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Modeling of Corneal Surfaces With Radial
Polynomials

D. Robert Iskander*, Member, IEEE, Mark R. Morelande, Michael J. Collins, and Brett Davis

Abstract—We consider analytical modeling of the anterior
corneal surface with a set of orthogonal basis functions that are
a product of radial polynomials and angular functions. Several
candidate basis functions were chosen from the repertoire of
functions that are orthogonal in the unit circle and invariant in
form with respect to rotation about the origin. In particular, it is
shown that a set of functions that is referred herein as Bhatia–Wolf
polynomials, represents a better and more robust alternative for
modeling corneal elevation data than traditionally used Zernike
polynomials. Examples of modeling corneal elevation are given
for normal corneas and for abnormal corneas with significant
distortion.

Index Terms—Cornea, model selection, radial polynomials,
Zernike polynomials.

I. INTRODUCTION

OVER the last decade, modeling corneal surfaces from
videokeratoscopic measurements has attracted great

interest among optometrists, vision scientists, and ophthal-
mologists. Unlike the popular dioptric power maps of corneal
surfaces [1], [2], the raw height data acquired by a videoker-
atoscope are suitable for characterizing aberrations [3], [4] and
abnormalities [5], [6] of the cornea.

Early models of the corneal anterior surfaces included simple
geometric surfaces such as an ellipsoid or were generated by a
polynomial curve of revolution as in the Lotmar’s eye model [7].
More complex models have been used to account for corneal
asymmetries. The simplest two-dimensional (2-D) model for
corneal surfaces was the Taylor series expansion. This model
was soon replaced by Zernike polynomials [8], which are a
product of angular functions and radial polynomials.

Zernike polynomials are orthogonal for the interior of the unit
circle and are invariant in form with respect to rotations of axes
about the origin [9]. These properties have made Zernike poly-
nomials very attractive in optics where they are used for fit-
ting wavefront aberrations. Additionally, the lower terms of the
Zernike polynomial expansion can be related to known types of
aberrations such as defocus, astigmatism, coma, and spherical
aberration [10].

Despite the good mathematical and statistical properties of
Zernike polynomials, their application to the modeling of the
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anterior surface of the cornea does have limitations. Cases have
been reported where the Zernike polynomial fit to the height
data from a videokeratoscope is not adequate [11]. This is
mainly because Zernike polynomials are global functions and
are not suitable for characterizing local changes.

There are uncertainties as to how many Zernike terms one
should fit to the data. Recently, we have developed a bootstrap
based technique for fitting Zernike polynomials to corneal el-
evation data [12], allowing objective selection of the optimal
number of Zernike terms. In a further study involving 70 sub-
jects [13], it was concluded that the fourth-order radial fit of
Zernike polynomials is adequate for judicious modeling of the
majority of corneal surfaces. However, at the same time, we
have observed that the residual error between the height data and
the fit was slightly larger than the one observed when testing
videokeratoscopes with artificial surfaces [14]. This suggests
that the Zernike polynomials may not be the best option for
modeling corneal surfaces.

A question arises, therefore, whether there exists a set of func-
tions or radial polynomials that would result in a better fit to the
videokeratoscopic data. We emphasize the radial polynomials
because videokeratoscopes that are based on the placido disk
principle acquire radial data in equally spaced meridians. This
type of instruments represents a substantial majority of the cur-
rent videokeratoscopes in the marketplace.

To answer the above question, we investigate alternative so-
lutions to the problem of corneal modeling and search for a set
of radial polynomials which in combination with angular func-
tions would provide the best fit to the videokeratoscopic height
data. In particular, we seek a set of radial polynomials, selected
from a given repertoire, that results in a minimum mean square
error (MMSE) fit to the corneal data for a given radial order.

The paper is organized as follows. In the Section II, we con-
sider the general problem of optimal modeling of corneal sur-
faces by a repertoire of basis functions. In Section III, we review
the possible candidate sets of basis functions that we could use
in our application, and analyze their performance for simulated
surfaces. Then, in Section IV, we show experimental results of
fitting different radial polynomials to corneal data for subjects
with normal and distorted corneas.

II. M ODELING CORNEAL SURFACESWITH POLYNOMIALS

The anterior surface of the cornea can be modeled by a finite
series

(1)
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where denotes the corneal surface, the indexis a poly-
nomial-ordering number, , , is the th
polynomial, , , is the coefficient associated with

, is the order, is the normalized distance from the
origin, is the angle, and represents the modeling error.
Throughout the paper, we choose the polar coordinate system
for convenience. It is often a requirement that the polynomials
used in the modeling are orthogonal. However, after discretiza-
tion, further orthogonalization using the Gram–Schmidt proce-
dure may be required.

Using a set of such orthogonalized discrete polynomials, we
can form a linear model

(2)

where is a -element column vector of corneal surface eval-
uated at discrete points , , is a
matrix of discrete, orthogonalized polynomials , is
a -element column vector of coefficients, andrepresents a

-element column vector of the measurement and modeling
error. For such a model, the coefficient vectorcan be estimated
using the method of least-squares (LS), i.e.,

(3)

where denotes the transposition, provided that the inverse ex-
ists.

In general, corneal modeling can be put in the following
framework. Given height data , , and
sampled at discrete points from find acomplete
set of basis functions , such that

(4)
is minimized. In other words, we are searching for a complete
set of basis functions that will result in a MMSE fit to the corneal
height data. In (4), , are the LS estimators of
the parameters , , respectively, and denotes
the Euclidean norm.

III. A R EPERTOIRE OFRADIAL POLYNOMIALS

We aim to fit the raw videokeratoscopic data with certain
functions that would be a product of angular functions and radial
polynomials. We would like our set of functions to be complete
so that we can invoke the Weierstrass theorem on approxima-
tions. Additionally, our set of functions is to satisfy the property
of invariance with respect to rotation of axis about the origin. In
the following, we will consider three sets of basis functions that
satisfy the above conditions: 1) the Zernike polynomials; 2) the
generalized Zernike polynomials; and 3) a set of functions we
choose to call Bhatia–Wolf polynomials.

TABLE I
THE RADIAL ZERNIKE POLYNOMIALS R (�) UP TO THEDEGREEn = 4

A. Zernike Polynomials

A set of functions that is currently widely used in ophthalmic
applications, is formed by the circle Zernike polynomials. The
th-order Zernike polynomial is defined as [10]

even
odd

(5)
where is the radial degree, is the azimuthal frequency, and

The radial degree and the azimuthal frequency are integers
which satisfy with even. Thus, only certain
combinations of the coefficients and form valid polyno-
mials. In Table I, we list the polynomials up to the radial
degree 4. The radial degree and the azimuthal frequency

can be evaluated from the polynomial-ordering number
using , and
respectively, where , ,

, is the floor operator and mod
denotes the modulus operator.

The Zernike polynomials have several properties that make
them good candidates for fitting 2-D data:

1) they are orthogonal in and for the interior of the unit
circle;

2) they are invariant with respect to rotation of axis about the
origin, i.e.,

where is a continuous function with period and
is the angle of rotation;

3) they contain a polynomial for each permissible pair of
monomials , (analogous property to
the one of Legendre polynomials);
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TABLE II
THE RADIAL GENERALIZED ZERNIKE POLYNOMIALS S (�; k; l) UP TO THEDEGREEn = 4, (k = k=2; l = l=2)

TABLE III
THE RADIAL BHATIA–WOLF POLYNOMIALS T (�) UP TO THEDEGREEn = 4

4) the radial polynomials satisfy

where is the Kronecker symbol;
5) they form a complete set of basis functions.

In some cases the Zernike polynomials are denoted
as a 2-D expansion, in terms of radial, , and
azimuthal, , parameters. This is mathematically equivalent
to Noll’s notation and has been widely adopted by vision
researchers [3]. We have chosen the Zernike polynomials
proposed by Noll for convenience [12]. For the relationship
between single indexing and double indexing the reader is
referred to the work of VSIA Standard Taskforce [15].

B. Generalized Zernike Polynomials

There exists a number of functions that are orthogonal in a
circle or a sphere [16]. However, only few sets of basis func-
tions can satisfy properties similar to the ones of Zernike poly-
nomials. In [17], a generalization of the radial Zernike polyno-
mials have been considered to facilitate the evaluation of the

diffraction integrals that involve products of Bessel and radial
functions.

To make a correspondence with (5), we define generalized
Zernike polynomials as

even
odd (6)

where, as in the case of the Zernike polynomials,is the radial
degree and is the azimuthal frequency. The integersand
can be evaluated from the polynomial-ordering numberin the
same manner as described earlier for Zernike polynomials. The
parameters and are additional parameters satis-
fying . The radial components of the generalized Zernike
polynomials are [17]

where is the standard gamma function. In Table II, we list
the radial polynomials up to the radial degree 4.
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TABLE IV
THE ZERNIKE COEFFICIENTS FORSURFACE C (LEFT) AND THE BHATIA–WOLF

COEFFICIENTS FORSURFACE D (RIGHT)

The normalization factor used in our generalization can be
calculated from the integral

and is given by

Substituting 4 and 2 in (6) results in the standard
Zernike polynomials defined in (5).

It has been noted in [17] that such a generalization “preserves
the form of the radial polynomials as originally introduced by
Zernike and is adequate for most applications.” However, the
LS estimator of the corneal surface,

results in the same fit to the data independently of the parame-
ters and . This can be easily shown by expanding the matrix of
the discrete generalized Zernike polynomials and grouping the
common terms. Thus, the generalization of the Zernike poly-
nomials does not provide us with an alternative modeling ap-
proach.

C. Bhatia–Wolf Polynomials

Another set of functions that is closely related to the Zernike
polynomials was suggested by Bhatia and Wolf in [18]. Bhatia
and Wolf sought a set of basis functions that would satisfy all
of the properties of Zernike polynomials and additionally be
orthogonal in , , and . This particular property
is quite useful in our application, where the data are sampled
radially in meridians.

We define the th-order Bhatia–Wolf polynomial as

even
odd

where is the radial degree, is the azimuthal frequency, and
[18]

The radial degree and the azimuthal frequency are integers
which satisfy . Unlike the Zernike polynomials, valid
Bhatia–Wolf polynomials exist for all combinations of the
coefficients and . In Table III, we list the polynomials

up to the radial degree 4. The radial degree
and the azimuthal frequency can be evaluated from the
polynomial-ordering number using and

, respectively, where
and are the ceiling and floor operators, respectively.

The Bhatia–Wolf polynomials possess the same properties as
the Zernike polynomials. Additionally, they are orthogonal in,
, and for the interior of the unit circle. In other

words, the Bhatia–Wolf polynomial expansion will result in a

series of monomials , .
A relationship exists between the radial polynomials of Bhatia
and Wolf, , and the radial polynomials of Zernike,

Note also that Bhatia–Wolf polynomials are not a subclass of the
generalized Zernike polynomials defined in (6). Since they are
orthogonal in , , and , it is expected that they would result
in a better fit to the videokeratoscopic data than the Zernike
polynomials of the same radial order.
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(a) (b)

(c) (d)

Fig. 1. Average MSE (based on 100 realizations) when fitting simulated surfaces with Zernike polynomials (solid line) and Bhatia–Wolf polynomials (dashed
line). (a) Surface A—noisy sphere. (b) Surface B—noisy ellipsoid. (c) Surface C—keratoconus from Zernike terms. (d) Surface D—keratoconus from Bhatia–Wolf
terms.

D. Performance Analysis

It is of interest to find how robust is the fit by Bhatia–Wolf
polynomials in comparision with the Zernike polynomial fit. For
this purpose we have chosen the following four simulated sur-
faces.

1) Surface A: a sphere with radius mm;
2) Surface B: an ellipsoid with and ;
3) Surface C: a keratoconic corneal surface modeled by a

series of the first 15 Zernike polynomials (up to the fourth
radial order, see Table IV);

4) Surface D: a keratoconic corneal surface modeled by a
series of the first 25 Bhatia–Wolf polynomials (up to the
fourth radial order, see Table IV).

We proceed with our analysis as follows. First, we generate
each surface at discrete points , . We
choose 256 semimeridians, 26 rings, and mm. Then

we collect the discrete elevation data into a vector. To
each of the simulated surfaces, independent and identically
distributed zero-mean Gaussian noise is added, .
The standard deviation of noise ranges from 1 nm to 100m.
The level of noise found in current videokeratoscopes is usually
a couple of microns [14]. Then, we find LS estimators of the
surfaces using

and

where

and
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with being a matrix of discrete Zernike polynomials,
and being a matrix of discrete Bhatia–Wolf poly-
nomials. Next, we calculate the mean square errors (MSEs)

MSE and MSE

We repeat this procedure for 100 independent realizations of
the noise process and calculate the average of the MSE’s. In
Fig. 1(a) and (b), we show the averageMSE (solid line) and
MSE (dashed line) for Surface A and Surface B, respec-
tively. It is noted that for the range of noise encountered in
current videokeratoscopes, the Bhatia–Wolf polynomial fit re-
sults in a much better model to a sphere or an ellipsoid than the
Zernike polynomial fit. It is also interesting that for a very high
level of noise both representations provide similar fit.

The two other simulated surfaces where used to establish the
robustness of the corneal fit. Fig. 1(c) and (d) shows the average
MSE andMSE for Surface C and Surface D, respectively.
It is of interest to note that in the mean-square error sense, the
Bhatia–Wolf polynomials provide the same fit to the surfaces
generated by the Zernike polynomials as the Zernike polyno-
mials themselves [see Fig. 1(c)]. However, the same cannot be
said about the Zernike polynomials when used for fitting sur-
faces generated by the Bhatia–Wolf polynomials [see Fig. 1(d)].
Thus, the Bhatia–Wolf polynomials are more robust than the
Zernike polynomials of equivalent radial order.

Note also, that the flat components of the average MSE in
Fig. 1 are related to systematic errors related to the fit, while
the increases in the MSE at a certain noise level are related to
statistical errors.

IV. EXPERIMENTAL RESULTS

In this section, we provide examples of fitting Zernike poly-
nomials and Bhatia–Wolf polynomials to corneal elevation data.
We did not include the analysis of the generalized Zernike poly-
nomials since, for a given order, they result in an identical LS
estimate of the corneal surface as in the case of the Zernike poly-
nomials.

The elevation data was measured by the Optikon Keratron
videokeratoscope. The size of the Keratron data is 6656.
The data are sampled in 256 semimeridians (approximately
every 1.4) and 26 rings, covering up to 9-mm diameter of a
corneal surface.

From the results derived in [12], [13] we choose to model
each corneal elevation with a radial polynomial of order 4.
This corresponds to modeling a corneal surface with the first 15
Zernike polynomials or the first 25 Bhatia–Wolf polynomials.

Consider first a set of typical videokeratoscopic data from a
healthy normal cornea (Subject A). We select the 8-mm diam-
eter central portion of the corneal data for the analysis because
the peripherial data (the last two rings) are usually not suitable
for the analysis. In Fig. 2, we show typical set of raw elevation
data from the Keratron videokeratoscope for 8-mm corneal di-
ameter. Some of the data in the most outer rings may be missing
due to occlusion by the eye-lids or lashes.

Local changes in corneal elevation are too small relative to its
principal curvature, similar to the geographical features of the

Fig. 2. Raw elevation data from the Keratron videokeratoscope for 8-mm
corneal diameter.

Fig. 3. Residual elevation data (difference between the elevation and the best
fit sphere) for Subject A with normal cornea.

Earth when viewed from space. Thus, to visualize such changes,
the residual elevation data are often used. These are calculated
by subtracting the best fit sphere (in the LS sense) from the ele-
vation data. Fig. 3 shows the residual elevation data for Subject
A.

We repeat the procedure from the previous section omitting
the addition of the noise. Second, we define the residual mod-
eling errors as

and

In Fig. 4, we show the residual modeling errors for the Zernike
polynomial fit (top) and Bhatia–Wolf polynomial fit (bottom). A
decrease in the MSE fromMSE 4.23 10 toMSE
2.53 10 was found.

We have continued the analysis with three other subjects:
Subject B with significant amount of astigmatism, Subject C
with topographic asymmetry (early keratoconus), and Subject
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(a)

(b)

Fig. 4. Residual modeling error for cornea of Subject A fitted by (a) a series
of Zernikes polynomials and (b) a series of Bhatia–Wolf polynomials.

Fig. 5. Residual elevation data (difference between the elevation and the best
fit sphere) for Subject B with corneal astigmatism.

D with a significantly decentered corneal apex (severe kerato-
conus). Figs. 5 and 6 show the residual elevation and residual
modeling error for Subject B. Similarly, Figs. 7–10 show the
residual elevation and residual modeling error for Subject C and
Subject D, respectively.

As noted for the normal cornea, a decrease in the MSE is ev-
ident when modeling corneal surfaces with Bhatia–Wolf poly-
nomials. Also, for corneal surfaces with significant deformities,
the decrease in the MSE is more pronounced than in the case of
normal corneas. For example, for Subject D, the decrease in the
MSE is tenfold.

Worth noting is that in most cases the residual modeling error
for the Bhatia–Wolf polynomial fit is in close agreement with
the results obtained when testing videokeratoscopes with arti-
ficial surfaces [14]. In comparison, the Zernike polynomial fit

(a)

(b)

Fig. 6. Residual modeling error for cornea of Subject B fitted by (a) a series
of Zernikes polynomials and (b) a series of Bhatia–Wolf polynomials.

Fig. 7. Residual elevation data (difference between the elevation and the best
fit sphere) for Subject C with topographic asymmetry (early keratoconus).

with the same radial order results in a residual modeling error
that exceeds that of the artificial surfaces.

We have perfomed a comparison between the Zernike
polynomial fit and the Bhatia–Wolf polynomial fit for 70
subjects including 60 normals (some with astigmatism) and
ten subjects with keratoconus. For each cornea, we have de-
termined theMSE andMSE . Fig. 11 shows the MSE for
the Bhatia–Wolf polynomials versus the MSE for the Zernike
polynomial fit. It is clear that theMSE is consistently
lower than theMSE for all considered subjects. Also, it is
of interest that for a small corneal diameter, the Bhatia–Wolf
polynomial fit is much better than the Zernike polynomial
fit. This advantage is important when deriving aberrations for
corneal areas related to the pupil.
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(a)

(b)

Fig. 8. Residual modeling error for cornea of Subject C fitted by (a) a series
of Zernikes polynomials and (b) a series of Bhatia–Wolf polynomial.

Fig. 9. Residual elevation data (difference between the elevation and the best
fit sphere) for Subject D with a decentered corneal apex (severe keratoconus).

V. CONCLUSION

We have introduced a new model, referred to as the
Bhatia–Wolf polynomial expansion, for fitting the videokerato-
scopic height data of the anterior corneal surface. Given certain
order of the radial polynomial expansion, the Bhatia–Wolf
polynomials significantly outperform the widely used set of
Zernike polynomials in terms of the MSE fit. This was shown
for simulated data as well as data from real corneas of subjects
with different corneal topographies. Also, we showed that
Bhatia–Wolf polynomials provide a robust fit to the corneal
data.

The Bhatia–Wolf polynomial fit of a certain radial orderis
numerically less efficient than the equivalent Zernike polyno-
mial fit. However, comparison of the fitting performance using

(a)

(b)

Fig. 10. Residual modeling error for cornea of Subject D fitted by (a) a series
of Zernikes polynomials and (b) a series of Bhatia–Wolf polynomials.

Fig. 11. MSE for the Bhatia–Wolf polynomial fit versus the MSE for the
Zernike polynomial fit for 70 different corneas.

the same number of polynomial terms in both polynomial ex-
pansions could not be justified because it will result in different
radial orders for each of the expansions.

The proposed methodology can be also used for fitting wave-
front aberrations as measured by a wavefront sensor. Although
some of the lower order terms of the Bhatia–Wolf polynomial
expansion may not be directly recognized as a commonly known
type of aberration, their use in fitting could provide a signifi-
cant improvement in wavefront estimation. This is particularly
important in areas such as customized refractive surgery, where
the information from the Zernike polynomial fit may be used
for corneal ablation. The analysis of this problem is beyond the
scope of this paper and will be reported elsewhere.
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