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Summary

A new method for calculating the radius of curvature of the anterior surface of the crystalline
lens from the measured heights of the Purkinje image Pl and PIll is given. Equations are
developed for determination of the radius of curvature of the equivalent mirror for three
configurations commonly used in phakometry. The method can be applied to targets at any
distance from the corneal vertex, for both a stationary target mounted independently of the
camera, and for a mobile source attached to the camera where the distance of the target to
the corneal vertex will change as the camera is refocused from image Pl to Plil. The situation
where only one recording is made of images Pl and Plll, where the camera is focused on image
Pl, and the height of the defocused image of Plll is measured is also considered. The errors
in calculating the anterior lens radius with the equivalent mirror method if no aliowance is
made for an object at a finite distance is examined. The new method described is an alter-
native to collimating targets to overcome the errors in phakometry that occur with targets at
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finite distances.

Introduction

Although the anterior surface of the crystalline lens is not
the major refracting surface of the eye, it is of interest
because it is the surface that shows the greatest change
during accommodation of the eye (Brown, 1973), and during
the growth of the eye over the period that myopia tends to
develop (Garner et al., 1995; Zadnik ez al., 1993). The radius
of curvature of the anterior lens surface is usually determined
by the comparison phakometry technique, which is based
on the equivalent mirror theorem. The equivalent mirror
theorem states that an optical system consisting of a number
of refracting surfaces followed by a reflecting surface can be
replaced by a single ‘equivalent mirror’. The heights of the
Purkinje image PI (A/) and PIII (4;) formed by reflection
of a target from the cornea and anterior lens surface may
be measured from either a photographic or a video recording,
and the radius of curvature of the equivalent mirror r;
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determined from the expression:

th
ro=r, L; (D
1
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where r, is the radius of curvature of the cornea (Bennett
and Rabbetts, 1989). The equivalent mirror theorem also
states that the vertex and centre of curvature of the equiv-
alent mirror are conjugates of the vertex and centre of
curvature of the real mirror, imaged by the refracting sur-
faces (Bennett and Rabbetts, 1989). As the radius of cur-
vature of the cornea and the depth of the anterior chamber
are usually known, and assuming a refractive index for the
aqueous humour, paraxial ray tracing is all that is required
to find r,, the radius of curvature of the anterior lens
surface. The method is outlined in the Appendix.

In terms of paraxial optics this method is quite valid;
however, there are two practical difficulties that can lead to
errors in the determination of r,. Firstly, the expression
above is only valid if the targets used to form the Purkinje
images are at optical infinity, because for a distant object
the image formed by reflection is proportional to the focal
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length of the surface, which is equal to one-half of the
radius of curvature of the surface (Bennett and Rabbetts,
1989). In practice, the advantages of placing the target at
a finite distance in front of the eye include brighter images
and ease of construction of apparatus, but use of a target at
a finite distance will lead to a different image position and
height than that assumed by the comparison phakometry
technique. This problem has been addressed by Mutti er al.
(1992) by using a collimating lens to place the target at
infinity, and by Garner et al. (1995) with an optimisation
procedure that did not rely on the equivalent mirror
method. The second potential source of error is due to the
fact that images PI. and PIII are formed in different planes.
While the PI and PIV images are close, PIII formed by the
anterior surface of the crystalline lens is approximately
7mm behind the plane of PI and PIV, making it difficult to
focus all three images in a single recording. The choice is
usually to focus images PI and PIV and then to refocus on
image PIII, or to choose an intermediate plane on which to
focus the recording device. In general, the size of an image
changes with the level of defocus and unless this change in
size 1s taken into account, the defocus will lead to erroneous
results. This problem can be overcome by either refocusing
the camera by changing the camera distance from the eye, by
using a telecentric stop (Philips et al., 1988), or by calculation
using the method described in Option 3 in this paper.

If the recording device is not refocused and a single
record is made, either PI and PIV or PIII will be defocused
leading to potential errors in the measured image height,
depending on the position of the entrance pupil of the
recording device. If separate records are made for PI/PIV
and PIII, the height of the image will also depend on
whether the target is attached to the camera (mobile source),
or mounted independently (stationary source).

The purpose of this study was to develop computing
schemes for calculation of the radius of curvature of the
anterior lenticular surface that addresses the difficulties in
using Purkinje images for that purpose. The new method
avoids the need to refocus the camera, and takes into
account finite targets at varying distances.

Method

The Gullstrand—Emsley schematic eye was used in the
following derivations of the equations, and although this
eye is a three-surface eye, with the cornea represented as
a single refracting surface, it is an appropriate model for
oculometric studies as measurement of the posterior surface
of the cornea is not usually made. The equations presented
in the Appendix are well known and not newly developed,
but have been included for completeness.

In general. if an object height 4 is placed at a distance /
in front of a mirror of radius of curvature r as shown in the
Appendix (see Figure 5), the image distance I’ will be given
by the equation:

] = [—' 2)
2l —=r)

and the image size i’ is given by the equation:
h' = Mh (3)

where M is the transverse magnification given by:
M=—--— 4)

Combining Equations (2) and (4) gives:

I3

M= 5)
(r—20 (
which can be expressed as:
2IM
F=-— (6)
(M—-1)

In the case of the Gullstrand—Emsley schematic eye, we
will know the transverse magnification M, and the image
height 4| for the corneal image PI, and image height A}
for PIII. An equation for the transverse magnification M,
in terms of these values can be found by solving Equations
(3) and (4) for two sets of images to give:

M?«:Ml‘ — (7N

We now consider three options regarding the positioning of
the target and the plane on which the camera is focused.

Option |

In this case, the distance from the target to the corneal
vertex is fixed, i.e. a stationary source, and the camera is
focused on image PI and then moved forward to focus on
image PIII.

If the distance from the target to the corneal vertex is s,
and the distance from the corneal vertex to the equivalent
mirror is w, then when the camera is focused on image PI
as shown in Figure la:

l,= —s (8)

M, =~ 9
. 9)

and from Equation (5) we have:

ry
M=—1 10
1 (r, _211) 1o
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Figure 1. (a) The target is fixed at O, a distance s in front of the cornea, and the
camera is first focused on image Pl located at O}, and then on image P, located
at 0. (b) The centre of curvature of the equivalent mirror is at Cj.
When the camera is focused on image PIII, the situation 20 M,
is as shown in Figure 1b and: 3 (M, — 1) (15)

L=—-5s—-w (1)

The magnification M, is given by:

M, = hs (12)
) h()
and from Equations (9) and (12) we have:
h |
M.=M | — (13)
hi
- )
and from Equation (5) we also have:
r
M, = —/— 14
» (ri—=21y) (1

We can solve this equation for r’; to obtain:

The actual radius of curvature r, can then be calculated
using the paraxial equations contained in the Appendix.

Option 2

In this case, the target is fixed to the camera, and the
camera is focused on PI and then PII (Figure 2). The
target moves with the camera, and hence will be a fixed
distance 7 from the in-focus plane of the camera. As shown
in Figure 2a, when the camera is focused on Pl, this
distance will be:

r=1—1 (16)
The magnification M, can be obtained from Equation (4) as:
b
/i

M, (7
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Figure 2. The target is fixed to the camera, and the distance t from the target to the image
when focused on (a) Pl and on (b) Plil will be constant. The equivalent mirror is situated a

distance w from the corneal vertex.
and from Equation (5):
(18)

Solving for /, from Equations (16), (17) and (18) gives:
2042(t—r)l,—r1=0 (19)

which is a quadratic equation in /,, and can be written in
the form:

all +bl,+c=0 (20
where a =2, b=2(t —r,) and ¢ = —rt. This equation
has two solutions:

~b +V(b* — dac
= 2N 80 21

2a

Because of the sign convention. the correct value is the
negative solution to Equation (21).

If the camera is now moved toward the eye to focus on
image PIII, it can be seen from Figure 2b that:

r=15—1; (22)

and from Equation (4), the transverse magnification M is:

U

8

M, (23)

Solving Equations (22) and (23) gives:

—I

= 24
(1 + M) &9

L,

Using the value for /; from Equation (24) and M; from
Equation (13) we can solve for r; using Equation (6) to
give:

LM,
(M3 - 1)

'

rs

(25)
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Option 3

In this option, the camera is focused on image PI, and only
one recording is made. Thus while the image PI will be
sharp, the image PIII will be blurred, and hence may lead
to a measured image height that is different from the
focused image. Figure 3a shows the geometry of a camera
focused in front of the image plane. The beam of light from
the extreme edge of the image forms a blur disc in the plane
in which the camera is focused. Figure 3a also shows that
the image size h, measured from the centre of the
defocused blur disc will be different from the actual size &’
and that the measured size will depend on the position of
the aperture stop of the camera lens. Therefore in this
option we must know the position of the entrance pupil of
the camera.

Figure 3b shows the situation with the camera focused on
PI in the plane at O}. The recorded size of image PIII will
be the size of PIII projected on to the plane O] through the
entrance pupil of the camera lens. From similar triangles in
Figure 3b it can be seen that:

(a)

Camera lens

139

h.; — ;h (26)
I'—=6L+b =14 +b
Solving for i} we have:
h§= th(13_13+b) Q7

(I =1, +b)

In order to calculate the value of &3, we need to know
the values of hi,, b, [,, I}, [5 and /. We can measure the
height #4, and in principle be able to find the value of b,
the distance from the target to the entrance pupil of the
camera. We can find the values /,, [} and /; in the same
manner as for Option 1, in which we have from Equation

(8):
(28)

and the known value of r, we can calculate the magnifi-
cation M, from Equation (10) as:
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Figure 3. (a) The target is fixed at O, the camera is focused on image PI, and a defocused
image of Plll is recorded in the plane of the camera focus (b). The height of the blurred
image of Plll is hj, and is related to the actual image height hj.
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r
M=———- 29
1 (r =21 (29)

From Equation (4) we now have:

I =-M/ (30)
and from Equation (11) we have:

L= —s—w a3n

At this stage we do not know the value of /} but this and
the other unknowns /5, M, and r} are related by the
following equations.

From Equation (7):

h’\
My=M, (—‘ (32)
hi |

. -

and from Equation (6):

2{.M,
ri= (33)
(M_z -1

With this value of ri, we can find the value of /; from
Equation (2) as:

= B (34)
Yoo -1

These equations can be solved to give the following quad-
ratic equation in r}:

ari’ +bri+c=0 (35)
where
@l — by + O (36)
a = hylaly — —
3 K Ml
21.dh!
h=2hi,1,2b —3[,) — ——! (37)
]
c=—41 hiy(b—1,) (38)
with
d=1"—1+b (39)

One solution will be negative and the other positive, but the
correct solution will be positive.

In oculometric studies, the corneal radius of curvature,
anterior chamber depth, and the height of Purkinje image
PIII (in this case hj,) are known. The position of the
vertex of the equivalent mirror can be calculated, and the
distance from the target to camera focus can be set to a
known value.

The methods described above were used to calculate the
anterior lens radius r§, and errors in the determination of
r; by the usual method of comparison phakometry based
on Equation (1), calculated for both fixed and stationary
targets for various target distances. The Gullstrand—Emsley
schematic eye was used as the model to investigate these
effects. Unit magnification was chosen for the height of
Purkinje image PI and the height of Purkinje image PIII,
determined by paraxial ray tracing, with the relationship
between the two image heights given by Equation (7).

Results

An example of a calculation of the anterior lens radius of
curvature using these equations is given for each option,
using the relevant values of the Gullstrand—Emsley schematic
eye shown in Table 1.

Option 1

If we assume a target distance s of 30 mm, and a normalised
Purkinje image PI height f#] of 1.000, then the relative
height 43 of Purkinje image PIII will be 1.828, distance w
from the corneal vertex to the equivalent mirror will be
3.048 mm, and the calculation proceeds using Equations
(10, (11), (13) and (15) to give:

M, I M, r,
0.115 —33.048mm 0.2103 17.60mm

The actual radius of curvature r; can then be calculated as
11.00mm as shown in the Appendix.

Option 2

In this case if we assume that the distance from the target
to the corneal vertex is 30.00mm when the camera is
focused on image PI, it will be 23.85 mm when the camera
is focused on image PIII, and the distance ¢ will be
33.45mm. Again, if the height /2] of Purkinje image PI is
1.000, the height A} of image PIIl will be 2.143. These
dimensions would usually be the measured values, but for

Table 1. The Gullstrand—Emsley schematic eye as proposed
by Bennett and Rabbetts (1989)

Component Symbol Value
Radius of curvature
Cornea r 7.80
Lens (anterior) T3 11.00
Anterior chamber depth d, 3.60
Refractive index
Aqueous n, 1.336
Lens na 1.422

All dimensions in mm.
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this example they have been calculated for the Gullstrand—
Emsley eye. The calculation of r; can be made using
Equations (18), (21), (23), (24) and (25):

M, /, / M,
0.115 —30mm

r;

—28.835mm  0.246 17.60mm

Again, the actual radius r, can be determined as shown in
the Appendix.

Option 3

Now consider a similar case to Option 1. where the target
1s 30 mm from the corneal vertex, the camera is focused on
image PI, with a height 4 of 1.00, and magnification M,
of 0.115. If the distance 4 from the entrance pupil of the
camera to the target is assumed to be 200mm then the
defocused image of PIII will have a height of 1.778 when
measured in the same plane as PI. From Equation (27), the
image height A3, of 1.778 can be shown to correspond to
the figure of 1.828 in Option 1, where the camera is
focused on image PIII. This procedure can be simulated by
using the Gullstrand—Emsley schematic eye, in which case
we know r, = 7.80mm, w = 3,048 mm, and if we assume
[, = —=30.00mm then /| =3.451 mm. The distance /, to
the equivalent mirror will therefore be —33.048 mm. The
radius of curvature r} of the equivalent mirror can then be
found from Equations (36) to (39) to be 17.60 mm, and the
actual radius calculated as before.

The radius of curvature r, obtained if no allowance was
made for the target distance, or for refocusing of the
camera with targets attached, i.e. using Equation (1), is
shown in Figure 4. The difference between the true value
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Figure 4. Anterior radius of curvature r, calculated from
Equation (1) for a stationary target (Option 1), and for a
mobile target (Option 2). The difference between the
Gullstrand—Emsley value of 11.00 mm and the calculated
value is the error produced at each distance if no allowance
is made for target distance /,.

of 11.00 mm, and calculated value increases as the targets
are placed closer to the eye, with a greater error if the
targets are stationary (Option 1) and do not move when the
camera is focused on image PIII, compared to a mobile
target (Option 2). From Figure 4, the error in r} is less
than 0.2mm if the target distance is greater than about
300 mm for a stationary target and greater than 40 mm for
a mobile target.

Discussion

The methods described ailow calculation of the radius of
curvature of the anterior lenticular surface for various ex-
perimental arrangements, and obviate the need to collimate
target sources that are placed at finite distances in front of
the cornea in order to use conventional methods (Bennett
and Rabbetts, 1989; Sorsby er al., 1961) of calculation.
One of the methods (Option 3) avoids the need to refocus
the camera for recordings of Purkinje images PI and PIII.
In the video phakometer described by Mutti et al. (1992)
collimated targets were attached to the camera in order to
overcome the errors from finite sources. However, there
are advantages in having targets at finite distances in front
of the cornea, the most important of which is that obser-
vation and recording of image PIII is facilitated. The quality
of image PIII is notoriously poor, due in part to the nature
of the anterior lens surface, but also to difficulties in
correctly positioning the target and providing sufficient
illuminance from the target to make the PIII image clearly
visible. A target relatively close to the eye can improve the
quality of this image, but leads to errors if the equivalent
mirror is calculated in the usual manner. The use of a
mobile target attached to the camera leads to smaller errors
in calculating r, from Equation (1) than a stationary target
at all target distances. Provided mobile targets are at least
150mm from the cornea, the errors in r; based on the
traditional method of calculation are quite small, whereas
stationary targets would need to be at least 500 mm away
to avoid significant errors. Our finding that the error in
calculation of r, by conventional methods is less for a
given target distance if the target is attached to the camera
is in agreement with Mutti et al. (1992) who calculated
differences in lens power resulting from errors in both PIII
and PIV. Errors in calculating r, can therefore be avoided
by collimating targets, using target distances that are greater
than the figures given above, or using the computing
scheme given in this paper.

We have addressed the problem of recording images in
different planes in two ways. Options 1 and 2 allow for the
camera to be moved from the plane containing images PI
to the plane of image PIII, and Option 3 allows a single
recording with correction of the height of defocused image
PIII. Van Veen and Goss (1988) have suggested that an
intermediate image plane may be used to obtain a ‘best
focus® for both images. The errors associated with this
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suggestion would depend on the target distances, and on the
position of the entrance pupil of the camera.

The use of a telecentric stop to overcome the problems
of images in different planes has been used by Philips er al.
(1988). However this method may not be practical for use
with standard video cameras because the application requires
the aperture stop (diaphragm) to be moved from the usual
position inside the lens, to a position coinciding with the
back focal plane of the lens. Furthermore, the movement of
the stop may lead to a change of aberrations, and because
the stop must be placed close to the image plane the field
of view could be severely reduced.

Summary

A general method for calculating the radius of curvature of
the anierior surface of the crystalline lens is derived, based
on the radius of curvature of the equivalent mirror. The
methods proposed allow for the target in conventional
phakometry to be either attached to the camera, or mounted
independently of the camera. The method also allows for
either a single recording of the image heights Pl and PIII
to be made, in which the height of the defocused image PIII
in the plane of PI can be calculated as a true image height,
or for separate recordings to be made of PI and PIII. The
error in calculation of the anterior lens radius of curvature
by conventional methods is greater at finite target distances
if the targets are fixed with respect to the eye under
measurement, and do not move with the camera when
focusing from image PI to PIII.
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Appendix

The general paraxial equation,

1, n n, — A,
— - — = (AD)
! / r
can be written for refraction in the forms:
n.lr
I = (A2)
[n,r+1l(n—n)]
} nl'r (A3)
- [n,r —1"{(ny—n)]
or for reflection by substituting n, = —n, to give:
. Ir (Ad)
B @2l —r)

The radius of curvature r, of the anterior lens can be found
using the equivalent mirror theorem by finding the positions
of the vertex and centre of curvature of the equivalent
mirror.

From Equation (A2). given that the refractive index in
object space is n, and the refractive index in image space
is n,, we can find w, the distance from the image of the
anterior surface of the lens to the corneal vertex:

nd r (AS)
e [n,r, +d,(n — 1)l

Target

Figure 5. A spherical refracting surface of radius of cur-
vature r forms an image at O’ of an object at O.
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Figure 6. The radius of curvature r; of the anterior lens
surface, centre at C; shown with respect to the equiv-
alent mirror radius rj, centre C,.

The distance m; from the corneal vertex to the centre of
curvature of the equivalent mirror is given by:

mi=w+r} (A6)

From Equation (A3), and given the same conditions for
refractive index in image and object space, the position of
the centre of curvature of the anterior lens surface with
respect to the corneal vertex is:

namir,
my = - (A7)
[n,r, + mi(n, —n))]

and r,. the real radius of curvature, is given by:

—d, (AB)



