tomography

FEM finite element method

FEV1 forced expiratory volume in 1 second

FRC functional residual capacity

MDCT multi-detector row x-ray computed tomography

Ptm transmural pressure (capillary minus alveolar gas pressure)

Ptp transpulmonary pressure (alveolar minus pleural pressure)

RBC red blood cell

SEM scanning electron micrograph

VFB volume-filling branching (algorithm)

WBC white blood cell

TLC total lung capacity



xx GLOSSARY OF ACRONYMS



List of Symbols

The following symbols (listed in order of appearance) are used in this thesis:

Chapter 2

sA Alveolar surface area

vA Alveolar volume

σA Alveolar surface area to volume ratio

Chapter 3

a Length of tissue portion of the circumference of a capillary cross-
section at zero Ptm

C Length of the membrane segment of the circumference of the
capillary cross-section

R Radius of a capillary vessel

h Height of capillary cross-section

a1 Length of tissue portion of the circumference of a capillary cross
section at non-zero Ptp and Ptm

θ Angle used in the capillary dimensional model

d The distance between two capillaries

La Alveolar septal length

Tc Tension around the capillary circumference

V Alveolar volume

A, B, M Empirically determined constants for the capillary dimensional
model

L0 Initial alveolar septum length at zero Ptp



xxii LIST OF SYMBOLS

a0 Length of tissue portion of the circumference of a capillary cross-
section at zero Ptm and zero Ptp

V0 The alveolar volume at zero Ptp

Ts The force per unit length in the septal wall

E(Ptp) The elastic coefficient of the capillary wall as a function of Ptp

C0 Length of membrane segment of capillary cross-section at zero Ptm

kc The stiffness of the capillary wall

P Perimeter of the elliptical capillary cross-section

a∗ Major axis of an elliptical capillary cross-section

b∗ Minor axis of an elliptical capillary cross-section

l Length of capillary segment

P Capillary pressure

Q̇ Capillary flow rate

µapp Apparent viscosity of blood in capillary vessels

Ac Local cross-sectional area of a capillary segment

s Distance along a capillary vessel axis

Dh Hydraulic diameter of a capillary vessel

ReDh
Reynolds number, based on hydraulic diameter (Dh)

fd Darcy friction factor

µc The cytoplasmic viscosity

D∗ Parameter used in the hematocrit model

Dm The diameter of the smallest vessel that a RBC can pass through

µp Blood plasma viscosity

Rseg The resistance to flow in a capillary segment

Rcap Resistance in capillary, after junction accounted for

Rjunc Resistance in junction

Sseg Surface area of capillary segment

Sjunc or SAjunction Surface area of capillary junction



LIST OF SYMBOLS xxiii

SAtotal Total surface area of capillary element

Loverlap The overlapping length of each element at a junction

nj The total number of overlapping capillary segments at a junction

n Total number of capillary segments in a network

m Total number of capillary junctions in a network

Q̇ip The flow rates in each segment connected to junction i

Pj1, Pj2 Pressures at either end of a capillary segment

Hd Hematocrit (=RBC fraction of blood)

f The volumetric flux of RBCs in a vessel segment

r The RBC flux cut-off parameter

b The preferential RBC flux parameter

ti RBC transit time through vessel i

Vi Volume of vessel i

Ctt Ratio of RBC transit time to plasma transit time in capillaries

Pcr The critical pressure drop required over a capillary segment for a
WBC to pass through it

τ0 The average cortical tension in a WBC

RWBC WBC radius

Rp Tube radius

te WBC entrance time

tp WBC passage time

tWBC Total WBC transit time through a capillary segment

R Average capillary radius, used in WBC transit calculations

Rcv,Qcv Resistance and flow in an alveolar corner vessel

Chapter 4

Rd The Strahler-based diameter ratio

D Vessel diameter

x The Strahler order number



xxiv List of Symbols

N The highest Strahler order number in the network

Rb The Strahler-based branching ratio

Rl The Strahler-based length ratio

θbranch The angle between a parent and its child branch

γ The angle between the plane containing the parent branch and its
sibling and the plane containing the two daughter branches

θmajor,θminor Angle between the parent and the major and minor daughter
branches, respectively

R2 Correlation coefficient

Chapter 5

ρ Density of blood

µ Viscosity of blood

p Blood pressure within vessel

R Vessel radius

V Mean axial velocity

t Time

Θ The vertical angle between the gravitational vector and the vector
of the vessel centreline

g The acceleration due to gravity (1G: g=9.81 m s−2)

ν The kinematic viscosity of blood

α The vessel cross-section velocity profile parameter

G0,β Vessel distensibility coefficients for pressure-radius relationship

R0 The unstrained vessel radius at p=0

k A grid point at time step k

i A grid point at a spatial location i

∆x The distance between grid points (spatial discretisation)

S The cross-sectional area of a vessel

Fa, Fb, Fc Flow rate through the parent and two daughter vessels at a
bifurcation

p0 The pressure at a bifurcation



Chapter 1

Introduction

1 2 3 4 5 6

geometry:
trees:
Structure−function
investigations

Summary:

Future work
geometry:

Previous work

Pulmonary physiology

Introduction: Alveolar−capillary Capillary blood flow: Arterial−venous Blood flow through
the arterial & venous

Alveolar sac geometry,
Capillary model

Regional variations in
flow and cell transport finite element models

of the arterial and 
venous trees

This chapter introduces the pulmonary system and provides information for specific
areas of interest contained in this thesis. Firstly, an overview of the lung as a whole
is provided (Section 1.1), followed by more specific details corresponding to the
modelling work contained in the following four chapters. Section 1.6 outlines previous
work conducted in the area of pulmonary blood flow, corresponding to work in each
of the four modelling chapters.

1.1 The lungs

The human lung is divided into five functionally independent bronchopulmonary units
or lobes. Each lobe is surrounded by connective tissue continuous with the visceral
pleura, and is a separate respiratory unit (Hlastala & Berger 2001). The right upper,
mid, and lower lobes are separated by the oblique and lateral fissures, and the left
upper and lower lobes by the oblique fissure. The lungs fill most of the thoracic
cavity and consist largely of the three conducting trees, including the bronchial system,
arterial and venous trees. The primary function of the lung is gas exchange: to expel
carbon dioxide from the blood and extract oxygen from ambient air for circulation to
cells around the body. This function is carried out by intimate interactions between the
bronchial (air) and vascular (blood) systems.
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During inspiration the volume of the lung is increased by both contraction of the
diaphragm, which causes it to descend, and an outward pull from the intercostal
muscles, which raise the ribs. This increase in volume causes the pressure in the
terminal airways to fall below atmospheric pressure, which, provided the glottis is
open, causes air to flow down the pressure gradient into the lungs. During expiration
the muscles passively relax and the reverse procedure occurs due to recoil of the lung
tissue. The outer surface of the lungs (the visceral pleura) and the inner surface of the
chest wall (the parietal pleura) are held together by a negative intrapleural pressure. A
thin layer of serosal fluid is contained between these two layers which allows the lungs
to easily slide around within the chest cavity.

Air enters the lung via the upper airways (including the nasal cavity, mouth
and larynx) followed by the trachea, which bifurcates into the left and right main
pulmonary bronchi - one to each lung. Lobar bronchi begin to emerge from this level
such that each lobe is supplied by a single airway. Successive bifurcations into tubes
with decreasing diameter and length carries the air through the increasing number of
conducting airways towards the respiratory surface. Airway branches fall into one of
two discrete categories: conducting or respiratory. As their name suggests, conducting
airways simply conduct air to and from the respiratory surface, having nothing to
do with the gas exchange process. The conducting airways therefore comprise the
anatomical dead space, making up around 150 ml of the lung volume. After an
average of 17-19 generations of branching (Weibel 1963) the respiratory bronchioles
are reached. Alveoli begin to arise at this level becoming more numerous towards the
periphery of the bronchial tree. Alveoli are the blind ending sacs of the airway system
(described further in Section 1.2.1) where gas exchange takes place. All branches distal
to a terminal bronchiole are surrounded by alveoli, participate in gas exchange, and
constitute an acinar unit. There are an estimated 30,000 acini in an average human
lung (Haefeli-Bleuer & Weibel 1988).

The distance from a terminal bronchiole to the most distal alveolus is only a few mm,
but the respiratory zone makes up around 2.5 - 3 L of the lung volume (West 2000). The
alveoli contain a dense layer of capillary blood vessels over their surface, the structure
of which is elaborated on in Section 1.2.3. There are an estimated 300 million alveoli
in an average human lung, each alveolus being enwrapped by approximately 1000
capillary vessels, resulting in an estimated colossal 280 billion pulmonary capillaries
in the human lung. The vast number of alveoli result in a very large surface area
(of approximately 80-100 m2 (Weibel 1984)), thereby increasing the efficiency of gas
exchange. The partial pressure gradient across the blood-air membrane is the driving
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force for gas diffusion.
The pulmonary blood vessels also consist of a series of branching tubes, diverting

blood from the right ventricle of the heart through the arteries, to the capillary bed, then
back to the left atrium of the heart through a series of converging pulmonary venous
vessels (Section 1.4). The pulmonary trunk receives the whole output from the right
heart, but due to the relatively small resistance through the pulmonary circuit, a much
smaller pressure is required to pump the blood through the pulmonary circuit than the
systemic circuit.

Anatomical investigations have shown that each airway has an accompanying
artery and vein (Elliot & Reid 1965, Weibel 1963, Maina & van Gils 2001). The arteries
are positioned in close proximity to their partner airway, and the veins are found to
run half-way between pairs of arteries and airways. These vessels have been termed
‘accompanying’ blood vessels, as they accompany an airway branch. A characteristic
feature of the pulmonary vascular networks is the emergence of many more branches,
known as supernumerary vessels (Elliot & Reid 1965), described further in Section
1.4.1. The lung has an additional blood system, the bronchial circulation, which
provides oxygenated blood to the lung tissue, more details are given in Section 1.4.0.2.

1.2 Alveolar-capillary network geometry

As stated previously, the key role of the pulmonary system is respiratory gas-exchange:
to supply oxygen to and remove carbon dioxide from the blood. The alveolar-capillary
network is the site of this gas-exchange. The physiology of this delicate and valuable
system is described below.

1.2.1 Pulmonary alveoli

The conducting airways distribute air to around 300 million alveoli, each one
approximately 0.3 mm in diameter (at 75% of maximum lung volume) (Hlastala
& Berger 2001, West 2000). Ventilation is described as the movement of air from
the atmosphere into the body, to the alveoli where gas exchange occurs, and the
movement of the gas back out of the body (Hlastala & Berger 2001). During the
breathing cycle, the pressure within alveoli fluctuates between about -1 cmH2O (-
0.09806 kPa), during inspiration, to around +1 cmH2O (0.09806 kPa), during expiration
(Guyton & Hall 2000), as a result of an increase in lung and alveolar volume via forces
exerted by the diaphragm and intercostal muscles.
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Due to the dense packing arrangement of the alveoli, as shown by the scanning
electron micrograph (SEM) in Figure 1.1, the shape of each alveolus tends to be
described as an irregular polyhedron, typically consisting of fourteen faces, with one
face cut off at its entrance to allow ventilation (Hlastala & Berger 2001, Hoppin &
Hildebrandt 1977). A 3D Voronoi meshing technique is used to represent the volume-
filling structure of the alveoli in Section 2.2.2.

Gravitational forces have an influence on the distribution of sizes of alveoli; the
largest alveoli are found in the upper or least gravitationally-dependent regions of the
lung. The greater distension of alveoli displayed in the upper regions of the lung is due
to the downwards pull of gravitational forces on the lung tissue. This also results in
smaller, more compressed alveoli in the lower, dependent regions of the lung. This size
distribution varies with posture or changes in lung volume (Hlastala & Berger 2001).

FIGURE 1.1: SEM of densely packed, volume-filling alveolar structure, showing
respiratory bronchioles transitioning into alveolar ducts (therefore becoming
surrounded by alveoli). Figure courtesy of E. R. Weibel, Institute of Anatomy,

University of Berne.

The top portion of Figure 1.2 shows a SEM of an alveolar duct (D) and its
surrounding alveoli (A), the lower portion displays the capillary layer (C) covering
the alveolar septa between adjacent alveoli. The thin tissue layer (T) separating RBCs
from air can be seen.

1.2.1.1 Alveolar stability & pulmonary surfactant

The structure of the thin walled, volume-filling alveoli results in a system that is
fundamentally unstable. The liquid layer covering the alveolar surfaces induces
large surface tension forces which tend to collapse the alveoli, due to the attractive
forces between adjacent liquid molecules being greater than that between air and
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FIGURE 1.2: SEM of (top) alveolar duct (D) and surrounding alveoli (A), and (bottom)
the capillary layer (C), containing red blood cells (RBCs) enclosed from air by a thin
tissue layer (T). Figure courtesy of E. R. Weibel, Institute of Anatomy, University of

Berne.

liquid molecules. This surface tension helps to maintain the integrity of the surface.
The presence of a lipoprotein lining layer, known as pulmonary surfactant, largely
decreases the surface tension forces in the alveoli and helps to prevent collapse. By
reducing the surface tension in the alveoli the compliance of the lung is increased
(this means the lung is more easily expanded, compliance = ∆ volume/∆ pressure)
which reduces the work during inspiration. Another role of pulmonary surfactant is in
keeping the alveolar surfaces dry. Surface tension forces in the alveoli have the effect of
sucking fluid in from the capillary side of the membrane (into the alveolus); surfactant
reduces surface tension forces and therefore reduces the transudation of fluid from the
capillaries (Weibel 1984).

Surfactant is produced within the type II alveolar epithelium cells (see Section 1.2.2
for a description of these cells) and is secreted into the alveolar lining liquid. Surfactant
consists mainly of the lipid dipalmitoyl phosphatidylcholine (DPPC) and a protein that
helps stabilise DPPC at the air-liquid interface, among other components. DPPC is
manufactured in the lung from fatty acids, which are extracted from the blood or made
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in the lung. Surfactant is quick to produce and has a high turnover rate (West 2000).
The DPPC molecules are hydrophobic (water repelling) at one end and hydrophilic
(water loving) at the other, and they align themselves on the surface of the liquid. The
intermolecular repulsive forces then oppose the normal liquid surface attraction forces,
thus reducing surface tension.

Infant respiratory distress syndrome (IRDS) is caused by a lack of surfactant at
birth in premature infants. Surfactant is not produced until relatively late in fetal
development, therefore babies born too early without sufficient surfactant develop
IRDS and may die. The lack of surfactant leads to increased surface tension forces
in the alveoli (reduced compliance), alveolar collapse (atelectasis), therefore increased
work during breathing, and increased fluid in the alveoli. Recent evidence suggests
that the incidence of IRDS can be reduced in premature infants by externally delivering
surfactant into the lungs (Hlastala & Berger 2001).

1.2.2 The blood-gas barrier

The blood-gas barrier is the thin tissue layer separating alveolar gas and capillary blood
with a thickness of only around 0.1-0.3 µm (Hlastala & Berger 2001). Gases are able
to freely diffuse across this membrane. The barrier is made up of three distinct layers:
the alveolar epithelium lining the air spaces; the interstitium, which accommodates
the connective tissue fibres and basement membranes; and the capillary endothelium.
Figure 1.3 shows a transmission electron micrograph (TEM) of the extremely thin
alveolar-capillary barrier. The alveolar epithelial (EP1), interstitial (IS), and capillary
endothelial (EN) layers can be clearly identified separating the alveolar gas region (A)
and the capillary region, containing a red blood cell (RBC).

The epithelium and endothelium each make up approximately 25% of the tissue in
the alveolar walls, the interstitial cells account for around 35%, and connective tissue
fibres constitute only 15% of the tissue. Alveolar macrophages make up about 4% of
the volume in the alveolar walls (Weibel 1984).

1.2.2.1 Alveolar epithelium

The alveolar epithelium is composed of three main cell types: type I and type II
epithelial cells and alveolar macrophages. Type I, or squamous (small) alveolar
epithelial cells rest on the basement membrane and are found mostly in concavities
formed by capillaries bulging into the alveolar air spaces. A thin cytoplasmic layer
extends out laterally from these cells in broad, thin plates only a few microns thick.
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FIGURE 1.3: Transmission electron micrograph (TEM) of the alveolar-capillary barrier.
Constituents of the layer include alveolar type I epithelial cells (EP1) on the alveolar

side (A), capillary endothelial cells (EN) separating a red blood cell (RBC) on the
capillary side. These layers are separated by interstitial space (IS). Picture from

(Hlastala & Berger 2001).

Adjacent epithelial cells form intercellular junctions creating a continuous layer of
cytoplasm covering the surface of each alveolus. The type II, or granular (large) alveolar
epithelial cells are roughly spherical in shape, and contain microvilli on their surface.
These cells are found throughout the type I cell epithelial lining. Alveolar surfactant
is manufactured in the type II alveolar epithelial cells; the lipoprotein is stored in the
lamellar bodies of the cell and secreted into the alveolar lining liquid when required
(Hlastala & Berger 2001). The third type of alveolar epithelial cells are the free alveolar
cells also known as alveolar macrophages. These are not in contact with the basement
membrane and are thought to originate from the large alveolar cells (Weibel 1963).
Macrophages attack and destroy invading bacteria, viruses, and other particles which
may become trapped in the alveoli. This is mainly achieved by phagocytosis, which is
the cellular ingestion of the offending agent. Neutrophils (a type of white blood cell
(WBC)) work in conjunction with macrophages to defend the body; the alveolar surface
is the largest epithelial surface area in the body exposed to the outside environment
(Hlastala & Berger 2001). Both macrophages and neutrophils are attracted towards
inflamed tissue areas by chemotaxis (Guyton & Hall 2000). Macrophages are cleared
via the airways and lymphatic system (Hlastala & Berger 2001). There is another
very rare cell type, the brush cell, which has been found in some specific regions near
terminal bronchioles. These are thought to act as air quality monitoring receptors.
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1.2.2.2 Capillary endothelium

The walls of the pulmonary capillaries consist of a single layer of endothelial cells
resting on the basement membrane. The endothelium forms a poreless, uninterrupted
lining of the capillaries, via cytoplasmic extensions. This endothelial lining consists
mainly of a thin layer of cytoplasm, with the cell nucleus bulging into the lumen of
the capillary vessels. The cytoplasm layer extends over large areas of the surface and
has a thickness of only around 0.2-0.5 µm. Adjacent cells are connected via simple
intercellular junctions whereby the two cells often overlap slightly (Weibel 1963). These
tight cell junctions do, however, allow transudation of electrolytes and macromolecules
from within the blood plasma through the endothelial barrier. There is therefore a
relatively free exchange between the plasma and interstitial space. Fortunately the
alveolar epithelial junctions are tighter and more selective with the transfer of matter
(Weibel 1984). Fluid in the interstitial space is drained via the lymphatic system. The
basement membrane consists of a sheet of proteoglycans and a type of collagen which
allows solutes and small macromolecules to pass through freely; it forms a continuous
lining of the outer endothelium.

The endothelial cells appear to have important pharmacokinetic and metabolic,
non-respiratory functions. The lungs contain one half of the entire endothelial cell
population in the body, and certain substances in the blood plasma are attacked by
enzymes on the endothelial surface (Harris & Heath 1986).

1.2.2.3 Interstitium

The interstitium is enclosed by the endothelial and epithelial basement membranes.
Since the pulmonary capillaries are supported by strands of the connective tissue
framework of the lung and because of the large alveolar cells, the blood-gas barrier
consists of a thin and thick walled region. The thin walled region is concerned with
the exchange of respiratory gases, and the thick walled part is involved in tissue fluid
transport (Fung 1990, Harris & Heath 1977). In the thinnest part of the blood-gas
barrier the endothelial and epithelial basement membranes are so close together that
the two separate layers are almost indecipherable. In the thicker parts, the basement
membranes follow the bulging of the cells. The interstitial space contains bundles of
collagenous and elastic fibres, some fine microfibrils, and fibroblasts. Macrophages
(interstitial macrophages) and plasma cells may also be found in the interstitium
(Weibel 1963).
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1.2.3 Pulmonary capillaries

The pulmonary capillaries form a dense network of interconnecting short capillary
segments in the walls of the alveoli. A SEM of a section of the vast pulmonary capillary
plexus is shown in Figure 1.4. The alveolar tissue has been removed, but it is still clearly
visible how the capillaries wrap over the surface of each alveolus.

FIGURE 1.4: SEM of a section of the dense capillary network wrapped over each
alveolar unit (A). The arrow illustrates a larger blood vessel feeding into the network.

Figure courtesy of E. R. Weibel (Weibel 1984).

(a) (b)

FIGURE 1.5: Photomicrograph of a section of the rabbit capillary network (a), close in
view of the same network (b). Images courtesy of E. R. Weibel, Institute of Anatomy,

University of Berne.

The pulmonary capillary network forms a much denser network than found in
the systemic microcirculation (Figure 1.5). Capillaries found in muscle tissue have
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larger diameters, are longer and form a looser network (Weibel 1984). The pulmonary
capillary segments are so short that early observations by Fung and colleagues (using
relatively low resolution light microscopy) led to the approximation that blood flowed
as a sheet through interconnected posts of connective tissue (Fung & Sobin 1969), see
Section 1.6.2.1. More detailed, higher magnification SEM analysis later demonstrated
that blood does in fact flow though discrete tubules as in the systemic circuit, the
only difference being the increased density of tubules in the pulmonary system
(Guntheroth, Luchtel & Kawabori 1982).

The capillary wall consists of a layer of endothelial cells resting on the basement
membrane layer, as described earlier in Section 1.2.2. In heart failure the pulmonary
capillary pressure increases due to the restricted outflow of blood into the left atrium.
Fluid is extruded from the capillaries into the interstitial space at a rate in excess of
the drainage capabilities. Fluid, therefore, builds up in the interstitial space, firstly
in the large connective tissue masses surrounding the blood vessels and bronchi; this
condition is termed interstitial edema. In hemodynamic pulmonary edema fluid begins
to penetrate though the epithelium into the alveolar spaces. This results in severe
respiratory trouble because the flooded alveoli cannot participate in gas exchange
(Weibel 1984). Another type of cell found in the pulmonary capillary walls are
pericytes. These cells are found between the endothelial layer and the basement
membrane. Pericytes contain actin and myosin (contractile proteins), and therefore
possess contractile properties and are thought to be a type of smooth muscle, which
may provide mechanical support to the thin-walled capillary vessels (Weibel 1984).

Each RBC spends around 1-3 seconds in the capillary network and during this
time will traverse around 2-3 alveoli (West 1979). Weibel (1963) conducted a detailed
morphometric study of the human alveolar-capillary network; dimensions and
estimated numbers of capillary segments were published. The capillary diameters
were found to range from 1 to 15µm, with an average internal diameter of 8µm. The
average number of capillary segments in a lung was estimated to be around 280 billion
and was found to be independent of lung size.

1.2.4 Mechanical support

1.2.4.1 The fibre continuum

As the airways grow during lung development they are surrounded by parenchymal
tissue. Within this tissue both the blood vessels and fibre network develop. The
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pulmonary fibre system forms a three-dimensional continuum throughout the lung
initiating at the hilum (the point of entry for the root of the lung) and extending to
the visceral pleura. The fibre skeleton is entangled with the bronchial and vascular
systems. On expansion of the chest, and hence the visceral wall, increased tension
in the fibre network aids in expansion of the airways and alveoli. The fibre system
can be divided into two components; the axial fibre system, which begins at the main
stem bronchus and progresses with the airways to the terminal bronchioles, and the
peripheral fibre system, which is related to the visceral pleura and enwraps the lobar
units. The pulmonary venous network is found to follow the peripheral fibre system
(thus in between airways and arteries), while the arterial system closely follows the
airways and therefore the axial fibre system. The axial fibre system continues from
the terminal bronchioles along the respiratory bronchioles by encircling the alveolar
entrances. From here a network of finer fibres extends over the remaining alveolar
septal surfaces and weaves through the capillary meshwork, illustrated in Figure 1.6
(Weibel 1984).

FIGURE 1.6: Schematic of the fibre continuum weaving through the capillary
meshwork. Figure courtesy of E. R. Weibel, Institute of Anatomy, University of Berne.

1.2.4.2 Micromechanical support/corner vessels

The alveolar septum is made of a single capillary network that is interlaced with fibres
(Figure 1.6). When the fibres are stretched, the capillaries bulge out alternate sides
and cause pits and crevices at the alveolar-capillary intersection. This gives rise to a
corrugated surface texture on both sides of the septal wall. A fluid layer coats the
surface of the alveoli, and evens out the surface by collecting in the crevices. The
fluid consists of an aqueous layer called the hypophase, which is covered with a
layer of surfactant. The shape of the interalveolar septum is governed not only by
structural factors, but also by mechanical forces. Tissue tension, surface tension, and
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capillary distending pressure all interact to mold the malleable structure of the thin
septal membrane. Figure 1.7 displays a schematic illustration of these forces. A stable
configuration is achieved when all of these forces are in balance. The tissue fibre tension
is a function of lung inflation. During inflation the lung expands, thus increasing
tension in the fibres; the resulting force acts on the capillary segments pulling them
to one side of the septum or the other. Surface tension is exerted normal to the alveolar
surface; the size of this force depends on the degree of curvature and the surface tension
coefficient (a property of the alveolar fluid). Blood pressure within the capillary vessels
causes the capillaries to bulge out. This pressure is determined by arterial and venule
pressures, including gravitational forces. The capillary is contained between the fibres
and the air-tissue interface whose combined forces tend to squash the capillary flat,
into an elliptical shape in cross-section.

Alveolar air

Fluid layer
(hypophase + surfactant)

Surface tension

tension
Fibre

Capillary
pressure

FIGURE 1.7: Schematic illustration of the balance between alveolar surface tension,
fibre tension, and capillary distending pressure, which all play a role in the structure of

the alveolar-capillary membrane.

Alveolar corner vessels are found where three septa meet along a so-called triple
line. The surface tension in this region must exert a stronger outward pull on the tissue
to balance the negative tissue pressure generated by the highly negative curvature
found in this region. This results in fibres being pulled into the alveolar corners, which
enables the capillaries in the corners to remain wide open in all conditions, even at
high lung inflation and during zone 1 flow (refer Section 1.3.2 for details on zonal flow)
(Lamm, Kirk, Hanson, Wagner Jr & Albert 1991). The negative pressure also sucks
interstitial fluid from the septum toward the triple line (Weibel 1984). In zone 2 flow
the capillaries in the section of septum shared between two adjacent alveoli will be
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squashed flat, because the surface and tissue forces exceed the capillary pressure thus
collapsing the vessels; but the alveolar corner vessels will remain open, demonstrated
in Figure 1.8(a). In zone 3 flow the capillaries are fully perfused and bulging into the air
space, because the capillary pressure is greater than alveolar pressure (Figure 1.8(b)).

FIGURE 1.8: SEMs of the alveolar walls in rabbit lungs fixed under (a) zone 2 and (b)
zone 3 perfusion conditions. This illustrates that the capillary (C) corner vessels

remain patent in both flow zones, even while the septal capillaries under zone 2 flow
are collapsed. Figure from (Weibel 1984).

The parenchymal tissue structure of the lung is such that the mechanical
properties of alveolar units are affected by neighbouring alveoli; this is known as
interdependence. The woven, tethered structure of the elastin and collagen fibres
means that if a single alveolus collapses tension in the surrounding fibres increases,
thus preventing collapse of adjacent alveoli. This interdependence extends to the
intrapulmonary airways maintaining their patency. The degradation of this fibre
network in disease states, such as emphysema, breaks down the interdependence
mechanisms and promotes a more heterogeneous ventilation distribution (Hlastala &
Berger 2001).
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1.3 Capillary blood flow

1.3.1 Properties of blood in the microvascular network

The resistance to flow in microvessels is determined by the topology of the individual
vessels and the resulting network, including vessel diameters, length, number and
connectivity of vessels, and on the apparent viscosity of the blood.

At the microcirculatory level blood must be considered as a two-phase non-
Newtonian fluid: particles suspended in blood, particularly RBCs, strongly influence
the apparent viscosity and therefore the blood flow in each segment. The term
‘apparent viscosity’ simply refers to the viscosity of a non-Newtonian fluid at a certain
shear rate. The apparent viscosity of blood varies with several factors, including vessel
diameter, hematocrit and blood cell velocity. The hematocrit is the volume fraction of
RBCs in blood and is around 0.45 in normal human blood (Guyton & Hall 2000, Pries,
Secomb & Gaehtgens 1996).

The basic mechanical properties of RBCs are well established. The cytoplasm is an
incompressible, Newtonian fluid. It is surrounded by a thin viscoelastic membrane,
which consists of a lipid bilayer and a protein cytoskeleton. The membrane shears
and bends easily, but resists area changes. As a consequence of these properties, RBCs
are highly deformable, as long as changes in surface area or volume are not required,
and they can pass through capillaries with diameters much less than the diameter of
an unstressed cell (≈8 µm (Secomb 1995)). Unless fluid flow forces are sufficient to
keep RBCs dispersed, they tend to adhere to each other due to bridging by plasma
proteins, and lower shear rates increase the aggregation. Blood shows shear thinning
properties, that is as the shear rate is increased the progressive breakup of aggregates
leads to a decrease in viscosity. WBCs are much stiffer than RBCs and may contribute
significantly to microvascular flow resistance. Platelets are much smaller than RBCs
and do not contribute significantly to flow resistance (Pries et al. 1996, Skalak & Chien
1987).

In blood vessels smaller than about 300 µm in diameter mechanical interactions
between RBCs and the tube wall result in the preferential distribution of RBCs near the
vessel centre (Pries et al. 1996, Secomb 1995). This is termed ‘axial migration’ and has
considerable effects in the overall flow behaviour of cells in thin tubes. This creates
a layer of zero hematocrit immediately adjacent to the wall, resulting in a reduction
in the apparent viscosity of the blood. This phenomenon is known as the Fahraeus-
Lindqvist effect (Fahraeus & Lindqvist 1931), whereby apparent viscosity decreases
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with decreasing vessel diameter. Fluid flow velocity varies from zero at the wall of a
tube to a maximum near the centre of the tube. This means that average RBC velocity
is higher than average blood velocity. This leads to a reduction of red cell transit time
through a given tube segment, and hence to a reduction in the hematocrit contained in
that segment (tube hematocrit) relative to the hematocrit of blood entering or leaving
it (discharge hematocrit). This dynamic reduction is known as the Fahraeus effect
(Fahraeus 1929), and results in a decreasing blood hematocrit as blood traverses the
microvasculature. The existence of a RBC-depleted layer adjacent to the tube wall
underlies both the Fahraeus and the Fahraeus-Lindqvist effects. Viscosity has been
found to be strongly hematocrit-dependent (Pries et al. 1996, Skalak & Chien 1987).

Another phenomena contributing to RBC distribution is the disproportionate
allocation of RBCs and plasma at bifurcations. This phase separation at a junction
is proportional to the relative flow rates in the daughter vessels (Pries, Secomb,
Gaehtgens & Gross 1990). Combination of the Fahraeus, Fahraeus-Lindqvist, and
phase separation effects result in the hematocrit distribution throughout the capillary
plexus. The model developed in Chapter 3 incorporates empirically-based equations
that calculate the RBC distribution (Section 3.2.4).

1.3.2 Zones of flow

Early experimental studies by West (1979) demonstrated an almost linear increase in
blood flow from the top to the bottom of the lung, as would be expected due to the
increase in hydrostatic pressure with depth in the blood vessels adjacent to airways
in which the pressure is constant with depth. During exercise blood flow in both the
upper and lower zones was found to increase resulting in a decrease in the overall
distribution differences. These measurements led to the theory of zonal flow which is
now wide spread in pulmonary literature.

The difference in pressure between the top and bottom of an average lung
(assuming a height of about 30 cm) is about 30 cm H2O or 23 mmHg (West 1979).
The pulmonary capillaries are virtually surrounded by gas and their structure is only
supported by a very thin layer of endothelial and epithelial cells lining the alveoli. Due
to the lack of support these capillaries are easily collapsed and distended, depending
on the magnitude of the pressures in and around them. The effective pressure around
the capillaries is alveolar pressure and when this rises above the pressure within the
capillaries they collapse. If the external pressure only rises above the tube exit value
the Starling resistor phenomenon occurs, also known as the waterfall or sluice gate
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effect, whereby the pulmonary capillaries act as a gate to control flow. In collapsible
vessels in this state (when alveolar pressure is greater than venule pressure) flow will
be governed by the pressure drop between the tube inlet and the external alveolar
pressure, rather than the drop between inlet and outlet tube pressures as in normal
flow. While alveolar pressure is relatively constant throughout the lung, blood pressure
varies due to hydrostatic gradients, resulting from gravitational forces, and because
of resistance to flow. The blood pressure is assumed to vary linearly with height due
to these effects. This relationship between alveolar and blood pressures led to the
classification of West’s zonal flow model (West, Dollery & Naimark 1964). A schematic
diagram of the four typical zones of flow is illustrated in Figure 1.9.

Zone 1: (Parteriole < Palveolar > Pvenule): Zone 1 flow occurs, if at all, in the least
gravitationally-dependent, upper regions of the lung where blood pressure is at its
lowest. This zone does not occur under normal lung function conditions. In these
regions the alveolar pressure (Palveolar) is greater than both the arteriole (Parteriole) and
venule pressures (Pvenule), the capillary vessels are therefore collapsed and there will be
little or no flow during any part of the cardiac cycle. Lamm and colleagues have shown
in rabbit lungs that zone 1 flow utilises alveolar corner vessels, meaning there is not a
complete cessation of flow in zone 1 (Lamm et al. 1991). Any zone 1 regions contribute
to alveolar dead space because in the unperfused region there will be no gas exchange.

Zone 2: (Parteriole > Palveolar > Pvenule): As the hydrostatic pressure within the
blood vessels increases down the lung arteriole pressure will begin to exceed alveolar
pressure, this results in zone 2 flow. This zone occurs when venule pressure is still
lower than alveolar pressure. Zone 2 may display intermittent blood flow during the
cardiac cycle due to the variation in blood pressure. This zone is where the so called
‘waterfall effect’ occurs, whereby blood flow is governed by the difference in pressure
between arterial and alveolar pressure, rather than the difference between arterial and
venous pressure as it is in normal flow.

Zone 3: (Parteriole > Palveolar < Pvenule): Zone 2 flow transitions into zone 3 flow
as blood pressure increases down the vertical height of the lung. Zone 3 occurs when
both the arteriole and venule pressures are greater than alveolar pressure. There is
continuous blood flow in this zone. The increasing blood pressure with further descent
down the vertical lung results in recruitment of previously collapsed capillaries and
distension of perfused capillaries. The majority of the lung is in zone 3 flow.
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Zone 4: An additional zone 4 flow region was later defined to account for the
decrease in flow observed in the lowest, most gravitationally-dependent regions of the
lung (Hughes, Glazier, Maloney & West 1968). Gravitational forces also led to uneven
expansion of alveolar units: the least gravitationally-dependent regions are the most
expanded at functional residual capacity (FRC), and the dependent regions are the least
expanded (Glazier, Hughes, Maloney & West 1967). Zone 4 flow has been attributed to
an increased resistance in the extra-alveolar (non-alveolar) vessels in the lower regions
because they are less distended due to reduced alveolar expansion (West 1999). The
caliber of the extra-alveolar vessels depends on the overall lung volume. Another
explanation is that the decreased flow is due to perivascular cuffing resulting from
the formation of edema from the high blood pressures (Hlastala & Glenny 1999).

FIGURE 1.9: Schematic illustration of the different ‘zones’ of flow in the lung. Figure
from (Hughes et al. 1968).

This zonal model has been used to explain regional differences in blood flow
distribution and gas exchange for over three decades. While these zones of flow are
still applicable, higher-resolution experimental techniques have brought about new
concepts in blood flow distribution and heterogeneity. A more in depth discussion of
the changing perspectives and new theories on blood flow distribution in the lung is
given in Section 1.5.2.

1.3.3 Capillary perfusion: recruitment versus distension

Under normal blood flow and respiratory conditions not all capillaries are perfused:
many are unperfused due to inadequate internal blood pressures (relative to alveolar
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pressure). Capillary perfusion switches between segments: some segments are nearly
always perfused and form interconnecting pathways across the alveolar wall, while in
other capillary regions of the same alveolar wall, the blood frequently switches between
segments. These fluctuations in perfusion have been shown to be present even during
constant flow conditions (Hanger, Presson Jr, Okada, Janke, Watkins, Wagner Jr &
Capen 1997, Wagner Jr, Todoran, Tanabe, Wagner, Tanner, Glenny & Presson Jr 1999).
It is not fully known why, but some vessels require higher opening pressures than
others, possibly due to high vascular smooth muscle tone or topographical factors
which result in preferential perfusion pathways (Levitzky 1990). Another proposal for
the existence of uneven opening pressures is based on the non-uniform arrangement of
fibres wrapped intimately over the alveolar and capillary surfaces (Godbey, Graham,
Presson Jr, Wagner Jr & Lloyd Jr 1995).

The presence of unperfused capillaries implies that there is a large reserve capacity
available in the lung for increased flow conditions, such as during exercise. This reserve
capacity, via recruitment and distension mechanisms, also inhibits RBC transit time
from decreasing below the time needed for complete oxygen saturation (around 0.25
s).

Pulmonary capillaries contain only small amounts of muscle tissue, therefore
the opening pressures are relatively small, corresponding to the lower blood
pressures present in the pulmonary circuit compared to the systemic circuit. As
pulmonary arterial pressure increases these unperfused capillaries may become
perfused, thus opening new parallel pathways for blood flow and decreasing the total
pulmonary vascular resistance. The perfusion of new capillary segments is known
as recruitment. The opposing situation also occurs whereby decreasing blood flow
results in derecruitment of pulmonary capillaries (Levitzky 1990). Recruitment of
vessels is the dominant mechanism for a reduction in pulmonary vascular resistance
as pulmonary arterial pressure rises from lower levels (West 2000). During an increase
in pulmonary blood pressure, previously perfused capillaries will increase in caliber,
due to their elastic structure; this is known as distension. This is the major resistance
reducing mechanism at higher blood pressures. Recruitment and distension often
occur together.

In the current model (see Chapter 3) capillary perfusion was determined by the
diameter of the vessel, which is a result of the initial geometry and the pressure-flow
solution. The minimum capillary diameter that a RBC can pass through is 2.7 µm

(Huang, Doerschuk & Kamm 2001), therefore a segment was considered perfused if
its height was greater than this value. For diameters smaller than this the segment was
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considered unperfused.

1.3.4 Neutrophil Margination

Neutrophils are granular leukocytes (or WBCs) which comprise 50-70% of the
total WBC population. Neutrophils originate in the bone marrow and carry out
phagocytosis - the engulfing and destruction of foreign materials. Under normal
conditions the concentration of neutrophils in the lung is between 40-80 times higher,
or around three times the number of cells, than that in circulation (Hogg 1987, Hogg
& Doerschuk 1995); this is known as neutrophil margination. In their transit through
the capillary bed virtually all neutrophils encounter at least one capillary segment
that is too narrow to pass through unimpeded (Doerschuk, Beyes, Coxson, Wiggs
& Hogg 1993). Neutrophil transit times through the lung have been shown to range
from 2 s to as long as 20 minutes (Hogg, McLean, Martin & Wiggs 1988, Hogg,
Coxson, Brumwell, Beyers, Doerschuk, MacNee & Wiggs 1994, Lien, Wagner Jr, Capen,
Haslett, Hanson, Hofmeister, Henson & Worthen 1987). An empirically-based model
of neutrophil transit, derived from micropipette aspiration studies (Fenton, Wilson &
Cokelet 1985, Yeung & Evans 1989), is included in the capillary flow model (Section
3.2.5.2), the results of which are compared with experimental values in Section 3.3.5.

The reason for this margination is the geometry of the pulmonary microcirculatory
network, namely the relative diameters of neutrophils to capillaries meaning that the
WBCs must deform to squeeze through narrow capillary vessels. Reported values of
neutrophil diameters are in the range of 6.8-8.3 µm (Doerschuk 1999), compared to the
reported range of capillary diameters of around 4-10 µm (Chang & Paiva 1989). The
relative time taken for deformation is proportional to the size the cell must deform to
(being relatively quick for small deformations), the stiffness of the cell (activated cells
are less deformable), and the driving force pushing the cell through. The sequestering
of neutrophils in the lung is thought to play a vital role in host defense, acting as the
second line of defense by destroying any unwanted foreign material which may have
penetrated the system.

Several mechanisms may increase neutrophil stiffness thus increasing the
marginated pool of cells in the lung, for example the activation of cells by inflammatory
mediators (Doerschuk 1999, Hogg 1987). Neutrophils in patients with sepsis, cells
treated with TNF-α (tumour necrosis factor), and young cells (freshly released
from the bone marrow) have all been shown to have longer transit times and
are therefore hypothesised to be less deformable (Drost, Kassabian, Meiselman,
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Gelmont & Fisher 1999, Gebb, Graham, Hanger, Godbey, Capen, Doerschuk &
Wagner Jr 1995, Terashima, Klut, English, Hards, Hogg & van Eeden 1999).

Despite the large concentration of neutrophils effectively blocking capillary
segments, experimental studies measuring the effect of leukocyte blockage on arterial
pressure have shown that even when all the circulating leukocytes are in the lung the
effect on upstream pressure is small (Hogg 1987). This suggests that the large number
of parallel pathways can accommodate the diversion of flow from blocked pathways.

1.4 The pulmonary vasculature

The pulmonary vasculature provides a direct route from the heart to the gas exchange
surface. In the same way as for the airways, the branching structure of the pulmonary
vasculature allows efficient gas exchange by creating a very large alveolar-capillary
surface area for gas exchange. After circulating through the systemic circuit, delivering
oxygen and nutrients to the body tissue, blood returns to the right atrium of the heart
via two large veins known as the venae cavae. The pulmonary trunk emerges from the
right ventricle (RV) through the pulmonary valve and conveys deoxygenated blood
into the pulmonary circuit. The pulmonary trunk extends only about 5 to 10 cm beyond
the right ventricle before dividing into the left and right main pulmonary arteries. The
pulmonary trunk is about 3 cm in diameter, and due to the relatively low pressures in
the pulmonary circuit has a wall thickness of only around a third that of the aorta and
twice that of the venae cavae (Harris & Heath 1986).

The left and right main pulmonary arteries enter into the hila of the lungs and divide
into branches accompanying segmental and subsegmental bronchi and lie mostly
dorsolateral to them (Hlastala & Berger 2001). The right main pulmonary artery,
usually larger and longer than the left, runs horizontally and to the right in the angle
between the azygos vein above and the ascending aorta and superior vena cava in front.
It is situated anteriorly to the oesophagus and right main bronchus. It travels slightly
downwards and then passes transversely to the right hilum where it is situated a little
to the right of the spine. This artery divides into two main branches. The larger and
lower branch is distributed to the right middle and lower lobes while an upper, smaller
branch accompanies the first branch off the right bronchus to the right upper lobe. The
left main pulmonary artery runs horizontally from below the aortic arch and crosses the
descending aorta. It lies above the left main bronchus until it gives off its first branch.
It then runs downwards, behind and laterally to the left main bronchus. It travels in
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an oblique course posteriorly to the left hilum where it divides into its lobar branches
(Harris & Heath 1986).

Both the left and right main pulmonary arteries show little variation in their
positioning and mode of branching. The lobar branches display a comparatively larger
variation in their branching pattern (Harris & Heath 1986, Gray 1995). The large
pulmonary (accompanying) arteries then proceed in close proximity to the branching
of the bronchial tree. Figure 1.10(a) schematically represents the positioning of the main
pulmonary arteries in relation to the heart and bronchial system.

The terminal arterioles feed into a dense capillary network within the alveolar walls
of an acinus. The end arterioles feed blood into this capillary network and it flows
from the centre to the periphery where it then flows into the terminal venules of the
pulmonary veins.

The pulmonary arterial branches are relatively short, and all the arteries and
arterioles have larger diameters than their systemic counterparts. This fact as well as
the fact that the pulmonary arteries are very thin and distensible gives the pulmonary
arterial tree a large compliance (averaging 7 ml/mm Hg), similar to that of the entire
systemic tree. This compliance allows the pulmonary arteries to hold about two thirds
of the stroke volume from the right ventricle. The pulmonary veins are also short but
their distensibility is similar to that of the systemic veins, therefore their compliance is
not as large (Guyton & Hall 2000).

In general the course and pattern of the pulmonary vasculature resembles that of
the airways. The diameter of each pulmonary arterial branch is approximately the
same as the bronchus it accompanies. The pulmonary arteries do, however, branch
more frequently than the airways (Chang & Paiva 1989), giving rise to supernumerary
vessels which do not accompany an airway branch (Section 1.4.1).

Venules arising from the capillary bed combine into larger branches which traverse
the lung independently of the arteries and bronchi. Eventually a single main vein
emerges from each lobe. The right upper and middle lobar veins usually unite resulting
in two main veins from each side of the lung, a superior and inferior vein, which feed
into the left atrium. At the hilum of the lung the superior pulmonary vein lies below
and in front of the main pulmonary artery (Harris & Heath 1986). Figure 1.10(b)
demonstrates the relative positioning of the main venous vessels with respect to the
left atrium (LA) and bronchial system.

As well as simply oxygenating blood the pulmonary circuit (sometimes known
as the lesser circulation) also has some other not so well known functions. Firstly
it may act as a reservoir for blood in the body. An increase in blood pressure
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FIGURE 1.10: Schematic demonstrating locations of the main pulmonary arterial and
venous vessels (black) in relation to the bronchial tree (white) emerging from the heart:
(a) the pulmonary trunk emerges from the right ventricle (RV) and closely follows the

bronchial tree; (b) four main pulmonary veins drain oxygenated blood into the left
atrium (LA). Figure from (Weibel 1984).

allows recruitment and distension of pulmonary capillaries to accommodate the extra
blood. Blood also gets filtered as it passes through the pulmonary circulation. Small
blood thrombi may be removed to prevent blockage of blood vessels elsewhere in
the body. Neutrophil margination also occurs in the pulmonary circulation where
there is a concentration of up to fifty times more white blood cells than in the
systemic circulation, this increases the ability of host defense in the lung (Section
1.3.4) (West 2000). The lung also plays a role in the metabolisation of substances, for
example the conversion of angiotensin I to angiotensin II occurs almost entirely in the
lungs, catalysed by converting enzyme present in the endothelium of the blood vessels
(Guyton & Hall 2000).

1.4.0.1 Wall structure

The larger muscular arteries continuously divide into smaller vessels with a
consequential gradual decrease in the amount of smooth muscle until practically
no muscle exists in the very small arterioles. These vessels are narrow, and have a
relatively low intravascular pressure therefore only a few smooth muscle fibres are
required to regulate flow (Hlastala & Berger 2001). Arterial vessel walls transition
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from an elastic structure (vessels down to roughly 3000 µm), through an intermediate
transitional stage (vessels ranging from 3000-2000 µm in diameter) into a muscular wall
structure (vessels with diameters in the range of 2000-30 µm), followed by partially
muscular to non-muscular wall structures (deMello & Reid 1991).

The differences in vessel wall that led to structural and functional heterogeneity is
the result of only three different cell types: the endothelial cell creates the inner lining
of the vessel, the fibroblast forms the external coating of the blood vessel, in between
these two layers is the contractile cell - either the smooth muscle cell or its precursors
(the intermediate cell) and the pericyte (deMello & Reid 1991).

1.4.0.2 The bronchial circulation

The bronchial circulation supplies oxygenated blood to the supporting tissue in
the lung. The bronchial arteries spring from the systemic circuit and convey an
estimated 1-2% of the cardiac output (Guyton & Hall 2000). The bronchial arteries
originate from the intercostal arteries and the descending thoracic aorta (Hlastala
& Berger 2001). The right bronchial artery usually stems from the third posterior
intercostal artery and the upper and lower left bronchial arteries branch separately
from the thoracic aorta. Smaller bronchial vessels arise from the descending thoracic
aorta (Gray 1995). The bronchial circulatory system supplies the conducting bronchial
vessels, bronchial glands, septa, connective tissue, and large pulmonary vessels with
oxygen and nutrients. The bronchial vessels supply airway walls down to the level of
the respiratory bronchioles (Gray 1995).

There are numerous communication points between the bronchial and pulmonary
vessels, known as anastomoses. Bronchial arteries anastomose with pulmonary arterial
vessels in the walls of the smaller bronchi and visceral pleura (Gray 1995). The
bronchial system proceeds back to the heart in two ways: feeding either into the
left or right atrium. Bronchial veins supplying the larger airways feed back into the
systemic circuit through the azygos veins into the right atrium. However, the remaining
bronchial blood, now deoxygenated, is mixed with blood in the pulmonary circuit
(either pre- or post- capillary) and carried back to the left atrium. This is a source
of anatomical shunt, whereby deoxygenated blood is mixed with oxygenated blood in
the systemic arteries, decreasing the efficiency of the oxygenation system. The total
anatomical shunt is about 2-5% of the cardiac output (Hlastala & Berger 2001).

Another function of the bronchial circulation is in humidification of inspired air in
the airways. It is also the source of highly soluble gases, such as ethyl alcohol, that
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exchange with air in the non-respiratory airways (Hlastala & Berger 2001).

1.4.1 Supernumerary blood vessels

In addition to the accompanying vessels there are many more pulmonary arterial and
venous branches. These extra blood vessels, known as supernumerary vessels, are a
characteristic feature of the pulmonary vasculature (Takamasa & Nitta 1993) and occur
throughout the length of the artery from the hilum to the level of the capillaries, but
are more numerous towards the periphery (Elliot & Reid 1965). Figure 1.11 displays
a photograph of a cast of the human pulmonary arteries (red) and airways (white)
demonstrating numerous small blood vessels branching from a larger stem which
ultimately do not accompany an airway branch. Supernumerary vessels have also been
identified in rat (Hislop & Reid 1978) and bovine (Shaw, Bunton, Fisher, McGrath,
Montgomery, Daly & MacDonald 1999) lungs.

FIGURE 1.11: Photograph of a cast of the human pulmonary arteries (red) and airways
(white), illustrating the presence of supernumerary vessels. Each airway has an

’accompanying’ arterial vessel. In addition numerous small supernumerary vessels are
seen which diverge from the airways and do not have an accompanying bronchial
branch. Photo courtesy of E. R. Weibel, Institute of Anatomy, University of Berne.

These very small vessels tend to branch off at right angles from the accompanying
arterial (or venous) vessel and branch quickly to directly supply (or drain) the closest
acinar unit. Supernumerary vessels are not found on angiograms, due to lack of filling,
because of the 900 angle they make to the axial branch and due to the presence of a
sphincter at the entrance (Elliot & Reid 1965, Shaw et al. 1999). It is thought that these
vessels provide a reserve capacity during maximal flow, such as during exercise. Also,
in the adult, it is these vessels that can provide collateral blood flow if the conventional
vessels are occluded (deMello & Reid 1991).

At all ages, the number of supernumerary vessels outnumbers accompanying
vessels. Through a combination of measurement and extrapolation, the ratio of
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supernumerary to accompanying terminal arteries has been estimated at 2.8:1; the
ratio for the venous supernumerary vessels is estimated to be even higher, at 3.5:1
(deMello & Reid 1991). The greater number of venous vessels is thought to contribute
to the lower pressure in the venous system, which most likely enhances drainage of
fluid from the acinar region (deMello & Reid 1991). An empirically-based technique
has been developed to include these vessels into the vascular models, described in
Section 4.2.3.

1.4.2 Classification of branches in tree-like systems

The three conducting systems of the lung all form similar topographical tree-like
structures. The pulmonary trunk being the stem of the arterial tree, and the four main
pulmonary veins leading into the left atrium being the stems of the venous tree. Since
these trees are very complex in arrangement and contain so many branches several
methods of classifying and simplifying the branching systems have been devised. Such
ordering of the tree-like systems also allows vessel segments to be grouped to enable
parameters, such as diameter and length of segments, to be defined or analysed. These
parameters can be grouped in terms of ”orders” or ”generations”. The most common
methods are Weibel generations, Horsfield and Strahler ordering and the more recently
developed diameter-defined Strahler ordering method. A simple tree is displayed
in Figure 1.12 ordered by application of Weibel generations, Horsfield, and Strahler
ordering schemes.

1.4.2.1 Weibel generations

The method of Weibel generations begins system numbering at the stem branch as the
first generation, this is a centrifugal system (Dawson, Krenz & Linehan 1998), that is
numbering away from the central stem. From here the generation numbering increases
towards the peripheral, terminal branches by 1 at each bifurcation (Figure 1.12(a)).
The generation number is equal to one plus the number of bifurcations upstream of
a particular vessel segment. With increasing asymmetry, classification by generations
groups together branches with a large range of characteristics, in terms of dimensional
or structural parameters.

The number of vessels in a generation can also be difficult to interpret as the number
of generations along a pathway can vary. For example when short pathways are
encountered, the number of vessels in a generation in an asymmetrical heterogeneous
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FIGURE 1.12: Illustration of (a) the generation, (b) Horsfield, and (c) Strahler ordering
schemes on a simple tree network. Generation numbering begins at the stem branch

and increases by one generation at each branch point. Both the Horsfield and Strahler
ordering schemes begin numbering (order 1) at all terminal branches. If two branches
of equal order number meet, the parent branch order is incremented by 1. If branches

of unequal order meet, the Horsfield order number will increment by 1, but the
Strahler order number will retain the highest daughter order number.

tree can decrease as the generation increases, even though the actual number of vessel
segments increases as diameters decrease (Dawson et al. 1998).

1.4.2.2 Horsfield ordering

This method of ordering is based on the Strahler system and was developed by
Horsfield & Cumming (1968). Lowest order numbers are assigned to all terminal
branches and numbering proceeds towards the main stem, centripetally (Dawson
et al. 1998). When two daughter branches meet the Horsfield order number is
incremented by one, even if the order numbers are not the same (Figure 1.12(b)).

1.4.2.3 Strahler ordering

Classification of the pulmonary vascular trees via generations or Horsfield ordering
would make analysis of the geometry of asymmetric trees difficult, and not necessarily
representative. Small supernumerary tributaries would each increment the order and
generation number by one. The method of Strahler ordering overcomes this problem.

The Strahler ordering system is derived from a system originally developed to
analyse river systems proposed by Horton (1945). This method was modified by
Strahler (1953), and redefined as the Strahler ordering scheme. This method has general
applicability to branching systems. The lowest order number is allocated to the most
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distal, terminal branches. If two branches of the same order meet, the Strahler order
number is incremented by one. If two branches of different order converge the parent
branch will retain the same Strahler order number as the daughter branch with the
highest order number (Figure 1.12(c)). This ordering continues up to the main original
stem. Adjacent segments of the same order are merged and considered as a single
segment.

This method is found to be useful when several small side branches are found
to merge with a larger central branch, as the order number at each junction does
not necessarily increase. Due to the high number of supernumerary branches
stemming from larger parent branches in the pulmonary arterial and venous trees, the
Strahler ordering scheme is particularly appropriate in classification of the pulmonary
vasculature. The Strahler ordering method also groups together branches of similar
diameter values, which is important in hemodynamic analysis. The diameter-defined
Strahler ordering system improves further in this area.

1.4.2.4 Branching ratio

Classification of the pulmonary vascular trees by the Strahler or Horsfield ordering
schemes results in a linear relationship between the log of the number of branches in
each order versus the order number. This is not the case with generation numbering.
The absolute number of the antilog of the least-squares fit of the gradient is known as
the branching ratio of the tree. The branching ratio is the factor by which the number
of branches increases at each successive order down the system. A symmetric tree will
have a Strahler and Horsfield branching ratio of 2, increasing asymmetry will produce
a higher Strahler branching ratio and a lower Horsfield branching ratio.

1.4.2.5 Diameter-defined Strahler ordering system

Kassab, Rider, Tang & Fung (1993) developed the diameter-defined Strahler ordering
scheme to reduce overlap in the range of diameters of vessels in successive orders. In
the diameter-defined ordering method an additional diameter criteria is incorporated
into the Strahler ordering scheme. Therefore when branches meet the order number
of the parent branch will only increase by one if the vessel diameter is greater than a
certain limit (Jiang, Kassab & Fung 1994, Kassab et al. 1993).

The use of this method requires diameter values of all of the vessels in the tree and
for this reason the diameter-defined ordering scheme was not used in the current study.
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1.5 Pulmonary blood flow

The volume of blood in the lungs is about 450 ml. About 70 ml of this volume
(or just less than 20% of the total pulmonary blood volume) is estimated to be in
the pulmonary capillaries (Guyton & Hall 2000). The venous system is estimated
to contain approximately 60% of the blood volume ??, leaving only around 20% of
the blood volume in the arterial tree. The volume of blood in the lungs can vary
significantly. Strong exhalation or loss of blood from the systemic circuit can decrease
the blood volume by as much as half. The volume can be increased by up to two times
as a result of left heart failure or an increased resistance to blood flow through the
mitral valve (the valve between the left atrium and ventricle) (Guyton & Hall 2000).

1.5.1 Pressures in and around the pulmonary blood vessels

The pressures within the pulmonary circulation are much lower than those in the
systemic circulation. The mean pressure in the pulmonary trunk is around 15 mmHg,
compared to about 100 mmHg in the aorta. The pressure in the pulmonary trunk reaches
a value of around 25 mmHg (3.333 kPa) during systole and drops to about 8 mmHg

(1.067 kPa) in diastole. The pressure in the right ventricle cycles between about 25
mmHg to 1 mmHg from systole to diastole. The pressure in the left atrium is in the
range of 1 to 5 mmHg, with an average of 2 mmHg.

The reason for the low pressures is that as opposed to the systemic circuit the
pulmonary circulation does not generally have to direct and control blood flow from
one region to another and its arterial pressure needs only be enough to lift blood the
height of the lungs. The lower pressure also minimises fluid loss into the alveoli or
interstitial space (Hlastala & Berger 2001). Although it is still uncertain, evidence
suggests that the pressure in the pulmonary capillaries is about halfway between
pulmonary arterial and venous pressure at around 7 mmHg (0.9333kPa). The pressure
within the pulmonary capillaries varies considerably throughout the lung as a result of
hydrostatic effects (this is investigated in Chapter 3).

The pressure difference between the inside and outside of a blood vessel is known
as the transmural pressure, and at the capillary level is equal to the difference between
the alveolar and blood pressures. The larger pulmonary blood vessels are pulled open
by the radial traction of the elastic lung parenchyma which surrounds them, during
inspiration as the lung expands. The caliber of the pulmonary capillaries is determined
by the relationship between the alveolar pressure and their internal pressures, whereas



1.5 Pulmonary blood flow 29

the caliber of the larger pulmonary vessels is influenced by the lung volume, as this
determines the extent of distending pressure applied on the vessels by the parenchyma
(West 1979).

1.5.2 Changing perspectives on blood flow distribution

Prior to the 1950’s it was not possible to obtain quantitative measurements of the
distribution of blood flow in the lung (Prisk, Paiva & West 2001). Development of
experimental technologies allowed the use of radiolabelled gases to measure regional
variations in pulmonary blood flow. As the soluble gases were evolved into the alveolar
spaces, the radioactivity could be measured by external radio-activity counters. The
counters were placed at different vertical locations adjacent to the chest. Each counter
integrated information across the lung and chest wall to extract a single average
value for the entire horizontal slice (isogravitational plane). This information cannot
represent isogravitational heterogeneity and only displays large scale flow distribution.
These earlier analyses led to the well known zones of flow fathered by West (West et
al. 1964), described in Section 1.3.2. As mentioned earlier the zonal flow model was not
challenged for over three decades.

As experimental technologies have continued to evolve higher resolution
information has been extracted from the lung, leading to new insights and controversy
involving previous theories. This increased spatial resolution is obtained by injection of
microspheres. The microspheres become lodged in the microvasculature in proportion
to the amount of blood flow to that region. Information is extracted by measurement
of 1-2 cm3 cubes of dried tissue inflated to near total lung capacity (TLC).

As well as uncovering new features with respect to the relationship between gravity
and blood flow distribution, the microsphere injection techniques have illustrated
the large scale perfusion heterogeneity within the lung, even within isogravitational
planes. Corollary to this analysis of blood flow within small cubes of tissue was the
finding that pulmonary blood flow is spatially correlated. These results show that
neighbouring regions of lung have similar magnitudes of flow while distant regions
negatively correlated, meaning that high flow regions are next to other high flow
regions and vice versa - due to the shared history of the vascular pathway used to
reach a certain point.
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1.5.3 Ventilation-perfusion relationships

The matching of alveolar ventilation and pulmonary capillary perfusion dictate the
attainable level of gas exchange in the lung. Ventilation-perfusion (VA/Q) mismatch is
responsible for most of the decreased gas exchange in all pulmonary diseases (West
2000), and is the most important cause of clinically significant arterial hypoxemia. VA/Q

can span from zero, during no ventilation or shunt, to infinity, during no perfusion
or dead space, the ideal ratio being 1. Considering the large amount of ventilation
and perfusion heterogeneity in the lung, the two are relatively well matched, with a
normal range from 0.6-3 and an average of 0.8 (Scharf, Pinsky & Magder 2001). This
supposedly stems from the fact that the conducting networks are intimately connected
spatially as well as additional active mechanisms which regulate regional air and blood
flow conductances. These mechanisms are in place to maintain the required level of
oxygen and carbon dioxide exchange. Hypoxic pulmonary vasoconstriction (HPV)
is one of the dominant mechanisms controlling VA/Q matching. HPV diverts blood
flow away from hypoxic or atelectic alveoli, and is effective at maintaining arterial
oxygenation to a level where about 30% of the lung is hypoxic (Swenson, Domino &
Hlastala 1998).

1.6 Previous work

1.6.1 Alveolar-capillary geometric models

Previous modelling of the detailed structure of the alveolar-capillary network has been
relatively limited. Previous models are described below.

1.6.1.1 Alveolar models

Weibel (1963) carried out an extremely in depth anatomical analysis of the human lung,
and developed early models representing the geometry of the airways and alveolar-
capillary units. Alveolar shape can vary considerably, therefore Weibel evaluated
several geometric simplifications to represent alveolar geometry. One assumed the
alveolus to be a wedge of a hollow cylinder forming a sleeve around the alveolar duct.
A more accurate representation was obtained by using two circular cones; an inverted
truncated cone to represent the alveolar body, and another cone at the closed end of
the alveolus to represent the dome. Lastly, to obtain a smooth surfaced model, 5/6
of a sphere was used requiring only a single dimension to specify its geometry. Other
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shapes analysed included an open cube and a dodecahedron with one side open. These
shapes were used to empirically estimate the surface-to-volume ratio (σA, as calculated
using Equation 2.1) that would most appropriately represent that of a real alveolus.
The estimated value was σA=4.8. The calculated value, from the five lungs in Weibel’s
study, was σA=4.87. Figure 1.13 illustrates an oblique section of a human alveolar duct,
including surrounding alveoli. The total depth (A), cone-shaped dome depth (a), and
radius (r) were measured for a series of alveoli, these values are compared with model
results in Table 2.1.

FIGURE 1.13: Oblique section of a human alveolar duct and surrounding alveoli, used
to measure the total depth (A), cone-shaped dome depth (a), and radius (r) for a series

of alveoli. Figure courtesy of E. R. Weibel (Weibel 1963).

In Weibel’s model of the full respiratory zone a 5/6 sphere was chosen to represent
each alveolus. The surface-to-volume ratio of this sphere is 4.25. To increase this ratio
towards the measured value of 4.87, the surface of each alveolus was corrugated, as is
introduced in physiology by the bulging of capillaries through to the alveolar surface.

Fung (1988) developed a framework to mathematically describe the structure of
the parenchyma in the lung. This work assumed that alveoli are all initially equal
in size and shape and are volume-filling. After geometric analysis of all possible
uniform space-filling polyhedra to equate the alveolar unit to, a tetrakaidecahedron
(14-hedron) was selected. This shape has the minimum surface to volume ratio among
all space-filling polyhedra of the same volume. A 14-hedron was used to represent an
individual alveolus, and several of these 14-hedron were put together to create a near
volume-filling structure. Central faces of all the internal alveolar units were removed
to allow aeration. These units are not exactly space filling, but they do compare well
with observed data on pulmonary alveolar structure.

Denny & Schroter (1995) created a finite element model of an alveolar duct in
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the mammalian lung consisting of a network of adjacent truncated octahedral alveoli
surrounding a longitudinal air duct. This model was used to investigate alveolar
mechanics by incorporating stress-strain relationships in elastic and collagen fibres and
surface tension at the air-liquid interface, and calculating pressure-volume curves.

Denny & Schroter (1996) further developed this alveolar model by developing a
method to generate a 3D space-filling model of an acinar ventilatory unit within a
cuboidal block. Truncated octahedral were again used to represent individual alveoli
with specified faces removed to create ducts and allow ventilation. All alveolar were
assumed to be uniform in shape and size. The structure is termed volume-filling in
that the polyhedra can pack together without leaving any gaps, but not completely
volume-filling in the true sense of the word.

Kitaoka, Tamura & Takaki (2000) developed a simplified 3D model of the human
pulmonary acinus. This model was generated using a labyrinth algorithm producing
branching ducts that completely fill a volume. This study focussed on the acinar
geometry rather than the specific geometry of individual alveolar units. In Kitaoka’s
model each subacinar unit (the tissue region supplied by the last respiratory bronchiole)
was approximated by a set of cubic cells. Individual alveoli were also represented as
cubes (with a side dimension of 0.25 mm), whereby 8 alveoli constituted a single cubic
cell.

1.6.1.2 Capillary models

Prior modelling of the complex geometry of the pulmonary capillary plexus has been
limited; the models which have been developed have only sought to create a simplified
representation of the capillary geometry and not an anatomically realistic structure.

Extensive work has been done in development of the sheet-flow model developed
by Fung & Sobin (1969), but this model approximated the capillary geometry as a
sheet and neglected to define the tubule geometry. Averaged parameters are used
to represent the capillary geometry in this approach. The microvascular sheet is
characterised by two independent properties: the ratio of the vascular lumen space
to the circumscribing tissue space of the network (this quantity has been termed the
vascular space tissue ratio, VSTR), and the thickness or height of the microvascular
sheet. The sheet-flow model is described in more detail in Section 1.6.2.1.

Weibel (1963) described the geometry of the capillary network as wedged
cylinders, whereby three of these cylinders could fit together at a junction. This was
acknowledged as an over-simplification of the capillary geometry, because in reality
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at capillary junctions the basement membranes of the segments show a smoothly
curved transition, rather than a sharp break. As a result of this capillary segments have
circular cross-sections at the junctions, and elliptical cross sections everywhere else. In
the development of a respiratory zone model the alveolar capillaries were assumed
to be cylindrical segments forming a hexagonal mesh-work, with pentagonal meshes
inserted to fill the surface of each alveolar sphere. Weibel divided the whole lung into
200-300 million units, each of which contained several alveoli, and each being supplied
by a single arteriole and drained by a single venule.

Dhadwal, Wiggs, Doerschuk & Kamm (1997) and Huang et al. (2001) modelled
flow through the pulmonary microcirculation within discrete tubes. Dhadwal et al.
(1997) represented the capillary geometry in a single alveolar septum as a network of
interconnected capillaries arranged into a 6 x 6 square matrix. The network was divided
into segments and junctions, whereby a segment was defined as the vessel through
which blood flows, and the junction was defined as the connecting region between
segments. The length of each capillary segment was equal to the diameter of the tissue
space that separated each capillary from its neighbour, and these tissue spaces were all
assumed to have equal diameters at a specific lung volume. Anatomical data was used
to describe the individual segment geometry, using random variability in vessel size
and network compliance.

Huang et al. (2001) further developed Dhadwal’s flow and geometric models. A
slightly more extensive geometric model was defined; the model consisted of capillary
segments randomly generated into a 2D square representing a single alveolar septum.
The number of capillary segments, diameters, and level of interconnectedness (number
of segments at a junction) were defined from available anatomical data. The square
septae were bounded by corner vessels, which are shared by three adjacent intersecting
septae. Several of these networks were coupled together to investigate interalveolar
flow. Flow entered each septum through a single corner vessel and exited from a single
corner vessel on the opposite side of the network. The septae were only lined up one-
dimensionally, therefore flow only proceeded from one septum to a single adjacent
septum, in reality the capillary network forms a 3D structure and is connected to several
adjacent alveolar networks.

The analysis of previous work modelling the geometry of pulmonary capillaries
illustrates the advancement of the current model. Previous models have taken a more
simplified approach and focussed mainly on the blood flow model rather than capillary
geometry. The development of a more detailed, tubular model will aid in analysis of
blood cell distributions and interactions within the vast pulmonary microcirculatory
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plexus.

1.6.2 Capillary flow models

Microcirculatory blood flow has previously been modelled using two methods, both of
which are explained in this section. Capillaries in the systemic microcirculation tend
to be longer and wider than those in the pulmonary microcirculation, hence systemic
microcirculatory blood flow has previously been modelled within systems of discrete
tubules (tube-flow method) (Skalak & Chien 1987, Pries et al. 1990) (Section 1.6.2.2).
In contrast, the complexity and density of capillary segments within the pulmonary
microcirculation led to development of the sheet-flow model by Fung & Sobin (1969),
where blood is represented as a continuous sheet bounded on either side by a compliant
endothelium flowing between posts of connective tissue (Section 1.6.2.1). More recent
models of pulmonary capillary blood flow have implemented a tube-flow solution
method, as described in Section 1.6.2.2.

1.6.2.1 Sheet-flow model

Early morphometric observations of the dense capillary plexus led to the development
of the sheet-flow model established by Fung and Sobin (Fung & Sobin 1969, Sobin,
Tremer & Fung 1970). This mathematical description approximates blood flow through
the pulmonary capillaries as a sheet of fluid flowing around “posts” of connective
tissue, bounded on either side by compliant capillary endothelium. The theory
behind this model provides a means of analysing the pressure, velocity, thickness and
streamline distributions in an interalveolar septum. The distribution and transit times
of RBCs can also be determined. This solution requires specification of the geometric
boundaries of the sheet, such as the locations of and pressures applied at arterioles and
venules. In specifying these boundary conditions approximations are made whereby
the flow over a sheet is averaged. This model has shown general agreement with
experimental data in terms of flow and resistance.

Although the sheet-flow model oversimplifies the capillary network’s anatomic
structure by assuming that blood flows in a continuous sheet rather than through
discrete tubules (Guntheroth et al. 1982), it has provided a useful description of the
general pattern of blood flow through the alveolar walls. The sheet-flow model enables
calculation of flow properties in each alveolar sheet, but the effects of individual
segment geometry and the two-phase nature of blood is accounted for by an increase
in the effective resistance to overall flow. Distributions determined in the sheet-flow
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model are averaged over the entire capillary network; segment-to-segment variability
in individual capillaries cannot be predicted. The sheet-flow model also cannot predict
distributions of cellular transit times from arteriole to venule, only average times can be
determined. For these reasons a tube-flow model is implemented in the current study
to more realistically represent flow in the pulmonary capillary system.

1.6.2.2 Tube flow models

In these models the network geometry and boundary conditions are defined to
determine flow solutions through discrete capillary segments. The simple Poiseuille
pressure-resistance-flow relationship, defined in Equation 1.1 is used to determine the
pressure and flow distribution throughout a network of tubes.

R =
∆P

Q
(1.1)

The tube-flow solution procedure is split into three iterative steps:

1. The first step is ‘linear analysis’ to determine pressure and flow throughout the
network. Equation 1.1 is solved for the pressure at every junction and the flow
through each segment of the network. A uniform hematocrit distribution is
initially assumed.

2. The next step is ‘rheological analysis’: the distribution of RBCs is calculated,
using empirically-derived models which account for the Fahraeus effect
(reduction of intravascular hematocrit relative to the inflow hematocrit of a
vessel), Fahraeus-Lindqvist effect (dependence of hematocrit on vessel diameter)
and phase separation effect (the disproportionate distribution of RBCs and
plasma at bifurcations) (Section 1.3.1). Conservation of RBCs and plasma flow is
applied at every junction. The apparent viscosity of the blood within each blood
vessel is then adjusted accordingly.

3. A diameter relationship is then implemented to calculate the adapted diameters
based on variable factors, such as the internal blood pressure, response to
mechanical and metabolic stimuli, and alveolar and pleural pressures in the case
of the pulmonary system.

The solution procedure repeats these steps until a converged solution is reached.
Tube-flow models have been developed to represent flow in both the systemic (Pries
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et al. 1990, Pries & Secomb 2000, Fenton et al. 1985, Dawant, Levin & Popel 1986, Skalak
& Chien 1987) and pulmonary microcirculatory systems (Dhadwal et al. 1997, Huang
et al. 2001).

1.6.2.2.1 Pulmonary tube-flow models With the advent of more sophisticated
technologies to view the anatomic structure of pulmonary capillaries, it was
apparent that blood does in fact flow through discrete tubes even in the pulmonary
microcirculation; the only divergence from the systemic microcirculation is the
increased density of capillary vessels in the lung (Guntheroth et al. 1982).

The solution method outlined above in steps 1-3 for tube-flow have been
implemented in the pulmonary capillaries by Dhadwal et al. (1997) and Huang et
al. (2001). Resistance, rheological, and diameter relationships adapted specifically for
the pulmonary microcirculation were implemented in the general solution procedure.
These models were developed to enable a more anatomically-realistic description of
pulmonary blood flow and a more detailed definition of localised pressure and flow
distributions on a segment-by-segment basis than can be provided by the sheet-flow
model.

Dhadwal et al. (1997) developed a model of blood flow through a single alveolar
septum. The objective of this study was to investigate variation in diameter and
compliance of individual vessels on the distribution of pressure and flow in the
network. An imposed pressure gradient induces flow across a rectangular 6 x 6 grid
representing the capillary geometry. Random variation in parameters (diameter and
compliance) showed the existence of preferential pathways through the grid.

Huang et al. (2001) extended the model of Dhadwal et al. (1997) by modelling
blood flow through the capillary network of a single alveolar septum and through
six consecutive septae. A more detailed description of the capillary geometry was
developed in this model (Section 1.6.1.2). A tissue-membrane model was incorporated
to describe geometric changes of the capillary cross-section as a function of alveolar,
pleural, and capillary pressures to enable the effect of changes in lung volume with
transpulmonary pressure (Ptp) on capillary flow to be investigated. The final important
extension made was the addition of red and white blood cell transit models, to calculate
the passage time from arteriole to venule. Several interesting simulations were carried
out in this study including comparison of the transit behaviour of RBCs, WBCs,
and rigid microspheres. The incidence of WBC and microsphere stoppage was also
predicted. Model transit time predictions were found to compare well with measured
in vivo transit times. Simulation of the effect of a WBC blockage demonstrated a 100-
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300% increase in pressure across a blocked segment causing redistribution of perfusion
accordingly.

These discrete tube models allow calculation of the range of cell transit times for
discrete pathways, as well as investigation into perfusion patterns in the capillary
network; it also provides insight into the distribution and interactions of red and
white blood cells within the system. The solution procedures developed in these
two pulmonary flow studies have been implemented in the current model, refer to
Section 3.2 for more details.

1.6.3 Pulmonary vascular models

Previous evaluations of structure-function relationships in the pulmonary circulation
via mathematical techniques have reduced the complexity of the pulmonary vascular
tree geometry by, for example, representing the pulmonary arteries and veins
as a symmetric tree (Parker, Cave, Ardell, Hamm & Williams 1997), as a self-
similar fractal tree (Bennett, Goetzman, Milstein & Pannu 1996, Glenny, Polissar
& Robertson 1991, Glenny & Robertson 1991, Krenz, Linehan & Dawson 1992)1,
or by representing an average flow path via summary morphometric parameters
(Dawson, Krenz, Karau, Haworth, Hanger & Linehan 1999). These models have been
implemented to investigate the effects of large-scale alterations of branching geometry
on hemodynamics in the lung, and therefore only represent the average geometry
of the branching structure. The models have not been created to accurately reflect
the geometry of the vascular structure; they have instead been designed for use in a
particular functional investigation. These studies all illustrate the large dependence of
flow distribution on network geometry. While these simplified models represent the
complicated structure with a small number of parameters and provide useful insights
into the relationship between structure and function they do neglect several features
known or predicted to be present, such as supernumerary vessels.

1.6.4 Pulmonary blood flow models

There have been two main approaches taken in modelling pulmonary flow, these
are: the systems (electrical analogue) approach or a more physiologic approach (as
is used in the current study). The systems approach simplifies the physiology of the

1A fractal structure or process has the quality of self-similarity or scale-independence. This means
that it is repeatable over a range of spatial or time scales (Glenny & Robertson 1998)
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system by creating a lumped parameter type model where components of resistance
and compliance are joined in series or parallel to represent the flow circuit (Huang,
Tian, Gao & Yen 1998). While this method can provide reasonable estimates of
global perfusion these models cannot capture the complex geometry of the system and
therefore cannot be used to investigate, for example, relationships between the vascular
branching structure and flow distribution.

Physiologically based modelling solves flow equations within a more realistic
geometry; this approach is adopted in the current study. Flow equations solved include
Poiseuille type power law equations (Zhuang, Fung & Yen 1983) or nonlinear fluid
flow equations representing conservation of mass and momentum (Collins & Maccario
1979, Li & Cheng 1993). While these models are similar to the model developed in
the current study, they lack detailed anatomically-based vascular geometries. These
models are discussed further in Section 5.5.
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This chapter describes the development of an anatomically-based finite element
model of the human pulmonary microcirculation, including alveolar and capillary
geometries. This geometric model has been created to enable a detailed description of
blood flow through the complex microcirculatory system in the human lung (Chapter
3). An initial overview of the anatomy and physiology of the system is contained in the
previous chapter in Section 1.2. A Voronoi meshing technique is used to describe both
the alveolar and capillary geometries (Section 2.2). These models are found to compare
well with available anatomical data (Section 2.3).

2.1 Introduction

The complexity of the pulmonary microvasculature geometry arises from its
vast number of component capillary segments. The density of the pulmonary
microcirculation far exceeds that found in the systemic circuit (Guntheroth et
al. 1982, Weibel 1984). A single RBC traveling from an arteriole to a venule via
the pulmonary capillaries will pass through around 40-100 (90 on average) capillary
segments in the human lung (Hogg 1991), over a distance of between 600-800µm in
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cats and dogs (about 60 segments (Wagner Jr et al. 1999)), and between 550-650µm

(about 45 segments) in rabbits (Doerschuk, Coxson & Hogg 1989, Staub & Shultz 1968).
The majority of pulmonary capillaries have similar or smaller diameters than both

RBCs and neutrophils. Neutrophils are a type of WBC, comprising around 50-70% of
the WBC population. They have a spherical shape and higher viscosity than RBCs
and therefore deform more slowly (Hanger, Wagner Jr, Janke, Lloyd Jr & Capen 1993).
This causes the neutrophils to effectively “block” some capillary segments while they
deform and increases the concentration of neutrophils in the pulmonary network by
more than 50 times that in the systemic microcirculation (Huang et al. 2001, Wiggs,
English, Quinlan, Doyle, Hogg & Doerschuk 1994). This phenomenon is known as
neutrophil margination and is thought to be a means by which the body can retain a
reservoir of neutrophils in the lung to aid in host defense (Huang et al. 2001). This
is discussed further in Section 1.3.4. However, the multisegmented geometry of the
capillary bed allows the RBCs to move freely through unblocked parallel pathways in
the network.

Accurate representation of the pulmonary capillary geometry and its boundary
conditions is essential for investigating complex flow phenomena and cellular
interactions in the pulmonary microvasculature. The geometry of the model described
in this chapter consists of a capillary network continuous over 19 adjacent alveoli,
which together form a single alveolar sac. Finite element meshes are developed using
two and three-dimensional Voronoi meshing techniques for the capillaries and alveoli,
respectively. This new method produces meshes of the alveolated airways that are
space-filling and have similar geometric properties to alveoli in nature. The meshing
procedure produces a continuous capillary model that enwraps the surface of each
individual alveolar unit, closely replicating in vivo structures.

2.2 Methods

2.2.1 Voronoi diagrams and Delaunay triangulation

The Voronoi meshing technique has been used in the development of both the alveolar
and capillary geometric models presented in Chapter 2. Given a collection of points
within a certain host space or volume, a Voronoi diagram partitions the space into
smaller ‘cells’ or regions, each enclosing a point. The property of these Voronoi cells
is that the space within each cell is closer to the point it contains than to any other
points. The Delaunay triangulation of the same set of points is the geometric dual of
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the Voronoi diagram (Okabe, Boots & Sugihara 1992).
The Voronoi meshing procedure implemented in this study builds the Voronoi

data structure from the Delaunay triangulation. The Delaunay triangulation has
the additional property that for each triangle (in two dimensions 2D), or tetrahedra
(in three dimensions 3D), the circumcircle, (or circumsphere in 3D), of that triangle
does not contain any other points. These closely related data structures have been
utilised extensively in the fields of computational geometry, astronomy, archaeology,
geography, as well as many more (Okabe et al. 1992).

(a) (b) (c) (d) (e)

FIGURE 2.1: Illustration of Delaunay triangulation and Voronoi meshing technique in
2D. (a) Data points generated into host space; (b) Delaunay triangulation created; (c)
circumcentres of triangles located; and (d), (e) adjacent circumcentres connected to

create the Voronoi mesh.

The Voronoi meshing procedure used in this work is illustrated schematically in 2D
in Figure 2.1. Seed points are generated within the given host volume (Figure 2.1(a)).
This collection must include boundary points (shown in red) and internal boundary
points (shown in blue) placed orthogonal to each other across the host boundaries.
This technique ensures that the host boundaries will be accurately represented in the
resulting Voronoi tessellation. Internal points are also generated (shown in green).
To create the Delaunay triangulation proximal points are grouped to form triangles
(in 2D) or tetrahedra (in 3D) (Figure 2.1(b)), such that the resulting triangulated mesh
has the fundamental property of Delaunayism: no circumsphere defined by the four
vertex points of a tetrahedra contains any other vertex point. Once the Delaunay
tessellation has been formed it is relatively simple to create the Voronoi structure. The
circumcentres of each of the Delaunay triangles becomes a node in the Voronoi mesh
(Figure 2.1(c)). Nodes of adjacent triangles are joined to form the elements of the mesh
(Figures 2.1(d) and (e)). In the case of the alveolar model, two-dimensional surface
elements are created, and for the capillaries one-dimensional line elements result from
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the Voronoi meshing procedure.

2.2.2 The alveolar geometric model

A volume-filling model of the alveolar structure is created within a cube. In the current
study a single alveolar sac is isolated from the more extensive model. The alveolar
sac model consists of 19 adjoining polyhedra with selected faces ‘open’ to the central
duct. The technique for generating the model is shown in Figure 2.2, illustrated for a
two-dimensional mesh.

(a) (b) (c)

(d) (e) (f)

FIGURE 2.2: Alveolar mesh generation using a Voronoi meshing technique in 3D,
process illustrated here in 2D. (a) Points generated into host space; (b) Delaunay

triangulation of the point set is formed; (c), (d) Adjacent circumcentres are joined to
form the Voronoi diagram. (e), (f) Voronoi duct cells are removed leaving open

alveolar Voronoi cells. Figure courtesy of Burrowes et al. (2004).

In the alveolated airway model seed points are generated uniformly within the
host volume, which is a cube in the current model generation (Figure 2.2(a)). The
points are triangulated (Figure 2.2(b)), and as noted in Section 2.2.1, this Delaunay
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triangulation forms tetrahedra in 3D, such that the sphere passing through the four
tetrahedra nodes does not contain any other seed points. The Voronoi ‘dual’ of
the triangulation are adjacent polyhedral ‘cells’ with vertices at the circumcentre of
neighbouring tetrahedra (Figure 2.2(c) and (d)). Specific Voronoi cells are allocated as
airway duct cells, and these Voronoi faces are then removed and any adjacent cells
become alveoli. The remaining system forms a volume-filling honeycomb-like mesh
(Figure 2.2 (e)). Aeration of each Voronoi cell is ensured by removal of obstructing
Voronoi edges (Figure 2.2(f)). These final cells form the ‘clusters of alveoli’ observed
during morphometric studies (Haefeli-Bleuer & Weibel 1988). This method provides a
relatively simple way to create alveolated airway structures within general host volume
shapes.

(a) (b) (c)

(d) (e) (f)

FIGURE 2.3: Development of the alveolar sac model, illustrated in 3D. (a) shows the
full Voronoi mesh within a cube; (b),(c) selected Voronoi cells (selection criteria

explained further in text) are allocated as duct cells (blue); (d) all adjacent Voronoi cells
become alveoli (gray); (e),(f) a single alveolar sac is selected for use in the current

study (pink).
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The progression of alveolar model development is illustrated for the actual 3D
model in Figure 2.3. The full Voronoi mesh within a unit cube is displayed in
Figure 2.3(a). All of the internal Voronoi cells are very similar in size and shape,
but the edge cells are variable. From this full Voronoi tessellation selected cells must
be allocated as duct cells (to allow aeration), and the remaining cells become alveoli.
Each alveolus must be adjacent to a duct cell. The algorithm used to determine which
Voronoi cells become alveolar duct or alveolar cells proceeds as follows:

1. The required number of alveolar duct generations is input into the model.

2. The algorithm is initiated at a peripheral Voronoi cell, which is allocated as the
first alveolar duct cell.

3. From here a specified number of adjacent, axial Voronoi cells are designated as
duct cells.

4. At a bifurcation two daughter Voronoi cells are selected as duct cells. The first
one is chosen to be the Voronoi cell making the largest angle (while still less than
900) with the parent cell. The second daughter branch is selected as the Voronoi
cell making the greatest angle (while still less than 900) with the sister cell.

5. This procedure continues until either the specified number of duct generations
have been executed or until a peripheral Voronoi cell is reached.

Figure 2.3(b) and (c) show the alveolar duct cells (blue) within the unit cube. The
alveolar cells are specified as any Voronoi cell in contact with a duct cell, shown in
Figure 2.3(d) in gray. The alveolar duct or sac, including the surrounding alveoli, has
been proposed as the basic mechanical and gas-exchanging unit of the lung (Hoppin &
Hildebrandt 1977), because it represents a distinct functional pulmonary unit. Hence, a
single alveolar sac, highlighted in pink (Figure 2.3(e) and (f)) is isolated from this more
extensive model, to be used in the current capillary flow study.
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2.2.3 The capillary geometric model

The capillary model is generated to cover the 2D alveolar septae of the sac model shown
in Figure 2.5 using the following steps (the procedure is demonstrated over the surface
of a simplified alveolar geometry in Figure 2.4):

(a) (b) (c)

(d) (e) (f)

FIGURE 2.4: Generation of the capillary model using a 2D Voronoi meshing technique,
over the surface of a simplified alveolar geometry (a). (b) Points are generated on the
surface of a unit sphere, (c) the Delaunay triangulation is formed (d) and the Voronoi
mesh is generated. (e) This mesh is projected onto the alveolar surface geometry to

create the capillary mesh, shown in (f). Figure courtesy of Burrowes et al. (2004).

1. Regularly spaced points are generated over the surface of a portion of a unit
sphere, (the orifice of the sphere is defined by an orifice angle), Figure 2.4(b).

2. The points are triangulated using an algorithm for 2D Delaunay triangulation
over a unit sphere, Figure 2.4(c).
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3. The capillary segments are created from the one dimensional (1D) lines that join
the circumcentres of neighboring Delaunay triangles. These are the ‘edges’ of
Voronoi cells in 2D, Figure 2.4(d).

4. The points are projected onto the surface of a single alveolus, Figure 2.4(e) and
the resulting capillary mesh is obtained, Figure 2.4(f).

5. For shared faces (between adjacent alveoli) the points on the shared face are
replaced with the points from the neighbouring previously triangulated alveolus.
In this way a continuous capillary network is generated, with only a single
capillary layer between adjacent alveoli.

At the acinar level the arteries still closely follow the airways while the veins drain
from the acinar periphery (Haefeli-Bleuer & Weibel 1988). Based upon measurements
from human data (Weibel 1963, Horsfield 1978, Horsfield & Gordon 1981) a total of 4
arterioles are used in the current model to centrally feed the alveolar-capillary plexus,
and 5 venules to drain at the network perimeter.

The capillary cross-section is represented as an ellipse, with the major and minor
elliptical dimensions being defined initially from randomly selected values within
a physiological range and recalculated throughout the solution procedure using a
dimensional model (Huang et al. 2001) (described in more detail in Section 3.2.1).
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2.3 Results

2.3.1 Alveolar geometry

The resulting alveolar sac model is shown in Figure 2.5. Each alveolus surrounding the
alveolar duct consists of 19-21 two-dimensional (bi-linear) finite elements. Together
these triangular, square, and pentagonal elements form a polygon with square and
hexagonal faces, with pentagonal (truncated hexagonal) faces at the alveolar opening.

Average dimensions of the alveoli in the alveolar sac model are compared with
published anatomical values, displayed in Table 2.1. The average volume, surface area,
diameter, surface area to volume ratio, and depth are compared in this table. The
diameter is calculated as the average of several lines dissecting the cross-section of the
model alveoli. The depth value is the maximum depth, calculated as the distance from
the alveolar entrance plane to the furthest point in the alveolus. The computational
spatial scale was transformed to standard units (mm) by using a volume based scale
factor from anatomical measurements (Weibel 1963); the value used is the model
volume in Table 2.1. The volume value was selected, from a measured range, such
that the capillaries generated over the surface geometry were in close accordance with
anatomical values.

The average surface area (sA) to volume (vA) ratio (σA) for the 19 alveoli in the model
alveolar sac was 4.74, as calculated using Equation 2.1 (Weibel 1963).

σA =
sA

v
2
3
A

(2.1)

Anatomical investigation by Hansen & Ampaya (1975) gave average results for
the alveolar orifice diameter, depth, surface area, and volume. Two different average
values were recorded. The first was calculated using only the mean dimensions
for each of the six shapes used to qualitatively describe the structure (described in
Section 1.2). The second average was calculated using mean dimensions for each shape
and distribution coefficients. The values displayed in Table 2.1 are those determined
using the latter method.

2.3.2 Capillary geometry

The resulting capillary mesh generated over an entire alveolar sac model is shown in
Figure 2.6.
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Measurement Model Published values
Volume (mm3) 0.00744 0.00480 (Hansen & Ampaya 1975), 0.0105

(Weibel 1963)
Surface Area (mm2) 0.1806 0.119 (Hansen & Ampaya 1975), 0.234

(calculated from (Weibel 1963))
Diameter (mm) 0.246 0.244 (Weibel 1963), 0.3 (West 2000)
Surface Area to volume
ratio

4.74 4.87 (Weibel 1963)

Depth (mm) 0.228 0.238 (Weibel 1963), 0.238 (Hansen &
Ampaya 1975)

TABLE 2.1: Comparison of model alveolar dimensions with published anatomical
data.

Table 2.2 compares values from the generated model, at mid-lung height (15 cm),
with published anatomical data. The total capillary volume was calculated by scaling
the volume of the alveolar sac model to full human lung size, based on the total number
of alveoli (300 million) in an adult lung.

Parameter Model Published values
Hydraulic diameter (µm) 6.78 6 (Chang & Paiva 1989), 8 (Weibel 1963)
Diameter range (µm) 5.75-7.87 4-10 (Chang & Paiva 1989), 6.3-9.9 (Weibel

1963)
Capillary length (µm) 11.92 12 (Chang & Paiva 1989), 12 (Weibel 1963)
No. segments per alveolus 1109 1000 (Chang & Paiva 1989)
No. segments per pathway 85 90 (Hogg 1991)
Mean path length (mm) 1.10 0.6-0.8 (in dog) (Staub & Shultz 1968), 1.08

(Hogg 1991, Weibel 1963)
Total capillary volume (ml) 149.0 100-200 (average 153) (Weibel 1963), 178

(Hogg et al. 1994)

TABLE 2.2: Comparison of model generated dimensional data with published
anatomical data. (These values determined at Ppleural=-5.75, Palveolar=0, Parteriole=15,

and Pvenule=7, all in cmH2O).
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(a) (b)

FIGURE 2.5: Finite element computational Voronoi alveolar mesh, (a) front view (b)
end on view.

(a) (b)

FIGURE 2.6: Finite element computational Voronoi capillary mesh, (a) front view, (b)
end-on view.
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2.4 Discussion

2.4.1 Alveolar model

An efficient algorithm has been developed to mimic the in vivo geometric structure of
alveoli in the human lung. The alveolar model is able to create an entirely volume-
filling model into any reasonably defined host volume. The Voronoi concept of equally
partitioning space around a collection of points replicates the human alveolar structure
effectively. Certain measurable geometric parameters (volume, surface area, diameter,
surface area to volume ratio, and depth) were compared to published anatomical data
and found to be in good agreement (refer Table 2.1). The surface area to volume ratio
calculated for the model alveolar sac was 4.74, which was within 2.7% of the published
value of 4.87 from anatomical results (Weibel 1963).

The individual alveolar geometry in the current model is similar to previous models
of alveolar geometry (Fung 1988, Denny & Schroter 1995, Denny & Schroter 1996), but
the geometry of individual alveoli may vary from each other. These previous models
assumed each alveolus to have an identical geometry.

An advantage of the current alveolar model generation, as compared with previous
models (refer Section 1.6.1), is the true volume-filling nature of the Voronoi technique.
Polyhedrons will be created to fill the entire host volume of any defined shape. Another
advantage of this model is in the ability of the alveolar units to be of varying size,
more realistically replicating anatomical geometry. In the current model a uniform
grid of points was used, therefore all alveoli were of very similar geometry, except the
peripheral alveoli. However, by using a more random grid of points a heterogeneous
alveolar meshwork could be constructed. This meshing technique could be used for
future investigation into the effect of alveolar geometry on function in the lung, as it
has been shown that there is a distribution of alveolar sizes in the vertical lung (Glazier
et al. 1967).

The development of this alveolar model will also enable investigation into other
areas of pulmonary function, such as air flow distribution. The alveolar structure in a
larger block of lung tissue will be able to be constructed relatively easily subject to
computational constraints using the Voronoi meshing technique. Future directions
involving this alveolar model may include coupling of the parenchymal structure to
models of soft-tissue mechanics and air flow, in order to create a deforming, interacting
alveolar structure which could provide boundary conditions for an air flow model. This
model may also be of use in investigating particle deposition in the alveolated airways.
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2.4.2 Capillary model

This study is the first attempt to accurately model the relationship between the
segmented geometry of the pulmonary microcirculation and the space-filling alveoli
over which they lie. Previous models have used a more simplified geometry, or
represented only smaller units of the dense capillary plexus. This method produces
a more extensive model than has been developed in previous studies.

Capillary continuity is found at least throughout the acinus, between adjacent acini
and possibly extends throughout the lobule. The observation of collateral ventilation
across pulmonary segments implies pulmonary parenchyma continuity and suggests
that capillary continuity over this large area is possible (Weibel 1963). A complete
alveolar sac was used in the current study because it represents a distinct pulmonary
structure over which it is most likely that the capillary network is continuous. This
capillary model can be extended to cover many more alveolar units. Given the alveolar
geometry, capillary segments will be generated over the surface of each individual
alveolus and any shared alveolar faces will be enveloped by only a single capillary
network. The ability of the algorithm to be extended to larger blocks of parenchymal
tissue while only creating a single capillary layer between adjacent alveoli is a unique
feature of the model.

The Voronoi meshing technique is advantageous in representing the alveolar and
capillary structures as it is a space-filling, efficient algorithm. It is a relatively simple
method used to reproduce the complex anatomical structure found in the mammalian
lung.

The Voronoi-based capillary model shares some geometric characteristics with those
observed in the pulmonary microcirculation: both model and in vivo capillary junctions
usually comprise, but are not restricted to, three segments (Weibel 1963); and the rings
formed by both model and in vivo adjoining capillary segments form predominantly
pentagons and hexagons (Weibel 1963, Guntheroth et al. 1982, Horsfield & Woldenberg
1989). This method has reproduced capillary vessels of comparable length to vessels in
vivo (Weibel 1963, Chang & Paiva 1989).

Detailed histological measurements of cat lungs by Zhuang, Yen, Fung & Sobin
(1985) have shown that each terminal precapillary vessel (arteriole) supplies, on
average, 24.5 pulmonary alveoli and each terminal postcapillary vessel (venule) drains
an average of 17.8 alveoli. The predictions of Horsfield (1978) and Horsfield & Gordon
(1981) are that a single arteriole and venule each supply (on average) 4.11 alveoli in
the human lung (these figures are based on their calculation of the number of order
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1 arterioles and venules, and assuming 300 million alveoli in the human lung). The
difference in the numbers predicted by Zhuang et al. (1985) and Horsfield (1978),
Horsfield & Gordon (1981) are thought to be due to the classification of order 1
vessels. Zhuang et al. (1985) believes that the order 1 vessels that Horsfield classified,
were in fact sprouts of the capillary sheet belonging to the capillary network. The
current capillary model is supplied by four arterioles and drained by five venules to
be consistent with human data. Model flow results indicate that this is a reasonable
number of vessels to use (Section 3.3).

2.5 Conclusions

This chapter describes the development of an anatomically-based finite element model
of the microcirculatory geometry. A Voronoi meshing technique is used to develop
both the alveolar and capillary models which efficiently represent the structure found
in vivo.

The geometric model developed in this study is the first anatomically-based
representation of the segmented pulmonary microvasculature. This geometric model
is used for the flow simulation studies which follow in Chapter 3.

A summary of this work can be found in Burrowes et al. (2004) and Tawhai &
Burrowes (2003).
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3.1 Introduction

A Poiseuille-type flow model, previously implemented by Huang et al. (2001), is solved
within the geometric capillary model (continuous over a single alveolar sac) developed
in Chapter 2 to simulate microcirculatory blood flow. In order to evaluate the blood
flow relationships in a microvascular network several factors relating to the property
of blood and RBCs in vessels of this size must be considered, an introduction was given
in Section 1.3.1. A mathematical equation describing the shear-thinning properties of
blood due to the presence of RBCs is included in the flow model (refer Section 3.2.2)
and a hematocrit model is used to calculate the distribution of RBCs within the system
in Section 3.2.4. Empirically-based relationships describing red and white blood cell
transit are incorporated to determine the transit times from arteriole to venule within
the network (Section 3.2.5). The resulting flow model is used to investigate cell transit
time distributions and other regional variations in blood flow in the upright human
lung (Sections 3.3.7 and 3.3.8), respectively. Regional flow is investigated by imposing
gravity dependent transpulmonary and transmural pressure boundary conditions.
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3.2 Methods

The blood flow model of Huang et al. (2001) and Dhadwal et al. (1997) has been
implemented in the geometry of the alveolar-capillary mesh developed in Chapter 2.
This model uses the tube-flow method, the general procedure of which is described in
Section 1.6.2.2. In summary, the resistance in each vessel can be calculated - initially
assuming a uniform hematocrit - (Section 3.2.2), and an initial linear pressure-flow
solution is calculated for the entire network (Section 3.2.3). The RBC (Section 3.2.4),
and diameter (Section 3.2.1), values for each segment are then calculated based on the
pressure-flow distributions. The hematocrit, flow rate and dimensions of each segment
are interdependent, hence an iterative procedure is implemented to reach a converged
solution.

Empirically-based relationships in combination with the pressure-flow solution are
used to calculate the transit time of RBCs and WBCs from arteriole to venule. This
procedure is described in Section 3.2.5.

3.2.1 Dimensional changes of the capillary cross-section

Huang et al. (2001) developed a tissue-membrane structural model whereby each
capillary circumference is assumed to be made up of two parts, illustrated in Figure
3.5. One part is tethered to the septal fibre network therefore expanding and contracting
with alveolar septal dimension changes (length a). The other portion makes up the
blood-gas barrier and is relatively thin and compliant (length C). A transpulmonary
pressure (alveolar minus pleural pressure) (Ptp) dependent elastic coefficient is
determined and used to calculate the alveolar volume and capillary perimeters.
The geometric parameters of the capillary segments, which are assumed to have an
elliptical cross-section, are hence dependent on transmural pressure (capillary minus
alveolar gas pressure) (Ptm) and Ptp. The dimensional model calculates the radius (R),
height of the capillary (h), and the perimeter of the capillary cross-section.

Additional assumptions made in the derivation of this model were as follows:

1. changes in Ptm only affect the septal dimension (a);

2. these changes are proportional to the total change in alveolar septal length (L);

3. the length of the blood-gas barrier portion (C) increases linearly with increasing
tension around the capillary circumference (Tc);
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FIGURE 3.1: Schematic of capillary cross-section, illustrating dimensional model
development. The capillary circumference is divided into a septal portion (a1, NB/

a1=a when Ptm=0) and a membrane portion (C). The capillary height (h), radius (R),
and the angle theta (θ) are calculated in the dimensional model. d is the distance

between adjacent capillaries. Figure reconstructed from (Huang et al. 2001)

4. a single alveolar septum is approximated as a square plane and an alveolus as a
cube.

Initially Ptm is set equal to zero and only the effects of Ptp are evaluated. The
change in septal dimension a is proportional to the change in alveolar volume which
is a function of Ptp (or lung volume). The following relationship between alveolar
volume (V ) and Ptp was derived from measurements on rat alveolar volumes during
inflation and deflation from Mercer, Laco & Crapo (1987):

V = V0 + (A − V0)e
(− B

Ptp
)M

(3.1)

where A, B, and M are empirically determined constants. For inflation A =

2.90x105µm3, B = 6.43cmH2O, and M = 2.14, for deflation A = 3.07x105µm3,
B = 3.42cmH2O, and M = 1.03. Assuming the side length of an alveolus varies as
V 1/3, we can obtain the following relationship:

L

L0
=

[

1 +

(

A

V0
− 1

)

e(− B
Ptp

)M

] 1
3

(3.2)

Where L0 is the initial alveolar septum length at Ptp=0; a value of 70 µm is used
derived from rat data (Huang et al. 2001). The new capillary septal dimension a is
then equal to:

a = a0
L

L0

(3.3)
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Where a0 is the initial a at Ptp=0. Therefore, given V0 (the alveolar volume at zero
Ptp) and L0 the length a (the length of tissue portion of the circumference of a capillary
cross-section at zero Ptm) can be calculated. For simulations in the current study V0

was set equal to 20.7x103 µm3 (Mercer et al. 1987) (for rat alveolar volume at zero Ptp).

Applying a force balance in the alveolar septum and rearranging to give the
equation in a stress-strain form gives the following equation:

Ts = E(Ptp)

(

L

L0
− 1

)

(3.4)

where Ts is the force per unit length in the septal wall, and E(Ptp) is the elastic
coefficient of the capillary wall as a function of Ptp, defined as:

E(Ptp) =
1
2
PtpL

L
L0

− 1
(3.5)

When changes in Ptm are also incorporated the length of the septal portion will
increase further from a to a1, and the membrane portion length will increase from C0

to C. The following equations (from Huang et al. (2001)) defining a force balance and
geometric relationships yield the following equations:

Ptmh = Tc + E(a1 − a)

(

1

a
+

1

d − a

)

(3.6)

Tc = PtmR (3.7)

Tc = kc(C − C0) (3.8)

a1 = 2Rsinθ (3.9)

h = R(1 − cosθ) (3.10)

C = 2Rθ (3.11)

where d is the distance between two capillaries, taken as the average distance of
all surrounding capillaries, R is the radius and h is the height of the capillary cross-
section, kc is the stiffness of the capillary wall, and θ is the angle as shown in Figure 3.5.
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Combining equations 3.7, 3.8, and 3.11 enables calculation of R:

R =
C0

2θ − Ptm
kc

(3.12)

Combination and rearrangement of equations 3.6, 3.7, 3.9, 3.10, and 3.12 gives an
expression to determine the angle θ:

c1θ + c2cosθ + c3sinθ + c4 = 0 (3.13)

where

c1 = 2aE∗

c2 = −C0Ptm

c3 = −2C0E
∗

c4 = −
aE∗Ptm

kc

E∗ = E

(

1

a
+

1

d − a

)

The bisection method is used to determine θ from the above equations. On
calculation of θ the remaining parameters R, C, a1, and h can be determined. The
perimeter of an ellipse, P (=C+a1), can be approximately represented by:

P ≈ π
√

2(a∗2 + b∗2) (3.14)

The following two equations are then used to determine the major and minor
elliptical parameters a∗ and b∗, respectively:

b∗ =
h

2
(3.15)

a∗ =

√

(

P 2

2π2
− b2

)

(3.16)

This dimensional model was validated by Huang et al. (2001) by comparison against
experimental data of Fung and Sobin (Fung & Sobin 1972b, Fung & Sobin 1972a), in
the estimation of capillary sheet height. A good correlation was shown.
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3.2.2 Flow in a single vessel

Each capillary segment is represented by a single one-dimensional (1D) element joined
at either end by a node, which represents a junction. The following equation from
Dhadwal et al. (1997) is used to calculate the approximate resistance in each individual
segment:

Rseg =
∆P

Q̇
=

∫ l

0

µappReDhfd

2AcD
2
h

ds (3.17)

where ∆P is the pressure difference between the inlet and outlet of the segment
(Pa), Q̇ is the volumetric flow rate (µm3 s−1), µapp is the apparent viscosity (Pas), Ac is
the local cross-sectional area of the segment at location s along the vessel axis (µm2),
Dh is the vessel hydraulic diameter (µm), ReDh is the Reynolds number, based on Dh,
and finally, fd is the Darcy friction factor. Dh, which is the equivalent circular diameter
(Dh=4 times Ac divided by the wetted perimeter of the vessel) is calculated from the
elliptical dimensions, a∗ and b∗. The Darcy friction factor is a dimensionless number
expressing the linear relationship between mean flow velocity and pressure drop.
Under the approximation of an elliptical cross-section ReDh

fd can be approximated
by the following polynomial:

ReDhfd = 80.2 − 30.3

(

b∗

a∗

)

+ 3.45

(

b∗

a∗

)2

+ 10.6

(

b∗

a∗

)3

(3.18)

This term depends on the aspect ratio of the elliptical vessels, being 63.95 when a
vessel is circular in cross-section and varying between 63 and 73 in the current models’
range of vessel shapes. The variation in ReDhfd influences the resistance value by less
than ± 2%. Therefore the ellipticity of the vessels plays only a small role in this flow
model.

µapp represents the increased resistance to flow produced by the deformation of
RBCs that occurs at the microcirculatory level. This term is calculated for each
individual segment, initially assuming a uniform distribution of RBCs. A semi-
empirical model describing the dependence of blood viscosity on vessel diameter and
blood discharge hematocrit adapted by Kiani & Hudetz (1991) is used to calculate µapp,
Equation 3.19:

µapp =
µp

[

1 −
(

1 − µp

µc

)(

1 − 2D∗

Dh

)4
]

(

1 −
(

Dm

Dh

)4
)

(3.19)
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The cytoplasmic viscosity (µc) and the parameter D∗ are functions of the hematocrit
(Hd), as defined by Equations 3.20 and 3.21, respectively. The diameter of the smallest
vessel that a RBC can pass through (Dm) is 2.7 µm and µp is the blood plasma viscosity
(=0.012Pas) (Huang et al. 2001). The apparent viscosity relationship is based on
experimental work carried out in glass tubes of circular cross-section and is assumed
to be approximately valid in the current model, as used by Huang et al. (2001). Since
the capillary vessels are elliptical the hydraulic diameter is used in the calculation.

µc = exp(0.48 + 2.35Hd) cP (3.20)

D∗ = 2.03 − 2.0Hd µm (3.21)

Pries, Secomb, Geβner, Sperandio, Gross & Gaehtgens (1994) developed a
hematocrit model via in vivo experimental techniques in rat mesentery capillaries.
Their studies showed that the resistance to flow in small vessels <40 µm was much
higher than previously predicted by experiments carried out in glass tubes. The
mechanisms for this were proposed as interactions between the capillary endothelium
and blood components. Huang et al. (2001) implemented this model and compared the
results obtained with results using the hematocrit model from Kiani & Hudetz (1991)
derived from experiments in glass tubes. Huang found a significant decrease in flow
(-58.5%) and corresponding increases in RBC (+146.7%) and WBC (+107.5%) transit
times. This increases RBC transit times to values much longer than observed in vivo.
The conclusion reached was that this raises issues with regard to blood-endothelial
interactions in the lung as compared to in the systemic circuit. The model of Kiani &
Hudetz (1991) was therefore used for the final results of Huang et al. (2001) and is used
in the current model.

After evaluating the flow relationships in individual segments, the effect of a
junction on flow dynamics must also be considered. Due to the small size of the
microvascular network it is difficult to evaluate the resistance at a junction. An
approximation to calculate the resistance at a junction was formulated by Huang et
al. (2001) and is shown in equation 3.22. This relation assumes that the flow resistance
associated with a capillary, including the segment and connecting junctions at either
end, is proportional to the total surface area. This total surface area of the capillary is
scaled using the segmental resistance calculated in equation 3.17.



60 Microcirculatory blood flow

R = Rseg + Rjunc1 + Rjunc2 =

(

1 +
Sjunc1 + Sjunc2

Sseg

)

Rseg (3.22)

A difference in the current model was that the capillary segments overlapped at
junctions, therefore a slightly new method to account for this overlap was incorporated
into the capillary flow model developed in this study. The capillary diameter protrudes
from the nodal point which is the intersection of the multiple segments. Therefore
the resistance of a segment is over estimated. Using the same assumption that the
resistance of a segment is proportional to the surface area of it a similar relationship
as Equation 3.22 can be obtained. For the element in which the resistance is being
calculated, the effective surface area is the total surface area (length x perimeter) less
the surface area of each overlapping triangular wedge. Considering the intersection of
two segments, the overlapping surface area is equal to half of the surface area of half of
the elliptical segment, i.e. one quarter of the surface area calculated using the perimeter
at the end of the segment and the overlapping length of the segment. The resistance is
scaled to obtain the actual resistance for the element Rseg using the following equations:

Rseg = 1 −
(

SAjunction

SAtotal

)

Rseg (3.23)

SAjunction =
1

4
P

j=n
∑

j=1

Loverlap (3.24)

where SAtotal is the total surface area of the current element (=Pxlength), Loverlap

is the overlapping length of each element at the junction, n is the total number of
overlapping portions at the junction, and the perimeter P is calculated using Equation
3.14.

So for each neighbouring segment at a junction the branching angle and major
elliptical axis are used to calculate the length of the overlapping portion of the segment,
and from this the effective surface area and resistance of the segment is calculated.

Analysis of the effect of this scaling was carried out on a regular hexagonal mesh.
The difference in resistance and solution values were compared before and after
the overlap at junctions was considered. This regular hexagonal mesh consisted of
each element connected at an angle of 120o to each adjacent element. With two
segments overlapping, a decrease in resistance of approximately 0.5% was calculated.
This resulted in an increase in flow of 1.16%, a decrease in pressure solution of
approximately 0.013% and no significant change in the hematocrit values. Segments
overlapping with three other segments experienced a 0.79% reduction in resistance



3.2 Methods 61

when the overlapping portions were removed. This led to an increase in flow solution
of 1.16% and a decrease in pressure of 0.012%; again no significant change in the
hematocrit was observed. The removal of overlap when four neighbouring segments
overlapped at a junction demonstrated a decrease in resistance of 1.05%. This increased
both the flow and hematocrit solutions by approximately 1.38% and 0.08%, respectively,
and decreased the pressure solution by 0.009%.

3.2.3 The network flow model

After constructing the flow relationships in a single capillary segment the next step is to
consider the flow relations through a network model consisting of n capillary segments
and m junctions. The network flow model is developed by applying conservation of
mass at each junction, Equation 3.25:

q(i)
∑

p=1

Q̇ip = 0 i=1,2,...,m (3.25)

where Q̇ip, p=1,2,...,q(i) are the flow rates in each segment connected to junction i.
The pressure-resistance-flow relationship is applied within each segment, resulting in
the following equation:

Pj1 − Pj2

Q̇j

= Rj j=1,2,...,n (3.26)

where Pj1 and Pj2 are the pressures at either end of the jth segment. This will
involve solution of m nodal unknowns, which are the pressure values, Pi, i=1,2,..,m,
and n element unknowns, which are the flow values, Qj, j=1,2,...,n. This results in
n + m unknowns which require n + m equations to solve. Allocation of pressure or
flow boundary conditions at each tributary branch reduces the number of variables to
provide a solvable system of equations.

3.2.4 Hematocrit distribution

At the microcirculatory level blood must be considered as a two-phase non-Newtonian
fluid. The preferential distribution of RBCs at a tubes’ central axis means that RBCs
tend to travel at a higher velocity than plasma leading to a nonuniform hematocrit
(Hd) distribution. The Hd values in a segment influence the apparent viscosity of
the blood, which affects the resistance and therefore the pressure and flow within a



62 Microcirculatory blood flow

capillary. A model adapted by Levin, Dawant & Popel (1986) is implemented with this
flow model to calculate hematocrit (or RBC concentration) in each capillary segment.
The volumetric flux of RBCs in a vessel segment (the volume of RBCs traversing a
cross-section of a vessel per time), f is defined as:

f = HdQ̇ (3.27)

Where Hd is the discharge hematocrit and Q̇ is the volumetric flow rate in a segment.
The total blood flow rate and the RBC volumetric flow rate can be balanced at each
junction, where index 0 is the parent branch, supplying flow into the junction, and
indices 1 and 2 are the two daughter branches. These balances give the following
equations:

Q̇0 = Q̇1 + Q̇2 (3.28)

f0 = f1 + f2 (3.29)

Therefore, substituting Equation 3.27 into Equation 3.29 provides the following
expression:

Hd0Q̇0 = Hd1Q̇1 + Hd2Q̇2 (3.30)

The flow rates in each segment at a junction are known, assuming a uniform
hematocrit for the initial solution. The inlet hematocrit value f0 must be specified
enabling Hd0 to be calculated. In order to solve for the last two unknowns (f1 and f2)
an additional relationship between the RBC fluxes and the flows is required. Equations
3.31 and 3.32 are adapted from the experimental studies of Schmid-Schoenbein, Skalak,
Usami & Chien (1980) and Klitzman & Johnson (1982):

fi

f0
=







G
(

Q̇i

Q̇0

)

if G
(

Q̇i

Q̇0

)

≤ Q̇i

f0

Q̇i

f0
if G

(

Q̇i

Q̇0

)

> Q̇i

f0

(3.31)

The function G has the following sigmoidal form:
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G
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
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(3.32)

where i is the daughter vessel index, r, the flux cut-off parameter, has a value of
0.05 (Pries et al. 1990) and b, the preferential flux parameter, has a value of 1.15 (Levin
et al. 1986, Klitzman & Johnson 1982) in these simulations. b was included to account
for factors, other than flow rate, that affect RBC partitioning at bifurcations, such as the
radial position of the RBC (Schmid-Schoenbein et al. 1980). Equation 3.32 was used
by Huang et al. (2001) to describe the sigmoidal hematocrit relationship. It differs from
the equation printed in the original manuscript [Eqn(27)] due to a typographical error.
This error has been corrected in Equation 3.32, and a corrigendum will be published
by the authors.

Since the hematocrit in any segment cannot be greater than unity Equation 3.31 was
included in the model to modify the results obtained from equation 3.32 to satisfy this
criteria. It follows then that the vessel hematocrit Hd for vessel i is calculated using:

Hd =
fi

Q̇i

(3.33)

These equations enable calculation of Hd for all daughter vessels providing the
other parameters are known. The above equations are also applicable to converging
bifurcations given that the inflow data, Q̇1, Q̇2, f1, f2, Hd1 and Hd2 are all known. The
network hematocrit model therefore initiates at the inlet capillary vessels and proceeds
through the network, thereby ensuring that the upstream blood and RBC volumetric
flow rates at a junction are always known.

The parameter b may vary at different bifurcations and with vessel diameter, but
experimental data is limited in this area. Therefore in the current model the values
of b=1.15 and r=0.05 from Levin et al. (1986) and Huang et al. (2001), respectively,
are assumed to be constant throughout the network. Investigation into the effect of
the dispersion of parameter b on the mean capillary discharge hematocrit showed
that the variation in hematocrit was very small (Levin et al. 1986). The effect of a
normal distribution of b with a mean of 1.5, and a coefficient of variation of 0-0.3 was
investigated and found to only increase the normalised hematocrit from 0.69 to 0.71.
The effect of variation of the flux cut-off parameter, r, was also investigated by Levin et
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al. (1986). The mean capillary discharge was found to be more sensitive to variations in
r, with a variation in r from 0 to 0.15 decreasing the normalised hematocrit from 0.87
to 0.59.

3.2.5 Cell transit time models

RBC and WBC transit times are calculated within each segment and for entire pathways
from arteriole to venule. Due to the vast number of possible pathways through the
capillary network only 50,000 randomly selected pathways from arteriole to venule are
selected for analysis of the transit time distributions.

Once the converged flow solution is reached the RBC transit time through each
individual segment can be calculated, using Equation 3.34. The WBC transit time is
calculated on-the-fly as we proceed through a pathway, described in this section. The
total number of desired pathways to be sampled is first split between the number of
inlet vessels, in proportion to the fraction of total blood flow going through each. Cell
transit times are then summed along a flow pathway from arteriole to venule. Depth
first analysis is carried out (Strang 1986) whereby an entire pathway from arteriole to
venule is sought before moving onto the next one. The algorithm begins at the inlet
node and the next node is selected randomly from all possible nodes in the forwards
flow path (the pressure must decrease from node 1 to node 2 for flow to exist). The
pathway terminates when an outlet vessel is reached. Both the RBC and WBC average
transit times are weighted according to the amount of blood flowing through each
pathway, to more accurately reflect the transit of blood cells.

3.2.5.1 RBC transit time

RBC transit time (ti), through a vessel i of volume Vi, is calculated using Equation 3.34
(Huang et al. 2001):

ti =
Vi

Q̇iCtt

(3.34)

where Q̇i is the flow rate in the vessel, and Ctt the ratio of plasma transit time to
RBC transit time has a value of 1.4 as derived via experimental studies by Presson,
Graham, Hanger, Godbey, Gebb, Sidner, Glenny & Wiltz (1995). As the transit time
model randomly proceeds along pathway j from arteriole to venule, each segmental
transit time in that path ti,j is summed, from segment i to the total number of segments
in the pathway n, to yield the total transit time for that pathway tj:
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tj =
n
∑

i=1

ti,j (3.35)

The fraction of blood flowing through each pathway (Q̇j) is calculated as a pathway
progresses from arteriole to venule using the product of the fraction of blood flowing
through each vessel in the pathway, using Equation 3.36:

Q̇j =
n
∏

i=1

Q̇i

Q̇in

(3.36)

where Q̇in is the total amount of blood flowing into segment i. This flow fraction
can be used to investigate the distribution of RBC transit times through the network.
The total length and number of segments in each pathway was also calculated for
comparison with anatomical data, shown in Table 2.2.

3.2.5.2 WBC transit time

A WBC transit model, derived empirically from leukocyte aspiration studies into
micropipettes (Fenton et al. 1985, Yeung & Evans 1989), is incorporated into the model.
WBC transit is more complex than that of RBCs due to the slower deformation of cell
cytoplasm. WBC transit time depends on the aspect ratio of the cell to vessel diameter,
and the resistance of the cell to deformation. The entrance diameter of WBCs varies
depending on the diameters of capillaries it has previously “squeezed” through. A
WBC will only be able to pass through a segment if the pressure drop across that
segment exceeds a critical pressure Pcr, calculated as:

Pcr = 2
τ0

RWBC

(

RWBC

Rp
− 1

)

(3.37)

where τ0=3.5x10−5 N m−1 is the average tension in the cell cortex, RWBC and Rp are
the radii of the cell (before deformation) and the tube, respectively (Huang et al. 2001).
The WBC transit time is calculated in two parts: the entrance time te and the passage
time tp:

tWBC = te + tp (3.38)

te is the time taken for a neutrophil to enter a capillary segment, calculated using
Equation 3.40. tp is the time taken for a neutrophil to pass through a segment, calculated
using Equation 3.47. If the vessel diameter if less than the cell diameter then the time
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taken for the cell to deform to enter the cell is usually significantly larger than the
time taken for it to pass through once deformed. A WBC is considered ‘stopped’ if its
entrance time into a capillary is greater than 1 second. Neutrophils are assumed to be
spherical, and the vessel radius (R) is approximated using Equation 3.39:

R =

√
a∗b∗ + b∗

2
(3.39)

The vessel radius value was selected to be the average between two different
approximations: using the height of the capillary h (=b∗) as the radius, and using
the effective circular radius (conserving cross-sectional area) of the elliptical vessel
(=
√

(a∗b∗)). These two different radius values represent the minimum and maximum
radius of the vessel, respectively, therefore the average value was used in WBC transit
time calculations. Yeung & Evans (1989) developed a model relating neutrophil
aspiration time to pressure and the ratio of the cell radius to vessel radius. This theory
was developed from micropipette aspiration studies where the cell was modelled as
a uniform liquid core encapsulated by a distinct cortical shell. Huang et al. (2001)
combined relationships from Yeung & Evans (1989) and Fenton et al. (1985). While
both studies agree that the aspiration time of a WBC depends on the ratio of cell to
vessel ratio, Fenton et al. (1985) concluded that entrance time was not dependent on
aspiration pressures. A pressure-dependent entrance time model related to R∗

0 (defined
in Equation 3.42) was developed by Huang et al. (2001) and is used in the current study,
Equation 3.40:

te =











µ
∆P−Pcr

t∗e if R∗

0 < 1.2

0.107 mµ
∆P−33

103.68(R∗
0−1.2) if R∗

0 ≥ 1.2











(3.40)

where t∗e is defined as:

t∗e =m

[

1

3
+

2

3
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0 − R∗2
0 +

2

3
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[
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[
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(
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]]

(3.41)

where m, a coefficient in the linearised model of neutrophil deformation, is equal to
6, and R∗

0 is defined as follows (Huang et al. 2001):
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R∗ = R∗

0 =
RWBC

R
at t∗ = 0 (3.42)

R∗ = 1 at t∗ = t∗e (3.43)

where R∗=rc/R and rc is the instantaneous radius of a portion of the cell lying
outside the vessel. Given a capillary with radius R1 at the entrance and radius R2

at the exit, assuming that the radius varies linearly along the segment the following
expression can be written:

R(x) = R1 +
R2 − R1

l
x (3.44)

where l is the capillary length and x is the position along the vessel. The following
equation is from Fenton et al. (1985) and describes the ratio of neutrophil velocity uWBC

to bulk blood velocity ublood:

dx

dt
=

Q̇

πR2(x)

[

2

1 +
(RWBC(in)

R(x)

)2.42

]

t(x = 0) = 0, t(x = l) = tp (3.45)

where RWBC(in) is the radius of the neutrophil inside the capillary segment:

RWBC(in) = RWBC if RWBC ≤ R1

RWBC(in) = R1 if RWBC > R1 (3.46)

In the current capillary model each segmental radius is assumed to remain constant
over the length of the capillary, therefore R1 = R2 = R(x). Combining Equations 3.44
and 3.45, and integrating over the length of the segment the WBC passage time tp can
be determined using Equation 3.47 which is valid if R1=R2:

tp =
πlR2

1

2Q̇

[

1 +

(

RWBC(in)

R1

)2.42
]

(3.47)

Equation 3.47 differs from the equation published by Huang et al. (2001) [Eqn(47)]
due to a typographical error in their paper. A corrigendum will be published by the
authors correcting this error. This model assumes that when a cell is deformed the
time taken for the cell to return to its initial shape is sufficiently long such that when
a neutrophil passes through a capillary segment with a radius smaller than that of
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the cell, the neutrophil will retain the smaller radius value for the remainder of the
pathway. The WBC transit time model calculates the total time for a neutrophil to pass
through a given pathway from arteriole to venule. The model also records the number
of times the neutrophil will become ‘stopped’ (that is when te > 1 s), and the percentage
of pathways in which a WBC will become stopped. This model can be easily adapted
to incorporate vessels with variable radii, refer to Huang et al. (2001) for details.

3.2.6 Parameters used in the model

Table 3.1 displays the parameters used in the model for the simulations published
in this thesis. The parameter values are listed and the source from which they were
obtained are listed in the final column. The blood pressure conditions in this table
apply to a mid height in a vertical human lung (15 cm), blood pressures used in height
simulations are shown in Table 3.3.

Parameter Value Source
a0 6 µm (Huang et al. 2001)
b 1.15 (Levin et al. 1986)

Hd (at inlet) 0.4 (Huang et al. 2001)
kc 15 (normal range 15-30) cm H2O (Huang et al. 2001)

Parteriole 20 cm H2O (Huang et al. 2001)
Pvenule 12 cm H2O (Huang et al. 2001)
Palveolar 0 cm H2O (Guyton & Hall 2000)
Ppleural -4.25 cm H2O (Guyton & Hall 2000)

r 0.05 (Levin et al. 1986)
µc 135 Pas (Needham & Hochmuth 1990)
µp 0.012 Pas (Fung 1990)
τ0 3.5x10−5 N m−1 (Huang et al. 2001)

TABLE 3.1: Parameters used in the capillary model, the source of which is included in
the final column.

3.2.7 Normal simulation conditions

Unless otherwise stated, all results are obtained using boundary conditions and
pressure settings at a height of 14 cm in a vertical human lung. Therefore the inlet
blood pressure is set to 20 cm H2O, outlet blood pressure to 12 cm H2O, pleural pressure
is equal to -4.25 cm H2O, and alveolar pressure is 0 cm H2O, and an initial hematocrit
value of 0.4. Other material parameters are set as specified in Table 3.1.
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3.2.8 Cell transit time distributions in the upright lung

Regional results of cell transit time distributions were studied for the upper (lung
height, 28 cm), middle (14 cm), and lower (2 cm) regions of a vertical human lung
by setting appropriate pressure boundary conditions for these 3 different ‘zones’, as
defined in Table 3.2. The alveolar pressure remained constant at atmospheric pressure
(0 cmH2O) in the simulations.

Pressure Boundary Conditions (cmH2O)
Upper lung (28 cm) Ppleural = −7.75 Parteriole = 6 Pvenule = 0

Mid lung (14 cm) Ppleural = −4.25 Parteriole = 20 Pvenule = 12
Lower lung (2 cm) Ppleural = −1.25 Parteriole = 32 Pvenule = 24

TABLE 3.2: Pressure boundary conditions used in regional variation simulations,
Palveolar=0 cmH2O as at functional residual capacity (FRC). Note: 1

cmH2O=0.09806kPa.

3.2.9 Variation in blood pressure in the upright lung

The capillary model is used to investigate the effect of regional variations in pressure
on microcirculatory blood flow in the lung. Published data of intrapleural pressure
suggests an increase down the lung of about 0.25 cmH2O per cm of lung height, and
an increase in blood pressure of 1 cmH2O per cm of lung height (West 1995), while
alveolar pressure is 0 cmH2O throughout the lung when there is no flow (for example,
at FRC). A linear pressure gradient is assumed down the lung height for both the
pleural and blood pressures. In the upper regions of the lung the venous pressure drops
below alveolar pressure, known as the zone 2 region (as discussed in Section 1.3.2). In
this region the flow is governed by the pressure difference between the arteriole and
alveolar pressures (West 1995), and therefore the venule pressure is set equal to alveolar
pressure.

These idealised pressure gradients were used to prescribe pressure boundary
conditions for simulations at 2cm intervals over the height of a 30cm vertical lung.
A table of the pressure boundary conditions applied at the pleural surface, arterial and
venous tributaries at each 2cm interval is shown in Table 3.3.
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Pressure Boundary Conditions (cmH2O)
Height (cm) Ppleural (cmH2O) Parteriole (cmH2O) Pvenule (cmH2O)

30 -8.25 4 0
28 -7.75 6 0
26 -7.25 8 0
24 -6.75 10 2
22 -6.25 12 4
20 -5.75 14 6
18 -5.25 16 8
16 -4.75 18 10
14 -4.25 20 12
12 -3.75 22 14
10 -3.25 24 16
8 -2.75 26 18
6 -2.25 28 20
4 -1.75 30 22
2 -1.25 32 24
0 -0.75 34 26

TABLE 3.3: Pressure boundary conditions applied in simulations of flow at 2 cm height
intervals over the vertical height of a 30 cm lung.

3.3 Results

3.3.1 Blood flow results

Figure 3.2 shows the flow rate solution on the full alveolar sac capillary model using
two different spectrums to illustrate the solution. Cylinders are drawn around each
of the one-dimensional elements using the diameter solution field. Figures 3.2(b) and
(d) show the spectrums used to illustrate the flow rate values (mm3 s−1) for Figures
3.2(a) and (c), respectively. The flow rates span a large range, therefore Figure 3.2 (c)
uses a narrower solution spectrum range to illustrate more detail in the flow solution.
The highest flow rates are seen at the inlet and outlet vessel locations where the flow
must converge to enter and exit the network. These vessels also have larger diameters
and therefore a lower resistance to flow. The highest flow rate in the feed vessels is
about 0.0027 mm3 s−1; the spectrums extend above to this value. There are several
unperfused segments where the pressure drop across the vessel is insufficient to exceed
the resistance to flow. Preferential pathways can be seen in various locations, especially
at the septal boundaries where adjacent capillary networks converge. Areas of low
flow can also be seen, especially in regions furthest from inlet and outlet vessels. This



3.3 Results 71

illustrates the large reserve capacity available for high flow conditions.

(a) (b) (c) (d)

FIGURE 3.2: Flow solution in the alveolar sac model at a vertical human lung height of
14 cm, two different spectrums are used to illustrate the range of flow values.

Spectrums shown in (b) and (d) have flow units mm3 s−1. Highest flow rates are in the
venule vessels which drain the converged capillary flow at the periphery of the

alveolar sac model.

Figure 3.3(a)-(c) illustrates the pressure solution (Pa) at each nodal location in the
alveolar-capillary network, from two different view points, (b) and (c). The spectrum
used to represent the pressure values is shown in Figure 3.3(c). A relatively uniform
decreasing pressure gradient from inlet to outlet is displayed.

The RBC distribution (hematocrit) results obtained in the capillary network are
presented in Figure 3.3(d)-(e). The hematocrit values are found to range from 0 to
0.78. The inlet and initial hematocrit value was set to 0.4. The large range of hematocrit
values is due to the uneven partition of RBCs at bifurcations, where RBCs travel in
proportion to flow fractions. Several vessels can be seen to have a 0 hematocrit fraction
(that is, contain no RBCs), this is due either to plasma skimming, where a vessel
contains only plasma, or to the segment being completely unperfused.
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.3: Pressure and hematocrit solutions displayed in the alveolar sac model at a
vertical human lung height of 14 cm from two different view points. (a), (b) display the

pressure solution ranging from 1176 Pa (12 cm H2O) to 1961 Pa (20 cm H2O), (c)
solution spectrum in pressure units of Pa. (d), (e) illustrate the hematocrit solution

within each capillary vessel ranging from 0 to 0.78, (c) solution spectrum
(dimensionless).
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Figure 3.4 displays flow (Q), hydraulic diameter (Dh), and hematocrit (Hd)
distributions with respect to the percentage of capillary segments with each value. Bin
intervals of 1x10−7, 5x10−6, and 0.01 are used for each plot, respectively. Figure 3.4(a)
displays flow values dominating the left side of the plot, illustrating that only very
few vessels have flow rates greater than 1x10−4 mm3 s−1. Figure 3.4(b) demonstrates a
relatively uniform distribution of diameters ranging between 6.75 µm and 9.75 µm. The
hematocrit plot shows a normal distribution, with a mean of around 0.35, apart from
an addition peak at a hematocrit value of 0 where about 2.75% of segments contain no
RBCs.
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FIGURE 3.4: (a) Flow, (b) diameter, and (c) hematocrit distributions throughout the
alveolar-capillary network.

3.3.2 Analysis of the flow model

This section looks at the various components of the flow model and their effect on
the flow solution. After the initial linear pressure-flow solution is determined the
solution procedure calculates the resultant capillary dimensions and RBC distribution
as a function of the pressure-flow solution.

3.3.2.1 Dimensional model

The alveolar pressure-volume relationship used in the dimensional model was derived
from experimental studies on rat lung tissue during inspiration and expiration. The
hysteresis relationship results in different parameter values during inflation and
deflation. Figure 3.5(a) plots the calculated alveolar volume versus Ptp, for the
relationship in Equation 3.1. The range of Ptp in the current study on regional
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variations (refer Section 3.3.8) is from 0.75 cm H2O in the lowest regions of the lung,
to 8.25 cm H2O at the top of the lung. This relationship demonstrates that a limiting
alveolar volume of about 250x103 µm3 is reached as Ptp increases. An initial volume
value (V0) of 20.7x103 µm3 was used based on rat data from the study of Mercer et
al. (1987) with which the empirical relationship is derived. Figure 3.5(b) illustrates
the relationship between E, the elastic coefficient of the alveolar septal wall, and Ptp,
as defined by Equation 3.5, during inspiration and expiration. A rapid increase in
E is displayed at low Ptp during inspiration. In all other regions E varies within a
narrow range of about 0.3 to 1.3 cm H2O mm. All simulations conducted at zero alveolar
pressure fall on the expiration curve.
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FIGURE 3.5: Plot of (a) alveolar volume and (b) septal wall elasticity coefficient E
versus Ptp during inspiration and expiration, determined using alveolar dimensional

model, Equation 3.1.

3.3.2.2 Vessel ellipticity

The capillary cross-sections were assumed to be elliptical, prescribed by a major
(a∗) and minor (b∗) axis. These elliptical parameters are used in the polynomial
approximation for the calculation of ReDh

fd, the Reynolds number times the friction
factor, as defined by Equation 3.18. This term depends on the aspect ratio of the
elliptical vessels, being 63.95 when the vessel cross-section is cylindrical. The variation
in vessel shapes in the model geometry leads to only a very small change in resistance
of less than ± 2%.
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3.3.2.3 Viscosity model

The µapp of blood at the capillary level is a function of the vessel diameter, as described
in Equation 3.19. The effect of this relationship on the resistance term (Rseg), as
calculated by Equation 3.17, was investigated by comparing the use of this non-linear
viscosity model with a simpler uniform viscosity assumption. Figure 3.6 demonstrates
the relationship between (a) µapp and (b) resistance versus hydraulic diameter (Dh). Two
solutions are shown: one assuming a uniform viscosity value for all diameters and the
second using the non-linear viscosity model implemented in the solution procedure.
These plots illustrate that as vessel diameter decreases, towards the minimum diameter
vessel which will accommodate the passage of a RBC (Dm=2.7 µm), µapp and therefore
the resistance to flow increases rapidly. This will result in smaller vessels being much
less likely to receive any blood flow, and thus leads to unperfused segments. Parameter
values used in Figure 3.6 are Hd=0.4, ReDh

fd=64, length=12 µm, and other values as in
Table 3.1.
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FIGURE 3.6: Comparison of constant versus non-linear viscosity models: µapp and
resistance (Rseg) versus hydraulic diameter (Dh).

3.3.2.4 Hematocrit model

Figure 3.7 illustrates the sigmoidal function G specifying the relationship between
RBC fluxes and blood flow rates Qi/Q0 at a bifurcation point as defined by Equation
3.32, for (a) different values of the flux cut-off parameter r, while maintaining the
preferential flux parameter b at 1.15, and (b) variations in b while holding r constant
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at 0.05. When b=1 and r=0 the hematocrit in each branch at a bifurcation will be
equal. When b increases above unity the proportion of RBCS going into the higher flow
segment increases disproportionately. As b approaches infinity all RBCs flowing into
a junction should flow into the segment with higher flow (Levin et al. 1986), however
the hematocrit in any branch may not exceed 1. This restriction is incorporated via
Equation 3.31.
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FIGURE 3.7: Relationship between RBC fluxes and flow rates Qi/Q0 at a bifurcation as
defined by the sigmoidal function G, investigating changes in (a) the flux cut-off

parameter r and (b) the preferential flux parameter b.

Comparisons were made between solutions in the capillary model with and without
the hematocrit model, by assuming a uniform hematocrit throughout the network.
Figure 3.8 illustrates the different red and white blood cell transit time distributions
obtained in the two simulations. These plots both show longer cell transit times when
the hematocrit model is not used. The distribution of RBC transit times are more spread
out with the RBC standard deviation increasing from 2.6 to 17.5 s. The WBC transit time
standard deviation remained fairly constant, decreasing a small amount from 48.3 to
44.0 s. Summary results are displayed in Table 3.4. The overall average RBC transit time
increased from 0.62 s to 0.70 s (-12.9%) when the hematocrit model was excluded. The
hematocrit model accounts for the Fahraeus effect which results in an increased velocity
of RBCs relative to plasma and therefore reduces the transit time of RBCs through the
capillaries, therefore this increase in transit time when the hematocrit model is removed
is as expected. The overall average WBC transit time actually decreased from 1.57 s to
1.46 s (7.0%). The passage time increased from 0.56 s to 0.64 s, but the entrance time
decreased from 1.0 s to 0.82 s, due to the small increase (-0.1%) in average diameter of
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the vessels when the hematocrit model is excluded.
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FIGURE 3.8: Cell transit time results with respect to the percentage of pathways with
and without hematocrit model: (a) RBC transit times; (b) WBC transit times.

Parameter With Hd model Without Hd model % difference
Dh (µm) 8.45 8.46 -0.1
tRBC (s) 0.62 0.70 -12.9
tWBC (s) 1.57 1.46 +7.0

te (s) 1.00 0.82 18.7
tp (s) 0.56 0.64 -13.9

Q̇ (mm3 s−1) 0.64 0.62 1.8

TABLE 3.4: Comparison of model results with and without hematocrit model.

Simulations were also carried out setting different initial hematocrit values of 0.2
and 0.6 as compared to the standard value of 0.4. The red and white cell transit time
distributions with respect to the percentage of pathways are shown in Figures 3.9(a)
and (b), respectively. As Hd increased from 0.2 to 0.4 to 0.6 the average RBC transit
time increased from 0.55 s to 0.62 s to 0.97 s. This was a consequence of the decreasing
flow rate which receded from 0.72 to 0.64 to 0.52 mm3 s−1 as the hematocrit increased.
This is a direct result of the increasing viscosity of blood as the concentration of RBCs
increases, which consequently increases the resistance to flow.

The effect of a variation in the initial hematocrit by ± 10% is also shown in Table 3.7
(Section 3.3.6).
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FIGURE 3.9: Cell transit time results with respect to the percentage of pathways with
different initial hematocrit values, 0.2, 0.4, 0.6: (a) RBC transit times; (b) WBC transit

times.

3.3.3 Corner vessels

At the intersection of three adjacent alveolar septae excess fibres exert a strong outward
pull resulting in a negative tissue pressure in this region. This effect allows alveolar
corner vessels to remain patent in all conditions (Lamm et al. 1991, Weibel 1984), and
also results in vessels with larger diameters than septal capillaries. A more detailed
description is given in Section 1.2.4. Model simulations were carried out incorporating
the geometric differences of corner vessels in order to investigate the effect of these
vessels on overall results. Huang et al. (2001) incorporated the effects of alveolar
corner vessels into their flow model. Due to lack of anatomical data on the dimensions
and behaviour of corner vessels they assumed that corner vessels were of circular
cross-section, and that each corner vessel conveyed an amount of blood flow equal
to the average flow rate in the septal capillaries (Qmean) multiplied by the number of
adjoining septae. There are typically three septae sharing each corner vessel, therefore
the following equation is developed to represent flow in a corner vessel, Qcv:

Qcv = 3Qmean or Rcv =
1

3
Rmean (3.48)

where Rcv is the resistance in the corner vessel per unit length of the vessel, and
Rmean is the average resistance per unit length of septal capillaries. Assuming a circular
cross-section, the resistance in a tube is proportional to D4, therefore the diameter of a
corner vessel Dcv was determined as:
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Dcv = 1.32Dmean (3.49)

Huang’s assumptions were implemented in the current model for analysis.
Inclusion of the corner vessel anatomical structure resulted in an overall increase
in average flow (over the height of the lung) of 5.57%, and an increase in average RBC
transit time of 12.35%. Results were qualitatively similar with and without corner
vessel effects.

The physiological effects of corner vessels result from micromechanical interactions
of the septal corners. There is currently not sufficient information to accurately
incorporate corner vessels into the current geometric flow model. Therefore the
results in this study relate to the model without including the effects of corner vessel
behaviour. Future coupling with models of micromechanics could more accurately
include the effects of corner vessels in the blood flow simulations.

Solution results in the current study demonstrated a natural occurrence of increased
flow at the septal boundaries due purely to the geometry of the capillary network
and the resulting convergence of vessels and therefore flow at these locations. More
simplified models not considering the merging of capillary vessels at all alveolar septal
boundaries would not automatically take this into account.

3.3.4 Breathing cycle

The capillary cross-sectional area is a function of Ptp (=alveolar-pleural pressure) and
Ptm (=blood-alveolar pressure). Alveolar pressure oscillates between around -1 and +1
cm H2O from inspiration to expiration, respectively. Similarly pleural pressure follows
an oscillatory pattern during the breathing cycle with the pleural pressure fluctuating
between approximately -7.5 and -5 cm H2O from inspiration to expiration (Guyton
& Hall 2000). Model simulations were carried out using the pressure conditions
defined in Table 3.6 specifying both alveolar and pleural pressure to mimic the in vivo
respiratory patterns. The effect on capillary flow properties including RBC and WBC
transit times, hematocrit distributions, WBC stoppage, and capillary diameters was
investigated.

Figure 3.10 illustrates the effect of alveolar and pleural pressures on (a) RBC transit,
(b) flow, and (c) Hd distributions with respect to the percentage of pathways. Table 3.6
displays average model values at rest, during inspiration and expiration. WBC transit
time and stoppage results can be seen in Figure 3.11. These results show that the model
was not very sensitive to variations in pleural and alveolar pressures. This indicates
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Palveolar (cm H2O) Ppleural (cm H2O)
Rest 0 -4.25

Inspiration -1 -7.5
Expiration +1 -4

TABLE 3.5: Alveolar and pleural pressure conditions at different stages of breathing,
for comparisons of WBC stoppage at different stages of respiration.

that further development of the dimensional model may be required to more accurately
represent flow during the breathing cycle. The current model does not incorporate the
axial deformation (change in length) of the vessels, which may also have a significant
effect on flow during the breathing cycle. In reality, during inspiration the alveoli
expand and compress the capillary vessels which would result in lower flows.

Parameter Rest Inspiration Expiration
Dh (µm) 8.45 8.56 8.26
tRBC (s) 0.62 0.63 0.50
tWBC (s) 1.57 1.38 1.33

te (s) 1.00 0.79 0.89
tp (s) 0.56 0.58 0.45

Q̇ (mm3 s−1) 0.64 0.65 0.60

TABLE 3.6: Average model results at different stages of the respiratory cycle (rest,
inspiration, and expiration).
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FIGURE 3.10: Model results at different stages of breathing (rest, inspiration,
expiration): (a) RBC transit time distribution, (b) flow distribution, (c) Hd distribution

with respect to % pathways.
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3.3.5 Neutrophil traversing

The neutrophil transit time model calculates the entrance time te and the passage time
tp of a WBC travelling through the capillary network, as explained in Section 3.2.5.2.
If te is greater than 1 s the WBC is considered ‘stopped’. The normal results show that
from the 50,000 pathways sampled 62.5% of pathways would not stop a WBC, 29.3%
of pathways would stop a WBC once, 7.1% twice, and 1.1% of pathways would stop
a WBC three times or more. These results compare well with in vivo observations in
dogs made by Hanger et al. (1993) which demonstrated that about 46% of neutrophils
proceeded from arteriole to venule unimpeded, around 24% were stopped once, and
about 30% were stopped twice. The model of Huang et al. (2001) predicted that 46% of
neutrophils would not stop, 51% would stop once and 3% would stop twice or more
(when Ptp=5 cm H2O and Ptm=10 cm H2O in the arteriole).

The incidence of WBC stoppage at different stages of respiration was investigated
by setting the appropriate alveolar and pleural pressure values (for use in the
dimensional model) as defined in Table 3.6. All other parameters were set as for
the normal mid human lung height - 14 cm- condition. Figure 3.11(a) compares
the WBC transit time distributions during inspiration, expiration and at FRC. This
illustrates only a very small change in the WBC transit time distribution. Figure 3.11(b)
demonstrates the number of times a WBC becomes blocked in a pathway during the
different stages of breathing.
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FIGURE 3.11: WBC transit time model results at different stages of breathing (rest,
inspiration, expiration): (a) transit time distributions and (b) WBC stopping frequency.

Simulations were carried out varying the tension in the neutrophil cell cortex, τ0,
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which is proportional to the critical entrance pressure (Pcr) of a WBC as described by
Equation 3.37. The normal τ0 value used is 3.5x10−5 N m−1, this value is varied by
± 10%, and +50% to investigate the effects on WBC transit. The WBC transit time
distributions for the three different cases are shown in Figure 3.12(a). The incidence
of WBC stoppage in the three cases are compared in Figure 3.12(b). Increasing τ0

effectively makes the WBCs stiffer, or less deformable, therefore an increase in τ0 was
expected to increase WBC transit times and increase the number of times a WBC is
stopped in passage from arteriole to venule. The transit time distributions do not
show much change as a result of the variation in τ0. The average alveolar-sac WBC
transit time increases from 2.89 to 2.96 to 2.99 s when τ0 is increased from -10% to
+10% to +50%, respectively. The incidence of stopping increases slightly in frequency
with the average number of stops in all pathways increasing from 0.96 to 0.99 to 1.04.
These differences are only very small, illustrating that the WBC transit model is fairly
insensitive to changes in τ0.
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FIGURE 3.12: WBC transit time model results with varying cell cortex tension τ0: (a)
transit time distributions and (b) WBC stopping frequency.

The most noticeable difference in WBC stoppage was in different ’zones’ of the lung.
Comparison of WBC stopping frequency is demonstrated in the upper, mid, and lower
regions of the lung in Figure 3.13. This shows that in the lower regions of the lung the
WBCs travel through the capillaries without being trapped. In the upper lung 87.2% of
WBCs are stopped three or more times.
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FIGURE 3.13: Comparison of WBC stopping frequency in upper, mid, and lower
regions of the lung.

3.3.6 Sensitivity analysis

A sensitivity analysis of the important model parameters has been conducted.
Parameters were varied by ± 10% and the effects on flow (Q̇), hydraulic diameter
(Dh), RBC (tRBC ), and WBC (tWBC) transit times are shown in Table 3.7. These results
indicate that the inlet pressure boundary condition applied and the diameters allocated
to the vessels had the largest effect on results. The outlet pressure also had a large effect
on the cellular transit times, with a 10% decrease in pressure decreasing the red and
white blood cell transit times by more than 30%. This suggests that the model will be
made more realistic when it is coupled with a model of flow in the arterial and venous
systems to provide better pressure boundary conditions. Information on capillary
vessel diameters is more established than the pressure boundary conditions. The
average capillary diameter in the model is 8.45 µm which fits in well with anatomical
information. The hydraulic diameter of the vessels was relatively insensitive to
parameter changes. Variation of the vessel elasticity did alter the vessel diameters by
around ± 4% which had a significant effect on the WBC transit time results. The most
sensitive model output was the WBC transit time, due to the empirical nature of the
WBC transit model and the complex interactions of WBCs in the network.

3.3.7 Cell transit time distributions in the upright lung

Illustrations of the blood flow solutions (mm3 s−1) in the alveolar-capillary sac model
are shown in Figure 3.14 in (a) the upper, (b) mid, and (c) lower regions of the lung.

Model cell transit time frequency distributions are presented in Figures 3.15 and
3.16. The transit time distributions are plotted against the percentage of pathways
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Effects, %
Parameter % Variation ∆Q̇

Q̇0

∆tRBC

tRBC0

∆tWBC

tWBC0

∆Dh

Dh0

Elasticity kc (cmH2O) -10 14.53 -9.33 -23.13 4.36
10 -11.06 -1.03 49.94 -3.53

Inlet pressure (cmH2O) -10 -30.93 26.05 58.81 -2.31
10 35.71 -24.99 -20.06 2.46

Outlet pressure (cmH2O) -10 9.72 -31.77 -34.96 -1.47
10 -11.11 15.84 -3.32 1.59

Pleural pressure (cmH2O) -10 -1.70 -2.79 -10.60 -0.26
10 1.34 -5.97 -6.98 0.22

Initial hematocrit (Hd) -10 3.00 -2.47 -4.61 0.04
10 -3.17 5.33 -3.15 -0.05

Tissue part of capillary x-section (µm) -10 -7.15 12.20 11.85 -1.27
10 6.85 3.79 4.71 0.99

Alveolar part of capillary x-section (µm) -10 -25.23 12.69 57.46 -8.87
10 28.59 -24.05 -58.65 8.63

TABLE 3.7: Sensitivity analysis of model parameters and boundary conditions.
Simulations carried out at a vertical human lung simulation height of 14 cm, with

corresponding boundary conditions. These results indicate that the model flow results
are most sensitive to variations in the applied inlet pressure boundary conditions and

the diameter distribution of the capillary vessels.

sampled with these transit times, and the actual percentage of sampled blood flow
with these transit times. The sample bins were 0.1s wide.

Figure 3.15 plots transit times against percentage of pathways, for (a) RBC and
(b) WBC transit results. These plots display relatively smooth curves as they do not
reflect the distribution of flow. The RBC transit time frequency distributions show
a more homogeneous distribution in the lower lung, and a faster mean transit time.
Increasing in height to the mid and upper lung regions results in a widening of the
transit time distribution and a lengthening of the transit times. The distributions are
slightly skewed to the right. The WBC transit time frequency distribution was also
narrowest for the lower lung zone, and skewed to the right. The peak decreased for
the mid and upper zones, and the right skew increased.

Figure 3.16 displays the distribution of transit times with respect to the actual
percentage of blood flow through each path, (a) illustrates the RBC distribution and
(b) the WBC transit distributions. This distribution is much more heterogeneous, with
large peaks seen in certain time brackets. The large peaks represent the occurrence of
preferential pathways where large portions of the blood flow pass through the lowest
resistance pathways. In the lower lung a RBC transit time of 0.58 s occurred in 18.2%
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of the flow, with a narrow distribution around this peak. The average transit time in
this region was 0.42 s. The distribution was wider in the middle zone, and peaked
with 6.9% of the flow having a RBC transit time of 0.46s. The average transit time in
this region was 0.61 s. The distribution in the upper lung was far more heterogeneous
due to uneven perfusion and showed several peaks over a range of times. The average
transit time was 2.46 s, with a peak at 3.75 s with 7.8% of flow. The WBC distributions
in all regions were more heterogeneous than the RBC distributions. In the lower lung
a peak occurred at 0.33 s with 21.6% of the flow, and the average WBC transit time was
0.39 s. The mid lung showed a peak where 9.3% of the flow passed with a WBC transit
time of 1.19 s, and the average time was 1.90 s. The upper lung showed a very wide
distribution of WBC transit times with a mean of 32.40 s, and the highest peak at 14.60
s for 7.8% of the flow.
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(a)

(b) (c)
mm3 s−1

(d)

FIGURE 3.14: Blood flow solutions in the alveolar-capillary model in (a) the upper (28
cm), (b) mid (14 cm), and (d) lower (2 cm) regions of a vertical human lung. Solution

spectrum illustrated in (c) units mm3 s−1. Results in the upper lung demonstrate lower
flow rates as well as smaller diameters, on average, as a result of the lower pressures in
these regions. The lower lung region demonstrates the opposite behaviour, higher flow

and larger capillary diameters.
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FIGURE 3.15: Simulation results for cell transit time frequency distributions, with
respect to the percentage of pathways: (a) RBCs, (b) WBCs, for the upper (28cm),

middle (14cm) and lower (2cm) lung zones. Sample intervals 0.1s.
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FIGURE 3.16: Simulation results of cell transit time frequency distributions, with
respect to the percentage of flow: (a) RBCs, (b) WBCs, for the upper (28cm), middle

(14cm) and lower (2cm) lung zones, sample intervals 0.1s.
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3.3.8 Variation in blood pressure in the upright lung

Figure 3.17(a) shows the average capillary diameter (Dh) versus height up the lung,
resulting from distension or compression of the elastic capillaries via the combination
of local Ptp and Ptm. This plot demonstrates an increase in diameter from the apical
region downwards. The capillaries generally become more distended down the vertical
lung due to an increase in the arteriole, venule and pleural pressures. In the lowest
regions of the lung a decrease in the average Dh is displayed. This is due to the
relatively low Ptp (where pleural pressure≈1 cm H2O) at the very bottom of the lung.
Ptp is equal to only 0.75 cm H2O at the 0 cm height simulation, Figure 3.5 displays a
large increase in E, the septal wall elasticity coefficient, at this very low Ptp, which is
why the decrease in Dh is observed.

Figure 3.17(b) demonstrates the effect of lung height on blood flow in the single
alveolar sac. Flow increases towards the lower regions of the lung, which relates
directly to the capillary diameter plot in Figure 3.17 (a): as the average capillary
hydraulic diameter increases, resistance to flow is decreased, thereby elevating the
volumetric flow rate. In the very lowest regions of the lung a decrease in volumetric
flow rate can be seen as a function of the decreasing capillary diameters. This region
of decreased flow has been observed in experimental observations and is typical of the
so called ‘zone 4’ flow region. Zone 4 was recognised more recently, as it is absent in
measurements carried out above FRC. This zone occurs in the most gravitationally-
dependent regions of the lung at lower lung volumes, or arguably in all peripheral
regions of the lung (Hakim, Lisbona & Dean 1987). At a vertical height of 30 cm the
arteriole pressure is inadequate to open any of the capillary vessels for perfusion; the
vessels are therefore collapsed and there is no flow. The flow transitions from zone 2 to
zone 3 flow between the heights of 24 and 26 cm. A smooth transition is displayed and
a linear flow gradient is maintained.

Figure 3.18(a) shows average cell transit times generated in the model with respect
to lung height, for both RBCs and WBCs. These plots show experimentally consistent
trends, namely decreasing average transit times towards the basal regions of the
lung where the flow is higher (Hogg, Martin, Lee & McLean 1985, MacNee, Martin,
Wiggs, Belzberg & Hogg 1989, Wagner Jr, Latham, Hanson, Hofmeister & Capen 1986,
Presson Jr, Hanger, Godbey, Graham, Lloyd & Wagner Jr 1994). Figure 3.18 (a) also
shows the standard deviation of the RBC transit time distribution with respect to lung
height. The standard deviation decreases with decreasing lung height, consistent with
experimental observations (Presson Jr et al. 1994), due to more uniform perfusion
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FIGURE 3.17: Average capillary results in alveolar sac model in relation to lung height:
(a) capillary diameters (µm) and (b) volumetric blood flow rate (mm3 s−1).

as a result of increased flow. The model produced longest transit times in the upper
lung, and demonstrated that expansion of lung blood volume due to recruitment and
distension as flow increased down the lung prevented an excessive shortening of the
transit time. A very large difference in the cell transit times and relative dispersion are
seen in the very top regions of the lung, due to the decrease in flow and diameters of
the capillary vessels and the increased stoppage of WBCs as shown in Figure 3.18(b).

Figure 3.18(b) shows the percentage of pathways that will stop a WBC. There is
limited data in the literature to compare with these model results, however the model
does show a logical trend in that the more basal regions have less WBC stoppage due
to increased flow and larger diameter of vessels.

Figure 3.19(a) plots RBC transit time with respect to lung height for model results
and published experimental data (Hogg et al. 1985, MacNee et al. 1989, Wagner Jr et
al. 1986). To allow comparison with the experimental data from different regions of the
lung, the positioning of the lower, middle and upper regions of the lung were assumed
to be 16, 50, and 83% of lung height, respectively. Results from (Hogg et al. 1985) are
from supine dogs; the two sets of data displayed are the fastest and slowest transit
time data from experiments on 9 dogs. Experimental data from (Wagner Jr et al. 1986)
studied the same area of lung, in mongrel dogs, but oriented the dogs in three different
positions with respect to gravity to obtain regional transit times. Data from (MacNee et
al. 1989) are from humans, pre- and post-operatively in the lateral decubitus position,
and in normal subjects sitting in the upright position. The model results display the
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FIGURE 3.18: Cell transit time results for simulation at 2 cm intervals over the height
of a 30 cm lung. (a) RBC and WBC mean transit times and standard deviation values of

RBC transit times, and (b) percentage of paths stopping WBCs.

same trend as the published data; the transit times do, however, appear to be shorter
than the limited human experimental data available for comparison. Experimentally
measured transit times from Hogg et al. (1985) and MacNee et al. (1989) are for the
full pulmonary circuit. These have been scaled to represent capillary transit times
(refer Section 3.4.2) which may contribute to the discrepancy between model and
experimental transit times. The differences in transit times could also be due to the
definition of pressure boundary conditions, or factors not accounted for in the current
model, such as variation in alveolar size within the height of the lung (discussed further
in Section 3.4.2).

Figure 3.19(b) compares published flow results with model results, plotting blood
flow relative to the mean against percentage of lung height. This plot includes
experimental perfusion data from upright baboons (Glenny, Bernard, Robertson &
Hlastala 1999), reprinted in (Prisk et al. 2001). Results from (Glenny, Lamm, Bernard,
An, Chornuk, Pool, Wagner Jr, Hlastala & Robertson 2000) are from supine pigs in
normal gravity (1G). The model demonstrates the same qualitative behaviour as the
experimental data, and fits well quantitatively with results from (Glenny et al. 1999).
The model does display a small decrease in blood flow in the lowest regions of the lung
as found in all of the animal studies, excluding the baboon. The baboon data included
is only the best fit line for the portion of increasing flow, though not shown in this
plot, the baboon does display a region of decreasing flow in the basal regions of the
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lung (Glenny et al. 1999). The capillary model simulations could have been conducted
assuming a supine posture (for better comparison with supine measurements), but
since the pressure boundary conditions applied simply varied linearly with height,
similar results would have been obtained over a narrower height range.
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FIGURE 3.19: Comparison of model results with measured experimental values of (a)
RBC transit time, and (b) blood flow (relative to mean) with respect to

gravitationally-dependent height. Experimental data is shown in supine dogs (Hogg
et al. 1985), dogs in 3 different positions with respect to gravity (Wagner Jr et al. 1986),

humans, pre- and post-operatively in the lateral decubitus position, and in normal
subjects sitting upright (MacNee et al. 1989), upright baboons (Glenny et al. 1999),

and supine pigs (Glenny et al. 2000).

Figure 3.20(a) shows the effect of lung height on the total alveolar sac capillary
volume. The volume of the capillaries increases due to increased hydrostatic forces
down the lung, consistent with Figures 3.17(a) and 3.20(b) showing an increase in the
diameter and cross-sectional “sheet” height of the vessels, respectively.

Figure 3.20(b) plots the average sheet height with respect to lung height. The sheet
height value is determined in the dimensional model (refer (Huang et al. 2001)), from
which the elliptical dimensions (a∗, b∗) of the capillary vessels are calculated. This
plot shows a similar increase in sheet height with descending lung height as does
Figure 3.17(a), with a small decrease in height in the lowest regions of the lung.
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FIGURE 3.20: (a) Total alveolar sac capillary volume (ml) and (b) average capillary
“sheet” height in relation to vertical position in the lung.

3.4 Discussion

3.4.1 Cell transit time distributions in the upright lung

Fluorescence videomicroscopy has shown that a decrease in RBC transit time caused by
an increase in flow is partially offset by capillary recruitment and distension, therefore
leading to a narrowing of the transit time distribution (Presson Jr et al. 1994, Presson et
al. 1995, Presson Jr, Todoran, Witt, McMurtry & Wagner Jr 1997). This design property
is thought to be a stabilising feature to prevent RBC transit time from decreasing below
the theoretical minimum time of 0.25 s for complete oxygen saturation (Presson et
al. 1995). The regional variation simulations in the current study can be used to look at
the effect of increasing flow on the cell transit time distributions, as blood flow increases
in the lower regions of the lung.

Figure 3.15 plots RBC transit time versus the percentage of pathways with these
transit times. This plot shows smooth distributions and clearly represents the effect
of increased flow, namely a decrease in average transit time and a narrowing of the
distribution. This plot represents the distribution of transit times of certain pathways,
which does not necessarily represent the flow in this case. At maximal capacity flow
patterns may tend more towards this representation, as recruitment and distension
reach their limit. Figure 3.16, plotting the percentage of blood flow versus transit time,
shows a more scattered distribution. The high percentage of flow in particular transit
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time intervals indicates the presence of preferential pathways where the bulk flow
passes. Certain pathways have a lower overall resistance than others, therefore a higher
proportion of flow passes through them. This phenomenon has been documented
experimentally by Okada, Presson Jr, Godbey, Capen & Wagner Jr (1994). As the
flow increases, however, it becomes more homogeneously distributed as the resistance
in intermittently perfused pathways decreases, and the dispersion of transit times
narrows as shown in the lower lung region simulations.

Transit time distributions in the lower lung show, on average, shorter transit times
and a more homogeneous distribution due to higher flow, while in the upper lung
the opposite was observed. This narrowing in distribution is due to recruitment of
new capillaries and distension of previously recruited segments. Vessels which were
previously intermittently perfused become continuously perfused and have similar
resistance and flow to other perfused segments, thereby increasing the homogeneity
of perfusion and transit time distributions. Model results have reproduced the RBC
transit time phenomena observed in these experimental studies (Presson Jr et al. 1994,
Presson Jr et al. 1997), namely by illustrating that as flow increases the average transit
time decreases and the transit time distribution becomes more homogeneous due to
distension of vessels.

Terashima et al. (1999) investigated the effect of cigarette smoke on neutrophil
sequestration in the lung. Experimental results demonstrated an increase in the amount
of neutrophils sequestered in the lungs of animals exposed to smoke. Smoke exposure
causes an increased release of WBCs from the bone marrow, and these freshly released
cells are less deformable, and therefore become lodged in the small capillary vessels.
Model simulations with varying WBC cell cortex values (Figure 3.12) demonstrated
only a small influence of cell deformability on WBC transit times and stoppage.

Terashima et al. (1999) also showed that the percentage of neutrophils sequestered
in the gravity-independent regions (upper lung) was higher than in the gravity-
dependent regions. This study also speculated that these trapped WBCs, as a result
of increased elastase release, may contribute to the alveolar wall damage associated
with smoke-induced lung emphysema. Centriacinar (centrilobular) emphysema
characteristically affects the upper lobes and upper parts of the lower lobes of the lung
(Bourke & Brewis 1998). In vivo studies by Wiggs et al. (1994) have also demonstrated
higher WBC transit times in the upper lung, due to an increased frequency of
vessels with smaller diameters in these regions. The current model agrees with these
measurements and demonstrates that WBCs have a much longer transit time in the
upper lung (Figure 3.18(a)) and are trapped more frequently (Figure 3.18(b)) in this
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region.

3.4.2 Variation in blood pressure in the upright lung

It is a well known phenomenon that significant regional variations in ventilation,
perfusion, gas exchange, intrapleural pressure, alveolar expansion, and parenchymal
stresses exist in the upright mammalian lung. One school of thought is that these
differences are a result of the effects of hydrostatic pressure gradients (from gravity)
acting on the relatively large height of the lung and emphasised by the presence of an
extremely thin blood-gas barrier (West 1977, Prisk et al. 2001).

Controversy remains over the predominant origin of regional perfusion
heterogeneity. Early investigations using isolated perfused animal lungs concluded
that the major contribution to the distribution of blood flow was due to gravity; the
discrepancy between the hydrostatic pressure gradient in the blood vessels and the
absence of a gradient in the alveolar airways (West et al. 1964). More recent high-
resolution studies, using microsphere deposition techniques, have shown that these
regional blood flow variations can be maintained even under zero gravity conditions,
with the conclusion that gravity is an important but secondary determinant of regional
pulmonary blood flow (Glenny, Polissar & Robertson 1991, Glenny, Lamm, Albert &
Robertson 1991, Glenny et al. 1999, Glenny et al. 2000). These studies focused on the
effect of gravity on blood flow redistribution independent of lung compression and
concluded that the perfusion heterogeneity stems primarily from structural factors
and, to a lesser extent, from gravitational forces. Objections have been raised about
the lung volumes used at the time of microsphere injection (West 1992). The regional
differences of lung expansion caused by its weight were not taken into account and the
distribution of microspheres were measured after the lung was removed from the chest
and uniformly expanded to total lung capacity (TLC), with consequent changes to
regional lung volumes (West, Glenny, Hlastala & Robertson 2002). Despite continued
debate, it is still acknowledged that regional gradients exist, and gravity contributes to
them.

The persistence of a non-gravitational gradient has bearing on inter-species
comparisons made throughout the current study. Most of the experimental studies
used for comparison with the modelling results were from animals in which the
lung orientation in vivo is usually prone-inclined. In contrast the modelling study
considered an erect human lung, with uniform tissue properties. Experimental
measurements from the upright baboon lung (Glenny et al. 1999) are the most
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comparable anatomically to that of the human lung, and model results compare well
with the limited experimental results available for this animal. Model simulations
utilising a human lung in the supine posture could have been carried out, but since
the pressure boundary conditions applied assumed a linear gradient of pressure with
respect to gravitationally-dependent height, similar results would have been obtained
within a narrower height range.

Perfusion experiments have demonstrated that capillary perfusion always began as
the capillary pressure exceeded airway pressure, and that recruitment was purely due
to capillary pressure (Godbey et al. 1995). At low airway pressures the capillary bed
recruited over a narrow capillary pressure range, acting like a sheet. Increased lung
distension (via increased airway pressure) caused capillary distension to occur over
a wider range of pressures, in a more segment-by-segment basis. They hypothesised
that this was due to the increased tension of the fibre network, and the non-uniform
distribution of fibres resulting in non-uniform compression of capillaries leading to
more heterogeneous opening pressures. This sudden collapse of capillaries in the zone
2 region was displayed in the model. During simulations carried out in the upper (zone
2) flow regions of the lung convergence problems were encountered. If the venule
boundary pressure was less than alveolar pressure, capillary pressures would drop
below alveolar pressure and the vessels would collapse. Solutions fluctuated between
vessel collapse and vessel re-opening, due to pressure build up. Thus the solution
was not able to converge. Fung & Sobin (1977) indicated that if venule pressure is
below alveolar pressure there will be vessel collapse, the arteriole pressure will then
prevail and the vessels will be opened again. Previous studies have indicated that a
“flutter” condition occurs (Permutt, Bromberger-Barnes & Bane 1962), but, Fung &
Sobin (1977) states that this is not possible due to the small inertial forces relative to
the elastic, pressure and viscous forces in the capillaries. In zone 2 the flow is thought
to be governed by the difference between arterial and alveolar pressures (West 1995),
therefore the alveolar pressure was prescribed as the venule boundary condition in the
zone 2 region simulations.

Hogg et al. (1985) investigated regional differences in RBC transit in supine dog
lungs, and MacNee et al. (1989) measured the frequency distribution of RBC transit
times in the upper and lower regions of human lungs in the lateral decubitus position.
Both studies calculated RBC transit times for the entire pulmonary circuit. The
time spent in the microvasculature is approximately 82% of the total time (Clough,
Haworth, Hanger, Wang, Roerig, Linehan & Dawson 1998), therefore transit time
values for the full pulmonary circuit have been scaled for comparison with simulation
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results. The shortest mean transit time from (Hogg et al. 1985) was 1.62s (range 0.41 to
6s) adjusted to 1.33s, the longest mean transit time was 4.6s (range 0.9 to >20s), adjusted
to 3.77s. The overall mean transit time was 2.86s, adjusted to 2.35s, which is quite a bit
longer that the model average of 0.77 s over all height simulations. The model result is
also shorter than the experimental values of 1.6s and 3.0s in human (Hogg et al. 1994)
and 1.37s in dog (Hogg et al. 1988). The adjusted values from (MacNee et al. 1989)
are even longer than these transit times; adjusted average values of 3.24s, 3.32s, and
3.98s were measured in the apical, mid, and basal regions, respectively. RBC transit
time predictions made based on measurements of the diffusing capacity of the lung
for carbon monoxide to measure capillary volume and then dividing this volume by
cardiac output, give a better overall estimation of average transit in the entire lung.
RBC transit times measured using this technique have been found to lie in the range of
0.75-1 s (Hill, Power & Longo 1973, Hlastala 1972, Hlastala & Robertson 1998), these
values do compare well with the overall model prediction.

Wagner Jr et al. (1986) studied the vertical gradient of pulmonary capillary transit
times in anesthetized dogs. Transit times and perfusion indices were measured on
the surface of the “upper”, “middle” and “lower” lung by following the passage of
fluorescent dye through the capillaries using in vivo television microscopy. In these
investigations a window was inserted in the left lower lobe. The same area of lung
was studied but the dogs were oriented in three different positions with respect to
gravity. To simulate the “upper” lung, measurements were done with the dog in the
right lateral decubitus position. The “mid lung” was studied by placing the dogs on
a 20o sloped platform in the head-up semirecumbent position. Finally the “lower”
lung was studied with dogs in the left lateral decubitus position. This investigation
assumed that the plasma dye bolus measurement was a reasonable approximation of
RBC transit time, however it has subsequently been shown that plasma takes about 1.4
times longer to traverse the capillary bed than RBCs (Presson et al. 1995). Adjusting for
this phenomenon, the RBC transit times from (Wagner Jr et al. 1986) are therefore 8.78s

in the upper lung (12.3s for plasma), 2.21s in mid lung (3.1s plasma) and 1.14s in the
lower lung (1.6s plasma). These transit time results are compared with model results
in Figure 3.19(a). The results from Wagner Jr et al. (1986) are from subpleural capillary
networks and are therefore not necessarily quantitatively representative of the internal
capillary network. The subpleural capillary network is less dense, the capillaries are
longer and wider, and the distance from arteriole to venule is shorter than for internal
capillaries. The subpleural capillary mechanics may also differ as they are exposed to
pleural forces on one side and alveolar on the other, as opposed to internal capillaries
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which are exposed to alveolar pressures on both sides (Godbey et al. 1995). Lamm
& Albert (2000) made observations of vessels directly beneath the pleura and in the
interior regions of rabbit lungs in different positions. They concluded that flow through
subpleural capillaries is less than that which occurs deeper in the interior, but that the
regional distributions of flow and the effects of zonal conditions are similar in the two
regions. Therefore results from subpleural networks are qualitatively representative,
but may not be so quantitatively accurate.

The blood cell transit time results presented in Figures 3.19(a) and 3.18(a) show a
wide variation in transit times from the apical to basal regions of the lung. As the
vessel diameters decrease with height up the lung resistance is increased. The transit
time range may be larger than expected due to the nonlinear relationship between
the apparent viscosity of the blood and vessel diameter (see Equation 3.19 and Figure
3.6). As vessel diameters approach the minimum vessel diameter a RBC can pass
through (2.7 µm) the apparent viscosity of the blood rapidly increases reflected by a
large increase in resistance.

Figure 3.19(b) compares published flow results with model results. The model
results compare reasonably well with all of the experimental results. The experimental
data shown in Figure 3.19(b) is the line of best fit through a high-resolution data
set (Prisk et al. 2001). All other experimental data in Figure 3.19 (b) are from lower
resolution studies, and show average blood flow within isogravitational planes.

The model transit time results presented in Figure 3.19(a) are quite a lot shorter
than the published experimental data. There are known weaknesses in the capillary
model, a major one being the assumption of structural uniformity within the lung, for
example the current model does not incorporate forces provided by the fibre network,
and all alveoli are roughly of equal size. Recent studies have argued that regional
variations in flow are largely due to structural factors (Hlastala & Glenny 1999). The
current model only investigates the influence of gravity on capillary blood flow. There
is limited experimental data describing structural changes with respect to lung height
making it difficult to include in the model. Future coupling of the capillary flow model
to models of blood flow in the larger vessels and soft-tissue mechanics may be able to
represent structural differences through functional properties, for example variation
in alveolar size and shape and inlet/outlet boundary conditions prescribed by the
arterioles/venules. Another possibility for the discrepancy of model results versus
experimental data is the influence of in vivo tissue remodelling. Quantification of this
has not been experimentally verified rendering it difficult to include in the current
model. As more physiological detail becomes available the current model could be
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extended to more realistically represent in vivo conditions.
The classic ‘zonal model’ of pulmonary blood flow (West et al. 1964, Prisk et

al. 2001) includes a more recently described zone 4 of reduced flow found in the basal
and peripheral regions of the lung. This zone is demonstrated in the model, but is
purely due to the effects of the dimensional model. The high septal elasticity results
in smaller average diameter vessels in the very lowest regions of the lung, which
reduces flow. In reality zone 4 may be produced due to the relatively poor expansion
of the lung parenchyma and therefore of the extra-alveolar vessels, leading to higher
resistance and lower flow at a level higher up than the capillaries. Changes in the
extra-alveolar vessels were not included in the model at this stage, and resistance in
the tributary arteriole and venule vessels remained constant for all simulations. The
effect of variation in alveolar volume distributions in the lung may also play a role
in the development of the zone 4 flow region. Alveoli in the lower regions of the
lung are more compressed, due to gravity, and therefore are generally smaller than
alveoli in the upper lung region. Equivalent alveolar volumes were used for all of the
simulations in this chapter. Differences in alveolar size would be interesting to examine
with an extended model. This could be approached by coupling the current model with
a model of soft-tissue mechanics to better prescribe pressure boundary conditions and
deformation of the alveolar structure.

The variations shown in Figure 3.19 may also be due to species-related differences.
The model is based on human data, while the published results are from upright
baboons (Glenny et al. 1999), supine dogs (Hogg et al. 1985) and pigs (Glenny
et al. 2000). Dogs in the supine position had a total vertical height 12 cm, and pigs
approximately 18 cm as opposed to the 30 cm height of an upright human lung. The
baboon lung is the most comparable anatomically to that of the human lung, with an
upright vertical height of about 25 cm.

The empirically-based relationship, implemented in the capillary dimensional
model, between alveolar volume and Ptm was derived from experimental studies on
rat lungs (Mercer et al. 1987). This use of this relationship assumes that human lungs
have a similar alveolar response to changes in Ptm. Measurements such as this would
be very difficult to obtain from human tissue, due to ethical issues, and it is believed
that this model is a valid approximation for the current model.

This flow model neglects the effect of WBCs on blood viscosity, due to lack of
available models to represent this. Future improvement of the model could include
an empirically-based relationship to reflect the effect of WBCs on blood viscosity in the
microcirculatory network.
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3.5 Conclusions

This chapter describes the development of an alveolar-capillary flow model, verifies
and confirms model results, and investigates the parameter sensitivity of the
microcirculatory model. Future applications of this model could include coupling
with models of gas exchange, soft-tissue mechanics, blood flow in the conducting
arterial and venous vessels, and air flow in the bronchial system.

The current model is limited by the difficulty of prescribing realistic pressure
boundary conditions. Accurate pressure measurements at the microvasculature
level are hard to obtain. Coupling this model with the model of blood flow in
the conducting arteries and veins will allow more physiologically-realistic pressure
boundary conditions to be applied at the capillary level. This will also incorporate the
impact of the larger vessel flow on the results at the microcirculatory level to be more
representative of experimental results. Hydrostatic pressure gradients in the lung
will also be more realistically represented: in the current study the pleural pressure,
arteriole and venule boundary pressures are assumed to vary linearly with height.

Blood flow has been modelled in the microcirculatory alveolar sac geometry
developed in Chapter 2 and used to investigate flow phenomena in different regions
of the lung. Comparisons of red and white blood cell transit times in the upper,
mid, and lower lung show physiologically consistent trends of a decreasing average
transit time and an increased homogeneity of transit time distributions as a result of
increasing average capillary diameter and flow down the height of a vertical lung. The
model was found to reproduce experimentally consistent trends in red blood cell transit
times and relative blood flows with respect to lung height. This model enables flow
properties and cell transit time behaviour in the pulmonary microcirculation under
varying conditions, for example in different ‘zones’ of the lung, to be explored.

A summary of this work can be found in Burrowes et al. (2004) and Tawhai &
Burrowes (2003).



100 Microcirculatory blood flow



Chapter 4

Geometric modelling of the large
pulmonary vessels

1 2 3 4 5 6

geometry:
trees:
Structure−function
investigations

Summary:

Future work
geometry:

Previous work

Pulmonary physiology

Introduction: Alveolar−capillary Capillary blood flow: Arterial−venous Blood flow through
the arterial & venous

Alveolar sac geometry,
Capillary model

Regional variations in
flow and cell transport finite element models

of the arterial and 
venous trees

To enable detailed investigation of structure-function relationships in the
pulmonary circulation an anatomically-based finite element model of the arterial
and venous networks has been developed to more accurately reflect the geometry
found in vivo. This chapter describes the development of this model. Geometric
models of the arterial and venous tree structures are created using a combination of
multi-detector row x-ray computed tomography (MDCT) imaging to define around
2500 vessels from each tree (Section 4.2.1), a volume-filling branching algorithm to
generate the remaining accompanying conducting vessels (Section 4.2.2), and an
empirically based algorithm to generate the supernumerary vessel geometry (Section
4.2.3). The explicit generation of supernumerary vessels is a unique feature of the
computational model. Analysis of branching properties and geometric parameters
demonstrates close correlation between the model geometry and anatomical measures
of human pulmonary blood vessels. A total of twelve Strahler orders for the arterial
system and ten Strahler orders for the venous system are generated, down to the
equivalent level of the terminal bronchioles in the bronchial tree. This model has been
constructed to accurately represent available morphometric data derived from the
complex asymmetric branching structure of the human pulmonary vasculature in a



102 Geometric modelling of the large pulmonary vessels

form that will be suitable for application in functional simulations in Chapter 5.

4.1 Introduction

Experimental studies to investigate the origin of pulmonary blood flow heterogeneity
(Glenny et al. 1999, Glenny, Polissar & Robertson 1991, Hlastala & Glenny 1999)
have suggested that non-gravitational mechanisms play a far greater role than was
suggested by earlier studies (West et al. 1964). Normal variations in lung tissue
material properties, the branching vascular tree, regional gas volumes, and the position
of the heart are just a few of the interacting components influencing blood flow
distribution in the lung. The contribution of the structure of the pulmonary vascular
tree to blood flow heterogeneity has previously been investigated using computational
models (Dawson et al. 1999, Glenny, Polissar & Robertson 1991, Krenz et al. 1992,
Parker et al. 1997).

Each bronchial airway is accompanied by an arterial vessel, but there are many more
pulmonary arterial vessels than there are branches in the bronchial tree; the same is true
for the venous system. These vessels, which do not have a corresponding bronchial
airway, have been termed ’supernumerary’ blood vessels. These very small vessels
tend to bud at right angles from the accompanying blood vessels and branch rapidly
to directly supply the closest pulmonary acinus. Previous models of the pulmonary
vascular trees (Dawson et al. 1999, Glenny, Polissar & Robertson 1991, Krenz et al.
1992, Parker et al. 1997) have not explicitly differentiated the supernumerary vessels
from the accompanying vessels, yet these vessels have unique structural and functional
differences that may prove to be particularly important in computational studies that
investigate perfusion heterogeneity in the normal lung, during exercise, or when a
vessel is occluded.

In the current study geometric models of the pulmonary arterial and venous trees
are constructed using a combination of multi-detector row computed tomography
(MDCT) to identify the largest vessels, a volume-filling branching (VFB) algorithm
(Tawhai, Pullan & Hunter 2000) to generate the vessels that accompany airways to the
level of the respiratory bronchioles, and a vessel-specific algorithm that incorporates
the supernumerary arteries and veins. The focus of this study is on creating a
representative geometric model for use in several possible functional investigations.
This study develops the framework for creating patient-specific models derived from
MDCT scans.
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4.2 Methods

4.2.1 Vessels from MDCT images

Grayscale bitmap masks segmented from MDCT data of a normal unsedated human
male in the supine posture, with lungs inflated to (and held at) 90% vital capacity (7.05
L), were obtained from the Department of Physiological Imaging at the University
of Iowa. The masks are a resource from the Lung Atlas (Li, Christensen, Hoffman,
McLennan & Reinhardt 2003), and are the same data set used in derivation of models
of the conducting airways by Tawhai, Hunter, Tschirren, Reinhardt, McLennan &
Hoffman (2004). A pitch of 1.5, collimation of 1.2, 100 mAs, 120 kV, slice thickness of
1.3 mm, slice increment of 0.65 mm, reconstruction matrix size of 512 x 512, and a field
of view of around 35 cm was used for the spiral scanning in a Marconi MX8000 MDCT
scanner. Vessel bifurcation points and 1D lines supplying connectivity information
were also accessed from the Lung Atlas resource, details on the skeletonisation
techniques can be found in (Palagyi, Sorantin, Balogh, Kuba, Halmai, Erdohelyi &
Hausegger 2001).

Use of a contrast agent allowed automatic identification of numerous vessels in
both the arterial and venous trees (Figure 4.1), but the vessels were not automatically
differentiated as arterial or venous vessels. This differentiation was performed
manually by first identifying the largest pulmonary arteries and veins, and then
following the connectivity of each tree while tagging each successive vessel as either
an artery or vein. In many locations the arterial and venous trees passed so closely to
each other that the skeletonisation software (Palagyi et al. 2001) was unable to identify
them as separate trees. In this case the tree connectivity revealed many more than three
vessels converging at a bifurcation point. In most cases the correct classification of the
vessels was clear from their orientation or from the relationship between the vessels in
the next generation, but for locations where it was not clear no further classification of
vessels was made beyond that point.

Each vessel segment (the portion of vessel between two branch divisions) was
modeled as a 1D linear finite element through the centre of the vessel. A finite element
node was placed at each bifurcation point (at the intersection of 1D centrelines) in
the segmented (and classified) tree and the tree connectivity was described by joining
elements at the appropriate nodes.
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(a) (b) (c)

FIGURE 4.1: Grayscale bitmap masks of the large arterial and venous vessels
segmented from MDCT data of a normal human male: (a) right side view, (b) front
view, (c) left side view. The use of contrast agent allows identification of numerous

blood vessels, however the arteries and veins are unidentifiable from each other, these
masks therefore include both arterial and venous trees. This data was provided by the
Department of Physiological Imaging at the University of Iowa, from the Lung Atlas

project (Li et al. 2003).

4.2.2 Accompanying vessels

Anatomical studies have identified a characteristic relationship between the airway,
venous, and arterial trees: each airway is ’accompanied’ by an artery (Elliot &
Reid 1965, Maina & van Gils 2001, Weibel 1963), and is more loosely followed by veins
that bifurcate between neighbouring airway and arterial bifurcations (Weibel 1984),
as illustrated in the schematic diagram in Figure 4.2. The branching geometry of the
accompanying vessels is therefore very similar to the branching geometry of the airway
tree. The volume-filling branching (VFB) algorithm - previously developed to model
the conducting airway tree (Tawhai et al. 2004, Tawhai et al. 2000) - was therefore used
in the current study to generate accompanying arterial and venous vessels such that
the models are continuous with the MDCT-derived model trees.

4.2.2.1 Host mesh

The volume-filling algorithm generates a branching tree into a constraining host
volume, in this case the pleural cavity. The same pleural volume geometry as defined
by Tawhai et al. (2004) was used to generate the blood vessel structure in the current
study. Finite element volume meshes of each of the five lobes (Figure 4.3(c)) were fitted
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FIGURE 4.2: Schematic diagram illustrating the relationship between the three
conducting trees in the lung; the arteries (red) closely follow the airways (pink), while

veins are found to be positioned half way between arterial-airway pairs.

to data point clouds (Figure 4.3(b)), generated via grayscale information provided by
lung surface masks (also obtained from the Lung Atlas) (Figure 4.3(a)) using a geometry
fitting procedure (Fernandez, Mithraratne, Thrupp, Tawhai & Hunter 2004). Initial
linear elements were fitted to the cloud of data points by minimizing the distance
between each data point and the projection of the data point onto the element surface.

Cubic Hermite basis functions are used in the mathematical description of the lobar
surfaces, this enables a more accurate description of curved surfaces more efficiently,
with a relatively small number of elements (Bradley, Pullan & Hunter 1997).

4.2.2.2 Volume-filling branching algorithm

A VFB (volume-filling branching) algorithm developed in 3D by Tawhai et al. (2000) is
implemented in the current study from the MDCT vessel end points to create arterial
and venous trees into the MDCT derived pleural host volume.

Each lobe was filled with a grid of uniformly spaced seed points (illustrated
schematically in 2D in Figure 4.4(a) which were subdivided according to which MDCT-
based vessel they were closest to (N MDCT-model terminal vessels = N sets of seed
points) (Figure 4.4(b)). Each set of points was further divided by the plane that
contained the centre of mass of the points and the MDCT-model parent branch (2N
sets of seed points) (Figure 4.4(c)). The first VFB vessels were generated starting at the
end of the corresponding MDCT-model vessel, directed towards the centre of mass
of the subset of points, and terminating 40% of the distance to the centre of mass
(Figure 4.4(c)) (Tawhai et al. 2004, Tawhai et al. 2000). This generated 2N new model
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(a) (b) (c)

FIGURE 4.3: Finite element model of each of the five lobes typical of the human lung
(illustrated in different colours): (a) Rendered volumetric image reconstruction from
the Lung Atlas (Li et al. 2003); (b) data points created on the surfaces of each of the
lobes, a minimisation technique is then used to fit initially linear finite elements to

these data points. (c) The final finite element surface model used in the current study
obtained using a geometry fitting procedure (Fernandez et al. 2004).

vessels. The point reassignment (to closest terminal branch), plane splitting, and branch
generation steps were repeated (Figure 4.4(d),(e)) until either the generated length was
less than a minimum length, or else the new branch supplied only a single seed point.
For paths that terminated by length limit, all but the closest seed point to the end of the
generated branch were reassigned to the global set of seed points for further branch
generation. The VFB algorithm is described in more detail in Tawhai et al. (2004).
Figure 4.4(f) displays the final branching structure generated into the simplified 2D
rectangle.

Arterial and venous trees were generated using the same seed point density (30,000
terminal bronchioles / 7.05 L (Haefeli-Bleuer & Weibel 1988)), branching fraction
(distance to centre of mass = 40%), and angle limit (180o) as used by Tawhai et al. (2004)
for modelling the human conducting airway tree. Minimum vessel lengths of 1.4 mm

and 1.8 mm were used for the arterial and venous trees, respectively. These values were
chosen using the criteria that the mean length of the generated terminal branches was
consistent with anatomical measurements of 1.38 mm (arteries) and 1.34 mm (veins) for
the lowest order accompanying vessels (Strahler order 7) (Horsfield 1978, Horsfield &
Gordon 1981).
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FIGURE 4.4: Demonstration of the 3D volume-filling branching (VFB) algorithm
(represented in 2D) developed by Tawhai et al. (2000) used to generate the geometry of
the accompanying (branches accompanying airways) arterial and venous vessels. (a)
Evenly space seed points generated within host volume, initial MDCT-derived blood
vessels illustrated in red; (b) data points allocated to closest MDCT vessel branch; (c)
data set split by plane containing centre of mass of points and MDCT parent branch,
new vessel created 40% of distance to centre of mass; (d),(e) this process is repeated

either until the branch length is less than a length limit or until the branch supplies a
single seed point. (f) Resulting volume-filling branching structure. Images courtesy of

M. H. Tawhai, the University of Auckland.
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Diameters for the MDCT-based and VFB-based trees were allocated using
anatomically-based Strahler diameter ratios (Rd) (Horsfield 1978, Horsfield &
Gordon 1981), such that:

logD(x) = (x − N)logRd + logDN (4.1)

where D is the computed diameter for any vessel of order x, x is the Strahler order,
N is the highest vessel order, and Dn is the diameter of the vessel of highest order.
Values of Rd = 1.6 (Horsfield 1978) and 1.7 (Horsfield & Gordon 1981) were used for
the arterial and venous trees, respectively.

4.2.3 Supernumerary vessel algorithm

An algorithm was developed to mimic the limited known geometric characteristics of
supernumerary vessels, and to produce models of the full venous and arterial trees with
anatomically-consistent geometry. The following criteria or anatomical information
was used:

• Weibel (Weibel 1963) estimated that supernumerary branches begin to emerge
when the main tract vessel has a diameter of less than 1.5 mm (beyond
approximately the eighth generation). Supernumerary vessels were therefore
added to branches of generation 8 and higher in the MDCT- and VFB-based
models.

• Supernumerary vessels emerge at roughly 90o from the accompanying branch
and branch rapidly to supply the closest parenchymal tissue;

• The final tree was required to have Rb close to 3.0 and 3.3 for the arterial and
venous trees, respectively.

The following steps were used to generate the supernumerary vessels; this
procedure is represented schematically in Figure 4.5:

1. The mean ratio of supernumerary vessels to accompanying vessels is specified.
For each vessel, the number of local supernumerary branches is calculated as the
integer value 1 (i.e. if the overall ratio is 2.7 there will be a 70% chance of having
3 supernumerary vessels per accompanying vessel, and a 30% chance of having
2 supernumeraries per accompanying vessel). Values of 2.5:1 (arterial) and 3.0:1
(venous) were used to produce appropriate branching ratios.
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2. The starting point of each supernumerary vessel is located at an evenly spaced
position along the length of the accompanying vessel (i.e. if there is one
supernumerary vessel it is located half way along the accompanying vessel), and
the closest adjacent seed point from the VFB model generation (representing a
single acinus) is calculated. The angle this point makes to the parent vessel is
checked to ensure it is close to 90o, if not the next closest point is found.

3. A new branch is created from the accompanying branch towards the closest
acinus (seed point). The diameter of the vessel is defined as a fraction of the
parent branch diameter (0.3 in the current model for both the arterial and venous
systems). The length of the vessel is calculated using length to diameter ratios of
6:1 for the arteries (Horsfield 1978) and 8:1 for the veins (16).

4. The diameter-based Strahler order of each new vessel is determined based upon
typical diameter ranges from anatomical data (Horsfield 1978, Horsfield &
Gordon 1981). If it is not a terminal branch (Strahler order 6 for the current model)
the algorithm proceeds to step 5.

5. If the vessel is to bifurcate the order number is decreased by 1, and the two closest
data points are found (limited by an angle specification of between 20o and 160o),
and each branch then extends towards its closest data point (which is different
for each daughter). The diameter is allocated as the average anatomical diameter
value for the new Strahler order number of the vessel; the length is set as specified
in step 3. The supernumerary vessel successively bifurcates in this manner until
a terminal order vessel is obtained, or until the vessel reaches a VFB seed point.

4.2.4 Analysis of branching geometry

Each full model tree (MDCT-based, accompanying, and supernumerary vessels)
was classified by Strahler order. The branching, diameter, and length ratios (Rb,
Rd, and Rl, respectively) were calculated for each of: MDCT vessels only, MDCT
plus accompanying vessels, MDCT plus accompanying plus supernumerary vessels.
Branching angles were calculated for the complete model, where θbranch is the angle
between a parent and a child branch, and γ (rotation angle) is the angle between the
plane containing the parent branch and its sibling and the plane containing the two
daughter branches. The angles between the parent and the major (θmajor) and minor
(θminor) child branches were also calculated, where the minor branch is classified as the
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(a) (b) (c) (d)

FIGURE 4.5: Schematic illustration of the supernumerary algorithm: (a) Starting with
the accompanying blood vessels and a uniformly distributed grid of points (generated
in the VFB algorithm) within the lung volume (each point representing an acinar unit);

(b) supernumerary branches emerge at right angles from the accompanying branch
and grow towards the closest point; (c), (d) vessels branch and continue to grow
towards the closest point, until the point is reached or an order 6 (terminal order)

vessel is obtained.

branch with the smallest diameter, or if both daughter branch diameters are equal the
minor branch is defined as the branch with the largest branch angle; the major branch
is the other branch of the two.

4.3 Results

4.3.1 Vessels from MDCT

Approximately 2500 branches in each of the arterial and venous trees were manually
differentiated from the 1D skeleton of the arterial and venous trees derived from
volumetric MDCT images. Arterial paths were identified to between generations 6
and 26 (mean 18), and venous paths were identified to between generations 6 and 23
(mean 15). The isolated MDCT-based vessels had equivalent to 7 (incomplete) Strahler
orders in the arterial tree and 6 (incomplete) Strahler orders in the venous tree (note
that the venous tree has two less bifurcations at the heart inlet). Figure 4.1 shows
the rendered iso-surfaces for the segmented blood vessels (both arterial and venous)
from MDCT images. Figure 4.6 displays the separated arterial (red) and venous (blue)
vessels extracted from the 1D skeleton derived from MDCT data. Each vessel segment
is represented by a 1D line (or finite element), joined by a node at either end of the
segment. Diameters are allocated based on Strahler order number and cylinders are
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drawn to represent these diameter values.

(a) (b) (c)

FIGURE 4.6: Arterial (red) and venous (blue) vessels obtained from the 1D skeleton
information generated from MDCT scan data. Approximately 2500 branches from each

of the trees were separated from the MDCT data. 1D lines are used to represent the
vessels, joined by a node at either end. Cylinders are drawn using the Strahler order

based diameter values. Views shown: (a) right, (b) front, (c) left.

4.3.2 Accompanying vessels

Generation of accompanying vessels to the level of the respiratory bronchioles
produced just more than 57,000 additional branches in each tree, resulting in trees
with nearly 60,000 vessels each. The MDCT plus accompanying vessel arterial tree
had a total of 11 Strahler orders, compared with 9 Strahler orders for the venous tree.
Figure 4.7 shows the MDCT-based and accompanying vessel models for the arterial
(red) and venous (blue) models. Rb for the arterial tree was 2.78, and for the venous
tree was 2.93 (Table 4.1).
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(a) (b)

(c)

FIGURE 4.7: Resulting arterial (red) and venous (blue) models generated using the
volume-filling branching (VFB) algorithm (Tawhai et al. 2000), including major vessels
from MDCT scan data. Each tree consists of approximately 60,000 vessels. Each vessel
represented by a 1D finite element, with a finite element node at either end. Cylinders

drawn representing the Strahler order based diameter values.
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4.3.3 Supernumerary vessels

Addition of the supernumerary vessels increased the total number of vessel segments
in the arterial model to approximately 375,000, and the total number in the venous tree
to approximately 497,000. A close in view of the supernumerary and accompanying
vessels is shown in Figure 4.8. The complete model comprised a total of 12 arterial
Strahler orders and 10 venous Strahler orders; that is, addition of the supernumerary
vessels increased each tree by only 1 Strahler order. The Strahler Rb increased from 2.8
to 3.0 for the arterial tree, and from 2.9 to 3.4 for the venous tree (Table 4.1), which is
much closer to the anatomical values than the MDCT-based plus accompanying vessel
models.

FIGURE 4.8: Close in view of the model supernumerary arterial blood vessels (red)
emerging from the larger accompanying blood vessels (gray). This image

demonstrates the vast number of supernumerary blood vessels compared to the
number of accompanying vessels, the ratio being 2.5 supernumerary arteries for each

accompanying arterial vessel in the final model.

4.3.4 Geometric analysis

Branching angles calculated for the full vessel model, for the conducting airway model
from Tawhai et al. (2004), and from anatomical studies of the airway tree are listed
in Table 4.2. Branching angles (branching angle θbranch and rotation angle γ) for the
accompanying arterial and venous trees are very similar to those for the conducting
airway network. The addition of supernumerary vessels increases θminor and decreases
θmajor.

Figure 4.9 plots Strahler order against number of branches for the model at all
three stages of development (MDCT, plus accompanying vessels, plus supernumerary
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MDCT vessels +VFB vessels +Supernumerary Anatomical data
Rb

arteries
1.29 (R2=0.16) 2.78 (R2=0.99) 3.04 (R2=1.00) 3.03 (6-17) a, 3.36

(1-15) b

Rd

arteries
1.57 (R2=1.00) 1.57 (R2=1.00) 1.57 (R2=1.00) 1.60 (1-17) a, 1.56

(1-15) b

Rl

arteries
1.42 (R2=0.77) 1.52 (R2=0.92) 1.50 (R2=0.95) 1.49 (1-14) a, 1.49

(1-15) b

Rb

veins
1.82 (R2=0.94) 2.93 (R2=0.99) 3.41 (R2=1.00) 3.30 (1-17) c, 3.33

(1-15) b

Rd

veins
1.70 (R2=1.00) 1.65 (R2=0.99) 1.66 (R2=1.00) 1.69 (7-14) c, 1.58

(1-15) b

Rl

veins
1.83 (R2=0.98) 1.65 (R2=0.89) 1.64 (R2=0.94) 1.68 (7-14) c, 1.50

(1-15) b

TABLE 4.1: Strahler-based branching, diameter, and length ratios for the three stages of
model development: MDCT vessels, plus VFB vessels, plus supernumerary vessels,

compared with anatomical data.
a b c d

a (Horsfield 1978)
b (Huang, Yen, McLaurine & Bledsoe 1996)
c (Horsfield & Gordon 1981)
dThe numbers in brackets in the anatomical data list represent the Strahler order number range for

which the ratio was determined. The data from (Huang et al. 1996) used the diameter-defined Strahler
ordering method, therefore the main comparative data considered is that of (Horsfield 1978, Horsfield
& Gordon 1981), which is based on the Strahler ordering system.

vessels) and compares with estimated numbers of branches from anatomical studies
(Horsfield 1978, Horsfield & Gordon 1981). Figures 4.10 and 4.11 similarly plot the
diameter and length values as a function of Strahler order. The different stages of
model development are included and compared with anatomical data (Horsfield 1978,
Horsfield & Gordon 1981).
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Full
arterial
model

Full
venous
model

MDCT
+ VFB
arteries

MDCT
+ VFB
veins

Airway
modela

Published
airway data

θbranch 47.29o ±
42.88o

51.52o ±
42.50o

49.37o ±
29.04o

50.79o ±
29.39o

50.31o ±
28.92o

37.28o b, 39o,
43o c

γ 83.27o ±
55.58o

81.93o ±
53.52o

89.24o ±
45.86o

89.91o ±
44.60o

89.99o ±
43.28o

79o c, 90o d

θminor 83.25o ±
19.71o

83.19o ±
18.68o

53.32o ±
29.45o

54.35o ±
29.57o

53.00o ±
20.02o

-

θmajor 11.23o ±
26.50o

19.85o ±
35.46o

45.41o ±
28.08o

47.23o ±
28.77o

47.63o ±
28.56o

-

TABLE 4.2: Branching angles of the model generated using a combination of
MDCT-derived vessels, VFB algorithm, and supernumerary vessel algorithm,

compared with model and anatomical data for the conducting airways.
a b c d e

a (Tawhai et al. 2000)
b (Horsfield & Cumming 1967)
c (Sauret, Halson, Brown, Fleming & Bailey 2000)
d (Horsfield 1985)
eResults are mean ± standard deviation. Values from anatomical studies in the final column are

followed by their reference in brackets.
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FIGURE 4.9: Strahler order number versus number of branches showing the
progression of the model towards anatomical data for (a) the arterial and (b) the
venous network. Plots show the number of branches from MDCT data, plus VFB

vessels, and plus supernumerary vessels.
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FIGURE 4.10: Strahler order number versus branch diameter for different stages of
model development for (a) the arterial and (b) the venous network. Plots show the
average diameter per Strahler order from MDCT data, plus VFB vessels, and plus

supernumerary vessels. Diameters were allocated on the diameter ratio derived from
these studies, therefore a good match is shown.
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FIGURE 4.11: Strahler order number versus branch length showing the different stages
of model development for (a) the arterial and (b) the venous network. Plots show the
average vessel length per Strahler order from MDCT data, plus VFB vessels, and plus

supernumerary vessels.
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4.4 Discussion

Studies into the origin of blood flow heterogeneity in the lung have highlighted
the prominent functional significance of the asymmetric branching structure of the
pulmonary vasculature, suggesting that gravitational factors are a minor determinant
of flow distribution (Glenny et al. 1999). Previous studies have highlighted the
intimate relationship between structure and function in the pulmonary circulatory
system through both computational (Dawson et al. 1999, Krenz et al. 1992, Parker
et al. 1997) and experimental investigations (Glenny et al. 1999, Glenny, Polissar &
Robertson 1991). Although these previous models have been based on anatomical
measures, they cannot represent the geometry of an individual subject, nor do they
provide accurate spatial information. This limits their application in computational
studies where the vessel’s 3D orientation is important, for example, if correlations
between imaging data and model results need to be made. ’Anatomically-based’
models - such as presented by Tawhai et al. (2000) for the human bronchial airways,
and developed further by Tawhai et al. (2004) for the human and ovine airway tree - are
derived from medical imaging and have subject-specific 3D branching geometry. This
type of model accurately represents the measured average geometry of the airway tree
and has a further advantage of relating individual airways to their location in the lung.
The vascular models created in this study are of the same nature, whereby the future
possibilities of coupling structural or functional imaging information to computational
modeling will allow specific structure-function relationships to be investigated.

The development of a computational model of normal human pulmonary vascular
structure can be applied to understanding normal hemodynamics, and investigating
the functional changes occurring in pulmonary vascular diseases as a result of vascular
remodeling. The current study has developed an anatomically-based finite element
model of the human pulmonary macro-circulation that is suitable for application in
such studies. The largest arterial and venous vessels were identified from multi-
detector row x-ray computed tomography (MDCT) scans from the Lung Atlas (Li et
al. 2003). This technique enables a more accurate description of vessel geometry and
allows patient- and species-specific models to be generated. A volume-filling algorithm
(Tawhai et al. 2000) was initiated from the MDCT-derived vessel endpoints to create a
mathematical representation of the smaller accompanying blood vessels unidentifiable
from MDCT images. The algorithm ’grows’ these vessels into an MDCT defined pleural
host volume down to the equivalent level of the respiratory bronchioles. This creates
arterial and venous trees which are somewhat governed by the shape of the lobe
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surfaces and the positions of the initial MDCT derived vessels, thereby producing a
more realistic, integrated model.

4.4.1 MDCT vessels

The MDCT imaging used contrast agent injected into the pulmonary circulation to
enhance the contrast between the blood vessels and surrounding tissue. This, however,
resulted in an augmented arterial-venous data set from which it was very difficult to
extract the separate trees. The segmented images, shown in Figure 4.1, contain both
the arterial and venous vessels. There were several points where the two trees met and
appeared to join. The two trees were separated by visually predicting which vessels
belonged to which system, therefore some uncertainty remains over whether each of
the vessels distinguished is correctly allocated to the arterial or venous system. The
algorithm used to generate the centreline data in this study resulted in centrelines
which were not always accurately located. The complex, intertwining nature of the
pulmonary vasculature meant that several of the centrelines went outside of the vessel
boundaries and crossed over to meet adjacent vessels. The centreline algorithm also
superimposed several bifurcation points on top of each other, so it appeared as if there
were multiple branches emerging from a single branch point. In reality it is most likely
that the system forms only bifurcations in close succession, and possibly trifurcations,
but not higher orders than this, corrections were made to reflect this and ensure no
vessels overlapped. On inspection of the actual MDCT segmented vessel surfaces it was
apparent that most junctions were bifurcations, and for these reasons the vessels were
selected manually. Diameter values for the larger vessels were not able to be derived
via MDCT due to the same issues explained above, as the amount of uncertainty was
too high. Segmentation algorithms and reconstruction techniques are constantly being
improved, and in the near future it should be possible to use automated techniques
to obtain more extensive MDCT-derived, patient-specific models of the arterial and
venous trees (Shikata, Sonka & Hoffman 2004). MDCT imaging enables the pulmonary
vessels to be located and measured in vivo, thereby avoiding any vessel deformation
that may occur during casting. The use of high resolution imaging data also provides
greater scope for establishing normative ranges of variation in geometry and vessel
distension in different orientations or at different blood pressures - which is the goal of
the Lung Atlas (Li et al. 2003).
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4.4.2 Accompanying blood vessels - VFB algorithm

Tawhai et al. (2004) investigated the influence of lobar geometry and the effect of using
MDCT derived vessels as starting points as opposed to lobar branches when using
the VFB algorithm on the branching ratio of the conducting airway model. The VFB
algorithm was generated into the left and right lung volumes, as opposed to the five
separately defined lobes; this caused the Strahler based branching ratio to decrease by
7.5%, demonstrating that the lobar constraining surfaces contribute to the asymmetry
of the pulmonary trees. Generation of the VFB vessels from lobar branches decreased
the branching ratio a further 5.3% from the initial branching ratio, indicating that the
more accurate definition of large vessels via MDCT also increased the asymmetry of
the tree. Tawhai shows that the branching geometry of the airway tree (and hence
the geometry of the accompanying vessels) is modeled well by the VFB algorithm,
regardless of the initial number of MDCT vessels. These comparisons were not sought
to be reproduced in this study, however similar behavior has been observed in the
current vascular model. This may have implications for generating vascular models
for different species, where the shape of the lung is significantly more asymmetric than
the human lung.

4.4.3 Supernumerary vessels

Each airway is known to have an accompanying artery and vein, but in addition
to these vessels there are also many extra blood vessels unaccompanied by airways
- the ’supernumerary’ vessels (Elliot & Reid 1965). Morphological studies have
shown that pulmonary vascular branching is not a classical dichotomy and that the
supernumerary vessels are a characteristic feature of pulmonary arterial and venous
trees (deMello & Reid 1991, Elliot & Reid 1965). Supernumerary vessels are not found
on angiograms, due to lack of filling, because of the 900 angle they make to the axial
branch (Elliot & Reid 1965) and the presence of a sphincter, which has been found
at the entrance of bovine supernumerary vessels (Shaw et al. 1999). It is thought
that these vessels provide a reserve volume during increased cardiac output, such
as during exercise (Shaw et al. 1999). Also, in the adult, it is these vessels that can
provide collateral blood flow if the conventional vessels are occluded (deMello &
Reid 1991). The limited known characteristics of the supernumerary vessels were
exploited to develop a computational algorithm to incorporate these vessels into the
model. The development of this algorithm was based on the small amount of available
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anatomic data. The representation of these vessels is therefore very dependent on the
accuracy of measurements from casts. It is very likely that many of these vessels were
not adequately perfused during the casting procedure, or that some of these vessels
may have been removed in the trimming routine. It can be seen in Figure 4.9 that the
addition of the supernumerary vessels increases the number of branches in the last few
Strahler orders of the model, bringing the branch number per Strahler order close to the
anatomical data. This algorithm may be easily adapted in the future, by modifying the
diameter ratio of accompanying to supernumerary vessel, frequency of supernumerary
vessels to accompanying vessels, or by modifying the length to diameter ratio, as more
measured data becomes available. The frequency values determined to produce the
most accurate model, 2.5:1 for the arteries and 3:1 for the veins, are relatively close to
the predicted ratios of accompanying to supernumerary vessels of 2.8:1 and 3.5:1 for
the arteries and veins, respectively.

4.4.4 Geometric analysis

The current model allocates diameters based on the Strahler order number of each
branch. For future functional investigations the diameter relationships may be applied
differently to achieve the desired tree qualities. As image processing technologies
advance it will be possible to obtain diameter values of the largest vessels via MDCT
images, providing a much more accurate model by enabling in vivo data to be used
directly as opposed to information derived from casts. Pulmonary arterial diameters
have previously been obtained via CT (Karau, Lothen, Dhyani, Haworth, Hanger,
Roerig, Johnson & Dawson 2001, Liu, Hoffman & Ritman 1987, Wood, Zerhouni,
Horford, Hoffman & Mitzner 1995), but relatively few vessels were measured in these
studies.

Figures 4.9(a) and (b) clearly show that the vessel set extracted via MDCT was not
complete. Anatomical measures have shown that there is a linear relationship between
the Strahler order number and the log of the number of branches in each order. For
example, it appears that the vessel set is complete in the arterial network from orders
7 through to 12, and for the venous tree only from Strahler orders 8 to 10. After these
points the line in the semi-logarithmic plot of Strahler order versus branch number
delineates from the expected straight line.

The Strahler based branching ratios (Table 4.1) are compared with ratios calculated
from anatomical data. Only the Strahler ratios are calculated - not Horsfield based
ratios - because the Strahler ordering system better describes the asymmetric blood
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vessel geometry. The branching ratios increase from relatively low values at the MDCT
vessel start point to values very close to the anatomical values for the complete model.
The model diameter and length ratios are all within 2.5% of the anatomical values. The
asymmetry of the full model arterial and venous trees is therefore closely representative
of the measured asymmetry of the human pulmonary vascular trees.

The full model branch angles (Table 4.2) are compared with published values from
the conducting airway model developed by Tawhai et al. (2004) and anatomical values
for the conducting airways. The branch angle in the MDCT plus accompanying
vessel model is higher than the published airway branch angles due to increasing
branching angles towards the tree periphery, as explained in (Tawhai et al. 2004).
Addition of supernumerary vessels increases the minor branch angle and decreases
the major branch angle with respect to the MDCT plus accompanying vessel model,
by approximately 30o for each angle, and for each of the arterial and venous models.
This large change in major and minor branch angle reflects the difference in branching
geometry of the supernumerary vessels. That is, the minor branch angle in the full
model is heavily weighted by supernumerary branching angles close to 90o, and the
major branch angle now includes ’zero’ branch angles comprising the continuation of
the parent vessel.

4.5 Conclusions

This model has been developed to represent the complex geometry found in the
pulmonary circulatory system, for application in structure-function investigations in
Chapter 5. The methods for coupling structure and function are well established:
the model is simply a finite element mesh within which a system of mathematical
equations can be solved, as has previously been demonstrated for blood flow through
the pulmonary capillary (Burrowes et al. 2004) and coronary vessels (Smith, Pullan &
Hunter 2002). Solution of flow equations through the geometric models developed in
this chapter are presented in Chapter 5.

The derivation of lobar and large vessel geometry from MDCT enables the creation
of subject-specific anatomically-based models of the pulmonary system with relatively
low effort. As imaging and image processing techniques improve it will be possible
to derive an increasing amount of information from imaging modalities such as CT.
The increasing spatial and temporal resolution of CT imaging will enable unification
of structure-to-function correlations via imaging and computational techniques. This
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amalgamation provides potential applications in tracking structural changes via
imaging (remodeling, vasoconstriction), and investigating the consequences on global
lung function via modeling. This is the first known attempt to explicitly incorporate
the supernumerary vessels into a vascular model; it is hoped that the development of
this model will aid in future computational investigations to determine the functional
significance and behavior of these vessels.

A summary of this work can be found in (Burrowes, Tawhai & Hunter 2005a).
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This chapter details the techniques used and results obtained by solution of blood
flow equations through the vascular geometries defined in Chapter 4. The Lax-
Wendroff numerical technique is used to solve a reduced form of the Navier-Stokes
equations within the arterial and venous networks to yield pressure, radius and
velocity solutions throughout the system, described in Section 5.2. Hemodynamic
structure-function relationships are investigated by comparing the relative influences
of the vascular branching structure (Section 5.4.1) and gravity (Section 5.4.2) on
blood flow distribution in the lung. Flow results are analysed within different slice
‘thicknesses’ to illustrate the effect of different resolution data on the interpretation
of flow results (Section 5.4.3). Flow distributions in different postures are compared
(Section 5.4.5), and the effect of variation in several model parameters, such as pleural
pressure (Section 5.4.4), and vessel elasticity (Section 5.4.6) on flow distribution. Transit
time results (Section 5.4.7) and pulsatile solutions (Section 5.4.8) are also included in the
chapter. The flow solution technique is also applied to a sheep arterial tree geometry
and results are compared to the human flow results (Section 5.4.10).
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5.1 Introduction

Perfusion of the pulmonary circulation has previously been investigated via direct
experiment (West et al. 1964, Glenny et al. 1999, Glenny et al. 2000) or through
imaging studies (Levin, Chen & Zhuang 2001, Musch, Layfield, Harris, Melo, Winkler,
Callahan, Fischman & Venegas 2002, Jones, Hansell & Evans 2001, Won, Chon, Tajik,
Tran, Robinswood, Beck & Hoffman 2003). Although such studies have increased
our understanding of both the anatomy and functional mechanisms in the lung, such
as the effect of body posture and the relative contribution of gravity to blood flow
distribution, the underlying structure-function relationships that result in clinical or
experimental observations are not entirely understood.

Evolution of concepts with regard to pulmonary blood flow distribution initiated
with the belief of uniform perfusion within the lung. Experimental observations by
West et al. (1964) revealed a vertical gradient of reducing blood flow from the least
(gravitationally-) dependent to the most dependent regions with the conclusion that
hydrostatic pressure differences were the main determinant of blood flow distribution
within the lung; this led to the well known zonal flow model (Section 1.3.2). The most
recent stage in these changing perspectives has strongly suggested that gravity plays
only a minor role in the distribution of blood flow, with non-gravitational components,
such as vascular branching structure, playing a more dominant role (Glenny et al. 1999,
Glenny, Polissar & Robertson 1991, Hlastala & Glenny 1999).

In order to investigate the relative influences of branching structure and gravity
on blood flow distribution in the lung a computational model of flow through the
human pulmonary arterial and venous trees has been developed. A reduced form
of the Navier-Stokes equations, representing Newtonian fluid flow, are solved within
the vascular networks defined in Chapter 4 to yield pressure, radius and velocity
distributions. A two step Lax-Wendroff finite difference solution technique is used to
solve the flow equations. Simulations are conducted to investigate structure-function
relationships in the pulmonary circulation, namely to investigate the following points:

• To evaluate the influence of the asymmetric branching vascular structure on
blood flow distribution in the human lung;

• To assess the influence of gravity on blood flow distribution in the human lung;

• To illustrate the effect that different resolution data may have on the
interpretation of flow distribution results;
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• To investigate the influence of pleural pressure changes during breathing on
blood flow distribution in the human lung;

• To investigate the effect of posture on blood flow distribution;

• To evaluate transit times through the pulmonary vasculature, for comparison of
model results with experimental data and to increase understanding of the factors
governing blood flow distribution;

• To investigate pulsatile flow solutions through the arterial tree;

• To compare model results with experimental measures obtained from functional
imaging studies;

• To compare human arterial model flow distributions with flow results obtained
in a model of the sheep arterial tree;

5.2 Methods

The solution procedure initially formulated by Hunter (1972) and developed further
by Smith (1999) to model three-dimensional pulsatile blood flow with an efficient one
dimensional numerical scheme is used to model flow in the pulmonary arterial and
venous networks. This section develops a set of nonlinear equations (Equations 5.2,
5.1, and 5.4) relating pressure, velocity, and vessel radius for pulsatile flow through
elastic vessels.

5.2.1 Navier-Stokes flow equations

Equations describing fluid motion are in accordance with basic laws of physics
which prescribe that mass and energy are conserved, and that Newton’s second law
(force=mass·acceleration) is obeyed. These principles define the continuity, momentum
and energy equations.

The current study models blood flow within the finite element geometric models of
the larger pulmonary arterial and venous vessels (Strahler orders 7-11) developed in
Chapter 4, as an incompressible, homogeneous, Newtonian fluid, flowing in a laminar
state. The flow is also assumed to be axisymmetric. Although studies have predicted
that the Reynolds number (=(2 · ρ · V · R)/µ) may exceed 2,000 (the approximate limit
for laminar flow) in the largest pulmonary arterial vessels, turbulent flow probably
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does not occur, and certainly does not occur in smaller vessels where the Reynolds
number is much lower (Horsfield & Woldenberg 1989). Results from the current model
display a maximum Reynolds number in the pulmonary trunk of only 587, therefore
the assumption of laminar flow appears to be valid. The effect of red blood cells (RBCs)
on blood viscosity only becomes significant in the smaller microcirculatory vessels
(less than about 300 µm in diameter (Pries et al. 1996)), when the size of the vessels
approaches the diameter of RBCs (<≈8 µm (Pries et al. 1996)). The distensibility of
the vessel walls is assumed to dominate any effects due to the compressibility of blood
(Smith et al. 2002).

By constraining the velocity profile over the cross-section of each vessel, a reduced
form of the Navier-Stokes equations can be derived (more details of this derivation
may be found in (Smith et al. 2002, Smith 1999, Hunter 1972)). The current study
has extended this flow model by the addition of a gravitational component, due to
the relatively large hydrostatic pressures exerted over the height of the lung. These
equations govern the conservation of mass (Equation 5.1) and momentum (Equation
5.2) of a Newtonian fluid.

∂R

∂t
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∂R

∂x
+
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2
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= 0 (5.1)

(see Equation 2.16 in (Smith et al. 2002))
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(see Equation 2.22 in (Smith et al. 2002))

where the unknown variables p, R, and V represent the transmural pressure (where
transmural pressure is equal to the difference between blood and pleural pressures),
vessel radius, and the mean axial velocity. t denotes time, Θ is the vertical angle
between the gravitational vector and the vector of the vessel centreline, and g is the
acceleration due to gravity (g=9.81 m s−2 (1G) or 0 m s−2 (0G)). The gravitational effect
on pleural pressure is also included, whereby the lung tissue density is assumed to
be equal to one-quarter that of the blood density (that is a pressure change of 0.25 cm

H2O per cm height (West 1995)). The term ρ (blood density) has a value of 1.05x10−6

kg mm−3, and ν (the kinematic viscosity of blood) has a value of 3.2 mm2 s−1 for all
simulations in this study.

The vessel cross-section velocity profile parameter, α, defines a velocity profile, such
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that α=1 corresponds to a flat, uniform profile and the profile becomes more parabolic
as α is increased. The velocity profile has the following form:

vx(r) =
α

2 − α
V

[

1 −
( r

R

)
2−α
α−1

]

(5.3)

(see Equation 2.20 in (Smith et al. 2002))
where V is the mean axial velocity. The simulations in this study use a value of

α=1.1 (assumed to be constant throughout the network), as fitted to experimental data
(Smith et al. 2002, Hunter 1972). The velocity profile for various values of α is displayed
in Figure 5.1.
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FIGURE 5.1: The velocity profile across a vessel cross-section (as defined by Equation
5.3), normalised by the mean axial velocity, for various values of α (α values are

specified in key).

The arterial and venous walls are assumed to be elastic, but the viscoelastic
properties are ignored in this model. The flow model therefore requires a description
of the relationship between pressure and vessel wall radius. An empirically-based
relationship between transmural pressure (p) and vessel radius (R) was chosen to best
fit available experimental data (Smith et al. 2002), as follows:

p(R) = G0

[

(

R

R0

)β

− 1

]

(5.4)

where G0 and β are constants fitted to experimental data, having values of 5 kPa

and 3.2 (dimensionless), respectively, for the arteries and 7.5 kPa and 1.2 for the
venous vessels from pulmonary elasticity measures (Yen, Fung & Bingham 1980, Yen
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& Foppiano 1981, Krenz & Dawson 2003). These values are assumed to be uniform
throughout the network. R0 denotes the unstrained vessel radius value at p=0 kPa.
The pressure-radius relationship is plotted in Figure 5.2 with various values of G0 and
β to display the form of the relationship (where the maximum pressure in this study is
2 kPa). The effect of varying values of G0 and β on model results is presented in Section
5.4.6.

FIGURE 5.2: Plot of pressure versus radius demonstrating the form of the
pressure-radius relationship incorporated into the Navier-Stokes flow solution with

various values of G0 and β.

Equations 5.1 and 5.2 form a set of two non-linear, first order differential equations,
which, with the inclusion of Equation 5.4 can be used to solve for p, R, and V within
the pulmonary arterial and venous networks. A steady-state analytic solution for flow
through a single vessel is derived (Section 5.2.2.1) and the solution compared with the
numerical solution technique developed in Section 5.2.2.
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5.2.2 The Lax-Wendroff numerical scheme

The two step Lax-Wendroff explicit, finite difference solution technique is used to
solve the Navier-Stokes flow equations (Equations 5.1, 5.2, 5.4). A finite difference
grid is generated over the finite element arterial and venous meshes, and solutions are
obtained at half and full time steps. The first step computes a set of intermediate points
with first order accuracy, the second step calculates second order accurate solutions in
both space and time. The general two step Lax-Wendroff procedure is fully outlined in
Smith (1999), this work does not seek to replicate the derivation of equations.

Equations 5.5, 5.6, and 5.7 are used to calculate V , p, and R at intermediate or
half step points. Superscript k represents a grid point at time step k, and subscript
i represents a grid point at a spatial location i.

V
k+ 1

2

i+ 1
2

=
1

2
(Vi+1 + Vi)

k −
∆t

2∆x

[

2α − 1

2
(Vi+1 + Vi)(Vi+1 − Vi)+ (5.5)

(α − 1)
(Vi+1 + Vi)

2

Ri+1 + Ri
(Ri+1 − Ri) +

1

ρ
(pi+1 − pi + ∆xρgcos(Θ))

]k

− 2∆tν
α

α − 1

[

Vi+1 + Vi

(Ri+1 + Ri)2

]k

R
k+ 1

2

i+ 1
2

=
1

2
(Ri+1 + Ri)

k −
∆t

2∆x

[

1

4
(Ri+1 + Ri) (5.6)

(Vi+1 − Vi) +
1

2
(Vi+1 + Vi)(Ri+1 − Ri)

]k

p
k+ 1

2

i+ 1
2

=
1

2
(G0i+1

+ G0i
)













2R
k+ 1

2

i+ 1
2

R0i+1
+ R0i







β

− 1






(5.7)

(see Equations 2.31-2.33 in (Smith et al. 2002))

where ∆x is the distance between grid points. Final or full step values are calculated
using Equations 5.8, 5.9, and 5.10.
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(see Equations 2.34-2.36 in (Smith et al. 2002))

The finite difference equations outlined above provide a means of calculating the
values V k+1

i , Rk+1
i , and pk+1

i for i=2,N , where N is the total number of grid points. A
boundary condition scheme is required to calculate solutions at all peripheral locations
at i = 1 and N . Initial values are set such that at k=0 V k

i =0, Rk
i =R0, and pk

i =0. Pressure
boundary conditions are applied at all inlet and outlet sites. Equation 5.4 can then
be used to calculate the radius values at these points. By considering the difference
representations for the conservation of mass and momentum equations centred at
(3
2
, k + 1

2
), the following equation can be derived to determine V k+1
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where V ′, R′, and p′ refer to the points V k+1
3/2 , Rk+1

3/2 , and pk+1
3/2 , respectively. An

equation to calculate V k+1
N can similarly be derived:
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Pressure boundary conditions for the pulmonary circuit are applied by the heart at
the inlet of the arteries (right ventricle) and at the outlet of the veins (left atrium). In
the current model pressure boundary conditions also need to be applied at all terminal
arterioles and venules. For most simulations in this study (except Section 5.4.8 where
pulsatile flow is investigated) steady-state flow solutions are obtained whereby the
inlet pressure is increased to a certain value and held constant until a steady-state flow
solution is reached. The normal pressure boundary conditions for the arterial system
simulations was 2 kPa at the inlet (pulmonary trunk) and 1.25 kPa at all peripheral
branches. For the venous system the normal pressure values were 0.7 kPa at all
peripheral branches and 0.2 kPa at the venous exit into the left atrium. The inlet into
the two trees was considered the reference height, all peripheral pressure boundary
conditions included a gravitational term added to the applied pressure value.

5.2.2.1 Analytic solution for single vessel

In order to validate the numerical solution technique, comparison with an analytic
solution for steady state flow in a single vessel can be made. This section derives the
analytic equations for flow through a single vessel (again extended from Smith et al.
(2002) only by the inclusion of a gravitational component). At steady state all transient
terms are equal to zero. Equation 5.2 then reduces to:
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where S is the cross-sectional area of the vessel (S = πR2). Given that the velocity
V =Q

S
, and conservation of mass implying a constant flow rate along the vessel, the

following expression can be written:
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By substituting Equation 5.14 and Equation 5.16 into Equation 5.13 the following
expression can be obtained:
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This is now rearranged and integrated as follows:
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−ln(S)

2πναQ
+

ln (2πναQ − (α − 1)gcos(Θ)S2)

4πναQ

]

+

(α − 1)G
β
2
0 S

β
2
+2

2F1

[

β
4

+ 1, 1, β
4

+ 2, (α−1)gcos(Θ)S2

2πναQ

]

−2ρS
β
2
0 πναQ

(

β
2

+ 2
)

= x + C

Where 2F1[a, b, c, z] is the hypergeometric function and has the series expansion
defined by Equation 5.19.

2F1(a, b, c, z) =
inf
∑

k=0

(a)k(b)k/(c)kz
k/k! (5.19)

The constant of integration C can be determined from Equation 5.18 by substituting
the boundary condition of vessel area at the entry point (where x=0) Si:

C = −αQ2(α − 1)

[

ln(Si)

2πναQ
+

ln(2πναQ − (α − 1)gcos(Θ)S2
i )

4πναQ

]

(5.20)

+
(α − 1)G

β
2
0 S

β
2
+2

i 2F1

[

β
4

+ 1, 1, β
4

+ 2,
(α−1)gcos(Θ)S2

i

2πναQ

]

−2ρS
β
2
0 πναQ

By substituting Equation 5.20 into Equation 5.18 an equation specifying the steady-
state relationship between vessel area S and distance along a vessel x for a given flow
rate Q can be obtained.

Figure 5.3 compares the analytic and numerical solutions within a single vessel 50
mm in length. An unstrained radius (R0) of 1 mm was used, with G0 and β values of 5
kPa and 1.2, respectively, and inlet and outlet pressures of 2 and 1.25 kPa. The resulting
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radius value is plotted with respect to distance along the vessel x, for the solution in
a vessel in four different orientations: horizontally (Θ=π/2), vertically (Θ=0), and with
angles of Θ=π/3 and Θ=π/6. These results show an ideal match between the analytic
and numerical solutions.

FIGURE 5.3: Comparison of analytic solution versus numerical Navier-Stokes solution
in a single vessel in four different orientations to validate the inclusion of the gravity

term: horizontally (Θ = π/2), vertically (Θ = 0), and at angles of Θ = π/3 and
Θ = π/6, in a 50 mm vessel with R0=1 mm, with an inlet pressure of 2 kPa and outlet

pressure of 1.25 kPa.

5.2.2.1.1 Stability In order to maintain the stability of an explicit finite difference
scheme the numerical velocity ∆x

∆t
must not exceed the wave speed of the governing

equations. Given a certain time discretisation (∆t), this criteria can be used to estimate
the largest useable spatial discretisation to achieve an accurate, stable solution. This
improves the efficiency of computation. An expression to calculate the theoretical wave
speed of the numerical solution can be derived from the boundary condition scheme
(Smith et al. 2002):

λ =
dx

dt
= αV ±

[

α(α − 1)V 2 +
βG0R

β

2ρRβ
0

+
∆xρgRcos(Θ)

2

]
1
2

(5.21)

This expression defines the characteristic directions along which information travels
in (x,t) space. Smith (1999) carried out a detailed stability analysis and demonstrated
that the stability criteria (∆x and ∆t) as defined from the characteristic slope (Equation
5.21) was a good approximation to the von Neumann stability criteria. In the current
study Equation 5.21 was used to determine the appropriate grid spacing (∆x) and time
discretisation (∆t).
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5.2.3 Calculating flow through bifurcations

So far a numerical technique for solving flow through individual vessels has been
developed. A separate scheme is required for calculation of flow parameters at a
bifurcation. The more empirically-based bifurcation solution scheme was implemented
by Hunter (1972) and Smith et al. (2002) and will be explained only briefly in this work.
The equations have been modified to include gravitational forces. The forces of gravity
on these very small portions of a vessel will most probably be negligible, but the term
has been added to ensure accuracy and consistency in the governing equations.

The bifurcation model approximates a junction as three short elastic tubes,
sufficiently short such that velocity can be assumed to be constant through each
of the tubes. Mass is conserved at the bifurcation, and it is assumed that no fluid is
stored in the junction. There are three grid points situated at each vessel bifurcation.
A schematic diagram of the bifurcation nomenclature is illustrated in Figure 5.4
(Smith 1999).

FIGURE 5.4: Schematic diagram of a vessel junction showing grid point locations (a1,
a2, b1, b2, c1, c2), flows (Fa1 , Fb1 , Fc1 ), and pressure at the junction (P0). Figure from

(Smith 1999).

Flow equations coupling boundary conditions of individual vessels ensuring
conservation of mass and momentum at each bifurcation are incorporated into the
solution procedure. Equation 5.22 represent conservation of mass, and Equation 5.23
governs conservation of momentum for tube a and a bifurcation point.

F k+1
a1 − F k+1

b1 − F k+1
c1 = 0 (5.22)

πR2
a(pa − p0 + ρgcos(Θa)la) = ρlaπ

∂R2
aVa

∂t
(5.23)
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where subscripts a, b, and c represent the three different segments at a junction,
and the indices 1 and 2 represent the location at the junction and adjacent to the
junction (that is at the other end of the segment), respectively. Similar conservation
of momentum equations can also be written for tubes b and c. A central difference
representation about the (k + 1

2
) time step is used to expand Equation 5.23, and results

in the following equations:

pk+1
a1

+ pk
a1
− pk+1

0 − pk
0 + 2ρgcos(Θa)la =

2La

∆t
(F k+1

a1
− F k

a1
) (5.24)

pk+1
0 + pk

0 − pk+1
b1

− pk
b1 − 2ρgcos(Θb)lb =

2Lb

∆t
(F k+1

b1
− F k

b1) (5.25)

pk+1
0 + pk

0 − pk+1
c1

− pk
c1
− 2ρgcos(Θc)lc =

2Lc

∆t
(F k+1

c1
− F k

c1
) (5.26)

where F=πR2V , and

La =
ρla
πR2

a

, Lb =
ρlb
πR2

b

, Lc =
ρlc
πR2

c

(5.27)

These lumped parameter constants have a set value of 1x10−9 for all simulations in
this study (as set by (Smith et al. 2002)). By combining Equations 5.22 and 5.24-5.26
the following equation is constructed to calculate the pressure at a junction at the k + 1

time step (pk+1
0 ):

pk+1
0 = −pk

0 +

pk+1
a1 +pk

a1+2ρgcosΘala
La

+
pk+1

b1 +pk
b1+2ρgcosΘblb

Lb
+

pk+1
c1 +pk

c1+2ρgcosΘclc
Lc

1
La

+ 1
Lb

+ 1
Lc

(5.28)

where the pk+1
a1 , pk+1

b1 , pk+1
c1 , and pk+1

0 are all unknown. By considering the
conservation of mass equation (Equation 5.1) and the pressure-radius relationship
(Equation 5.4), and using the chain rule to describe ∂R

∂t
as ∂p

∂t
dR
dp

and ∂F
∂x

as
2πV R ∂R

∂x
+ πR2 ∂V

∂x
the following equation can be constructed:

∂p

∂t
+

1

2πR

dp

dR

∂F

∂x
= 0 (5.29)

Again expanding this using a central difference scheme about the (k + 1
2
) time step

yields equations describing the unknown pressures pk+1
a1 , pk+1

b1 , and pk+1
c1 in terms of the

known up/downstream values pk+1
a2 , pk+1

b2 , and pk+1
c2 :
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pk+1
a1

+ pk+1
a2

− pk
a1
− pk

a2
− Aa

∆t

∆x

(

F k+1
a2

+ F k
a2
− F k+1

a1
− F k

a1

)

= 0 (5.30)

pk+1
b1

+ pk+1
b2

− pk
b1
− pk

b2
− Ab

∆t

∆x

(

F k+1
b2

+ F k
b2
− F k+1

b1
− F k

b1

)

= 0 (5.31)

pk+1
c1 + pk+1

c2 − pk
c1 − pk

c2 − Ac
∆t

∆x

(

F k+1
c2 + F k

c2 − F k+1
c1 − F k

c1

)

= 0 (5.32)

where:

Aa =

β(G0a1 + G0a2)

[

2R
k+1/2
N−1/2

R0a1+R0a2

]β−1

2πR
k+1/2
N−1/2 + (R0a1 + R0a2)

(5.33)

Similar expressions can be derived for branches b and c. By using Equation 5.24
to eliminate F k+1

a1 from Equation 5.30 an expression describing pk+1
a1

is terms of interior
values which are calculated using the single vessel solution technique. The following
equation differs from Hunter (1972) and Smith et al. (2002) due to typographical errors
in those references:

pk+1
a1

=
pk

a1
+ pk

a2
− pk+1

a2
+ Aa

∆t
∆x

[

F k+1
a2

+ F k
a2
− 2F k

a1
− ∆t

2La

(

pk
a1
− pk+1

0 − pk
0

)

]

1 + Aa∆t2

2∆xLa

(5.34)

Corresponding expressions can be written to represent pk+1
b1

and pk+1
c1

. Since pk+1
0

is a function of the unknown pressures pk+1
a1 , pk+1

b1 , and pk+1
c1 , an iterative procedure is

required to solve the system of equations. Initial pressure estimates are obtained using
the explicit scheme outline above. Then, to reduce errors introduced by the terms F k+1

a1 ,
F k+1

b1 , and F k+1
c1 , a Newton-Raphson iterative scheme is used to simultaneously satisfy

conservation of mass and momentum as defined by Equations 5.22, and 5.30-5.32. In
most cases the Newton-Raphson bifurcation solution converges in only three iterations.
After calculation of the pressure values at a junction the boundary condition scheme
(described in Section 5.2.2, Equations 5.10, 5.11 and 5.12) can be used to calculate
velocity and radius values.
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5.3 Single vessel results

Implementation of the two step Lax Wendroff technique was analysed within a single
vessel before applying the numerical technique to a full bifurcating network.

5.3.0.1 Flow profiles

Flow profiles within a single vessel oriented vertically with and without gravity are
compared (Figure 5.5). These solutions were obtained within a vessel 50 mm in length
with an unstrained radius of 1 mm. The density of blood (ρ) is 1.05x10−6 kg mm−3 and
blood viscosity (ν) is 3.2 mm2 s−1. The vessel wall elasticity constants G0 and β are 5
kPa and 1.2, respectively. The pressure is stepped up at the left end (x=0 mm) of the
vessel from an initial pressure value (at both ends) of 1.75 kPa to 2 kPa from time t=0
to t=0.1 s. The pressure at the right end (x=50 mm) is held fixed at 1.75 kPa. Space (∆x)
and time (∆t) are discretised by 2.08 mm and 0.1 ms, respectively. Pleural pressure is
not included in these solutions.

Figure 5.5 displays pressure, radius, and velocity solutions with respect to distance
along the vessel (where x runs from top to bottom) with and without gravity at
times t=0, 0.01, 0.02, 0.05, 0.1, and 1 s (at t=1 s the solution was steady-state).
Equivalent pressure and therefore radius values are present at the inlet for the two
solutions, because the inlet pressure is set as a boundary condition and the inlet is the
reference height for gravity (that is, there is no effect of gravity at this point). The
solution without gravity displays an initially uniform pressure along the tube; as time
progresses inlet pressure increases, resulting in a pressure gradient from 2 to 1.75 kPa

from the top to the bottom of the vessel. This results in a decreasing tube radius along
the vessel. In contrast, the solutions with gravity display an increasing pressure along
the tube at all times, due to the influence of gravity. The outlet boundary condition
includes a hydrostatic pressure head of approximately 0.25 kPa meaning that the outlet
pressure is fixed at about 2.25 kPa. The increasing pressure is reflected by an increasing
radius along the tube length. The resulting velocity profiles are less different than
the respective pressure and radius solutions. The velocity wave propagates along the
vessel with time. The steady-state velocity without gravity (displayed more clearly
in Figure 5.6) displays a slight increase along the vessel, due to the decreasing radius
value. The solution with gravity shows the reverse trend, that is a decreasing velocity
along the vessel due to an increasing vessel radius. The solution with gravity results in
a higher velocity of 126 mm s−1, compared to 112 mm s−1 without gravity.
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FIGURE 5.5: Single vessel solution profiles: (a,b) pressure, (c,d) radius, and (d,e)
velocity profiles within a single vessel oriented vertically with (g=9.81 m s−2) and

without (g=0 m s−2) gravity, respectively. NB/ x runs from top to bottom.
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FIGURE 5.6: Comparison of steady-state (a,b) pressure, (c,d) radius, and (d,e) velocity
profiles with respect to distance along a single vessel (x) oriented vertically with and

without gravity. NB/ x runs from top to bottom.
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5.3.0.2 Solution convergence

Simulations were conducted within a single vessel (of the same specifications as in
Section 5.3.0.1) with various grid spacing values (∆x) to test the convergence of the
numerical scheme. Both transient and steady-state velocity profiles along the vessel
are presented. Figure 5.7(a) plots the transient velocity solution at t=0.02 s along the
length of the vessel. These results show that the transient solutions differ only a small
amount for a wide range of ∆x values. The steady-state solutions (Figure 5.7(b)) are
not significantly different.
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FIGURE 5.7: Convergence analysis in a single vessel (including gravity): velocity with
respect to distance along the vessel x. (a) Displays a transient velocity solution at
t=0.02 s, (b) displays the steady state velocity solution (mm s−1) for various grid

spacings (∆x).

5.4 Full model results

The full conducting arterial and venous models consist of just over 210,000 grid points
each, with 29,818 terminal grid locations in each tree. This grid was created using a
∆x discretisation of 2 mm (smaller grid spacings did not give significantly different
full model steady-state results). The results included in this section were obtained
by applying a steady-state pressure boundary condition, whereby the pressure was
linearly increased from t=0 to 0.1 s to the specified value. For all simulations
blood was assumed to have a density and viscosity of 1.05x10−6 kg mm−3 and 3.2
mm2 s−1, respectively. The velocity profile parameter α used for all simulations was 1.1
(Hunter 1972, Smith 1999). All simulations in this section assume an upright posture,
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unless otherwise stated. Vessel elasticity parameters G0 and β were set to 5 kPa and 3.2,
respectively, for the arterial tree, and 7.5 kPa and 1.2 for the venous tree, respectively.

5.4.1 Blood flow distribution as a function of vascular branching

• To investigate the influence of the anatomically-based asymmetric vascular
branching structure on blood flow distribution in the human lung without
gravity.

Flow solutions within a symmetric arterial model were compared with solutions in
the anatomically-based arterial model (constructed in Chapter 4) in order to assess the
influence of the asymmetric vascular branching structure on blood flow distribution
in the human lung. Lobar branches (with equal lengths and diameters) were used
as the starting points for the symmetric model, and in this respect the model is not
entirely symmetric. Each branch in the same generation has the same length and
diameter, and each generation is complete. Each bifurcation has a branch angle of
30o. Daughter branches are rotated by 90o in the parent plane at each bifurcation.
The symmetric model was made to be as similar as possible to the anatomically-based
model by aiming to maintain the same number of generations, same total number of
branches and approximately the same gravitationally-dependent height (although this
was the hardest factor to satisfy). The average lengths and diameters of branches in
each Strahler order were also maintained at equivalent values to those used in the
anatomically-based model.

The symmetric model has a total of 15 generations. The total number of branches
was 32,769 with 16,384 terminal branches. The finite difference grid generated for
the flow solution consisted of 115,462 grid points (∆x=2 mm, as was used for the
anatomical model). The Strahler branching, length, and diameter ratios were 2.0
(symmetric branching), 1.22, and 1.38, respectively.

Figure 5.8 compares pressure, velocity, and flow solutions in the symmetric and
anatomically-based pulmonary arterial models. The pressure solutions range from
1.25 to 2 kPa in both the symmetric model (Figure 5.8(a)) and the anatomically-based
model (Figure 5.8(b)), as defined by the inlet and outlet pressure boundary conditions.
The simulations in this section exclude gravitational forces and therefore all terminal
pressure values have a consistent value of 1.25 kPa. A much narrower velocity range
is displayed in the symmetric model between 24.76 to 47.12 mm s−1 (Figure 5.8(c)), as
opposed to 0.93 to 208.55 mm s−1 in the asymmetric model (Figure 5.8(d)).
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SYMMETRIC MODEL ANATOMICALLY-BASED MODEL

(a) (b)PRESSURE (kPa)

(c) (d)VELOCITY (mm s−1)

(e) (f)FLOW (mm3 s−1)

FIGURE 5.8: (a,b) Pressure (kPa), (c,d) velocity (mm s−1), and (e,f) flow (mm3 s−1)
solutions in the symmetric and anatomically-based arterial models, respectively,

without gravity (0G), to evaluate the influence of branching structure on blood flow
distribution. Flow values are calculated from radius and velocity solutions.
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Flow values (Q) were calculated from the radius and velocity solution fields
(Q=V πR2), the symmetric flow rates ranging from 1.38 to just over 22,663 mm3 s−1 in
the largest vessel (Figure 5.8(e)), and from approximately 0.05 to 51,135 mm3 s−1 in the
anatomically-based model (Figure 5.8(f)). Due to the large range of flow rates in the
anatomic model, two spectrums were used to illustrate the flow solution. The highest
flow rate values were present in the largest vessels, due to the relative size of the vessel
cross-sections.

All terminal grid points were extracted from the models and solution averages were
obtained within slices of 1 and 50 mm in thickness from the top to the bottom of the
vertical lung. Pressure, radius, velocity, and flow values are plotted in Figure 5.9 with
respect to the normalised vertical position in the lung for the two geometric models.

All terminal locations have a pressure value of 1.25 kPa, defined by the outlet
pressure boundary condition. The terminal nodal radius values were 0.1317 mm

(unstrained radius, R0=0.1200 mm) and 0.1259 mm (R0=0.1146 mm) in the symmetric
(S) and anatomical (A) models, respectively (Figure 5.9(a)). Both velocity (Figure
5.9(b)) and flow (Figure 5.9(c)) solutions within the symmetric model at a certain
height are homogeneous, as opposed to results in the asymmetric model with 1 mm

averages showing marked heterogeneity. Flow solutions in the anatomically-based
model averaged within 50 mm slices show a clearer relationship between velocity and
flow and vertical position in the lung, with the lowest flow being present in the very
lowest regions of the lung. The symmetric model displays no gradient with respect to
velocity or flow and vertical position in the lung.

Transit time information for each pathway can also be extracted from the model.
Figure 5.10 plots path lengths (averaged within 1 mm slices) and transit time results
with respect to the normalised vertical position in the respective arterial models. The
symmetric model displays a uniform path length for all pathways of about 220 mm,
while the anatomically-based model displays longer path lengths over the whole lung.
The longest path lengths are present in the upper and lower regions of the anatomically-
based model. All pathways in the symmetric model have a blood transit time of
approximately 5.5 s, while the asymmetric model displays a range of transit times from
3.5 s (in the mid region of the lung) to 7.3 s in the bottom of the lung.
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FIGURE 5.9: Comparison of flow solutions in the symmetric (S) versus
anatomically-based (A) arterial models without gravity at all terminal nodal locations

averaged within 1 and 50 mm slices: (a) pressure (kPa), (b) radius (mm), (c) velocity
(mm s−1), and (d) flow (mm3 s−1) values, all plotted with respect to the normalised

vertical height (%) in the lung.
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FIGURE 5.10: Comparison of (a) path lengths (mm) and (b) transit time (s) solutions in
the symmetric versus anatomically-based arterial model plotted with respect to

normalised height in the lung (%). Solutions are averaged within 1 mm slices and are
without gravity.

5.4.2 Blood flow distribution as a function of gravity

• To assess the influence of gravity on blood flow distribution in the human lung.

5.4.2.1 Symmetric versus anatomically-based arterial flow (with gravity)

The simulations in this section incorporate a gravitational component, where g=9.81
m s−2 is equal to 1G. Solutions in the symmetric model are again compared with flow
solutions in the anatomically-based arterial model, including gravity.

Pressure in the symmetric model ranges from 0.23 to 2.48 kPa (Figure 5.11(a)),
and from 0 to 3.2 in the more realistic asymmetric model (Figure 5.11(b)). The larger
pressure range in the anatomically-based model is due to the greater vertical height of
the model, and therefore a larger hydrostatic pressure difference due to gravity. The
velocity values range from 22.97 to 47.17 and 0.97 to 212.61 mm s−1 in the symmetric
(Figure 5.11(c)) and anatomical models (Figure 5.11(d)), respectively. The range of
flow rate values is also narrower in the symmetric model, where flow ranges from
approximately 1 to 22,254 mm3 s−1 (Figure 5.11(e)), as opposed to 0.05 to 51,587 mm3 s−1

in the more realistic arterial model (Figure 5.11(f)).
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SYMMETRIC MODEL ANATOMICALLY-BASED MODEL

(a) (b)PRESSURE (kPa)

(c) (d)VELOCITY (mm s−1)

(e) (f)FLOW (mm3 s−1)

FIGURE 5.11: (a,b) Pressure (kPa), (c,d) velocity (mm s−1), and (e,f) flow (mm3 s−1)
solutions in the symmetric and anatomically-based arterial models, respectively, with

gravity (1G), to evaluate the influence of branching structure on blood flow
distribution. Flow values are calculated from radius and velocity solutions.
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Figure 5.12 compares flow results in the symmetric (S) versus anatomically-based
(A) models at terminal locations with (1G) and without (0G) gravity. Pressures range
from approximately 0.2 to 2 kPa in the symmetric model with gravity (1G - Figure
5.12(a)). The initial radius values of the terminal symmetric nodes (at time=0) were
equal to the radius values in the asymmetric model at time=0. The final radius results
at terminal positions are all slightly larger in the symmetric model. This leads to a
slight offset in the velocity and flow solutions, but the trends can be compared. The
radius values range from 0.127 to 0.135 mm in the symmetric model, as opposed to 0.12
to 0.133 mm in the anatomically-based model (Figure 5.12(b)). Both models display the
same trend in pressure and radius with respect to vertical position in the lung, that is,
increasing pressure and radius from the top to the bottom of the lung.

Velocity (Figure 5.12(c)), and therefore flow (Figure 5.12(d)), solutions in the
symmetric model are much more homogeneous than in the asymmetric model. All
path lengths in the symmetric model were equal (Figures 5.10 and 5.13), the diameters
and therefore resistance in each pathway was also equal, resulting in homogeneous
solutions at all terminal locations with respect to vertical height. All terminal velocities
in the symmetric model without gravity are 25.4 mm s−1, when gravity is included
the velocity solutions have only a narrow range roughly between 23.6-26.1 mm s−1,
indicating that gravity has only a small influence on terminal velocity solutions.
Similar results are displayed with flow rate values, where there is a flow range of
approximately 1.2-1.5 mm3 s−1 with gravity, as opposed to a constant of 1.38 mm3 s−1

without gravity.
Transit time results are again compared between the two different models (Figure

5.13). The path length data will be the same as the solutions without gravity (displayed
in Figure 5.10(a), but this information is again displayed in Figure 5.13(a)) because the
model geometry has not changed. The transit time results of the symmetric (S) versus
asymmetric (A) models with and without gravity are compared in Figure 5.13(b). With
gravity included, the symmetric model results display a slight gradient of decreasing
transit time from the top to the bottom of the lung, consistent with an increasing
velocity (Figure 5.12(c)). The transit time results in the anatomically-based model are
similar with and without gravity.
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FIGURE 5.12: Comparison of flow solutions in the symmetric versus
anatomically-based arterial models with respect to gravitationally-dependent height
with (1G) and without (0G) gravity at all terminal nodal locations averaged within 1
and 50 mm slices: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), and (d)

flow (mm3 s−1) values.
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FIGURE 5.13: Comparison of (a) path lengths (mm) and (b) transit time (s) solutions in
the symmetric versus anatomically-based arterial models plotted with respect to

normalised height in the lung (%). Transit time results with and without gravity are
included in (b). Solutions are averaged within 1 mm slices and include gravity.

5.4.2.2 Effect of gravity in the anatomically-based arterial model

In order to evaluate the effect of gravity on blood flow distribution in the arterial tree,
comparisons are made between solutions with and without gravity. The pressure at all
terminal vessels was fixed at 1.25 kPa and the inlet pressure was increased from 1.25 to
2 kPa from t=0-0.1 s. The results presented here are steady-state solutions.

Pressure, velocity and flow results in the anatomically-based arterial model with
(1G) and without (0G) gravity are displayed in Figure 5.14. Without gravity all terminal
pressure values are constant. When gravity is included in the solution a clear gradient
of increasing pressure from top to bottom is seen in the arterial model. The effect of
gravity on the velocity and flow solutions is less clear. The highest velocity values in
the arterial model (Figure 5.14(c,d)) are within branches of about the fourth generation
of branching. These high velocities result from a relatively large drop in branch radius
at the bifurcation points. Since flow must be conserved, a drop in radius results in a
consequential increase in velocity. Attempts were made to include tapering of vessels
into the model, but results could not be achieved under these conditions due to stability
issues. Relatively high velocities are also present in the terminal vessels. Flow values
(Figure 5.14(e,f)) are calculated from the radius and velocity solutions. The highest flow
rates are in the largest vessels and flow decreases towards the peripheral branches as
individual vessel cross-sectional area decreases. The peak velocity and flow values
increased by only 1.9 % and 0.9 % with the addition of gravity.
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WITHOUT GRAVITY (0G) WITH GRAVITY (1G)

(a) (b)PRESSURE (kPa)

(c) (d)VELOCITY (mm s−1)

(e) (f)FLOW (mm3 s−1)

FIGURE 5.14: (a,b) Pressure (kPa), (c,d) velocity (mm s−1), and (e,f) flow (mm3 s−1)
solutions in the anatomically-based arterial model with and without gravity,

respectively. Inlet and outlet pressure boundary conditions were set to 2 and 1.25 kPa,
respectively, these images display the steady-state solution.
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Solution values at all terminal locations were extracted and compared. These
results were averaged within 1 and 50 mm slices to mimic different resolution data.
Without gravity, all terminal nodal pressure values were uniform, as defined by the
pressure boundary condition of 1.25 kPa (Figure 5.15(a)). When gravity was included
a linear relationship between pressure and height was exhibited (Figure 5.15(a)). The
percentage change in radius from the initial unstrained radius (R0) value is plotted
with respect to vertical height in Figure 5.15(b). In accordance with pressure, the
radius values at all terminal nodes without gravity are constant having radius values
approximately 10 % higher than the unstrained values. With gravity the radius values
range from 5-16 % greater than R0. The effect of gravity on velocity (Figure 5.15(c)) and
flow (Figure 5.15(d)) results may be easily seen in the solutions within 50 mm slices, this
trend is less clear in the higher resolution data within 1 mm slices. Flow rate values, and
to a lesser extent velocity, shows an increased gradient with respect to vertical height
with the addition of gravity. Results, both with and without gravity, display decreasing
velocity and flow rates in the most peripheral upper and lower regions of the lung.

The effect of gravity was assessed in more detail by using linear regression to
determine the gradient of flow with respect to vertical height (Figure 5.16). Flow results
with gravity showed a gradient of flow of -0.019 (increasing flow from top to bottom)
relative flow units/cm height, with r2=0.41, where r2 denotes the goodness of fit of
the regression. Without gravity the flow gradient decreased to -0.006 relative flow
units/cm height, with r2=0.05. These gradients were only determined for the portion
of increasing flow - within the height range of 12-30 cm. High resolution measures of
blood flow in the upright baboon lung (via microsphere injection) (Glenny et al. 1999)
displayed a flow gradient of -0.088 and -0.020 relative flow units/cm height with and
without gravity, respectively. Measured values of flow in the supine pig lung (Glenny
et al. 2000) are compared with model results in Figure 5.17 with and without gravity,
where the corresponding flow gradients were -0.109 and -0.086 relative flow units/cm,
respectively. The best fit lines from the upright baboon data (Glenny et al. 1999) is
also included in these plots. The measured pig data also displays a decrease in flow
in the upper and lower regions of the lung, as has been shown in the model results.
The model results agree relatively well with the measurements without gravity, but
measured gradients of flow with gravity are higher than estimates from the arterial
model. More realistic results may be obtained through the model when the system is
coupled to form a complete flow loop (see Chapter 6 for details).
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FIGURE 5.15: Comparison of flow solutions at terminal nodes in the
anatomically-based arterial model with respect to gravitationally-dependent height

with (1G) and without (0G) gravity, averaged within 1 and 50 mm slice thicknesses: (a)
pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), (d) flow mm3 s−1.
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FIGURE 5.16: Flow (relative to mean) with respect to vertical position in the lung in
the arterial model, including least squares regression line of flow as a function of

gravitationally-dependent height (cm): (a) without gravity: flow=-0.006xheight+1.2
(r2=0.05), (b) with gravity: flow=-0.019xheight+1.4 (r2=0.41). Goodness of fit is

denoted by r2. NB: Linear regression only includes data for region of increasing flow
from 12-30 cm height.
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FIGURE 5.17: Comparison of model flow results (relative to mean) with respect to
gravitationally-dependent height with experimental measurements of blood flow in
the supine pig (Glenny et al. 2000) and upright baboon lungs (Glenny et al. 1999).

Flow (relative to mean) plotted with respect to vertical position in the lung. (a) without
gravity (0G), (b) with gravity (1G).
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5.4.2.3 Effect of gravity in the anatomically-based venous model

Comparison between solutions with and without gravity were also made within the
venous finite element model. The pressure was linearly increased from 0.2 kPa at all
terminal branches to 0.7 kPa from t=0-0.1 s while holding the pressure at the outlet
constant at 0.2 kPa until a steady-state solution was reached. A pleural pressure of -5
cm H2O (-0.4903 kPa) was applied.

Similar results to those presented for the arterial model were found. With the
addition of gravity a clear gradient of increasing pressure from the top to the bottom
of the venous tree was present (Figure 5.18(b)), while the effect of gravity on velocity
(Figure 5.18(d)) and flow (Figure 5.18(e)) solutions was less distinct. Pressure values
at the very top of the venous tree experienced negative pressures. These vessels
were able to remain open due to a retarding factor in the pressure-radius relationship
which enables pressure within a vessel to be slightly negative without collapsing. This
effectively mimics the tethering effect of fibres in the pulmonary system.

All terminal points were extracted from the venous model. Terminal solution values
were averaged within slices of 1 and 50 mm thickness to display different resolution
data. The pressure, radius, velocity, and flow results with and without gravity are
plotted with respect to vertical position in the lung in Figure 5.15. A clear gradient of
pressure (Figure 5.15(a)) and radius (Figure 5.15(b)) with respect to vertical height is
displayed in the solutions with gravity. The velocity (Figure 5.15(c)) and flow (Figure
5.15(d)) solutions are more heterogeneous and the relationship between velocity or
flow and height is less clear, The 50 mm averages produce less heterogeneous values
and display a clearer trend of an increasing velocity and flow from the top to the bottom
of the lung in the presence of gravity. Decreasing velocity and flow values are present
in the upper and lower regions of the lung, due to the longer path lengths (as displayed
in Figure 5.35(c)).
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WITHOUT GRAVITY (0G) WITH GRAVITY (1G)

(a) (b)PRESSURE (kPa)

(c) (d)VELOCITY (mm s−1)

(e) (f)FLOW (mm3 s−1)

FIGURE 5.18: Comparison of pressure, velocity, and flow solutions in the venous
model with and without gravity: (a,b) pressure (kPa), (c,d) velocity (mm s−1), (e,f) flow
solutions without (0G) and with (1G) gravity in the anatomically-based venous model.
Inlet and outlet pressure boundary conditions were set to 0.7 and 0.2 kPa, respectively,

and a steady-state solution was obtained.
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FIGURE 5.19: Comparison of flow solutions at terminal nodes with respect to
gravitationally-dependent height in the anatomically-based venous model with and

without gravity, averaged within 1 and 50 mm slice thicknesses: (a) pressure (kPa), (b)
radius (mm), (c) velocity (mm s−1), (d) flow mm3 s−1.
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FIGURE 5.20: Flow (relative to mean) with respect to vertical position in the lung,
including least squares regression line of flow as a function of

gravitationally-dependent height (cm): (a) without gravity: flow=-0.011xheight+1.3
(r2=0.16), (b) with gravity: flow=-0.035xheight+1.6 (r2=0.78). Goodness of fit is

denoted by r2. NB: Linear regression only includes data for region of increasing flow
from 12-30 cm height.

Linear regression was again carried out to determine the relationship between flow
and vertical position in the lung (Figure 5.20). The venous network displayed a slightly
stronger gradient of flow with respect to height with and without gravity. Without
gravity the gradient of flow was -0.011 relative flow units/cm height (r2=0.16), showing
a persistent gradient of flow in the absence of gravity. With gravity the flow gradient
increased to -0.035 relative flow units/cm height (r2=0.78).

5.4.2.4 The effect of increased gravity on flow solutions in the anatomically-based
arterial and venous models

West’s zonal flow model (Section 1.3.2), where gravity is the main determinant of
blood flow distribution in the lung, predicts that as gravity is increased the gradient
of flow with respect to gravitationally-dependent height increases proportionally. To
test this assumption flow results were obtained in the arterial and venous models with
an increased gravity of 1.8 times normal gravity (1.8G: g=17.66 m s−2, chosen to be
consistent with experimental measurements in the upright baboon lung (Glenny et
al. 1999)). Results with these varying amounts of gravity (0G, 1G, and 1.8G) were
compared in the arterial (Figure 5.21) and venous (Figure 5.22) models with solutions
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averaged within 1 and 50 mm slices. The pressure, and therefore radius, gradient
increases in proportion to the amount of gravity (Figure 5.22(a)) due to the direct
relationship between gravitational force and pressure. The velocity and flow solutions
also show a increasing gradient as the gravitational force is increased. Results at all
levels of gravity show a relatively large amount of heterogeneity within isogravitational
regions. Solutions averaged within 50 mm slices show a clear relationship between
velocity or flow and gravity.
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FIGURE 5.21: Comparison of (a) pressure, (b) radius, (c) velocity and (d) flow solutions
with increasing amounts of gravity (0G, 1G, 1.8G) in the anatomically-based arterial

model averaged within slice thicknesses of 1 and 50 mm.

Linear regression was used to determine the relationship between flow and
gravitationally-dependent height with an increased gravity of 1.8G. Again the gradient
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was only determined for flow data between the heights of 12-30 cm to remain consistent
with previous analysis. Arterial results displayed a gradient of -0.029 relative flow
units/cm height, increasing by a factor of 1.53 times from results at 1G (Figure 5.23(a)).
Venous results showed a similar increase by a factor of 1.46 times (from 1G) to a value
of -0.051 relative flow units/cm height (Figure 5.23(b)). These increases are almost in
proportion to the increase in gravity by a factor of 1.8 times. The r2 correlation values
also increased (indicating a greater correlation between flow and gravitationally-
dependent height) from values of r2=0.41 and 0.78 to 0.66 and 0.92 for the arterial and
venous models, respectively.

The arterial model results, with an applied gravitational force of 1.8G, were
compared with experimental flow measurements from supine pigs collected via the
microsphere injection technique with various amounts of gravity (Glenny et al. 2000)
(Figure 5.24). The gradient of flow was found to increase from -0.109 to -0.155 relative
flow units/cm height when gravity was increased from 1G to 1.8G, this is a factor
of only 1.06 times. The model results are found to compare well with the measured
data, with large decreases in flow in the upper and lower regions of the lung. The
supine pig data shows a larger gradient of both increasing and decreasing flow in the
upper and lower portions of the lung, respectively, than the model data. Species and
postural differences may contribute to this difference. Hlastala & Glenny (1999) also
investigated the effect of gravity on blood flow distribution in prone pigs by measuring
flow at 1 (1G), 2 (2G), and 3 (3G) times normal gravity. The measured gradient of flow
increased from -0.016 relative flow units/cm height at 1G by a factor of 3.25 (to -0.052
relative flow units/cm) when gravity was increased to 2G. After an increase to 3G the
gradient increased by a factor of 1.56 to -0.081 relative flow units/cm height.
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FIGURE 5.22: Comparison of (a) pressure, (b) radius, (c) velocity and (d) flow solutions
with increasing amounts of gravity (0G, 1G, 1.8G) in the anatomically-based venous

model averaged within slice thicknesses of 1 and 50 mm.
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FIGURE 5.23: Flow (relative to mean) with respect to vertical position in the lung,
including least squares regression line of flow as a function of

gravitationally-dependent height (cm), with increased gravity (1.8G) in (a) the arterial
model: flow=-0.029xheight+1.54 (r2=0.66), (b) venous model: flow=0.051xheight+1.80
(r2=0.92). Goodness of fit is denoted by r2. NB: Linear regression only includes data

for region of increasing flow from 12-30 cm height.
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FIGURE 5.24: Comparison of model results versus flow measurements from supine
pigs (Glenny et al. 2000) with increased gravity of 1.8G: flow (relative to mean) plotted

with respect to vertical position in the lung.
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5.4.3 Solution at different resolutions

• To investigate the effect that different resolution data may have on the
interpretation of flow distribution results.

Model results at all terminal locations were isolated and analysed within various
slice thicknesses in order to replicate experimental studies with different resolution
sampling methods. Thicker slices represented lower resolution data, similar to early
measurements obtained using scintillation detectors, where only a few external
measurements of blood flow were obtained. These lower resolution results effectively
provide averaged values across a large area of the lung. Higher resolution results
were achieved by averaging solutions within smaller slices (the highest resolution data
being the set of all terminal nodes) and were thought of as being more indicative of
higher resolution studies, such as obtained by Glenny, Polissar & Robertson (1991)
using microsphere deposition and counting methods. These higher resolution methods
lead to less interpolation and averaging of flow information.

Figure 5.25 illustrates the pressure, radius, velocity, and flow solutions in the arterial
model at all terminal locations with respect to lung height in slice thicknesses of 0.2, 1,
5, 10, 30, and 75 mm (displaying different resolutions results extracted from the same
initial subset). All of these simulations had a normal applied gravitational force of 1G.
Since the pressure is set at all terminal nodes in these simulations the pressure (Figure
5.25(a)) and radius (Figure 5.25(b)) solutions show a linear relationship with respect to
gravitationally-dependent height due to the effect of gravitational acceleration in all
size slices. The number of points averaged within each of the slices is plotted with
respect to vertical height in Figure 5.25(e).

Similar results were obtained with data extracted from the venous model (at 1G) and
averaged within various slice thicknesses (Figure 5.26). Averages were again obtained
within slices of 0.2, 1, 5, 10, 30, and 75 mm in thickness.
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FIGURE 5.25: Terminal flow solutions in the arterial model averaged within different
slice thicknesses: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), (d) flow
(mm3 s−1), and (e) number of terminal points per slice, for 0.2, 1, 10, 30, and 75 mm

slices.
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FIGURE 5.26: Terminal flow solutions in the venous model averaged within different
slice thicknesses: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), (d) flow
(mm3 s−1), and (e) number of terminal points per slice, for 0.2, 1, 10, 30, and 75 mm

slices.
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5.4.4 Pleural pressure versus blood flow distribution

• To investigate the influence of pleural pressure changes during breathing on
blood flow distribution in the human lung;

During the respiratory cycle the pleural pressure induces the pressure driving force
required to inspire and exhale air. On inspiration the pleural pressure decreases to
approximately -8 cm H2O (-0.78 kPa) due to the expansion of the chest wall and muscles.
On expiration the pleural pressure rises to about -5 cm H2O (-0.49 kPa) (Guyton & Hall
2000). The influence of the alterations in pleural pressure on blood flow distribution
were investigated using the arterial flow model. A simulation was also carried out to
investigate the effect of a forced expiration on blood flow distribution, where pleural
pressures become positive. Comparison of flow results (at 1G) with applied pleural
pressures of -8, -5, 0, and +20 cm water (-0.78, -0.49, 0, 1.96 kPa) are presented in this
section.

Terminal pressure, radius, velocity, and flow solutions are plotted with respect to
vertical height in the arterial model averaged within slices of 1 and 50 mm in Figure 5.27
with the varying amounts of applied pleural pressure. The negative pleural pressure
force distends the pulmonary blood vessels, and therefore a more negative pleural
pressure results in an increased radius of the vessels leading to increased velocities
and a greater increase in flow rates. The reverse occurs when a more positive pleural
pressure is applied, as is demonstrated by the large shift in results with an increased
pleural pressure to +20 cm H2O.

These results demonstrated that pleural pressure had a significant role in the
overall flow rate values, but the distributions of flow remained fairly constant over
the various pleural pressure values. During inspiration, as pleural pressure becomes
more negative, the extra-alveolar vessels become more distended and therefore their
resistance to flow decreases. However, as the lung expands and with it the alveolar
spaces, the alveolar-capillaries become more compressed and therefore offer a higher
resistance to flow. A flow model of the complete pulmonary circuit, when the models
are coupled, will offer a more realistic representation of blood flow at different lung
volumes.
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FIGURE 5.27: Terminal flow solutions in the upright arterial model with varying
amounts of pleural pressure (Ppl=-8, -5, 0, +20 cm H2O). Results are averaged within

slice thicknesses of 1 and 50 mm: (a) pressure (kPa), (b) radius (mm), (c) velocity
(mm s−1), and (d) flow (mm3 s−1).



168 Blood Flow in the Large Vessels

5.4.5 Effect of body posture on blood flow distribution

• To investigate the effect of posture on blood flow distribution;

Experimental studies have demonstrated a persistent blood flow gradient with
respect to position in the lung, somewhat independent of body posture (Glenny et
al. 1999). A small effect (flow reversal) is displayed on inversion of postures, but
not a complete reversal of the flow gradient, this is another factor pointing towards
a less significant role of gravity on the distribution of blood flow. The arterial and
venous models were used to investigate the effect of variation of posture on the
distribution of blood flow. Comparisons were made between flow results obtained
in the upright, inverted, prone, and supine postures. All parameters and pressure
boundary conditions (arterial: inlet pressure=2 Pa, outlet pressure=1.25 kPa, venous:
inlet pressure=0.7 kPa, outlet pressure=0.2 kPa) used were the same as in all previous
simulations.

Terminal solutions were extracted from the models and averaged within 1 and
50 mm slices along the craniocaudal (top-bottom) axis and compared for all postures
(Figures 5.28 and 5.30 for the arteries and veins, respectively). Solution in the supine
and prone postures were also compared by averaging values within 1 and 30 mm slices
across the dorsoventral axis (Figures 5.29 and 5.31 for the arterial and venous trees,
respectively).

Inversion of posture showed a clear effect on the gradient of pressure (Figures
5.28(a), 5.30(a)), and therefore radius (Figures 5.28(b), 5.30(b)), at all terminal vessels.
Variation in posture had a less significant effect on the distribution of flow (Figures
5.28(d), 5.30(d)) and a minor effect on the gradient of velocity (Figures 5.28(c), 5.30(c))
with respect to height in the craniocaudal direction. The largest change in flow gradient
was demonstrated on inversion of the posture from upright to inverted. Craniocaudal
flow gradients in the supine versus prone postures do not show a significant change
in gradient, but flow in the prone posture is consistently lower than flow in the supine
position.

The difference between flows in the supine and prone postures is illustrated
more clearly in Figures 5.29 and 5.31 where solutions are plotted with respect to the
gravitationally-dependent height in the dorsoventral direction, where 100% height
corresponds to the dorsal surface and 0% height to the ventral surface. The reference
height with respect to gravity is at the inlet of main pulmonary artery or veins into the
heart. The pulmonary trunk is positioned closer to the ventral surface (at a height of
13.9%, as is demonstrated by the intersection of the pressure values in Figure 5.29(a)),
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the arterial model shows higher overall pressures when in the supine position due to
an increased hydrostatic pressure head due to gravity. This results in a higher overall
flow in the supine posture compared to in the prone position. Flow in the ventral
region remains relatively unchanged on inversion from the prone to supine posture,
while flow in the dorsal region (furthest from the pulmonary trunk) is most effected.
This demonstrates a large influence of the positioning of the large pulmonary vessels
on flow distribution in the remaining vasculature.

Results in the venous network displayed similar trends to those in the arterial
model. Inversion from the prone to supine position resulted in a larger change in
flow gradient than was displayed in the arterial model (Figure 5.31(d)). The pressure
gradients in the two postures (Figure 5.31(a)) are almost exactly opposite (due to the
more central positioning of the main pulmonary veins at a height of 46.8%). All results
demonstrate a decrease in velocity and flow in the most peripheral regions (top and
bottom) of the lung regardless of posture.

Transit time details for these simulations are displayed in Section 5.4.7, Table 5.1.
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FIGURE 5.28: Comparison of flow solutions in the arterial model in different postures:
- upright, inverted, supine, and prone, averaged within slice thicknesses of 1 and 50

mm: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), and (d) flow (mm3 s−1).
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FIGURE 5.29: Comparison of flow solutions in the arterial model in the prone versus
supine positions with respect to the gravitationally-dependent height (dorsoventral
axis, where 0% corresponds to the ventral surface). Solutions averaged within slice

thicknesses of 1 and 30 mm: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1),
and (d) flow (mm3 s−1).
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FIGURE 5.30: Comparison of flow solutions in the venous model in different postures -
upright, inverted, supine, and prone, in slice thicknesses of 1 and 50 mm: (a) pressure

(kPa), (b) radius (mm), (c) velocity (mm s−1), and (d) flow (mm3 s−1).
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FIGURE 5.31: Comparison of flow solutions in the venous model in the prone versus
supine positions with respect to the gravitationally-dependent height (dorsoventral
axis, where 0% corresponds to the ventral surface). Solutions averaged within slice

thicknesses of 1 and 30 mm: (a) pressure (kPa), (b) radius (mm), (c) velocity (mm s−1),
and (d) flow (mm3 s−1).
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5.4.6 Effect of vessel distensibility

The hydrostatic pressure gradient in the lung causes distension of gravitationally-
dependent vessels which influences the distribution of blood flow. The finite
compliance of the pulmonary vascular system means that gravity can only have a
limited effect (Glenny et al. 2000). The effect of vessel distensibility on the distribution
of pulmonary blood flow was investigated by conducting simulations with various
values of G0 and β, parameters in the pressure-radius relationship (Equation 5.4). All
simulations in the previous sections use G0=5 kPa and β=3.2. Additional simulations
were carried out, in the arterial tree only, with the following vessel elasticity constants:
G0=1 kPa, β=3, G0=3 kPa, β=3, and G0=7 kPa, β=3.

Terminal solution values were extracted from the arterial model and averaged
within 1 mm slices (Figure 5.32). These results demonstrate that the vessel elasticity
has a relatively large influence on the distribution of flow. As the vessels become more
distensible the same applied pressure (Figure 5.32(a)) results in vessels with increasing
radius values (Figure 5.32(b)). Larger vessel cross-section results in increased velocities
(Figure 5.32(c)) and a compounded larger increase in flow (resulting from both the
increase in velocity and cross-sectional area, Figure 5.32(d)). When the vessels were
more distensible (G0=1 kPa, β=3) gravity had a much larger influence on blood flow,
creating a steeper gradient of increasing flow from the top to the bottom of the lung.
Solutions with G0=3 kPa β=3, G0=5 kPa β=3.2, and G0=7 kPa β=3 displayed a relatively
small variation in terminal velocity and flow values.

The simulations in this study use a value of β=3.2, this value was estimated due to
lack of available experimentally measured values. As more detailed elasticity measures
become available these can be easily incorporated in the model to produce more
realistic results.
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FIGURE 5.32: Comparison of flow solutions in the arterial model with different vessel
distensibilities averaged within 1 mm slices: (a) pressure (kPa), (b) radius (mm), (c)

velocity (mm s−1), and (d) flow (mm3 s−1). Values of G0 and β used are displayed in
the figure key.
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5.4.7 Network transit times

• To evaluate transit times through the pulmonary vasculature, for comparison of
model results with experimental data and to increase understanding of the factors
governing blood flow distribution;

After calculation of the velocity distribution through the arterial and venous
networks, transit time information of blood through each pathway can be calculated.
The transit times are simply calculated by following a flow pathway from the inlet
vessel until an outlet vessel is reached. Due to the limited number of pathways (as
opposed to the large number of possible capillary pathways) information from all
arterial and venous pathways was collected. Measurements obtained include the time
taken to traverse each pathway, the distribution of path lengths (from inlet to outlet),
and the number of elements in each pathway.

Transit time results are presented for the arterial (Figure 5.33) and venous (Figure
5.34) models under normal gravity (1G) and pleural pressure (0.49 kPa) conditions in
an upright posture, an attempt is made to find a correlation between the various model
results. As has been displayed in previous sections, a linear relationship is displayed
between pressure at terminal locations and gravitationally-dependent height, due to
gravity (Figures 5.33(a) and 5.34(a)).

The total number of flow pathways through both the arterial and venous models is
29,818, which is the number of terminal vessels. The average path length through the
arterial network was 260.5 mm, which consisted of an average of 35.8 vessels. Through
the venous tree the average path length was 179.5 mm consisting of an average of 21.6
vessels.

Linear regression was used to generate lines of best fit through the data points
(Figures 5.33(b)-(e) and 5.34(b)-(e)). These results illustrate that as the path length (and
number of vessels in a path) increases the pathway transit time becomes longer (Figures
5.33(b,c) and 5.34(b,c), respectively). Relatively weak correlations were demonstrated
between the terminal velocity (Figures 5.33(d) and 5.34(d)) and flow (Figures 5.33(e)
and 5.34(e)) and path length, with r2 correlation coefficients of 0.031 and 0.018 for the
arterial tree, respectively, and 0.053 and 0.040 for the venous model, respectively.

Transit times in the arterial model ranged from 1.46 s to as long as 15 s, and from 1 to
8 s in the venous model. The distribution of transit times with respect to the percentage
of pathways is displayed, using 0.1 s bin intervals, in Figures 5.33(f) and 5.34(f) for the
arterial and venous trees, respectively.

To produce results comparable to flow solutions presented in previous sections,
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transit time data was averaged within slices of 1 and 50 mm in thickness with respect to
gravitationally-dependent height. Averaging solutions within slices provides a clearer
relationship between transit time information and vertical height. Both the arterial and
venous solutions display longer transit times in the upper and lower regions of the
lung (Figures 5.35(a) and (b)). This corresponds to an increase in the path length, and
therefore number of vessels in a path, in the apical and basal regions, furthest from the
inlet or outlet vessels (Figure 5.35).

Averaged transit times from all pathways were calculated from each of the
simulations conducted in this chapter, these results are displayed in Table 5.1.
The results show that higher levels of gravity lead to marginally faster average
transit times through both the arterial and venous networks. Transit times through
the arterial network were, on average, longer than travel time through the venous
network. Variation of the vessel elasticity parameters (G0 and β) had a relatively large
influence on average transit times through the arterial tree, showing a decreasing
average transit time as the vessels became more distensible.

Conditions Arterial transit time (s) Venous transit time (s)
0G (gravity = 0 m s−2) 4.06 3.37

1G (gravity=9.81 m s−2) 4.03 3.28
1.8G (gravity = 17.66 m s−2) 4.02 3.26
Pleural pressure = 0 cm H2O 4.20 3.63
Pleural pressure = -8 cm H2O 3.93 3.10
Pleural pressure = 20 cm H2O 5.36 -

Supine 3.87 3.34
Prone 4.28 3.43

Inverted 4.10 3.52
G0=7,β=1 4.19 -
G0=3,β=1 3.57 -
G0=1,β=1 2.53 -
Sheep 0G 0.54 -

Sheep 1G supine 0.57 -
Sheep 1G prone 0.50 -

TABLE 5.1: Average transit times (from all pathways) through the arterial and venous
networks under the various conditions presented in this chapter.
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FIGURE 5.33: Transit time results through the arterial model under normal gravity
(1G) and pleural pressure (-0.49 kPa) conditions: (a) pressure versus vertical height; (b)
path length (mm) versus transit time (s); (c) number of vessels per path versus transit
time; path length versus terminal node (d) velocity (mm s−1) and (e) flow (mm3 s−1);

(f) transit time with respect to the percentage of pathways.
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FIGURE 5.34: Transit time results through the venous model under normal gravity
(1G) and pleural pressure (-0.49 kPa) conditions: (a) pressure versus vertical height; (b)
path length (mm) versus transit time (s); (c) number of vessels per path versus transit
time; path length versus terminal node (d) velocity (mm s−1) and (e) flow (mm3 s−1);

(f) transit time with respect to the percentage of pathways.
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FIGURE 5.35: Transit time results with respect to vertical position in the lung for the
arterial and venous models - all points plus averages within 1 and 50 mm slices.

Arterial results: (a) transit time (s), (c) path length (mm), (e) number of elements per
path, venous results: (b) transit time (s), (d) path length (mm), and (f) number of

elements per path with respect to vertical position in the lung.
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5.4.8 Pulsatile flow solutions

• To compare the pulsatile solutions with steady-state results;

All results presented so far have been steady-state solutions, this section presents
pulsatile flow results in the arterial tree only over a single cardiac cycle. Pulsatile
pressure boundary conditions were applied at the pulmonary trunk inlet (Figure 5.37
(Burton 1965)) and all outlet pressures remained fixed at a pressure of 1.25 kPa. The
solutions were obtained by first holding the pressure differential over the network
constant until a steady-state solution was reached, then applying the pulsatile pressure
boundary conditions.
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FIGURE 5.36: Pulsatile pressure boundary conditions applied at the pulmonary trunk
inlet. These values were derived from experimental data from (Burton 1965). All

outlet pressures remained fixed at a pressure value of 1.25 kPa.

Images of the pressure solution in the arterial model over time are displayed in
Figure 5.37. The spectrum used to represent the solution is included at the top of the
figure. Over the pulsatile cycle, as pressure is increased at the pulmonary trunk, the
pressure wave propagates through the tree and results in regions of high pressure in
the most gravitationally-dependent regions of the lung. The corresponding velocity
solutions over time are illustrated in Figure 5.38. Two spectrums are used to illustrate
the wide range of velocities over the cardiac cycle, these are included at the top of the
figure. As the pressure at the pulmonary trunk decreases velocities in the large vessels
become negative, indicating reversal of flow. Only a small amount of flow reversal will
occur in reality due to valve restrictions at the heart, but these solutions illustrate the
potential of the pulsatile solution. Eventual coupling of the arterial and venous trees to
the heart will result in a full pulsatile model. The highest velocities in the arterial tree
occur at t=0.3 s when the pressure reaches a peak value of 2.5 kPa.
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(a) time=0s (b) time=0.1s (c) time=0.2s (d) time=0.3s

(e) time=0.4s (f) time=0.5s (g) time=0.6s (h) time=0.7s

(i) time=0.8s (j) time=0.9s (k) time=1.0s (l) time=1.1s

FIGURE 5.37: Series of images displaying the pulsatile pressure solution (kPa) over
time in the arterial model. The spectrum used to illustrate the solution is included at

the top of the figure.
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(a) time=0s (b) time=0.1s (c) time=0.2s (d) time=0.3s

(e) time=0.4s (f) time=0.5s (g) time=0.6s (h) time=0.7s

(i) time=0.8s (j) time=0.9s (k) time=1.0s (l) time=1.1s

FIGURE 5.38: Series of images displaying the velocity solution (mm s−1) over time in
the arterial model with pulsatile pressure boundary conditions prescribed. The two

spectrums used to illustrate the solution is included at the top of the figure.
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5.4.9 Comparison of model results with functional imaging

• To compare model results with results obtained from functional imaging studies;

The combination of medical imaging and computational modelling has the potential
to increase the understanding of structure-function relationships in the lung, in health
and disease. Computational modelling and functional imaging can be used together,
both as a method of verifying the other. The computational model developed in
this study can be validated by comparison of flow results with data extracted from
functional imaging of the human lung.

MDCT (multi-detector row x-ray computed tomography) imaging can be used to
obtain functional as well as structural measures in the lung. Blood flow information
is acquired by injecting a bolus of contrast agent and extracting information via the
time-intensity curves of the contrast material. Denney, Beck, Shikata, McLennan &
Hoffman (2004) carried out functional imaging studies using human and sheep lungs
to investigate the distribution of blood flow with respect to gravity. Figure 5.39 displays
an example of blood flow data extracted via imaging of a slice through a sheep and
human lung. The colour spectrum represents blood flow normalised to tissue content
(ml/min/g). These functional imaging studies demonstrated that gravity did not
significantly contribute to blood flow distribution in the supine human lung. Results
showed that gravity contributed to less than 5% of flow heterogeneity in the human
lung, and to about 20% in the sheep lung.

FIGURE 5.39: Blood flow data extracted from MDCT functional imaging of sheep and
human lungs. Colour spectrum represents the blood flow normalised to tissue content

(ml/min/g). Picture from (Denney et al. 2004).

MDCT image data, filtered to remove airways and large blood vessels, was received
from the Department of Physiological Imaging at the University of Iowa. Any regions
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of interest (ROIs) with an air content of greater than 90% and a blood content of less
than 2% were considered to be airways and were removed, anything with a blood
content of greater than 50% and an air content of less than 40% were considered to
be large blood vessels and were also removed. It is uncertain as to the exact size of
the blood vessels remaining after this filtering process, but the vessels are estimated
to be below about 250 µm in diameter, with the possibility of some larger vessels
being present (personal communication, 2005). To minimise lung movement during
scanning, these images were taken between the T and P wave of the cardiac cycle
during which time the ventricles are relaxing and refilling and the heart is moving the
least. The region of lung tissue imaged is just below the carina to ensure an adequate
image of the pulmonary vessels and an good lung sample. The area is also slightly
below the heart (and superior vena cava) to minimise artifacts from the contrast bolus
and catheter. Raw blood flow information (ml/min/ml) is displayed for two different
normal human male subjects in Figures 5.40(a) and (b). This information includes both
arterial and venous flow.

For comparison of model results with this image data a slice, in roughly the same
location, was taken through the model arterial and venous vessels. Flow values
(mm3 s−1) were scaled to units of ml/min/ml for comparison. The volume unit in the
model lung was assumed to be 7.05 L divided by the number of terminal accompanying
arterial and venous vessels (=7.05 L/29,818). Only terminal nodal flow solutions were
included in this analysis.

The range of flow solutions in the model results are slightly lower than the MDCT
extracted data. The MDCT raw flow data is illustrated by applying two different flow
spectrum ranges. The first spectrum (Figure 5.40(a)) includes the entire flow range (0-
17.75 ml/min/ml). The large flow range means it is difficult to visualise changes in flow
in the smaller vessels. Figure 5.40(b) illustrates the MDCT flow data with a narrower
flow spectrum range (0-4 ml/min/ml), removing the higher flow values (now shown
in black) which appear to be from larger vessels. Due to the uncertainty of the range
of size of the vessels being measured by MDCT, a possible application of this flow
model could be in helping to predict the size of vessels present by comparing flow rate
solutions.

5.4.10 Comparison of flow in the human versus sheep lung

• To compare human arterial flow results with flow results obtained in a model of
the sheep arterial tree;
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(a) (b)

(c)

FIGURE 5.40: Comparison of model results with flow information extracted from
MDCT imaging. MDCT functional blood flow data, courtesy of the Physiological

Imaging Department at the University of Iowa: (a) and (b) display raw blood flow
(ml/min/ml) information within a normal male subject using two different solution
scales, (c) display raw blood flow results (ml/min/ml) through a slice of the model -

including terminal arterial and venous vessels

The Navier-Stokes flow solution procedure was implemented within a finite
element model of the sheep (ovine) arterial tree. The mesh used for this simulation
is the same conducting airway model developed by Tawhai et al. (2004). Geometry
and diameters of large airway branches down to a maximum of 23 generations were
obtained from MDCT images (Figure 5.41(b)). The VFB algorithm was then used from
these end points to generate the remaining branches undetectable via imaging into
the lung volume also defined from MDCT (Figure 5.41(a)). This flow investigation
assumes that the sheep arterial tree closely follows the bronchial tree, and therefore
as a preliminary study blood flow results were obtained in the conducting airway
geometry as an approximation to the arterial vessels. All branches have equivalent
unstrained radius values as the conducting airway model, except the pulmonary trunk
and next two generations of branches. The human pulmonary arterial trunk is larger in
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diameter than the trachea, but smaller vessels have approximately the same diameters
as their accompanying airways. This fact was applied to the sheep conducting airway
model to create the radius distribution for the sheep arterial tree used in these blood
flow simulations.

In contrast to the human conducting trees, the ovine branching structure is more
monopodial in nature, leading to more asymmetric trees. Monopodial branching tends
to produce minor child branches (with a large branching angle) stemming from a larger
major child branch (with a small branch angle). This monopodial branching structure is
visible in the finite element model of the sheep conducting airway structure displayed
in Figure 5.41.

(a) (b) (c)

FIGURE 5.41: Finite element model of the sheep lung and conducting airways (used to
represent the sheep arterial tree). (a) Left side view of the MDCT-derived vessels

(gray) plus branches generated into the lung volume using the VFB algorithm (brown)
from the MDCT vessel end points. (b) Lung surface model, and (c) right hand view of

the branches in the sheep lung. This geometry was used to obtain an arterial flow
solution within the sheep lung.

Steady-state flow solutions in the sheep arterial model without gravity (OG) and
with gravity (1G) in the prone and supine postures were obtained (Figure 5.42). The
sheep vessel elasticity was assumed to be the same as for the human arterial tree (G0=5
kPa, β=3.2) due to lack of available data. Pressure boundary conditions (also the same
as for human arterial simulations) were 2 kPa and 1.25 kPa at the inlet and outlet
vessels, respectively.
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As in the human blood flow results, all terminal solution data was extracted from
the sheep model and flow information was averaged within slices of 1 and 30 mm in
thickness. Inversion of the posture from the supine to the prone position resulted in a
similar inversion of the pressure (Figure 5.43(a)), and therefore radius (Figure 5.43(b)),
gradients at all terminal nodal locations with respect to height along the ventral to
dorsal axis. Intersection of the pressure values for the different simulations indicates
the relative positioning of the inlet arterial vessel (at a height of about 77%) with
respect to gravity (that is, the inlet vessel defines the reference height for the applied
gravitational force). The gradient of velocity and flow remains relatively consistent
in the different postures with gravity and without gravity. A lower overall velocity
(Figure 5.43(c)) and flow (Figure 5.43(d)) occurs in the supine posture, with the highest
flows occurring in the prone position.

Comparison is made between results obtained in the sheep and human models in
the supine posture (Figure 5.44). Terminal solution values averaged within 1 and 30
mm slices are plotted with respect to normalised gravitationally-dependent height (%).
Due to relatively large differences in the terminal radius values of the sheep and human
models (Figure 5.44(b)), there were large differences in the terminal velocity and flow
values, and therefore velocity and flow solutions displayed are values relative to mean
values. The sheep model displays larger velocity and flow gradients than the human
model, which is purely a result of the different vascular geometry of the sheep arterial
tree.
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PRESSURE (kPa) VELOCITY (mm s−1)

(a) (b)NO GRAVITY

(c) (d)PRONE, 1G

(e) (f)SUPINE, 1G

FIGURE 5.42: Flow results in the sheep arterial model: (a) pressure and (b) velocity
solutions without gravity; (c) pressure and (d) velocity results in the prone posture,

and (e) pressure and (f) velocity solutions in the supine posture. Arrows indicate the
direction of gravity. Pressure solutions have units kPa, and velocity solutions are in

units of mm s−1, spectrums used to illustrate solution are displayed at bottom of figure.
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FIGURE 5.43: Comparison of flow solutions in the sheep arterial model without
gravity (0G) and with gravity (1G) in the prone (P) and supine (S) postures. Results

plotted with respect to gravitationally-dependent height in the ventral (0%) to dorsal
(100%) direction. Results averaged within slice thicknesses of 1 and 30 mm: (a)
pressure (kPa), (b) radius (mm), (c) velocity (mm s−1), and (d) flow (mm3 s−1).
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FIGURE 5.44: Comparison of flow solutions in the sheep versus human arterial model
in the supine posture with gravity. Results plotted with respect to

gravitationally-dependent height in the dorsal (0%) to ventral (100%) direction.
Results averaged within slice thicknesses of 1 and 30 mm: (a) pressure (kPa), (b) radius

(mm), (c) velocity (relative to mean), and (d) flow (relative to mean).
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Comparison is made between terminal flow data (averaged within 1 mm slices) and
experimentally measured values of flow in the supine pig lung (Glenny et al. 2000).
This is the same data used to compare against human model results (Figure 5.17). Flow
(relative to the mean) is plotted with respect to gravitationally-dependent height (%)
in Figure 5.45. The experimentally measured flow data compares well with data from
the sheep model. Human flow results did not display as much of a decrease in flow
in the upper and lower regions of the lung, this was hypothesised to be due to species
differences. The results in the sheep model confirm this hypothesis. A large decrease
in flow is displayed in the upper and lower (gravitationally-dependent) regions of the
sheep lung, with a large peak flow in the mid region of the lung. These differences in
flow are due to the geometry of the arterial tree only.
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FIGURE 5.45: Comparison of flow solutions (relative to mean) in the supine sheep
model compared with experimental measurements in the supine pig lung (Glenny et

al. 2000) and in supine dog lungs (Hogg et al. 1985) plotted with respect to
gravitationally-dependent height in the dorsal (0%) to ventral (100%) direction.

5.5 Discussion

As imaging and image processing techniques improve it will be possible to derive
an increasing amount of both structural and functional information from imaging
modalities such as CT and MRI (magnetic resonance imaging). The increasing spatial
and temporal resolution of imaging is providing an increasing standard of pulmonary
perfusion data (Won et al. 2003, Levin & Hatabu 2004). The coupling of imaging
and computational modelling techniques will provide an even more powerful tool
in the evaluation of structure-function relationships in the lung. This amalgamation
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offers potential applications in tracking structural changes via imaging (remodelling,
vasoconstriction), and investigating the consequences on global, and regional, lung
function via modelling. The use of high resolution imaging data also provides greater
scope for establishing normative ranges of variation in geometry and vessel caliber in
different orientations or at different blood pressures which is the goal of the Lung Atlas
(Li et al. 2003). A normal range of pulmonary perfusion may also be established and
used to recognise deviations from normality to help in the early detection of pulmonary
diseases, such as emphysema.

Computational modelling tools may be used in conjunction with imaging
modalities, each method acting as a means to verify the other. For example, functional
imaging data may be used for comparison with flow model results in larger vessels,
thereby validating model results (Section 5.4.9). Modelling may then be used to
investigate flow in smaller vessels, immeasurable via imaging, or to investigate
different conditions, such as the upright posture which is difficult to obtain via
imaging. The model may also be used to help interpret results from functional imaging
studies, if the quantities being measured are uncertain. Computational models may
also be used to obtain quick predictions of the functional consequences of certain
changes in vascular geometry, for example the effect of pulmonary vasoconstriction,
pulmonary embolism, or pulmonary hypertension, for individual subjects.

Studies into the origin of pulmonary blood flow heterogeneity have highlighted
the prominent functional significance of the asymmetric branching structure of the
pulmonary vasculature, suggesting that gravitational factors are a minor determinant
of flow distribution (Glenny et al. 1999). Previous studies have highlighted the
intimate relationship between structure and function in the pulmonary circulatory
system through both computational (Parker et al. 1997, Krenz et al. 1992, Dawson et
al. 1999) and experimental investigations (Glenny, Polissar & Robertson 1991, Glenny
et al. 1999). The current study has simulated blood flow through the human pulmonary
arterial and venous trees by solution of the Navier-Stokes flow equations, representing
Newtonian fluid flow.

The pulmonary flow model developed in this study builds on an existing model
of flow through the coronary blood vessels (Hunter 1972, Smith et al. 2002). The
numerical techniques and methodology used are identical to this study, with the
exception of the inclusion of a gravitational term. Gravitational factors are more
significant in pulmonary flow evaluation due to the relatively large height differential
of the organ (≈ 30 cm).

Creation of the finite element arterial and venous models included derivation of the
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largest blood vessels and lobar definitions from multi-detector row x-ray computed
tomography (MDCT) scans from the Lung Atlas (Li et al. 2003). This technique
enables a more accurate description of vessel geometry and allows patient- and species-
specific models to be generated. A volume-filling branching (VFB) algorithm (Tawhai
et al. 2000) defines the geometry of the smaller accompanying arterial and venous
vessels unidentifiable via imaging, producing vascular trees governed by the lobar
geometries and the positions of the initial MDCT derived vessels, thereby producing
a more realistic, integrated model (Chapter 4) than previous models of the pulmonary
vascular trees.

Even in the absence of gravity, flow through the anatomically-based arterial model
(and the anatomically-based venous model) showed a large amount of heterogeneity
due to the asymmetric branching structure and diameter distribution leading to non-
uniform flow pathways. In contrast, flow results within the symmetric arterial model,
without gravity, demonstrated homogeneous flow rates at all terminal locations; this
was the expected result due to the equivalent geometry of all flow pathways. These
results indicate that the vascular branching structure plays a large role in pulmonary
flow heterogeneity. With the addition of gravity, both models display a pressure
gradient increasing from the top to the bottom of the lung due to hydrostatic forces,
resulting in an increase in flow from apical to basal regions. The symmetric model
flow results are uniform at any given gravitationally-dependent height, while the
anatomically-based model displays heterogeneous flow results within isogravitational
regions. The anatomically-based models display a decrease in flow in the most
dependent (basal) regions of the lung (due to increased path lengths, described below),
the symmetric tree does not demonstrate this decreased flow. Again, the symmetric tree
precludes path differences and therefore continues to have an increasing flow through
the entire height of the lung from apical to basal regions.

Flow solutions with and without gravity in the anatomically-based arterial model
were compared to assess the contribution of gravity to blood flow distribution in the
upright lung (Section 5.4.2.2). The gradient of flow with respect to vertical position (as
determined by linear regression, Figure 5.16) increased from -0.006 to -0.019 relative
flow units/cm with the inclusion of gravity. These results reveal the persistence of a
flow gradient even in the absence of gravitational factors. This is in agreement with
experimental results in the upright baboon lung, where Glenny et al. (1999) observed
an average flow gradient of -0.088 and -0.020 relative flow units/cm with and without
gravity, respectively. The linear regression fitting only uses flow data in the upper
regions of the lung, where flow is increasing, as was done by Glenny et al. (1999). The
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region of decreasing flow in the most dependent regions of the lung is obviously not a
result of gravitational forces and therefore should not be incorporated into the gravity-
flow relationship.

Similar analysis was conducted comparing flow solutions in the upright venous
model with and without gravity (Section 5.4.2.3). Linear regression analysis (Figure
5.20) revealed flow gradients with respect to gravitationally-dependent height of -0.011
and -0.035 relative flow units/cm with and without gravity, respectively. This analysis
also only includes data between the heights of 12 and 30 cm as used for the arterial tree.
The flow gradients in the venous model are greater than in the arterial model, most
probably because of the different distensibility of the vessels, namely the β values of
3.2 and 1.2 applied to the arterial and venous trees, respectively. The effect of various
vessel distensibilities has been demonstrated in the arterial model (Figure 5.32), and
was shown to have a significant effect on flow solutions (discussed further below).

Figures 5.15 and 5.19 display terminal flow results with respect to vertical position
in the lung in the upright arterial and venous models, respectively. These results
demonstrate decreasing flow in both the upper and lower regions of the lung. This
can (at least partially) be explained by the differences in flow path lengths (from inlet
to outlet), as illustrated in Figure 5.35, where paths with the longest lengths (upper
and lower regions) have corresponding lower flow rates and longer transit times.
The longer path lengths lead to higher resistances to flow meaning that these paths
convey smaller amounts of flow. These results again indicate the large influence of the
vascular branching structure on blood flow distribution, and also demonstrate that the
positioning of the pulmonary trunk feeding into the pulmonary circuit, and the central
veins draining back into the heart, is vital in determining the distribution of flow in the
lung.

Early studies of perfusion distribution in the human lung used low resolution
imaging techniques, such as external scintillation x-ray counters (West et al. 1964)
providing flow information averaged over large regions of the lung. Advances in
experimental technologies (Glenny, Polissar & Robertson 1991) have provided higher-
resolution data with which a clearer idea of regional flow distribution can be obtained.
Such studies have indicated that gravity is not the main determinant of pulmonary
blood flow heterogeneity. Model results at terminal locations are averaged within 1 and
50 mm slice thicknesses (and also within other various slice thicknesses, Section 5.4.3)
in order to mimic these different experimental resolutions and to illustrate the effect
of different resolution data on the interpretation of flow results. Microsphere injection
techniques (Glenny, Polissar & Robertson 1991) yield high spatial resolution flow data,
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as in the 1 mm (averaged) model results. These results demonstrate a large amount of
heterogeneity in flow values within isogravitational regions, revealing a less significant
contribution of gravity on flow distribution. Model results averaged within 50 mm

slices, mimicking lower spatial resolution data, show a clearer gradient due to gravity,
suggesting how gravitational dominance was interpreted from earlier investigations.
Lower resolution measures cannot detect heterogeneity in isogravitational regions,
because only averaged flow information is extracted.

Results averaged within 50 mm slices display the four typical zones of flow (as
demonstrated in Figure 1.9), with increasing flow in the upper regions of the lung
(categorised as zones 1-3) and a region of decreasing flow (zone 4) present in the
lower (basal) region of the models. Zone 4 flow has been suggested to occur as a
result of increased resistance in the extra-alveolar vessels, due to the smaller amount of
distension in the most gravitationally-dependent region of the lung (West 1999). While
the arterial and venous flow models incorporate pleural pressure effects, this region of
decreased flow persists even in the absence of external pleural pressure forces (Figure
5.27). Model results suggest that the increased path lengths, and therefore resistance to
flow, in these regions furthest from the heart result in the decreased flow in the basal
region of the lung. This region of decreased flow remains in all conditions, for example
in all postures and in the absence of gravity and pleural pressure.

West’s zonal model, in which gravity is named the main determinant of regional
vascular perfusion, leads to a number of predictions with respect to blood flow
distribution. For example, this model implies that flow within isogravitational planes
(equal height and hydrostatic pressure) is uniform, reversal of posture should result
in reversal of the flow gradient, heterogeneity should only occur in line with gravity,
increased pressure, for example during exercise, should result in more uniform flow
throughout the lung. Another major prediction of this zonal model is that in the
absence of gravity blood flow distribution should become uniform. Experimental
procedures have disproved a lot of these hypotheses with the advent of higher
resolution flow data and microgravity experiments (Glenny et al. 1999). Model results
clearly display a large amount of heterogeneity within isogravitational regions, and
the persistence of a flow gradient in the absence of gravity, indicating that factors other
than hydrostatic pressures affect blood flow distribution.

As well as altering the direction of gravity, changes in posture also result in changes
of the chest wall, diaphragm, and heart positions, and local parenchymal stresses
(Hlastala & Glenny 1999). The current model neglects any of these factors, and looks
purely at the behaviour in the isolated vascular system. Flow results in various postures



5.5 Discussion 197

(prone, supine, upright, and inverted, Figures 5.28-5.31) displayed a persistence of the
trend of flow in all positions, namely an increasing flow from the apical to basal regions
and a decreasing flow in the most basal regions of the lung. These results suggest that
the vascular geometry largely determines the distribution of flow.

Other experimental studies of perfusion heterogeneity in different postures have
agreed that factors other than gravity are largely responsible for flow distribution.
Musch et al. (2002) used PET (positron emission tomography) imaging to assess the
distribution of ventilation (V̇ ) and perfusion (Q̇) in prone versus supine humans.
This study demonstrated that both V̇ and Q̇ gradients (favouring dependent lung
regions) were maintained in both postures. They also found that flow heterogeneity, as
measured by the coefficient of variation squared (CV 2=(SD/mean)2), was unaffected
by posture. Jones et al. (2001) produced similar results through electron beam
computed tomography (EBCT) scans on healthy humans, also comparing perfusion
distribution in the prone versus supine positions. Gravity was estimated to produce
22-34% of perfusion heterogeneity in the supine posture and 27-41% when subjects
were prone.

The current study develops a pulmonary flow model of greater detail both
structural and functional - than previous models. The asymmetric structure of nearly
60,000 vessels each for the arterial and venous systems are included as opposed to
previous symmetric (Parker et al. 1997), fractal type (Glenny & Robertson 1991, Krenz
et al. 1992), or lumped parameter type (Huang et al. 1998) models. Previous models
implementing Poiseuille type flow solutions (Dawson et al. 1999) within vascular
networks, imply that pulsatile (or time-dependent) flow cannot be investigated, unlike
in the current model. Li & Cheng (1993) produced a nonlinear fluid model of flow
through the pulmonary circulation also using a Lax-Wendroff finite difference method
to solve fluid continuity, momentum, and wall equations. Their model solved flow
through the entire pulmonary circuit, but only implemented the solution within a
simple 2D network model consisting of a total of 18 generations. The use of a more
detailed, subject-specific model has great potential for evaluating structure-function
relationships in individuals in health and disease.

This flow model obtains results within isolated pulmonary arterial and venous trees,
free from external factors such as airway pressures, and forces exerted by the heart
and chest wall. Therefore this model best mimics pulmonary blood flow at residual
volume (RV) when the lung is in a relaxed state. Experimental measurements have
demonstrated that the effect of gravity on blood flow varies with lung volume, with
the largest effect displayed at total lung capacity (TLC) and the smallest effect at RV
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(Hughes et al. 1968). This may be a contributing factor to the small effect displayed by
the inclusion of gravity into the flow model.

The simulations in this study assume a constant vessel compliance throughout the
arterial and venous networks. Numerous studies have been conducted to determine
pulmonary blood vessel elasticity (the restorative force) and distensibility (the actual
change in vessel volume with pressure) using various different techniques. Collation
of pulmonary elasticity measurements by Krenz & Dawson (2003) illustrated that
even though the pulmonary arterial wall structure varies considerably from the main
pulmonary artery to the precapillary terminal arteries, the distensibility is essentially
constant and independent of vessel diameter and vessel wall composition. The same
was found for venous vessels. Figure 5.32 demonstrates the significant effect of vessel
distensibility on flow distribution. The lower values of G0 (=1 kPa) and β (=3) display
a much larger effect of gravity on blood flow distribution. In reality the tethering of the
pulmonary fibre network probably results in less distensible vessels. As more detailed
elasticity information becomes available this can easily be incorporated into the flow
model to more closely mimic the in vivo situation.

The application of constant vessel distensibility may have consequences in
investigating the effects of vascular remodelling. Vascular regions of consistently
high flow may incur structural changes, mainly a thickening of the vessel wall by
increased muscle resulting in increased rigidity (Riley 1991). In this case a non-
uniform distribution of vascular compliance could be applied to vessels in the model.
An increased understanding of the structural changes occurring in the blood vessels
would be required to do this.

Transit times through the arterial and venous models during the various simulation
conditions are presented in Table 5.1 (Section 5.4.7). Dawson, Capen, Latham, Hanson,
Hofmeister, Bronikowski, Rickaby & Wagner Jr (1987) measured the time taken for
a bolus of dye to travel from the main pulmonary artery to a subpleural pulmonary
arteriole in anesthetised dogs placed in the left lateral decubitus position using
fluorescence microscopy. They found a mean transit time of 1.94 s (standard deviation
of 1.23 s and a relative dispersion (standard deviation/mean) of 64%). This average
transit time value is significantly shorter than the value of 4.03 s calculated in the human
arterial model. This may be due to species differences, namely in the geometry of the
respective arterial trees, or differences in pressure conditions within the system. This
study also measures the transit time to a subpleural arteriole location, which may not
be representative of the whole arterial system in the lung. The sheep transit times are
significantly shorter than these values, possibly due to similar reasons described above.
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The pressure boundary conditions applied to the sheep arterial model were the same
used in the human model and may not be representative of pressures in the sheep lung.

MacNee et al. (1989) measured mean transit times of 5.1 ± 0.5 s and 4.1 ± 0.6
s of RBCs through the entire human pulmonary circuit in the upper and lower
gravitationally-dependent regions of the human lung (in the lateral decubitus position),
respectively. Hogg et al. (1985) measured regional differences in RBC transit in supine
dogs, finding an average time of 2.86 ± 0.31 s with transit times ranging from 0.41 to
longer than 20 s. These studies have been previously discussed in Chapter 3, Section
3.3.8, and scaled values were used to compare with capillary transit times. Both of these
studies measure RBC transit rather than whole blood transit. The transit results in this
study refer to transit of whole blood, not just RBCs. RBCs are known to traverse more
quickly through the pulmonary system than whole blood in vessels with diameters
less than around 500 µm, which may have influenced the measured results. The much
longer transit times predicted by the model will also be influenced by the steady-state
system solution obtained at a single set of boundary pressures instead of integrating
the solutions over a pulsatile pressure cycle. That is, the pressure boundary conditions
were assumed to represent the mean flow state and therefore the results were used
directly to calculate the transit time. The large pressures during systole may reduce the
model transit times closer to experimental values.

Peak flows predicted for the venous model were larger than for the arterial model.
This is likely to be due to inaccurate estimation of peripheral pressures used as
boundary conditions in the model. Currently the arterial and venous systems are
completely independent from each other. After coupling of the two models via a
microcirculatory unit the system will be interdependent and conservation of mass will
apply across the entire pulmonary flow circuit.

While microsphere experimental techniques can yield high spatial resolution flow
data in animals, this is a destructive procedure and therefore not applicable to human
studies. Therefore this model, in conjunction with functional imaging, will be useful in
predicting blood flow distribution in humans in health and disease. Preliminary model
validation using functional MDCT imaging data displayed a general agreement in the
range of flow values (Section 5.4.9).

Comparison of arterial model flow results were made with experimentally
measured flow in upright baboons (Glenny et al. 1999) and supine pigs (Glenny
et al. 2000) (Figures 5.17 and 5.24), as a means of validating the model. The pattern
of flow and flow values (relative to the mean flow) obtained with this model were
similar to these measurements. Future work will include further comparisons with



200 Blood Flow in the Large Vessels

flow measurements, from both imaging studies and experimental measures.
While the geometric arterial and venous models developed in Chapter 4 include

supernumerary vessels, these were not incorporated in the flow solution procedure.
The vast number of supernumerary vessels means that it is very difficult (in terms of
computational capability) to obtain a solution through the full network. More realistic
solutions will also only be obtained through these vessels when the full circuit is
modelled through coupling of the arterial and venous models via the microcirculatory
flow model. The presence of a muscular sphincter at the inlet to supernumerary vessels
has been noted in bovine lungs (Shaw et al. 1999) (thought to act as a means of
controlling flow through these vessels) and would have to be accounted for in the
model. Addition of the supernumerary vessels would most likely not alter flow results
significantly. The nature of supernumerary vessels with their 900 branch angle and
small diameters would mean that these vessels do not receive much flow. It is believed
that these vessels act as a reserve capacity for times of increased flow (Shaw et al. 1999).

Preliminary pulsatile solutions in the arterial tree are presented in Section 5.4.8.
Pulsatile pressure is applied only at the pulmonary trunk, and constant pressure
is maintained at all terminal locations. More realistic pulsatile solutions will be
obtained when the arterial and venous systems are coupled via the microcirculatory
model. Pulsatile velocity results demonstrate negative velocities in the larger arterial
vessels during the decrease in pressure (typical of the R-S portion of the QRS pulsatile
complex). These solutions do not represent physiological behaviour. Reversal of flow
cannot occur in the pulmonary circuit due to the heart valve restrictions. These pulsatile
solutions do, however, illustrate the potential of the model in simulating pulsatile flow.

Flow distribution in the supine sheep arterial model was significantly different
than in the supine human arterial tree (Figure 5.44). Much steeper velocity and flow
gradients were demonstrated in the sheep lung, with largely reduced flows in the
apical and basal regions of the lung. All simulation parameters in the sheep model
(for example, elasticity values, inlet and outlet pressure boundary conditions) were
consistent with human simulation parameters. This implies that the differences in flow
are a direct result of the arterial tree geometries. These results have implications for
comparisons between human and sheep flow phenomena. For example, destructive
experimental procedures (such as microsphere injection flow measurements) are only
applicable to animal studies. Therefore the ability to interpret flow results obtained
in animals under different conditions and predict flow behaviour in human lungs is
an important step, with which this model may provide some help. The sheep model
results compare more closely to the experimentally measured flow values in the supine
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pig and dog lungs (Figure 5.45) than the human model results (Figures 5.17 and 5.24).
The major assumptions in the Navier-Stokes flow model are the pressure-radius

relationship (Equation 5.4), the assumed radial velocity profile, and the pressure
loss calculation at bifurcation points. These simplifications enable the Navier-Stokes
equations to be solved efficiently in the large arterial and venous networks. As
computational power increases these additional factors may be able to be incorporated
into the solution procedure to allow a full 3D solution to be obtained. At this stage it is
believed that the simplified 1D solutions adequately represent pulmonary blood flow
distribution.

One of the major limitations in the model as it stands is that the arterial and venous
trees are independent of each other, they are not coupled. When the arterial and venous
flow models are coupled via a lumped parameter model representing microcirculatory
blood flow, more realistic results will be obtained. This is a definite focus for future
work, refer Section 6.

5.6 Conclusions

The anatomically-based models of blood flow through the human pulmonary arterial
and venous trees developed in this study have demonstrated the large effect of
asymmetric vascular branching structure on blood flow heterogeneity, and show that
while gravity has an effect on blood flow distribution, it is not necessarily the dominant
factor. Results reveal that while the flow gradient due to gravity is clearly present in
lower resolution data, a trend is less obvious in higher resolution data. The models
display an area of increasing flow from the apical to the basal regions of the lung,
with a decrease in flow in the most basal regions. This trend persists in the absence of
gravity, pleural pressure, and in various postures, also implying that gravity is not the
main determinant of flow. This work agrees with high-resolution experimental studies
of blood flow distribution in animals (Glenny, Polissar & Robertson 1991).

The potential for simulating pulsatile flow solutions within the arterial tree has
been demonstrated. More realistic results will be obtained when a complete model
of the arterial-capillary-venous flow circuit is developed, and cardiac restrictions are
accounted for.

Flow results were also obtained within a sheep arterial model and were found to
compare well with experimental data from supine pigs and dogs.

A summary of this work can be found in (Burrowes, Tawhai & Hunter 2005b).
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The ultimate goal of this research was to create an anatomically-based model of flow
through the pulmonary circulation of a healthy human lung.

Beginning at the microcirculatory level, a 3D Voronoi meshing technique was used
to generate an alveolar model into a unit cube of tissue. A single alveolar sac was
extracted from this volume-filling model over which to create a capillary network.
A 2D Voronoi meshing procedure was used to create a capillary model continuous
with the alveolar units. This Voronoi mesh was created on the surface of a unit sphere
and projected onto the alveolar surfaces. Only a single capillary mesh was generated
between adjacent alveoli, rendering this meshing technique applicable to producing
capillary networks continuous with larger units of alveolar tissue.

Poiseuille type flow equations, incorporating a hematocrit-dependent viscosity
term, were solved within the 1D capillary segments. A dimensional model was
incorporated into the flow procedure which accounts for alveolar, pleural, and capillary
blood pressures. This model was used to investigate regional variations in flow
and cellular transit phenomena. Gravity-dependent pressure boundary conditions
were applied at the inlet arterioles and outlet venules over the height of a 30 cm

lung. Flow, diameter, and RBC distributions were calculated, and RBC and WBC
transit times from arteriole to venule were determined. Model results displayed
physiologically consistent trends of an increasing flow from apical to basal regions of
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the lung, with a small region of decreasing flow in the most gravitationally-dependent
regions, due to the increase in pleural pressure. Cellular transit times demonstrated
an increased average transit time and more homogeneous transit time distributions
as flow increased down the lung. WBC cells were found to become trapped more
frequently in the upper regions of the lung where the capillaries were, on average, less
distended. Model results of RBC transit times and flow (relative to mean) were found
to compare well with experimentally measured data.

Finite element models of the conducting arterial and venous trees were created
using a combination of data extracted from MDCT, a volume-filling branching
algorithm, and an empirically-based supernumerary algorithm. This procedure
generated volume-filling vascular trees down to the level of their respiratory bronchiole
(Strahler orders 11 and 9 for the arterial and venous trees, respectively) consisting of
approximately 60,000 vessels each.

By assuming a radial velocity profile, a reduced form of the Navier-Stokes equations
was solved within the arterial and venous geometries. A finite difference two step Lax-
Wendroff numerical scheme was implemented to solve the equations. Comparison of
flow solutions in a symmetric arterial model with solutions in the anatomically-based
model revealed the significant effect of vascular branching structure on blood flow
heterogeneity in the lung. In the absence of gravity, the symmetric model displayed
homogeneous solutions at all terminal locations while the anatomically-based model
displayed a large amount of flow heterogeneity. A gradient of increasing flow from the
apical to basal regions, with a decrease in flow in the most basal regions of the model,
was present even in the absence of gravity and within various postures (prone, supine,
upright, and inverted).

Transit times through the arterial model were significantly longer than
experimentally-measured values, but this may be due to the pressure boundary
conditions applied, or other specified model parameters, such as vessel distensibility,
but the most likely factor is the steady-state nature of the solution, whereby we are
assuming that by prescribing mean arterial and venous boundary condition pressures
we are replicating mean flow values. Comparison of model results with functional
imaging displayed a better correlation with raw blood flow data being within a similar
range. For each of the human, arterial, and sheep models the values predicted for
flow are likely to become more accurate with model improvements, but at this stage
of model development the trends in flow distribution are clear regardless of the total
flow prediction.

Pulsatile solutions were obtained within the arterial model, by specifying pulsatile



6.1 Future work 205

pressure boundary conditions at the pulmonary trunk. This displays the potential
of the model, but more realistic pulsatile solutions will be obtained after coupling
the arterial-capillary-venous flow circuits and incorporating restrictions placed by the
heart.

Flow solutions were obtained within a model of the sheep arterial tree. Flow
distributions within this model were found to compare more closely to measured
data from pigs and dogs. Comparison between human and sheep flow solutions
demonstrated the large effect of the vascular structure on blood flow distribution in
the lung.

This work has developed three flow models - arterial, capillary, and venous -
currently independent from each other. In reality these three networks are intimately
linked and form an interdependent system. The microcirculatory model is a more
detailed version of the sheet-flow model and is governed by gravity-dependent
pressure boundary conditions and therefore West’s zonal flow theory applies. The
typical zones of flow are present (excluding zone 1 where there is no flow). The
capillary model simulates isolated flow within the alveolar sac capillary unit and
does not account for upstream/downstream flow differences from the arterial/venous
vessels. The large vessel flow models are independent of capillary flow and therefore
do not incorporate resistance differences arising from the different capillary flow zones.
However, the typical zones of flow are visible in the isolated arterial and venous flow
models. On coupling of the three systems to form the complete pulmonary flow circuit
the influence of gravity may become more pronounced. Formation of the complete
pulmonary flow circuit will be the first stage of future work (see Section 6.1). By
incorporating the influence of tissue density and soft-tissue mechanics on blood flow
an even more accurate flow model will be obtained.

6.1 Future work

This work is ongoing, the major future developments will include the following:

• Coupling of the arterial-capillary-venous flow models to create a full flow circuit
to and from the heart. This will include the development of a lumped parameter
model of microcirculatory flow (based on the more detailed capillary model).

• Obtain flow solutions in the full pulmonary model including supernumerary
vessels. As computational power increases, and after the model is coupled to
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form a full flow circuit, the supernumerary vessels can be included into the flow
solution procedure.

• Incorporating gas exchange into the flow model. Gas exchange is proportional
to the RBC concentration and flow rate of the cells. Including a model of gas
exchange will allow the prediction of global gas exchange measures, which are
more easily validated through experimentally measured values.

• Using the model to investigate the effect of positive pressure ventilation on
pulmonary blood flow. Both the capillary and larger vessel flow models
incorporate the effects of pleural pressure. The capillary model also includes
alveolar pressure. Therefore the flow will be affected by the onset of positive
pressure ventilation, and the model can be used to investigate the effect of this
on pulmonary blood flow.

• Coupling of the pulmonary blood flow solution with soft-tissue mechanics
deformation solutions. This will involve an iterative procedure where the
mechanics and blood flow solutions are co-dependent.

• Application of the model to disease processes. One of the earliest detectable signs
of emphysema is alteration in microcirculatory blood flow. This model offers
potential in the prediction of normal flow results, to help recognise deviations
from normality.



Appendix A

CMISS command files

The computational simulations included in this study were conducted using a software
package called CMISS (Continuum Mechanics, Image analysis, Signal processing and
System Identification). This is a mathematical modelling tool developed at the
Bioengineering Institute, The University of Auckland which allows the application
of finite element, boundary element, and collocation techniques to a variety of
complex bioengineering problems. Command files (.com) are required for each
specific problem and example command files are included in this appendix. Input
files (.ip files) are also required to input certain parameters required for each
problem. Examples of all the simulations included in this thesis can be found at
http://cmiss.bioeng.auckland.ac.nz/development/examples/9/98/.

NB/ All commands begin with ’fem’ (finite element method). The text after ’#’ are
comments describing the command.

A.1 Creating the alveolar model

This command file generates the alveolar model into a unit cube using a 3D Voronoi
meshing technique (described in Chapter 2).

fem de param;r;alveoli ; #defines array parameters

fem de coor 3,1; #defines coordinates

fem de reg;r ;three ; #defines 3 regions

fem de base;r; alveoli ; #defines linear 1D, 2D, 3D and simplex 2D, 3D bases

fem de node;r;cube host reg 1; #defines 3D unit cube host

fem de elem;r;cube host reg 1;

fem export node;cube as cube reg 1; #exports cube host for viewing

fem export elem;cube as cube reg 1;

fem de node;c delaunay reg 1 target 2 div 4 rad 0.01 internal ; #creates delaunay seed points within host region 1 in target region 2, using

#4 divisions of cube volume, radius of 0.01 for internal boundary and

#boundary nodes and defines regularly spaced internal seed points



fem de mesh;c delaunay basis 4 B boundary IB internal boundary IN nodes internal reg 2; #specifies boundary, internal boundary, and internal node groups in region 2

fem update delaunay reg 2; #updates the Delaunay element arrays etc

fem de mesh;c voronoi basis 3 B boundary IB internal boundary IN nodes internal convert reg 2 target 3 gen 3;

#calculates the Voronoi mesh based on the defined Delaunay nodes in region

#2 converts the Voronoi cells to nodes and 1D elements into target

#region 3 gen 3 specifies 3 generations ( bifurcations ) of alveolar ducts

fem export node;cell as cell reg 3; #exports Voronoi nodes

fem export elem;alveoli as alveoli elem alveoli reg 3; #exports Voronoi alveolar elements

fem export elem;duct as duct elem duct reg 3; #exports Voronoi alveolar duct elements

fem quit;

A.2 Generating the capillary model over the alveolar
surface geometry

This command file creates a 2D Voronoi mesh over the surface of a unit sphere. The
Voronoi capillary mesh is then projected onto the alveolar model surfaces. Adjacent
alveoli have only a single capillary layer between them (described in Chapter 2).

fem de param;r;capillary ; #defines parameters

fem de coor 3,1; #defines co−ordinates

fem de regi; r ; four ; #defines 4 regions

fem de base;r; capillary ; #defines 2D and 3D linear bases

fem de node;r;alveoli ; #reads in alveolar mesh nodes

fem de elem;r; alveoli ; #and elements

fem export node;alveoli as alveoli ; #exports alveolar mesh

fem export elem;alveoli as alveoli ;

fem group elem 100..107,642..687 as alveolus1;

fem group elem 151..158,642..648,688..727 as alveolus2; #grouping alveolar elements so can project capillary

fem group elem 195..202,688..694,728..767 as alveolus3; #mesh over surface

fem group elem 238..245,728..734,768..807 as alveolus4;

fem group elem 284..291,649..655,768..774,808..841 as alveolus5;

fem export elem;1 as 1 elem alveolus1;

fem export elem;2 as 2 elem alveolus2;

fem export elem;3 as 3 elem alveolus3; #exports each alveolar element group for viewing

fem export elem;4 as 4 elem alveolus4;

fem export elem;5 as 5 elem alveolus5;

fem de mesh;r;capillary reg 2; #creates the Delaunay, then Voronoi mesh on unit sphere, then

#projects nodes and elements onto alveolar surfaces

fem export node;capillary as cap reg 2; #exports Voronoi capillary mesh

fem export elem;capillary as cap reg 2;

fem export node;centre as centre reg 3; #exports nodes on sphere

fem export node;delaunay as delaun reg 4; #exports Delaunay nodes

fem export elem;delaunay as delaun reg 4; #exports Delaunay elements

fem quit;



A.3 Solving for flow through the capillary network

This command file creates the capillary mesh, then solves Poiseuille type flow
equations within the capillary network. An iterative solution procedure is
implemented which accounts for the nonlinear effect of RBCs and capillary diameters
on the flow solution (described in Chapter 3).

fem de param;r;capillary ; #defines parameters

fem de coor 3,1; #defines coordinates

fem de regi; r ; four ; #creates 4 regions

fem de base;r; capillary ; #defines a 1D linear basis function

fem de node;r;cells ; #reads in alveolar finite element nodes

fem de elem;r;cells ; #reads in alveolar finite elements

fem group elem 100..107,642..687 as alveolus1; #groups alveolar elements

fem de mesh;r;capillary reg 2; #creates the 2D Voronoi capillary mesh

fem define equation;r ; capillary reg 2; #defines the equations to be solved

fem define material; r ; capillary reg 2; #defines material parameters to be used

#fem define time;r ; capillary reg 2; #defines time−dependent pressure boundary conditions, if used

fem define initial ; r ; capillary reg 2; #defines initial conditions

fem define solve; r ; capillary reg 2; #defines solve parameters to use

#Below is for time dependent pressure boundary conditions:

$time initial =0.00;

$time final =1;

$time step=0.1;

$write out period=0.1;

fem export nodes; $time initial as capillary reg 2;

fem export elem; $time initial as capillary reg 2;

fem export properties; initial as initial reg 2 index 17,11,5;

for ( $time= $time initial ;$time<$time final;$time=$time+$write out period)

{

fem solve restart to $time+$write out period reg 2 delta t $time step;

fem export properties;$time+$write out period as solution reg 2 index 17,11,5;

}

#Below for single time solution (constant boundary condition)

fem solve from 0 to 1 delta t 0.5 reg 2; #solves system of equations

fem export node;capillary as capillary reg 2; #exports the nodes for viewing

fem export elem;capillary as capillary reg 2; #exports the elements for viewing

fem export node;solution as solution reg 2 field pressure; #exports pressure solutions as nodes

fem export properties; solution as solution reg 2 index 17,11,5; #exports solution properties within elements

#properties: 17=blood flow 11=vessel hematocrit 5=hydraulic diameter

fem quit;

A.4 Generating the arterial and venous geometries

This command file generates the remaining accompanying blood vessels,
unidentifiable via imaging, from the MDCT (multi-detector row x-ray computed
tomography) vessel endpoints into the lobar volumes using a volume-filling branching



algorithm (described in Chapter 4).

$basis artery=4; #basis function for generated arteries (1D linear)

$stem=1; #element number of stem branch

$length limit =1.4; #minimum length of a generated branch, to stop further path generation

$branching fraction=0.4; #branching fraction : distance to centre of mass

$target region=1; # arterial region, where generated arteries will be stored

@lobe=(’ruml’ , ’ rll ’ , ’ lul ’ , ’ lll ’ ); #lobe names in a list : note that rul and rml are not split

fem de param;r;grow big;

fem de coor 3,1;

fem de base;r;grow;

fem de node;r;grow ordered2 reg $target region;

fem de elem;r;grow ordered2 reg $target region;

#CALL GROW LOBES.COM TO GENERATE VESSELS USING VFB ALGORITHM

read com;grow lobes;

fem de mesh;c lung field only radius reg $target region ; #defines radius field

fem evaluate order reg $target region ; #determines the generation, Horsfield , and Strahler order numbers

fem update mesh geometry radius field 1 element 1 constant 15 #defines a radius of 15 mm for the pulmonary trunk

fem update mesh geometry radius field 1 rd strahler ratio diameter 1.5997; #defines a Strahler branching ratio of 1.5997 to define radius values

fem export node;arteries as arteries reg $target region ; #exports nodes for viewing

fem export elem;arteries as arteries reg $target region ; #exports elements for viewing

#Regrouping elements and exporting the nodes and elements of each individual lobe for viewing:

#RUML

fem group elements all parent 9 reg $target region;

fem group elements all parent 19 reg $target region;

fem group elements all parent 37 reg $target region;

fem export elem;ruml1 as ruml1 elem parent9 reg $target region;

fem export elem;ruml2 as ruml2 elem parent19 reg $target region;

fem export elem;ruml3 as ruml3 elem parent37 reg $target region;

#RLL

fem group elem all parent 36 reg $target region;

fem export elem; rll as rll elem parent36 reg $target region;

#LUL

fem group elem all parent 6 reg $target region;

fem group elem all parent 15 reg $target region;

fem group elem all parent 29 reg $target region;

fem export elem;lul1 as lul1 elem parent6 reg $target region;

fem export elem;lul2 as lul2 elem parent15 reg $target region;

fem export elem;lul3 as lul3 elem parent29 reg $target region;

#LLL

fem group elem all parent 28 reg $target region;

fem export elem; lll as lll elem parent28 reg $target region;

fem list mesh;arteries grow CT reg $target region; # lists arterial mesh parameters, such as Strahler−based branching, length, and diameter ratios

fem quit;

This command file is called from the previous file. This uses the VFB (volume-filling
branching) algorithm to ’grow’ the arterial branches into individual lobes.

#GROUP TERMINAL NODES FOR EACH LOBE:

fem group elements all parent 9 reg $target region ; #group all MDCT−derived elements in RUML (right upper and middle lobes)

fem group elements all parent 19 reg $target region;

fem group elements all parent 37 reg $target region;

fem group elem parent9,parent19,parent37 by terminal as terminal ruml reg $target region; #group all terminal elements in RUML



fem group elem all parent 36 reg $target region ; #group all MDCT−derived elements in RLL (right lower lobe)

fem group elem parent36 by terminal as terminal rll reg $target region ; #group all terminal elements in RLL

fem group elem all parent 6 reg $target region ; #group all MDCT−derived elements in LUL (left upper lobe)

fem group elem all parent 15 reg $target region;

fem group elem all parent 29 reg $target region;

fem group elem parent6,parent15,parent29 by terminal as terminal lul reg $target region ; #group all terminal elements in LUL

fem group elem all parent 28 reg $target region ; #group all MDCT−derived elements in LLL (left lower lobe)

fem group elem parent28 by terminal as terminal lll reg $target region ; #group all terminal elements in LLL

$N=0; #generate vessels using VFB algorithm

foreach $lobe(@lobe)

{

fem de data;r;$lobe[$N] data reg $target region ; #read in data points

fem de mesh;c bifur elem terminal $lobe[$N] reg $target region target region $target region

basis $basis artery stem $stem point data length $length limit fraction branching $branching fraction;

$N=$N+1;

}

A.5 Creating the supernumerary vessel geometry

This command file generates the supernumerary vessels in the left lower lobe (LLL)
only. The nodes and elements of the accompanying blood vessels are read in, Strahler
order numbers are determined and diameter values are allocated (based on a Strahler
diameter ratio). Supernumerary vessels are then generated to ’grow’ towards the
closest data point (representing an acinar unit) (described in Chapter 4).

fem de param;r;super; #define parameters

fem de coor 3,1; #define coordinates

fem de base;r;super; #define 1D basis function

fem de data;r; lll data ; #reads in , then exports the data points for the left lower lobe (LLL)

fem export data;artery data as artery data;

fem de node;r; initial arteries ; #reads in the nodes and elements of a portion of the arterial mesh in the LLL

fem de elem;r; initial arteries ;

fem de mesh;c lung field only radius field ; #sets up field framework for radius field only

fem evaluate order; #evaluates the generations and orders of the vessels

fem update mesh geometry radius field 1 element 1 constant 3.650; #this inputs a constant value of 3.650 for the radius of the first element

fem update mesh geometry radius field 1 rd strahler ratio diameter 1.5997; #defines the radius of each of the vessels, using a strahler diameter ratio of 1.5997

fem de mesh;c lung add super d ratio 0.3 sv freq 1.05 arteries diameter diam ratio 1.5997 d max order 30;

#adds the supernumerary vessels to the existing arterial mesh d ratio:defines

#the diameter ratio of the supernumerary vessel to the stem vessel

#sv freq=the supernumerary frequency from each stem vessel diam ratio=the

#Strahler based diameter ratio −> used to define diameter of each vessel

#d max order=the diameter of the maximum order vessel (i.e. Strahler order 17)

fem export node; lll arteries as lll arteries ; #exports the arterial mesh nodes and elements

fem export elem; lll arteries as lll arteries ;

fem export elem;stem as stem elem stem; #exports the stem element group (containing all stem vessels before

#supernumerary addition)



fem export elem;supernumeraries as supernumerary elem supernumerary; #an element group containing all the supernumerary elements (called supernumerary)

#gets created in the code, this is exported for viewing

fem quit;

A.6 Solving the Navier-Stokes flow equations through
the arterial and venous models

This command file implements the finite difference grid-based, two step Lax-Wendroff
scheme for solution of the Navier-Stokes flow equations (described in Chapter 5). This
file creates a symmetric mesh and solves for pressure, radius, and velocity within this
network.

fem define param;r;flow; #defines parameters

fem define coord;r ;flow ; #defines coordinates

fem define base;r;flow ; #defines a 1D linear basis function

fem de node;r;trunk as parent; #reads in vascular nodes

fem de elem;r;trunk as parent; #reads in elements

fem evaluate order; #evaluate ordering of parent vessels before creating symmetric mesh

fem de mesh;c lung symmetric num generation 4 branch angle 40 elem parent;

#creates 4 symmetric branch generations from the initial starting elements with a branch

#angle of 40 degrees

fem define mesh;c lung field only radius ; #sets up radius field only

fem evaluate order; #calculates the generation and order number of the mesh

fem update mesh geometry radius field 1 element 1 constant 12; #defines inlet arterial radius of 12 mm

fem update mesh geometry radius field 1 Rd strahler ratio diameter 1.5997; #defines remaining branch radius values using Strahler diameter ratio of 1.5997

fem de elem;w;test;

fem de elem;r;test ; #sets up NLL − element length array

fem define;add field ;d;arteries ; #adds two more fields to store the pressure and velocity fields , adds 0 as default value

fem define element;d;arteries field ; #defines element field parameters

fem define grid ; r ;flow coronary; #defines grid points with coronary option to discretise the spatial computational domain

fem update grid geometry; #updates all grid arrays

fem define equation;r ;flow ; #defines equations options to use

fem define material; r ;flow ; #reads in physical & mechanical properties

fem update material field material 4 no field 1;

fem define time;r ;step;

fem define initial ; r ;flow ; #defines initial conditions

fem define solve;r ;flow ; #defines solution parameters

$time initial =0.00; #sets the initial time

$time final =1.5; #sets the final time

$time step=0.001; #sets the time step time

$write out period=0.1; #sets the results write out period

fem export points; $time initial grid as vessel offset 0;

fem export grid;vessel as vessel offset node 0 elastic tube ;

# Results output loop

for ( $time= $time initial ;$time<$time final;$time=$time+$write out period)

{

fem solve restart to $write out period delta t $time step; #solves the equations

fem export points;$time+$write out period grid as vessel offset 0

}

fem quit;



Appendix B

Movies

A CD-ROM is included with this thesis and contains a series of movies illustrating,
in three-dimensions, some of the modelling procedures detailed in this thesis. The
following movies are included on the CD-ROM:

1. Alveolar geometry (alveolar geometry.mpg):
This movie demonstrates the 3D Voronoi meshing technique within a unit cube.
Certain Voronoi ’cells’ are then allocated as duct cells (shown in blue). All
adjacent Voronoi cells are then considered to be alveoli (shown in gray). A single
alveolar sac, consisting of 19 alveoli (shown in pink), is isolated for analysis and
creation of the capillary model.

2. Capillary geometry (capillary geometry.mpg):
This movie displays the method used to create the capillary geometry. A 2D
Voronoi meshing technique is applied on the surface of a unit sphere. Uniformly
distributed points are first created on the unit sphere. The Delaunay triangulation
is then formed and the Voronoi mesh is created. This mesh is then projected down
onto the alveolar surface of a single alveoli. The entire alveolar sac capillary mesh
is also displayed.

3. Capillary blood flow (capillary flow.mpg):
This movie initiates at the parenchymal (alveolar model) level and zooms out
to display the alveolar sac capillary model. A pulsatile pressure solution within
the capillary model is then displayed in the movie. The flow rate solution is
displayed (mm3 s−1) and ranges from 8.9301e-08 (red) to 0 (dark blue). This
solution is obtained by imposing a time-dependent pressure boundary condition
at the arteriole inlet vessels.



4. Lobar geometry fitting (lobes.mpg):
This movie demonstrates the fitting of the lobar models to MDCT (multi-detector
row x-ray computed tomography) data. MDCT slices are stacked to produce
rendered iso-surfaces of the lung surface. The scan data is of high enough
resolution to detect the fissures and enable a description of the geometry of each
of the five separate lobes. Data points are generated on the iso-surfaces. A
geometry fitting procedure is then used to fit initially linear elements to the data
points. This movie was created by Dr Merryn Tawhai.

5. Vascular geometry (vessels grow.mpg):
This movie demonstrates the volume-filling branching (VFB) algorithm used to
generate the remaining arterial and venous vessels unidentifiable from the MDCT
image data. The algorithm begins from the terminal locations of the vessels
identified from MDCT and creates a volume-filling branching structure into the
lobar volumes.

6. Pulsatile pressure solution (pulsatile pressure.mpg):
This movie displays the pulsatile pressure solution through the arterial network.
A pulsatile pressure boundary condition is applied at the pulmonary trunk inlet
(as defined in Section 5.4.8) and all terminal arterial pressures are constant over
time. The solution spectrum ranges from -0.04 to 3.2 kPa.

7. Pulsatile velocity solution (pulsatile velocity.mpg):
This movie illustrates the pulsatile velocity solution through the arterial network.
The solution spectrum ranges from -50 to 400 mm s−1.
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