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TECHNICAL NOTE

Calculation of the radii of curvature of the
crystalline lens surfaces
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Auckland, New Zealand

Summary

A new computing scheme was developed for calculating the radius of curvature of the anterior
and posterior surfaces of the crystalline lens from the measured heights of the Purkinje
images. The scheme can be applied to objects at any distance from the corneal vertex, for
both a stationary object mounted independently of the camera and for a mobile object
attached to the camera where the distance of the object to the corneal vertex will change as
the camera is refocused from image Pl to PIll and PIV. The method can also be used if different
objects are employed to form each Purkinje image. The scheme also avoids the need to
collimate objects in order to employ the equivalent mirror theorem or to calibrate phakometers
with known spherical surfaces where exact relationships are unknown. Copyright © 1996
The College of Optometrists. Published by Elsevier Science Ltd.

Introduction mirror for the posterior surface given by

The usual technique for measurement of the radii of curv- B

ature of the surfaces of the crystalline lens is phakometry, ri=r Lh_j} (2)
in which the height of the Purkinje images formed by the !

anterior surface of the cornea and from the anterior and
posterior surfaces of the lens are recorded using photo-
graphic or video methods. If the radius of curvature of the
cornea is known the radii of curvature of the lens surfaces
can be calculated using the equivalent mirror theorem
(Sorsby et al., 1961; Bennett and Rabbetts, 1989; Henson,
1991). The equivalent mirror theorem states that an optical
system consisting of a number of refracting surfaces fol-
lowed by a reflecting surface can be replaced by a single
‘equivalent’ mirror, and the radius of curvature of the
equivalent mirror r} for the anterior surface determined
from the expression

where h is the height of the PIV Purkinje image. The real
radii of curvature can then be calculated.

The difficulties of the technique are well known (Henson,
1991; Van Heen and Goss, 1988; Mutti er al., 1992).
For the method to be valid, the objects must be at optical
infinity and the Purkinje images are formed in different
planes making clear images difficult with a single frame. If
separate records are made for Purkinje images PI/PIV and
PIII, the heights of the images will also depend on whether
the object is attached to the camera (mobile object), or
mounted independently (stationary object). The problems
have been addressed by collimating objects (Mutti et al.,

Y 1992), calibrating instruments with steel spheres of known

ri=r | = (1 radius of curvature (Mutti et al., 1992), by choosing an

- { h J intermediate focal plane for the recording device (Van Heen
and Goss, 1988), by refocusing the camera by changing the

where r, is the radius of curvature of the cornea and /| camera distance from the eye, by using a telecentric stop
and hj are the heights of the Purkinje image PI and PIII (Phillips et al., 1988), or by calculation (Smith and Garner,
respectively. The radius of curvature for the equivalent 1996). While it may be possible to derive an exact method
to calculate both the anterior and posterior radii of curvature
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radius of curvature (Smith and Garner, 1996), there are
some difficulties in extending that method, and at present no
exact method exists for the general case described above.
If finite target distances are to be used in derivation of the
radii of curvature of the lens, then targets must be
collimated or Purkinje image heights for the equivalent
mirror must be calibrated against spheres of known radius
of curvature.

The purpose of this study was to develop an iterative
procedure for calculation of the radius of curvature of both
the anterior and posterior surfaces of the crystalline lens
that provides a general solution to the difficulties outlined
above. The computing scheme can be applied to instruments
with finite object distances, with objects of different heights
and with stationary or mobile objects.

Method

The paraxial transfer and refraction equations presented here
are well known (Kingslake, 1978) and not newly developed,
but have been presented in a form that can be readily
applied to the technique of phakometry. The Gullstrand-
Emsley schematic eye (Bennett and Rabbetts, 1989) was
used in the following derivations of the equations and in the
example of the computing scheme. Although this eye is a
three-surface eye, with the cornea represented as a single
refracting surface, it is an appropriate model for oculo-
metric studies as measurement of the posterior surface of
the cornea is not usually made. However the scheme could
be readily expanded to include a cornea of finite thickness
and posterior refracting surface. It is assumed that the usual
biometric data is available including corneal radius of
curvature, anterior chamber depth, lens thickness and
vitreous chamber depth.

In general, if an object height £ is placed at a distance /
in front of a spherical surface of radius of curvature r
separating media with refractive indices of #n, in object
space and n, in image space, then the image distance [’
for the image formed by refraction will be given by

—_—
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while the reflected image can be found by substituting
n, = —n, to give
———— @)
2l-r)
These basic equations are used to find the image positions
and heights for Purkinje images PI, PIIl and PIV in terms
of the schematic eye shown in Figure 1.

In the case of all three Purkinje images, it is assumed
that the camera has a fixed focus distance of w, and that
when the camera is focused on the corneal apex, the dis-
tance [/, from the object to the corneal apex is known.
That is, the distance w is held constant and focusing on the
images is achieved by moving the camera alone. It is also
assumed that the object used to form the Purkinje image
has a fixed relationship to the camera when a mobile object
is used. A diagram showing the relationship between the
essential components for a stationary object forming
image PIII is given in Figure 2. As the object is fixed,
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Figure 1. Three-surface schematic eye employed for cal-
culation of Purkinje image heights.
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-

Figure 2. A stationary object at O;. The camera focus is fixed at a
distance w and the Purkinje image Plll is formed at a distance /; from the

corneal vertex.



the object distance /, will be equal to ;.

The situation where a mobile object is used for the for-
mation of image PIII is shown in Figure 3. Before the
camera is moved forward to focus on the image, the distance
from the camera to the corneal apex w will be given by

&)

w=l,+x

where x is the distance from the camera to the object.
After the camera has moved to focus on the image, the
distance w will be given by

w=li+1L+x ©6)
and
ly=1—-1} @)

A similar relationship will hold for each Purkinje image
where a mobile object is used.

Purkinje image Pl

For a stationary object the object distance /, will be equal
to /.

For a mobile object, the object and image distances can
be found using an iterative procedure, assuming the initial
object distance is given by [, and a first approximation to
the image distance given by

lir
21,

(8)

-7
A second estimate of /| can be made from the expression
Li=1,+1] )

and an iteration performed for Equations (8) and (9) until
Equation (10) is satisfied,
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Figure 3. A mobile object attached
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thus giving the final object and image distances for the
particular radius of curvature of the cornea.
The magnification will be given by

l

M, = - (11)
L
and the height of the image PI will be
hy=hM, (12)

where £, is the height of the object used to form the PI
image.

Purkinje image PIIl

For a stationary object the object distance /5 will be equal
to [, as shown in Figure 2. For a mobile object, the object
and image distances will change with the movement of the
camera as shown in Figure 3, but Equation (7) must always
be satisfied. The first step was to determine /; and /; for a
particular value for r, using an iterative procedure with /,
as a first approximation for /;. The raytrace proceeds as
shown below with an initial estimate for ry, the radius of
curvature of the anterior surface of the crystalline lens.

Refraction at the cornea

L1
I, = . Mmbhn (13)
r o+ L(n, —ny)
Transfer to the lens
L, =1, —d, (14)
Reflection at the lens
—lyr
» ry— 20y, )
Plll
cornea fens

to the camera with a longitudinal

displacement x. The camera has a fixed focus w, and when focused on
the corneal apex the target is a distance /; from the cornea. When the
camera is focused on image Plll, the object is a distance /5 from the

cornea.
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Transfer to the cornea
1342133+d1 (16)
Refraction at the cornea

I = nylyr, a7
) nyr + Ly(ny —ny)

A second approximation to the object distance is given by
Iy =1,+1] (18)

and an iteration through Equations (13) to (18) is performed
until Equation (19) is satisfied.

ly=1—1; 19)

For the initial value of 7, chosen the magnification will be

L3 03:05
L= 3143383 (20)
131 32134
and the calculated Purkinje image height given by
= hM, 21

where £, is the height of the object used to form the PIII
image, and the merit function is given by

_ [ [we] »
fry= Y n (22)

where 27 and h% are the measured heights of the PI and
PIII Purkinje images respectively. The use of a merit func-
tion in this scheme is akin to the use of similar functions in
optimization methods for optical design which minimize the
sum of squares of the aberration residuals (Kingslake, 1978).

The iteration proceeds for Equations (13) to (22), with
incremental values for r; until the merit function fn; is
satisfied. The number of cycles will depend on the initial
value chosen for r,, the size of the increments and the
number of significant figures required for the final deter-
mination. The number of cycles required could be quite large,
but does not pose a problem for modern computers. Typic-
ally, a 486 PC may take two to three seconds to minimize
the merit function, depending on the increments defined.

Purkinje image PIV

In a similar manner, the object distance /, will be equal to
l, for a stationary object, or to a first approximation to /,
for a mobile object.

Refraction at the cornea

‘)1,
lo= el (23)
nr + 1 (n, —n)

Transfer to anterior lens
l, =1, —d, (24)
Refraction at anterior lens

Nalyts
ls= 25)
v nyry + lp(ns —ny)

Transfer to posterior lens
lyy =l — d; (26)
Reflection at posterior lens

145 — M 27

ry— 214
Transfer to anterior lens
lig=lis + d; (28)
Refraction at anterior lens

Rylyrs
l,= (29)
v nyrs + Lg(n, — ny)

Transfer to cornea
lg=1s7+4d, (30)
Refraction at cornea

I, = nylgh 31)

nyry + lg(ny —ny)

A second approximation to the object distance is given by
ly=1,~-1} (32)

and an iteration through Equations (23) to (32) is performed
until Equation (33) is satisfied.

I=1,+1, (33)

For the initial value chosen for r,, the magnification
will be

_ Lylyplislyl,

= (34
P Ll
the height of image PIV
hy=h,M, (35)

where h, is the height of the object used to form the PIV
image

and the merit function

nyl [nr]
= |22 36
n M M )



The computing scheme outlined above includes general
equations that can be applied to phakometry using stationary
or mobile objects, or objects of different size and position
to form each Purkinje image.

Results and discussion

An example of the scheme for the Gullstrand-Emsley
schematic eye is given below, and the details of this schematic
eye as proposed by Bennett and Rabbetts, 1989, are given
in Table 1.

An example giving the endpoint for the major variables
using this method is shown in Table 2. The object chosen
for this example had a height of 15mm at a distance of
50 mm from the cornea, although different objects at differ-
ent distances could have been selected. In accordance with
the sign convention, target distances to the left of the
corneal vertex will be negative and distances to the right of

Table 1. The modified Gulistrand-Emsiey schematic eye as
proposed by Bennett and Rabbetts, 1989

Quantity Symbol Value
Radii of curvature
Cornea 2 7.80
Crystalline lens (anterior) rq 11.00
{posterior) ry -6.476
Axial separations
Anterior chamber depth d, 3.60
Lens thickness d, 3.70
Refractive indices
Aqueous humour n, 1.336
Crystatline lens ny 1.422
Vitreous humour N, 1.336

All dimensions in mm.

Table 2. Computing scheme for an object 15 mm high,
50 mm in front of the cornea of the modified Gullstrand-
Emsley schematic eye as proposed by Bennett and Rabbetts,
1989

Quantity Stationary object Mobile object
/4 - 50.000 ~46.402
/] 3.618 3.598
M, -0.0724 -0.0775
h; —-1.083 -1.163
I3 —-50.000 - 39.655
I 10.596 10.345
M, -0.142 ~-0.171
h} -2.134 ~2.563
hilh] 1.967 2.204
Iq -50.000 -46.313
1, 3.700 3.687
M, 0.057 0.061
hi 0.857 0.920
halhy -0.791 -0.791

All distances and image heights in mm.
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the corneal vertex will be positive. The value for the ratio
hi/hY in this case was 1.967 and for Ai/h] was —0.791
for a stationary object and the corresponding values for a
mobile target were 2.204 and —0.791. In practice, these
ratios would be employed in the respective merit functions
together with the measured ratios.

The basis of this computing scheme is to equate the ratio
of the measured heights of the Purkinje images PIII and PI
with the ratio of the calculated image heights for these
images for determination of r,, and the corresponding
ratios for determination of r,. In each case, these ratios
will be equal when the values chosen for the anterior and
posterior radii of curvature for calculated ratio correspond
to the measured ratio, within the assumptions of the
schematic eye model and the accuracy of the measurement
of the ocular dimensions. The method described allows
calculation of the radius of curvature of both surfaces of the
lens for various experimental arrangements and avoids the
need to collimate objects (Mutti ez al., 1992) that are placed
at finite distances in front of the cornea where conventional
methods of calculation are to be used. While the scheme is
somewhat less elegant than a method previously presented
(Smith and Garner, 1996) for determination of the radius of
curvature of the anterior surface of the lens, the present
method does have some advantages. A different object
height and position may be used to form the P1 Purkinje
image from that used for the other images. One of the
difficulties of using a single object is that the PI image is
much brighter than the other two images and this may cause
some saturation of the recording device, particularly if a
video medium is used. The use of different objects with
different object heights and intensities along the lines of the
Tscherning or comparison technique (Henson, 1991) over-
comes this problem and for this reason provision has been
made to use three distinct objects, each with a different
height and position. The computing scheme also allows
calculation of the radius of curvature of the posterior
surface of the lens.

It is generally accepted that if finite objects are to be used
and radii of curvature calculated by employing the equivalent
mirror theorem, errors will be reduced if a mobile rather
than a stationary object is used (Mutti et al., 1992). The
reason for this is that the equivalent mirror method as
usually employed is only valid for objects at optical infinity;
however, if the object is attached to the recording device,
the error introduced is compensated to some extent by the
change in position of the object. With this computing
scheme, there is no real advantage in using a mobile object.

In the video phakometer described by Mutti et al. (1992)
collimated objects were attached to the camera in order to
overcome the errors from finite sources. However, there
are advantages in having objects at finite distances in front
of the cornea, the most important of which is that obser-
vation and recording of image PIII is facilitated. The quality
of image PIII is notoriously poor, due in part to the nature
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of the anterior lens surface but also to difficulties in cor-
rectly positioning the object and providing sufficient illumi-
nance from the object to make the PIII image clearly
visible. An object relatively close to the eye can improve
the quality of this image.

Summary

A general computing scheme for calculating the radius of
curvature of the anterior and posterior surfaces of the
crystalline lens based on the well known paraxial transfer
and refraction equations is presented. The scheme proposed
allows for the object in phakometry to be either attached to
the camera or mounted independently, to be at a finite
distance in front of the eye, or the use of separate objects
of different brightness and different distances from the eye.
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