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Recently Sicam et al. [J. Opt. Soc. Am. A 21, 1300 (2004)] presented a new corneal reconstruction algorithm for
estimating corneal sag by Zernike polynomials. An equivalent but simpler derivation of the model equations is
presented. The algorithm is tested on a sphere, a conic, and a toric. These tests reveal significant height errors
that accrue with distance from the corneal apex. Additional postprocessing steps are introduced to circumvent
these errors. A consistent and significant reduction in height errors is observed across the test surfaces. Fi-
nally, Sicam et al. used the conic p-value p as a measure of algorithm efficacy. Further investigation shows that
the finite Zernike representation affected the reported results. The p-value should therefore be used with cau-
tion as an efficacy measure. © 2007 Optical Society of America

OCIS codes: 170.4460, 170.3890.

1. INTRODUCTION

Corneal topography has had significant impact on the
screening and planning of refractive surgical procedures.1
It is a standard modality in the preoperative examination
for refractive surgery, and the postoperative assessment
of surgical complications.1 The state of the art in corneal
topography is Placido-disk videokeratography.2 That ap-
proach projects a source consisting of illuminated concen-
tric rings to a CCD camera after reflection in the anterior
cornea. The correspondence between measured CCD
points and points on the Placido disk leads to a recon-
struction of corneal shape.

Actually, a given measured CCD point cannot be asso-
ciated with a unique point on a continuous Placido ring.Z’3
While it may be possible to identify the ring of the mea-
sured CCD point with the corresponding ring on the
Placido cone, the angular distance between a given CCD
point and source point cannot be determined from an im-
age of Placido rings alone. The standard work around in
designing reconstruction algorithms has been to assume
that corneal tilt (slope in the azimuthal direction) is neg-
ligible. Then rays are assumed to lie in the meridional
plane, and a unique correspondence between a point on
the CCD plane and the Placido cone can be made. At the
same time that assumption introduces the skew-ray
error,>* which leads to height reconstruction errors due to
the presence of corneal tilt in real corneas. Even so,
Klein* showed that it was possible to estimate corneal tilt
without additional cues. This estimate of corneal tilt was
used to account for skew rays and produced height errors
well below micrometer level. In addition, Halstead et al.
described a Placido-based method using a nonlinear opti-
mization that appeared to work well for nonsymmetric
corneas.

Methods that avoid the skew-ray error by using non-
Placido source patterns such as checkerboards have been
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reported.®” Recently, Sicam et al. (2004) described a
method suitable for use with discrete source points, com-
bined with an iterative least-squares method based on
Zernike polynomials.8 In fact, the iterative least-squares
approach had been described previously for a Placido-
disk-based method using tensor product B-spline
surfaces.” A clear departure of the Sicam et al. (2004) ap-
proach (to be referred to as the Ref. 8 approach), was that
model equations were derived that produced (Zernike) co-
efficients corresponding directly to corneal sagittal depth
or corneal sag.

The idea that discrete points might address skew-ray
error problems has intuitive appeal. Nevertheless, the
conditions under which discrete sources may provide a
better solution than ring sources say, are not entirely
clear. The literature has not yet provided (to the knowl-
edge of the author) a direct comparison of these ap-
proaches. Indeed, the concern of Ref. 8 was to present the
details of a method suitable for use with discrete sources,
rather than to compare alternate approaches. Moreover,
the efficacy of any particular method depends on a num-
ber of issues such as: the order and type of basis functions
used, sampling, and noise response, as well as the ability
to localize source points in images. These are issues that
should be analyzed in detail if the relative merits of alter-
native approaches are to be fully appreciated.

This paper does not address the issue of the relative
merits of discrete points versus Placido rings, but it does
seek to make some progress toward an answer. Instead,
the present paper provides an analysis of the Ref. 8 algo-
rithm, and seeks to show that room for further improve-
ment exists. First, an alternate but entirely equivalent
derivation of the key relationship between the corneal
surface and the rays used to probe that surface is pre-
sented. While the final recasted equations are the same as
those presented in the original paper, the rederivation
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provides additional insight into the sources of potential
reconstruction error. An improvement step is then sug-
gested. It is proposed that an additional Zernike fitting
step be added in postprocessing (to surface intersection
data), in order to produce a more accurate estimate of cor-
neal sag. The use of the additional step is supported by
subsequent tests applied to a sphere, a conic surface, and
a toric surface. These results suggest that Zernike poly-
nomials combined with a discrete source array are able to
recover these surfaces with good accuracy. Further tests
on a model of radial keratotomy (RK) agree with results
presented in the original Ref. 8 analysis. However, there
is no significant improvement upon those results. The
possible reasons for that observation are outlined.

In Ref. 8 the conic p-value p and the central radius R
were determined from the reconstructed Zernike coeffi-
cients (for a spherical and conic surface). A reconstructed
p-value that was close to the true p-value (i.e., of the ex-
actly known surface) was used to indicate good height re-
construction. However, a more detailed analysis reveals
that errors in both R and p were due mainly to the order
of the Zernike representation rather than height errors.
That finding suggests that p-value should be used with
caution if it is used as a measure of efficacy.

2. THEORY

A. Recasting the Sicam et al. Algorithm

This section reviews the least-squares approach to cor-
neal topography implemented in Ref. 8. It is noted that
this algorithm was developed assuming discrete source
points, but steps9 have been used previously, that were
used to account for continuous ring sources. These addi-
tional steps (as they apply to this algorithm) will be de-
scribed briefly in Section 5. Therefore, this method can be
regarded as suitable for use in general corneal topogra-
phy (i.e., regardless of source continuity).

The current derivation differs from that in Ref. 8, in
that the corneal intersection depth (z,) is derived in a new
way. An additional postprocessing step is also suggested
in the next section, which it is proposed, will produce an
improved estimate of corneal sag. Otherwise, the deriva-
tion is similar to an approach originally used by Halstead
et al.® Explicit equations will be derived here for conve-
nience. To be consistent with the Ref. 8 derivation, Figs. 1
and 2 show adaptations of Figs. 3 and 4 of the Ref. 8 pa-
per. The same labeling has been used, but the figures dif-
fer to emphasize the features of the new derivation. To
further emphasize the correspondence between the two
derivations, it will be pointed out when equations that ap-
peared in the Ref. 8 exposition are identical.

Consider then Fig. 1, showing a measured CCD point
C(u,v,-20A) [i.e., with CCD coordinates (u,v)] sitting an
axial distance OA to the left of the nodal point. (It is as-
sumed here that OA=0B.) The corneal sag is z (the
length DF in Fig. 2), which sits at the surface point
F(-u,-v,z). The point where the incident ray strikes
the corneal surface is denoted P(x,,y,,z,). The points
F(-u,-v,z) and P(x,,y,,2,) are related by the intersection
equations [Eqs. (8)—(10) of Ref. 8]:

u
xp=—u—(a)zp, (1)
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where the corneal sag z(-u,-v) is given by the Zernike
sum

2(-u,~v) = >, MZM-u,~v) - Z1(0,0)), (4)

and the set of coefficients ¢}’ thereby represent the cor-
neal sag. The symbol Z' represents the Zernike terms

S
incident ray
X—y axis
cornea
CCD plane

-\ P
D

B O AlE

reflected ray
C

Fig. 1. Overall setup used to recover corneal shape. A ray from
a source point S reflects at the corneal surface P, passes through
the nodal point O to the CCD plane. The correspondence between
a measured point C on the CCD plane and a source point S al-
lows a reconstruction of corneal shape.

to source S x—y axis

cornea
incident ray

corneal normal

reflected ray

to nodal point G

Fig. 2. Closer view of the region where the ray strikes the cor-
neal surface. The distance z=DF' is the corneal sag. This point is
to be determined from the nearby ray that passes through D and
strikes the surface at intersection point P.

to corneal apex A
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Fig. 3. Reconstruction results for the Sicam (RC) method ap-
plied to (a) a sphere (R=7 mm) and (b) a conic (R=7.87, p=0.82).
The discrete points show error profiles at each pupil setting
(7 to 11 mm). The continuous lines show predicted deviation,
that is, the predicted error incurred by the Sicam (RC) method.

where the Z'(0,0) term sets corneal sag to 0 at the cor-
neal apex. In this paper, the naming conventions of Ref.
10 have been adopted.

Now Egs. (1) and (2) result from using the fact that
OEP and OBC are similar. On the other hand, Eq. (3) is
an approximate equation to be determined whereupon the
meaning of the constant AR will be clarified. To that end,
denote the radial distance AD by p, the distance GP by
Ap’, and length FH by Ap. Approximate the point z, by
the first-order Taylor expansion of z about p,

z,~z+z'(p)Ap’. (5)
A conic cornea can be represented by the equation

p2—2RZ +p22=0, (6)
where R is the central radius of curvature, and p is the

conic p-Value.11 Expanding the corneal sag z to first order
gives

z=—, (7

where R is the radius of the central cornea. This becomes
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p

2'(p) = 7 (8)

upon differentiation. From Figs. 1 and 2, triangles OAD
and DFH are similar, so

zp
Ap=—. 9
P=0A 9
Assume now that
Ap' = Ap. (10)

We substitute Eq. (8) for z’(p) in Eq. (5) and eliminate Ap’
in Eq. (5) by Eq. (9) [under the assumption of Eq. (10)].
Replacing the resulting p? term with p?=u2+v2 gives Eq.
(3) as required.

This derivation of Eqs. (1)—(3) is an alternate route to
that taken from Ref. 8, and appears to be a more straight-
forward approach than originally presented. A useful fea-
ture of this new derivation is that it is simple to identify
the sources of approximation errors in Eq. (3), namely, the
first-order approximation of Eq. (5), the assumption that
Ap' =Ap, and the assumption that the cornea is parabolic
(to first order). Height errors will arise if the corneal sur-
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Fig. 4. Reconstruction results for the Sicam (RC+M) method
applied to (a) a sphere (R=7 mm) and (b) a conic (R=7.87, p
=0.82). The discrete points show error profiles at each pupil set-
ting (7 to 11 mm). Note the large reductions in error after the
improved method has been applied.
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face departs from these assumptions. While the use of as-
sumptions is potentially undesirable, the resulting ap-
proximations yield multiple equations that are linear in
cnt, and therefore are amenable to a simple linear least-
squares estimation as will be seen.

Note also at this point, that this derivation sets AR
=R (i.e., the central radius of curvature). Equation (13) of
Ref. 8 sets AR=R/a (i.e., the central corneal radius nor-
malized by the Zernike aperture radius a). This choice re-
quires that all coordinates be scaled by 1/a, otherwise Eq.
(3) of the present paper [Eq. (8) of Ref. 8] would be dimen-
sionally inconsistent. The present work has used unnor-
malized coordinates, and therefore normalization factors
do not appear.

The formulation of the remaining equations follows in a
manner similar to that described by Halstead et al.
previously.9 The approach is not new, but the steps have
been included to complete the derivation of the original
Ref. 8 method. The law of reflection states that the cor-
neal normal n will bisect the incident and reflected rays.
Choose then, the particular bisecting vector

1+7

(11)

n=-— ,

@+7),
where the denominator normalizes the z component of the
normal vector to —1. (This is the same as Eq. (19) of Ref. 8,
except the normalization used here differs.) The unit in-
cident ray i is given by

. S-P
i= S (12)
and 7 is the unit reflected ray
Cc-0
F= c_op (13)

which follows from geometry using S=(x,,y,,25), P
=(x,,Yp,2p), and O=(0,0,-0A). The reflected ray depends
on constants C and O, and consequently will be constant
itself. The incident ray depends on P and therefore will
depend on the variable Zernike coefficients. At the same
time, the tangent vectors dP/du and dP/dv to the corneal
surface P define the normal n=(n,,n,,-1) by

oP
.— =0, 14
ne— (14)
oP
-—=0. 15
ne— (15)

The law of reflection is satisfied (and hence the solution is
determined) when ¢}’ are found such that n [determined
by Eq. (11)] and the corresponding tangent vectors (JP/du,
P/ dv) satisfy Eqgs. (14) and (15). To solve these equations,
an iterative solution was proposed.®® Starting with an es-
timate of P determine the n that bisects the incident and
reflected rays [Egs. (11)—~(13)]. Then fit a new surface to
these required n. To do that fitting, enter these n values in
Egs. (14) and (15), yielding two equations in the new and
unknown c¢)'. From multiple measurements, form a sys-
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tem of linear equations and solve for c)' by linear least
squares. To be precise, Appendix A shows that Eqs. (14)
and (15) become

ne= > cmum, (16)
n, = 2 v, (17
where

- nw+nu\dy,  nyg

-1+ 22— - , 18

" YT oa ) oA (18)
now+nu\ady, n,

Ve 1e | L, (19)
OA aw  OA

u?+v? )
. (20)

Yy =(Z (—u,~v) - Zr(O,O))(l + (OAAR)

The ' terms are the weight functions found by combin-
ing Eqgs. (3) and (4) to give

- . u?+v?
szlgncn (Zn (—u,—U)—Zn (0,0)) 1+ m

=D en (21)

The derivatives of ¥ required for Egs. (18) and (19) are
given by Eqgs. (A10) and (A13) in Appendix A. If N image
points are measured (indexed from e.g., i=1,...,N), then
Egs. (16) and (17) yield 2N equations that reduce to ma-
trix form y=MC, where

n.(uq,01)
ny(u1,U1)
y= : ,
n(uy,vy)
ny(uN,UN)
Up(uq,v1)  Uq(uyg,vq) Uj_1(uy,07)
Voluy,v1)  Vilug,vq) Vya(w,vq)
M= : : : i
Uoluy,vy) Uilun,vy) -+ Ugoaluy,vp)
Volun,vw) Viluy,vy) Vi_i(uy,vy)
Co
€1
c=| . | (22)
Cj-1

Each pair of rows in y and M corresponds to a single mea-
sured CCD point, while each column (of M) corresponds to
a Zernike term indexed j=0,...,J—-1. The single index
form'” of the Zernike coefficients has been introduced for
the sake of simplicity. These matrices are the same as
those obtained in Eq. (30) of Ref. 8. The approach de-



Jason Turuwhenua

scribed here is practically the same as that in Ref. 8, ex-
cept those matrices were found by minimizing the re-
sidual of the error e=y—-MC. In any case, the least-
squares solution is given by [Eq. (31) of Ref. 8]

C=[M"M]'[M"y], (23)

where it will be assumed that the system contains many
more rows than columns, and is therefore overdeter-
mined. To summarize: (1) start with an initial ¢} to give
multiple estimates of P=(x,,y,,z,) for each measured
point (u,v); (2) find (multiple) required normals n by Eqs.
(11)—(13); (3) form U, and V), given by Egs. (18) and (19)
for each point, and enter these into Eqs. (22) (along with
n); and (4) solve for the new c)' using Eq. (23). Repeat
from step (2) with the new c]' coefficients, until the
method converges to a final solution. The convergence of
this method has been demonstrated previously.®® This
standard method will be referred to as the recasted Sicam
or the Sicam (RC) method.

B. Additional Step: Improving the Estimate of Corneal
Sa

Eq%lations (1)—(3) relate the corneal sag F(-u,-v,z) to the
intersection point P(x,,y,,z,) of a nearby ray. Figure 2
shows that these two points lie on the same (corneal) sur-
face. In other words, the surface F defined by corneal sag
coefficients ¢’ coincides (in theory) with the surface P de-
scribed by the corneal intersection points (x,,y,,2,). In
practice, Eq. (3) involves several approximations, so that
surfaces F and P will (in general) deviate from each other.

In fact, this predicted deviation has been plotted as the
continuous lines (labeled “theory”) shown in Figs. 3(a) and
3(b). These curves were determined by taking the corneal
depth at the intersection point P, i.e., z,(x,,y,) as either
spherical (R=7 mm) [Fig. 3(a)] or conical (R=7.87 mm,
p=0.82) [Fig. 3(b)]. The deviation was calculated by using
(x,Yp,2p) in Egs. (1) and (2) to give (u,v), from which
2(-u,-v) was obtained by Eq. (3). The difference (z-z,)
has been plotted as a function of the common radial dis-
tance p.

The continuous deviation curves shown in Figs. 3(a)
and 3(b) would be negligible if surfaces P and F coincided.
Instead, these curves demonstrate an increasing error
with radial distance. Because the Sicam (RC) method is
based upon Egs. (1)—(3), it is reasonable to ask whether
this observation has implications for the reconstruction of
the corneal sag. In fact, it will now be argued that the pre-
dicted deviations demonstrated in Figs. 3(a) and 3(b) will
propagate to the coefficients generated by the Sicam (RC)
algorithm. More specifically, it will be argued that these
particular deviation curves model errors incurred by the
Sicam (RC) algorithm, an observation that will be tested
presently.

The Sicam (RC) algorithm finds a set of Zernike coeffi-
cients for the corneal sag F, that solve Eqs. (14) and (15).
But these equations state that a normal to the surface P
(rather than F) should bisect the incident and reflected
ray [which is Eq. (11)] at a point (x,,y,,2,). These condi-
tions on P are the law of reflection, and characterize the
corneal surface by hypothesis. It can be expected there-
fore [if Egs. (14) and (15) are solved accurately] that sur-
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face P will more accurately represent the true corneal
surface. Then the corneal sag surface F(-u,-v,z) and
hence the corneal sag z [described by Eq. (4)] is a second-
ary surface related only approximately to P by Eq. (3).
This is, in fact, precisely the situation shown by the two
theory curves in Fig. 3. These errors are calculated, as-
suming that z,(x,,y,) represents the true corneal surface
(the sphere or conic surfaces tested in Fig. 3).

In summary, the algorithm as it has been described
here will find coefficients ¢}’ that determine the best in-
tersection surface P (albeit indirectly), but the coefficients
themselves correspond to F, which is an (error containing)
estimate of the corneal sag. Fortunately, it is possible to
circumvent these predicted errors. The corneal sag coeffi-
cients can be determined from the intersection (x,,y,,z,)
(i.e., surface P) directly. To demonstrate the point, addi-
tional steps are proposed, which enable a new and im-
proved estimate of corneal sag to be made. These steps
can be applied as an addition to the standard Sicam (RC)
algorithm. Take the final ¢’ computed from the Sicam
(RC) algorithm. Use these coefficients to calculate z(-u,
-v) by Eq. (4). Then use Eq. (3) to determine z,, and Egs.
(1) and (2) to determine (x,,y,) for each of the N mea-
sured points. Compute a new estimate of corneal sag, re-
alizing that z, values are sags relative to points (x,,y,). In
particular, form a least-squares system by using Eq. (23)
with

Zp(ulvvl)
y= : >
Zp(uNavN)

[}
=)

Zo(xp1,Yp,1) Zy1(xp1,Yp1)

.
=

S
Il
Q
Il

Zo@onoYp )  Zya (X N+ YpN)

-1
(24)

thereby yielding new coefficients ¢;=¢)" corresponding to
the improved corneal sag representation. As sag coeffi-
cients, they can be used in place of the original Sicam
(RC) coefficients defined in Eq. (4) without further modi-
fication. The Sicam (RC) method with these additional
steps will be referred to as the recasted and modified Si-
cam method, or the Sicam (RC+M) method, for the sake
of brevity.

3. METHOD

A. Testing the Sicam (RC) and Sicam (RC+M) Methods

Simulations were conducted to contrast the Sicam (RC)
and Sicam (RC+M) methods. Following the original Ref.
8 paper, a sphere (R=7, p=1) and a conic (R=7.87, p
=0.82) were chosen for testing. A Zernike representation
up to radial order 10 was selected and pupil diameter (2a)
ranged from 7 up to 11 mm (taken in 1 mm steps). A toric
surface tested the two methods in the nonsymmetric case.
The toric had a central base radius of R=7.8 mm and
modeled a large 7 D astigmatism along the vertical me-
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ridian (R | =6.71 mm using a refractive index of 1.3375)
[see Schwiegerling et al. 12.(1995) for calculation details].

The simulations required the positions of source points
and their images as input to the reconstruction algorithm.
Source points were determined as points corresponding to
a circular grid (32X 32) at the CCD plane, and were found
by casting rays from the CCD grid points back through
the (pinhole) camera to object space. The radius of the cir-
cular grid was chosen so the rays would fill the Zernike
aperture of diameter 2a completely at the corneal surface.
For the larger pupil sizes (e.g., 10 and 11 mm), it was
found that peripheral rays were reflected in the direction
of the positive z axis (i.e., to the right rather than reflect-
ing in the direction of the camera). Therefore, source
points were allowed to sit along the positive z axis (to the
right of the cornea) if required. The nodal point was set to
OA =300 mm.

The Sicam (RC) and Sicam (RC+M) methods were ap-
plied using image and source points calculated at each
particular pupil diameter. The methods started with a
planar corneal shape, which was found to be a satisfac-
tory starting point in all cases. The parameter AR was set
to 7 mm for the sphere, 7.87 mm for the conic, and the
mean of the principal radii of curvatures AR=(7.8
+6.71)/2=7.26 mm for the toric. Testing of the toric
showed the value of AR used did not affect the results ap-
preciably. The absolute height errors were recorded along
the corneal profiles for the three surfaces tested. In the
case of the toric, results were recorded along the meridian
of largest error (the vertical meridian).

B. Estimating Radius of Curvature R and p-Value p

The original Ref. 8 analysis used the sag coefficients to es-
timate central R and the conic p-value p for radially sym-
metric surfaces. Moreover, p was used to indicate efficacy
of the reconstructed surface at the periphery. That is to
say, a reconstruction of p close to the true value was used
to indicate a good reconstruction. A large error in p was
used to infer a breakdown in the algorithm.® The relation-
ship between a given reconstruction method and esti-
mates of R and p was investigated in more detail. The co-
efficients for the sphere and conic (obtained by the two
methods used in Subsection 3.A) were entered into the
equations

(12

R = — B
2(2/3¢9 - 6/5¢9 + 121/7¢3 - 60c3 + 30/11cSy)
(25)

4

8R3 =0 = .0 0 0
p=| — | (6\5cf— 30\7cg + 270c§ - 210411cYp),

(26)

derived for radial order 10 [errors in Eqgs. (6) and (7) for
radial order 6 in Ref. 8 are noted]. The exact least-squares
coefficients were estimated up to radial order 10 and used
in Eqgs. (25) and (26) also. The formula
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was used, substituting z, for the appropriate analytic so-
lution (i.e., a sphere or conic). Adaptive Simpson quadra-
ture was used with a 1072 absolute tolerance. That pro-
duced very low absolute rms error, consistently less than
residuals found using Sicam (RC) or Sicam (RC+M).

These coefficients estimated exact (in the least-squares
sense and with low numerical error) coefficients bypass-
ing the reconstruction process. Any deviation from true R
and p estimated errors due to the finite Zernike represen-
tation (i.e., up to radial order 10). The R and p values var-
ied depending on the method used, also indicating the dif-
ferences between the Sicam (RC) and Sicam (RC+M)
methods. An additional run was conducted for the sphere
setting radial order to 14, thereby demonstrating the ef-
fect of increased radial order. All simulations were con-
ducted using MATLAB (Mathworks, Natick, Virginia) and a
MATLAB ray-tracing toolbox (RAYTRAK) developed by the
author for simple ophthalmic applications.

4. RESULTS

A. Testing the Sicam (RC) and Sicam (RC+M) Methods
Figures 3(a) and 3(b) show log graphs of absolute height
errors for spherical and conic corneas using the Sicam
(RC) method. The distance from the corneal apex is shown
along the horizontal axes, while absolute height errors
are plotted on the vertical axes. The discrete data points
are errors plotted for each pupil diameter setting, while
the continuous curves show the theoretically predicted
deviations (described in Subsection 2.B). In both figures,
all reconstructed points were consistently submicrometer
at distances less than ~3.5 mm from the corneal apex.
However, as radial distance increased into the periphery,
a significant error was observed. For example, data point
errors at maximum radial distance (p=5.5 mm) were 25.3
and 8.8 um for the sphere and conic, respectively. The
data points appeared to track the continuous theoretical
deviation curves (as radial distance increased) in both
cases.

Figure 4(a) and 4(b) show log error graphs of height er-
rors for the sphere and conic using the Sicam (RC+M)
method at each pupil diameter tested. These errors were
consistently submicrometer, regardless of distance from
the corneal apex. In fact, a significant (2 to 3 order of
magnitude) drop [Fig. 4(a)] was observed for the sphere
(errors ranged from ~107° to ~10~! um). In the case of
the conic [Fig. 4(b)], a 3 to 4 order of magnitude drop was
found (errors ranged from ~107% to ~1072 um).

Figures 5(a) and 5(b) show log error graphs for the Si-
cam (RC) and Sicam (RC+M) methods along the vertical
meridian of the toric. This meridian was chosen because it
contained the greatest reconstruction errors. For ex-
ample, the maximum error in the vertical meridian error
was 37 um at the edge of the 11 mm pupil, against 11 um
for the horizontal meridian. The predicted deviations
were included in Fig. 5(a) and again, the data points
tracked along this theoretical curve as found for the
sphere and conic. The maximum errors reduced to



Jason Turuwhenua

Sicam(RC) toric error (6=90°)
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Fig. 5. Reconstruction results for a toric surface along the ver-
tical meridian applied (a) using the Sicam (RC) method and (b)
the Sicam (RC+M) method. The predicted deviation has been de-
termined for the vertical meridian and is plotted as the continu-
ous line in (a). Note the large reductions in error after the im-
proved method has been applied.

~0.4 pm using the Sicam (RC+M) algorithm [Fig. 5(b)].
The toric error dropped 2 to 3 orders of magnitude along
the vertical meridian, and the resultant error ranged
from ~1075 to ~10~! um.

In fact, this improvement is shown across the entire
toric surface in Figs. 6(a) and 6(b). Figure 6(a) shows the
complete error surface (at maximum pupil) using the Si-
cam (RC) algorithm. Figure 6(b) shows the improvement
after the Sicam (RC+M) algorithm was applied. The
marked improvement over the original method can be
seen for all meridians. Interestingly, error lobes of height
0.4 pm caused a jump in error at the edge of the pupil.
The errors just inside the pupil (away from the edge)
dropped to 0.15 um. This jump also appears in Fig. 5(b),
which summarizes errors along the vertical meridian.

The improvements in adding the fitting step to the Si-
cam (RC) method were much larger than any errors in-
curred by the additional fitting to the raw (x,,y,,2,) data.
The mean absolute height errors due to the fitting were
3.2%X1073 um, with a standard deviation of 6.5
X 1072 um across the three surfaces and multiple pupil
diameters tested. The absolute height error in fitting was
largest for the 11 mm pupil diameter, and did not exceed
2.1X1072 yum.
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B. Estimating Radius of Curvature R and
Conic p-Value
Tables 1 and 2 show R and p results for the sphere and
the conic surfaces (using radial order 10). The data was
formatted to be consistent with Tables 1 and 2 of Ref. 8.
The columns summarize results found using the Sicam
(RC), Sicam (RC+M), and exact methods. The estimates
for R and p improved across columns (to the right), as
might be expected. Similarly, and as observed in Ref. 8,
errors increased as pupil diameter increased. The propor-
tions of error incurred by a particular approach [relative
to the total errors due to Sicam (RC)] were found to be
relatively constant for any given pupil diameter (i.e., row
of the table). For example, for Sicam (RC), the sphere
(with maximum pupil diameter) produced errors of
17.0 um and 0.145 (for R and p, respectively). The error
in R was reduced by 14+1% using Sicam (RC+M), and
48+1% for the best method. For p, the error was reduced
by 16+1% using Sicam (RC+M), and 44+0% using the
best method. A much smaller reduction, but similar pat-
tern of reductions was observed for the conic. At maxi-
mum pupil diameter the errors were 1 um and 0.01 (for R
and p, respectively). The reductions in the error of R were
18+ 1% using Sicam (RC+M) and 53+1% using the best
method. The error in p was reduced by 20+1% [using Si-
cam (RC+M)] and 48+0% (the best method).

Table 3 shows results for the sphere at radial order 14,
though only results for aperture diameters of 10 and

Sicam (RC) toric error (11 mm pupil)

Y-axis (mm) S5 -5

(@)

X-axis (mm)

Sicam (RC+M) toric error (11 mm pupil)

5] AR
ol ‘{!/::‘.3::‘}-, »
5 5
Y-axis (mm) S5 5 X-axis (mm)
(b)

Fig. 6. Reconstruction results over the entire toric surface (a)
using the Sicam (RC) method and (b) the Sicam (RC+M) method.
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Table 1. Estimates of R and p for the Sphere (Radial Order 10)*

Pupil
diameter R (RC) R (RC+M) R (exact)

(mm) (mm) (mm) p (RC) p (RC+M) p (exact)
7 7.0000 7.0000 7.0000 0.999 0.999 0.999
8 6.9998 6.9998 6.9999 0.996 0.997 0.998
9 6.9990 6.9991 6.9995 0.987 0.989 0.993
10 6.9958 6.9964 6.9978 0.957 0.964 0.976
11 6.9830 6.9856 6.9909 0.855 0.880 0.918

“The Sicam (RC) columns estimate the original results presented in Ref. 8. The differences between the Sicam (RC) and Sicam (RC+M) columns estimate the impact of
deviations in corneal shape due to reconstruction method. The exact columns deviate from true R=7 mm and p=1, as a result of the truncation of the finite Zernike representation.

Table 2. Estimates of R and p for the Conic (Radial Order 10)*

Pupil
diameter R (RC) R (RC+M) R (exact)

(mm) (mm) (mm) p (RC) p (RC+M) p (exact)
7 7.8700 7.8700 7.8700 0.820 0.820 0.820
8 7.8700 7.8700 7.8700 0.820 0.820 0.820
9 7.8699 7.8699 7.8700 0.819 0.819 0.819
10 7.8697 7.8697 7.8699 0.816 0.817 0.818
11 7.8690 7.8692 7.8695 0.810 0.812 0.815

“The Sicam (RC) columns estimate the original results presented in Ref. 8. The differences between the Sicam (RC) and Sicam (RC+M) columns estimate the impact of
deviations in corneal shape due to reconstruction method. The exact columns deviate from true R=7.87 mm and p=0.82, as a result of the truncation of the finite Zernite rep-

resentation.

Table 3. Estimates of R and p for the Sphere (Radial Order 14)°

Pupil
diameter R (RC) R (RC+M) R (exact)
(mm) (mm) (mm) p (RC) p (RC+M) p (exact)
10 6.9998 6.9999 6.9999 0.997 0.997 0.998
11 6.9988 6.9990 6.9994 0.981 0.985 0.990

“The table includes only the rows for 10 mm and 11 mm because errors were negligible otherwise. The results for the conic were not included because errors were completely

negligible for all parameter values used.

11 mm are shown. Errors vanished (were negligible) for
all lower aperture sizes. The errors that were observed
were much smaller than the errors found for radial order
10. The conic information was not included for radial or-
der of 14, because measured errors completely vanished
over all R and p values tested.

5. DISCUSSION

A. Comparing the Sicam (RC) and Sicam (RC+M)
Methods

The Sicam (RC) reconstruction results revealed errors
that increased with radial distance. These errors were
found to be significant (greater than submicrometer),
particularly as distance extended into the periphery
(>3.5 mm). These errors were suggested to arise as
a result of the assumptions used to derive Eq. (3). The
theory curves shown in Figs. 3(a), 3(b), and 5(a)
predicted the expected deviation based on this idea. The
reconstructed data was consistent with these error
curves, and hence this idea. Additional steps were
suggested to circumvent the radially increasing error in-
curred by Sicam (RC). The modified Sicam (RC+M)

algorithm produced better estimates of corneal sag than
the unmodified Sicam (RC) method across the surfaces
and pupil diameters tested. The Sicam (RC+M) method
reduced this height error by 2 to 4 orders of magnitude,
to well below micrometer error in all cases. The results
for the toric surface (with high 7 D astigmatism) indicated
that skew rays could be dealt with by discrete points.
These results are encouraging, and support further inves-
tigation of the discrete source approach to corneal recon-
struction.

The errors for the Sicam (RC) algorithm appeared to
enter through Eq. (3). An advantage of the new derivation
was that sources of algorithm error were readily identifi-
able. These assumptions were: (i) the expansion to first
order, (ii) the parabolic assumption, and (iii) the approxi-
mation Ap’ = Ap. It is possible to estimate the errors in Si-
cam (RC) that arise through these assumptions. For the
sake of concreteness, consider a point on a spherical cor-
nea pupil sitting at p=5.5 mm. Consider first a first-order
expansion of this sphere about the point p=5.5 mm. The
estimate of z, [Eq. (5)] being of first order, will contain an
error on the order of (Ap’)2. The magnitude of that error
can be determined by tracing a ray back from the nodal
point through the point D (p=5.5 mm, z=0 mm) to the in-
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tersection point P (p=5.55 mm, z,=2.7343 mm). The dif-
ference in the radial positions of D and P gives an error
estimate of (Ap')2=(0.05)2=2.5 um. The Ap'=Ap as-
sumption will introduce a similarly small error in esti-
mated z,, because the difference between the two is only
1 um. In fact, setting the nodal point of the camera far
from the corneal apex ensures that this remains low (e.g.,
OA =300 mm was here).

The introduction of the second assumption (parabolic
slope) is the source of the largest error. Replace the
spherical slope in the first-order expansion [Eq. (5)]
with the parabolic slope given by Eq. (8). The final abso-
lute height error in z, [with a new estimated depth
of 2.7083 mm found by Eq. (5)] is then 26.0 um, which is
much larger than the order of errors introduced by the
other two assumptions. In fact, that absolute error can be
related to the error measured using the Sicam (RC)
algorithm. From Eq. (3) it can easily be shown that e,
=¢,(1+p?/(OA)(AR))™!, where &, is the error in sag, as-
suming z,, is known exactly [i.e., essentially the error in-
curred by Sicam (RC)], and ¢, is the absolute error in z,,
assuming z is known exactly. Using £,=26.0 um (calcu-

lated above) gives £,=25.6 um. This isp exactly the theo-
retical error observed at p=5.5 mm [and shown in Fig.
3(a)l, though it is probably more useful to assume that
gp~¢, for OA large. In any case, this analysis shows that
the parabolic assumption introduces a large error into the
Sicam (RC) algorithm. If the cornea deviates from being
parabolic, a significant error can be expected. Conversely,
if the cornea is close to parabolic, there will be a close
match between the Sicam (RC) and Sicam (RC+M) meth-
ods.

It is worthwhile emphasizing that the errors that arise
from the Sicam (RC) algorithm are inherent to the
method, and will not be reduced significantly by increas-
ing radial order or sampling. Indeed, the low errors ob-
tained for Sicam (RC+M) showed that radial order and
sampling were more than adequate for good estimates of
corneal sag. However, it would be useful to investigate the
optimal relationship between sampling and radial order
on reconstruction, and would be an avenue for further re-
search. In addition, it is noted that there was little error
incurred by implementing the additional fitting steps of
the Sicam (RC+M) algorithm (mean absolute height error
of 32x1073 um and a standard deviation of 6.5
X 1073 um).

The algorithm described here assumed that a mea-
sured image point could be associated with a source point.
That correspondence cannot be made using continuous
rings (e.g., Placido-disk-based topography), and so it may
seem that it is unsuitable in that situation. Nonetheless,
that particular problem can be dealt with by making rela-
tively minor adjustments to the current method. Halstead
et al. traced rays back to the Placido cone at each iteration
(for the current corneal estimate), and then moved these
rays to the nearest valid ring by adjusting the corneal
normals.? Thus correspondences were enforced. This step
could easily be implemented in the current algorithm,
and would involve computing updated values for S
=(x,4,y,,2,) at each iteration by the method just described
(i.e., locating the nearest ring). Then the algorithm would
continue from the point of the algorithm where Egs.
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(11)—(13) are applied to estimate the required n without
additional modifications.

B. Skew Rays and the Sicam (RC+M) Algorithm: Radial
Keratotomy

Reference 8 presented results for RK example, consisting
of a band of corrugations added to a parabolic base (origi-
nally used by Rand et al.'® using a spherical base). That
model was given by

p
=_= + ’0 2
Z=5p &(p,0)
where
e sin(86), p=2 mm
g(p,0)=12(p—1.5)esin(8¢), 1.5<p<2mm (28)
0, p<=15mm

represented a ring of corrugations with amplitude ¢. The
undulations produced a rapid variation in corneal tilt,
testing the potential limitations of the algorithm to skew
rays. Figure 7 shows results using Sicam (RC+M), adopt-
ing methods already described (see Subsection 3.A), and a
7 mm pupil aperture. The graph shows errors (at the
outer edge of corneal corrugations) plotted against a me-
ridional angle. The complete error profile (taken around
the cornea) exhibited a fourfold symmetry, so only angles
up to 90° needed to be plotted.

These graphs show an undulating error, with a peak er-
ror that drops as order is increased. In fact, for a twelfth-
order Zernike, the peak error is of the order of 1 um,
while for order 16, the errors are consistently submi-
crometer. As order increases further, so do the error
curves. However, the reduction is only within the same or-
der of magnitude. In fact, the results obtained appear to
agree with the original Ref. 8 paper, where a 0.2 um dis-

Sicam (RC+M) errors for RK (p =2 mm)
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Fig. 7. Reconstruction results for the RK example showing er-
rors as a function of meridian. Errors are shown at the outer
edge (2 mm) of the band of corrugations for angles up to 90°. The
resulting curves are consistently submicrometer for Zernike or-
ders greater than or equal to 16. However, increasing the order
beyond that limit gives relatively small reductions, within the or-
der of magnitude (0.1 um). For order 20, the results are similar
to those presented in Ref. 8.
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crepancy was observed at order 20. In turn, these results
were consistent with results presented by Klein.*®

The fact that error diminishes to below submicrometer
error indicates that the algorithm can restore the corneal
shape successfully. In other words, the information re-
quired for a good estimation is encoded (by discrete
points) in the data. However, the order must be set high
in order to extract that height from that data. That find-
ing suggests a limitation of the present algorithm, par-
ticularly given that good estimations of a similar model
were obtained previously wusing only low-order
polynomialsfl’14 Indeed, it may be that there are repre-
sentations (other than Zernike polynomials) that could
capture the shape of abnormal corneas more efficiently. It
may be that further improvements are possible, and
would be an area for further research.

As mentioned, the results observed here are consistent
with the results presented in Ref. 8, and hence the Sicam
(RC+M) method produced similar results. That result is
not entirely surprising. The base surface of the RK ex-
ample tested (in Ref. 8) was a parabola. In that case, the
assumption of a parabolic cornea [Eq. (6)] is satisfied. In
Subsection 5.A, it was determined that as the cornea de-
parts from being parabolic, a large error will be intro-
duced into Eq. (3). With this assumption accounted for by
the corneal model, the Sicam (RC) and Sicam (RC+M)
methods will be very similar. The results shown here are
therefore consistent with what might be expected.

C. Estimates of Radial Curvature R and p-Value p

The Sicam (RC) columns of Tables 1 and 2 are similar to
those presented in Ref. 8 (see Tables 1 and 2 of that pa-
per). This similarity suggests that the Sicam (RC) algo-
rithm correctly synthesized the original Sicam et al. algo-
rithm. In the Ref. 8 paper, the increasing errors in p
(found as pupil diameter increased) were attributed to
height errors incurred at the periphery of the cornea: in
other words, a breakdown of the algorithm. In fact, the re-
sults suggest that the observed errors [in the Sicam (RC)
column] were strongly influenced by the finite Zernike
representation used (i.e., truncation of the Zernike sum).
Indeed, increasing Zernike order (Table 3) virtually elimi-
nated all of the observed errors in Table 1, showing that
radial order rather than corneal height errors was the
major cause of the observed errors. In fact, though it is
not shown here, increasing radial error further would
have reduced errors further still. The results for the conic
at radial error 14 were not included because they were
negligible over the entire set of parameters tested.

For radial order 10, the exact columns (Tables 1 and 2)
showed that even a best estimate of the corneal profile
could not match true p. These estimates showed that 56%
(sphere) and 52% (conic) of the total error in p remained,
even when using the exact reconstruction. The Zernike or-
der prevented a further reduction in the error. The Sicam
(RC) coefficients were found after the application of Eq.
(3). The Sicam (RC+M) method gave coefficients found (in
effect) prior to the application of Eq. (3). This difference
estimates errors (in R and p) corresponding to the alter-
nate height reconstructions [i.e., due to Eq. (3)]. Then,
only a relatively modest proportion [i.e., roughly 16%
(sphere) and 20% (conic)] of the total error actually corre-
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sponds to changes related to significant corneal shape dif-
ferences. The remaining unaccounted 28% (sphere) and
28% (conic) of total error is the difference between the Si-
cam (RC+M) and the exact estimate. That is an estimate
of the error incurred by the Sicam (RC+M) algorithm
over and above the truncation error.

In any case, the points raised here indicate that conic
p-value should be used cautiously. The values for both R
and p depend critically on order (rather than height er-
rors), and it is likely that only a modest proportion of ob-
served error will correspond to differences due to corneal
height errors. In light of the uncertainties alluded to
above, it is perhaps an erudite decision to use more stan-
dard measures such as maximum and absolute height er-
ror or rms error, say as single-valued measures of algo-
rithm efficacy.

6. FURTHER WORK

The improvements are encouraging, and show that dis-
crete points can be used to recover symmetric—
nonsymmetric surfaces accurately (at least in simula-
tion). It would be useful to test the Sicam (RC+M) on
more complicated corneal models (such as keratoconus),
as well as real corneas. It would also be useful to investi-
gate the effects of radial order, sampling, and alternative
surface representations on recovery. The latter point
raises the question as to whether there may be more effi-
cient corneal representations that better describe abnor-
mal corneas. Note that replacing the Zernike basis func-
tions with some alternative in the Sicam (RC) step would
not prevent coefficients from being obtained for clinical
use. The Zernike polynomials could still be used at the fit-
ting step implemented by Sicam (RC+M). Work is con-
tinuing on optimizing the Sicam (RC+M) algorithm.

APPENDIX A

Here we derive the equations that comprise the entries of
Eq. (22). For simplicity consider only the equations with
respect to the u parameter. The required equations for v
follow by identical arguments. Consider then Eq. (14) and
the tangent vector,

P 9

—— = XpYps2p)s
ou &u(pyp p)

with respect to u. Evaluating the dot product in Eq. (14)
gives

axy, dyp 92
n,— -

+n,——-—=0, Al
u Y ou du (A1)

where n=(n,,n,,-1). Now, Egs. (1) and (2) differentiate to

give
ox z u \oz
Lo 12 ) — |2, (A2)
du OA OA ) du
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ady v o\ oz
— === (A3)
u OA ) ou
Substituting Egs. (A2) and (A3) into (A1) yields
z n,w+nu\dz
nl 1+ —]+|1+4 12— )2L=0, (A4)
OA OA au

after straightforward algebra. The z, terms can be elimi-
nated by using Eq. (21),

z,= >y, (A5)

where the identification

u? +v? )
(A6)

Yo =(Z(—u,-v) —Z?(O,O))(l + (OA)AR)

was introduced. Taking the first derivative of z, with re-
spect to u gives

e "
a—; =>cr —. (A7)
Substituting Eqgs. (A7) and (A5) into (A4) gives
ne=2 iU, (A8)
where
U;":—(1+M>&ﬁ—nx v, (A9)
OA du OA
and
v (- u,—v) u? +v?
u =< u )(“ (0A><AR>>
u
+(ZMN-u,-v) - Zf(0,0))(m) .
(A10)

The first bracketed term of Eq. (A10) is the derivative of
the 180° rotated Zernike polynomials with respect to u.
Note also that Eq. (A6) and its derivative in Eq. (A10) can
be precomputed since they have no dependence on n. Now
the coefficients c)' in Eq. (A8) are the only unknowns.
Then Eq. (A8) can be rearranged into matrix form, and in
fact form the rows (in u) of entries in Eq. (22). Repeating
identical arguments for the tangent vector,

oP 9
P g(xp,yp,zp)
gives
n,= >, crve, (A11)
where
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nyv+nu\dy, n,
Vi=—|1+ ——

- Al2
OA w 0AT (A12)

and ¥} is again given by Eq. (A6). For completeness, the
derivative with respect to v is

v (0Zf(—u,—v)><
= ——"[1

u?+v?
P P ’ M)
2v
(OA)(AR)) .
(A13)

+(Zy(-u,-v) - Z?(O,O))<

As with Eq. (A8) the equivalent equation in v [i.e., Eq.
(A11)] can be rewritten in matrix form, which yields rows
(in v) of the linear system of Eq. (22).
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