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Abstract—The aim of this work is to begin quantifying the have been developed over the years in an attempt to
performance of a recently developed activation imaging algo- go|ye this electrical imaging probleht®2°25Unless the

rithm of Huiskamp and GreensiféEEE Trans. Biomed. Eng. : : ; i
44:433-448% We present here the modeling and computational problem .IS poseq in a partlcglar ”?a””er' this .Inverse
issues associated with this process. First, we present a practicaProblem is not uniquely determined, i.e., there exist mul-

construction of the appropriate transfer matrix relating an acti- tiple cardiac electrical generator configurations that can
vation sequence to body surface potentials from a general give rise to the same thoracic ECGs. This nonuniqueness
boundary value problem point of view. This approach makes has hampered attempts at solving the inverse problem.
explicit the role of different Green’s functions and elucidates Early approaches to the inverse problem overcame the

features(such as the anisotropic versus isotropic distingtion . . N
not readily apparent from alternative formulations. A new ana- Nonuniqueness by modeling the heart as a combination

lytic solution is then developed to test the numerical implemen- 0of @ small number of fixed or moving dipoles. It has

tation associated with the transfer matrix formulation presented been recognized that posing the problem in terms of
here atnd CO“_Vergescet rgsi"t_f fofrﬂ?om potte“tt'_a's ‘?nd normal reconstructing epicardial potentials from the body surface
currents are given. INext, detars ot the construction of a generic potential recordings is uniquely determined. However,

porcine model using a nontraditional data-fitting procedure are . . . . L
presented. The computational performance of this model is the reconstruction of epicardial potentials is ill-posed.

carefully examined to obtain a mesh of an appropriate resolu- This means that in the presence of nofagich always

tion to use in inverse calculations. Finally, as a test of the entire exists in practice a solution to the inverse problem
approach, we illustrate the activation inverse procedure by re- produces a result that may bear no resemblance to the
constructing a known activation sequence from simulated data. true electrical generator. The emergence of a general

For the example presented, which involved two ectopic focii ? . f
with large amounts of Gaussian noi€00 .V rms) present in  theory for such ill-posed problerffsand the introduction

the torso signals, the reconstructed activation sequence had 0f the ideas behind constraining the mathematical solu-
similarity index of 0.880 when compared to the input source. tions have resulted in the large number of inverse algo-

© 2001 Biomedical Engineering Society. rithms in existence today in the field of electrocardiac
[DOI: 10.1114/1.1408921 imaging. However, since many of the modern inverse
ECG algorithms are based on such a general ill-posed
Keywords—Boundary element method, Critical point, Inverse jhyerse approach they fail to account for the underlying
problem of elegtrocardlography, Analypc solution, Activation physiological processes governing the generation of the
sequence, Porcine model, ECG mapping, Body surface poten-body surface potentialénamely, an evolving wave of
tials. activation). Moreover, many of the algorithms construct
the inverse solution by treating each time instance inde-
pendently, which, in theory at least, is not the optimal
The goa| of noninvasive electrical |mag|ng of the Wway to proceed with such temporally correlated informa-
heart is to quantitatively reconstruct information about tion as is present in ECG signafs!®
the electrical activity of the heart from multiple thoracic
ECG signals. Quantitative interpretation of these data in New Approach
terms of the underlying cardiac electrical activity is an
inverse problem and various mathematical algorithms

INTRODUCTION

Another approach to the inverse problem is to pose
the problem in terms of the underlying activation
sequencé® This has significant advantages over the epi-
Address correspondence to Andrew Pullan, 6th Floor, 70 Symonds . . . . .
St., Department of Engineering Science, The University of Auckland, cardial potential problem formulation, not least in that it

Private Bag 92019, Auckland, New Zealand. Electronic deals di.reCtly with the qnderlying physiological process
mail: a.pullan@auckland.ac.nz responsible for generating the body surface potentials.
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However, it introduces additional difficulties in the mod- procedure. Some of this work has been communicated in
eling process, such as the need to model the entire hearabstract forn?:?1-232°We demonstrate the accuracy and
instead of just modeling the epicardial surfatgnce convergence properties of the numerical procedure used
myocardial activation times rather than just epicardial to construct the transfer matrix. We also illustrate how
potentials are being related to body surface potentials the procedure is to be applied in practice by producing
Also, it appears that activation-based imaging seems an inversely reconstructed cardiac surface activation map
most suited for the ventricles and most relevant to the from simulated torso ECGs.

QRS interval only(although in principle it is possible to

extend the approach beyond the QRS intervals a FORMULATION OF THE ACTIVATION INVERSE

result of this, and partly because of the fact that an APPROACH

appropriate algorithm for such a problem formulation
had previously not been devised, this approach has not
found much favor. However, a powerful new algorithm,
based on this activation imaging approach has recently
emerged*!’

Both the epicardial and activation source formulations
mentioned above have been recognized for 20 to 30
years, but as yet no clinically acceptable imaging tech-
niques have resulted. The two major reasons for this are:

The basic activation inverse algorithm is presented in
Huiskamp and Greensité. The procedure revolves
around the identification of the critical points and times
of the surface activation functiofi.e., epi- and endocar-
dial breakthrough/termination points and timesia the
use of a modified multiple signal classification algorithm.
The use of this method on a given individual or animal
requires the construction of an appropriate transfer func-
tion that maps the activation sequence to body surface
(1) Previously available mathematical methodologies for potentials.

computation of the sources were not powerful The proof of the activation imaging algorithfhuses
enough. source-field relationship¥, which employ a Green’s
(2) Adequate procedures for verification of the accuracy function that accounts for the anisotropy of the myocar-
of the images were not employed. dium. While the new imaging algorithm proved from
these relationships is completely general, the initial use

For each of the two source formulations there are now of it has been restricted to using the so-called double-
powerful imaging algorithms that have not previously layer transfer matrices, which assume a homogeneous
been availablé*'>1" There are also sufficient modeling and isotropic myocardium. The traditional construction
techniques now available that, when combined with these of such a double-layer transfer matrix begins with the
new algorithms, should make it possible to produce myo- assumption of myocardial homogeneity and isotropy and
cardial electrical source images of sufficient stability and the use of equations defining the potential due to a dipole
accuracy to be a useful adjunct in the clinical assessmentin free spacé. We prefer to investigate the transfer ma-
of the heart. However, these new algorithms need to betrix construction from a boundary value problem per-
quantitatively validated before their clinical worth can be spective(i.e., from solving the bidomain equationthat
properly assessed. avoids explicit reference to dipoles. It also makes more

In order to quantitaﬁve|y validate the performance of explicit the anisotropic/isotropic distinction and eluci-
the inverse proceduresy one needs to compare any mathdates features not apparent from a dlpole formulation.
ematical results against experimentally obtaitied/ivo This approach also generalizes some previously pre-
data, in particular simultaneously recorded densely sented identitied! The full details of the construction of
sampled body surface and cardiac potentials. This hasthe transfer matrix from the bidomain equations is given
rarely been attempted—rather the worth of various in- N Appendix A.
verse procedures has often been judged by examining the The numerical discretization of the bidomain equa-
performance on simulated data or i vitro torso tank  tions (inside the heajtand Poisson’s equatioffor pas-
experiments. As far as is known until recerfypnly sive tissue regionsresults in an equation of the form
two sets ofin vivo data have ever been collected, one in [Ed. (45 of Appendix Al
a chimpanze (in which no inverse solution was at-
tempted and one in a dod.Neither set is currently
available. Data fromin vitro experiments from perfused
canine hearts in a homogeneous cylindrical tank have d’ﬂ qg
been collected by Taccaréit al. and are in use by that o be 1
group and other&2 coefﬂmentsﬁ) &

We present here the details of the underlying theory of potential .
behind the electrical imaging process and the porcine N
model that we are using to validate this new inverse N d

- ’ (1)

coefficient q
of current
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where Inverse Approximation to the Myocardial Activation
N is the number of tissue regions outside the heart, Sequence

¢' is a vector of nodal values of potentialin regioni, S )
tial ¢, on the heart, previously been described in detdiiHere, we include a

#7 is a vector of nodal values of extracellular potential Summary of that method for completeness.
$e on the heart, The basic idea behind the new approach stems from
g is a vector of nodal values of curregton the sur- the observation that when an evolving cardiac activation
face of regioni, and wave front intersects the endocardial or epicardial sur-
g is a vector of nodal values of curreqt on the heart face ahole develops in the wave front. This is a signifi-
surface. cant change to the topology of the wave front and this
change is reflected in the torso surface potential record-
Equation(1) can be considered to be an implicit re- ings. If 7(x) is defined to be the activation time on
lationship between the vector of transmembrane poten-surface of the hearf;,;, at locationx, then these break-
tials in the heartg,,, and the vector of torso potentials through points are critical points of(x), if the wave
on the body surfacepg. To construct an explicit trans-  front breaks through at locatiax, thenV r(x’)=0 and
fer matrix Tgy, use is made of the definition of the #(x’) is the time at which this breakthrough event oc-
transfer matrix, i.e., curs.
Following some  considerable  mathematical
manipulationt® this critical point observation leads to
two important results:

$8=Tendm. @ (1) x’ is a critical point of 7(x) with critical time
7(x" ) tgy is in the space spanned by the spatial
eigenvectors ofpg, wheretgy is the column of the
transfer matrix frome,, to ¢pg corresponding to the

Using this relationship, one simply needs to &gt to point x'.
be the vectorg (i.e., & unit vector that is zero every- (2) With all critical points of 7(x) determined, the com-
where except at thkth position) and solve Eq(1). The putation of 7(x) (on both the epicardial and endocar-
resulting solution forgg will correspond to thekth col- dial surfacesis a well-posed problem.

umn of Tgy. Alternatively one can construct a transfer

matrix from ¢y, to ¢! by suitable rearrangement of Eq. The key assumption required to prove the first point

D). above is thatp,,(x,t) is modeled as a uniform step jump
No mention has yet been made of the nature of Eq. across the wave front, i.e.,

(1). The physical problem being solved suggests that Eq. _ _

(1) will be singular if ¢, is the only variable to be dm(t, D =a+bH[t—7(X)], (€

specified, since no potential reference has been given.

The system can either be solved in a least-squares sensahere a represents the resting potentialthe height of

or a technigue such as deflation can be used. the transmembrane potential junti(-) is the Heaviside
The construction of the transfer matrix described in step functionj is the index corresponding to the poiit

Appendix A has assumed homogeneity and isotropy in on the heart surface, and={ri}=r(x‘). [It should be

the heart muscle from Eq35 onwards. It is worth noted that the notation in Eq3), and throughout this

pointing out that the assumptions of homogeneity and paper, is such that superscript indices indicated vector or

isotropy are not required to use the activation imaging matrix indices and subscripts indicate labgls.

algorithm?!’ It is also possible to construct a transfer This assumption is not a practical restriction for nor-

matrix relating activation times to torso potentials with- mal hearts. However, it does imply that the maximal

out these assumptions. However, the transfer matrix con-temporal resolution is that of the duration of a transmem-

struction under anisotropic conditions becomes signifi- brane upstroke and the maximal spatial resolution is the

cantly more difficult. The bidomain equatiofisr a weak width of the wave front(since below this resolution the

form of them, such as that given in EQ9) of Appendix activation wave front cannot be considered a step jump

A] have to be solved throughout the hearsing some in space and time

volume-discretization procedure representing the full ~ To compute the critical points and times, we require

myocardial-fiber orientationand coupled to solutions of  both the signal matrixb'[Sl’S] (of sizeM XS, whereM is

Eq. (44) outside the heart. This dramatically increases the number of torso electrodeS,is the number of time

the problem size. Work on this is progressfrigyt at this sampless is the sample number index, aps the index

stage homogeneity and isotropy are assumed. corresponding to the poing' on the torso surfagere-
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corded from torso surface electrodes and the transfertive values and the time corresponding to the column
matrix from ¢, to ¢g, Tgy. TO determine the spatial index s of the number nearest zero provides an initial
(U) and temporalV) eigenvector matrices oby, 5}, the estimate ofr(x').

singular value decomposition is used, i.e.,

Activation Sequence Optimization

(D[LS]:U[LS]E[LS]V[TLS]’ ) With all critical points and times identified, the next

step is to determiner(x) on the heart surfaces. This
wherese[1,S]. theoretically well-posed process is formulated as an op-

The eigenvectors correspondingdmall singular val-  timjzation problem, where the objective is to minimize
ues are discarded, so the effective rank Wfis R the difference between calculated torso potentials and the
(<M). These discarded eigenvectors are assumed tOmeasured potentials. Additional constraints on the opti-
represent only noise space. mization process can be imposed, e.g., addition of the

In order to locate the critical points one needs to find g face Laplacian of the(x) to the minimization'® The
the columns ofTgy that are contained in the space |ge Of¢im in Eq. (3) gives rise to a residual that is not
spanned by the spatial eigenvectors. A vector of recipro- continuous withz. From an optimization point of view, it
cal distances from signal space can be constructed by s more desirable to be dealing with functions which are
continuous. Moreover, the speed of convergence is
R -1 greatly aided by continuous derivatives. Thus, one typi-
Mi[l,s]: 1- >, [fiBH'uEl,s]]Z , (5) cally modifies Eq.(3) so thatd?'m has a sharp but con-
r=1 tinuous upstroke duration as in, e.g., a generalized form
of the activation functiolf
whereuy, ¢, is therth column of the spatial eigenvector

matrix Up;¢ and tgy is the Euclidean normalizedth dm(t,u,7)
column of the transfer matriX{gy . f 3
This distance measure greatly exaggerates points ul t— < —
which are close to signal space and is singular for points 2
contained in this space. In practidm,'[lvs] has no singu- L u?(2(t—7) 2 —ud )
larities since noise and errors associated wWikh g; and ut = T+1) T<t—7'$0
Tgn ensure that no column of gy is contained exactly :< ) i ) 3
in signal space. u1+u2_u_(2(t_7)_1) 0<t_7_i<u_
To find the activation times corresponding to these 2 u’ 2
critical points, the following matrices are constructed: Cowl
, _ ul+u? t—7=—,
ME=Mpig), ® \ 2
9
MI—S:MI[S,S]’ @) whereu?! is the resting potentialy? is magnitude of the

transmembrane potential jump? is the duration of the
where 1<s<S. These two matrices examine the dis- action potential upstroke, and={u¥} is the vector of
tance of each point from signal space, where the signal parameters defining the activation wave function.
space is restricted tpl,s] and[s,S], respectively. For The final objective function, which is minimized by
times (s) close to the activation time associated with adjusting activation times, is
each critical poink, these matrices should undergo sharp
changes, sincex will begin to enter(leave the signal minF(nu) =f (ru)f(ru)+AL[7(x)], (10
space associated with the signal in time interval
[1,s]([s,S]) as the signal space is enlargegdducedl.

- ; . where £ is the Laplacian of the activation field andis
The zero-crossing matrix, defined by

a parameter that controls the degree of regularization
imposed on the objective function.

Zis— Mif_ MS ®) There are a number of choices for the residual vector
f(7,u) in the optimization problem. A common choice is

. . . . i to set the residual to be
is theoretically zero at critical points af(x') and has a

steep gradient about these zeroes. In practice, the rows of ) oA
Z's contain numbers that increase from negative to posi- fi(ru)=[ldg— dp(7u)ll2, (11
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‘f FORWARD MODEL VALIDATION

DT = et To verify the accuracy of the numerical solution pro-
cess used to construct and solve Etp) in Appendix A,

we present here results for a simplified case for which an
analytic solution can be constructed.

Test Problem

Two concentric spheregsas shown in Fig. 1 were
constructed, with the inner and outer spheres represent-
ing the epicardial and torso surfaces, respectively. A
spherical-polar coordinate systefm, 6, {), with 0<#

FIGURE 1. Schematic of analytic problem setup, with inner

sphere of radius R, and outer sphere of radius R,. Conduc- <2 for the circumferential coordinate ang<Q’<  for
tivity parameters of o, and o, in the inner sphere and o in the azimuthal coordinate, was used to geometrically de-
the outer sphere were specified. The transmembrane poten- scribe and analytically solve the problem, although nu-

tial ¢, on the inner surface is specified by Eq. (47) and a

no-flux boundary condition is specified on the outer surface. merical solutions were carried out in a reCtangU|ar Car-

The extracellular potential, 7, on the inner surface and ¢ tesian framework. _
on the outer surface and the normal derivatives were com- The extracellular potential was denoted B/ and
puted.

2" for the inner and outer spheres, respectively.

The governing equations and boundary conditions of
this problem closely mimic that of the true problem. We
ultimately wish to deal with the problem that is governed
where ¢} is the jth row of the matrix of known body by Eds.(24) and (44) in Appendix A and subject to the
surface potential®g=®(; g; and f/)’B(T,u) is the jth row boundary condition$Egs. (13—(17)].

of the matrix of calculated body surface potentials, ouérrifer:srnece pgtgniibsrefevc\:ﬁiz(jsit aEtOE_'T% top of the
®g(7u), given by p R2,6,0) p y :

J
ﬁ)is il i es ﬁZO atr=R1, (13)
B(Tiu)_TBH¢m(t ,T,U), (12) JT
, _ _ U= atr=Ry, (14)
wherese[1,S] andts is the actual time at which theth
sample was recorded.
The critical points can be constrained in several dif- i out

ferent ways, e.g., the critical points and times could be Ipe  IPe _
) J: . i (ot 0e) —=0 at r=Ry, (15
fixed, or the critical points could be constrained to re- ar ar
main local maxima or minima of(x). However, impos-
ing such constraints is of questionable practical value at
this stage. The reason for this is that it is not always &(ﬁgut
clear which points, in the presence of geometric noise, =0 atr=R,, (16

are true critical points and hence the choice of which o

points to constrain can be subjective. Thus, optimizations

are typically performed with no constraints on the critical

points. It is also possible to optimize on the upstroke =t at r=R,,{=0. (17)
durationu® as well as the voltages® andu?, although

these are typically fixed before optimization begins.

As with almost all inverse methods, the above re-  We choseg,, to be the potential that would be set up
quires an appropriate forward transfer matilixy that by a dipolep inside a sphere of radiuk;. This choice
has been carefully validated. This is the focus of the satisfies Eq(13) and ensures a nontrivial solution can be
following section. obtained. With the use of associated Legendre polynomi-
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als, analytic expressions for the extracellular potentials

RULLAN et al.

fied by p=(1,2,1), the bidomain conductivities given by

on both surfaces can be calculated. The derivation of the o;=2 and o.=4, the passive conductivity set ®=2,

general solution to the above is given in Appendix B.
A particular solution for this general case is also given
in Appendix B. WithR;=1 andR,= 3, the dipole speci-

and four of the coefficients of the general solution taken
as C;;=1, D;;=1, Dy;=1, and C;=1, the particular
solution in this case is

( (52 o 104 ol 4 1) . . 87 27
1—7cos ?sm r 2 sind+\r 12272 cos{ 12
(2r3+1) , o
Pe= ¢ —T(cosesmﬁz sin@ sin{+cos{) o<r=1 (18
81 o 162 | 0 2r+ 1) . N 3r+ 81 7 l<r<3
\ 17C0S0+ 7= sind || 5=+ sing o1 122 cosg—ﬁz =9,
and the radial derivatives given by
[ (22 0+ agt 011 2si +|1
17cos 17 sin 3 sing 1273 cos{
dbe 2(r®-1) : o
ar =4 —T(cosasmgntz sinfsinZ+ cos{) o<r=1 (19
81 - 162 P 2 2\ . N 3 l<r<3
\ 1—7003 ?sm 27 13 sing 51 1223 cos{ =3

The numerical solutions for varying mesh refinements

rents on both surfaces are shown in Figs. 2 and 3, re-

were compared to analytically generated solutions as spectively. The error measures are plotted against the

specified by Eqs(18) and(19). Equation(20) provides a
direct comparison between the analytic and numerical
solutions while Eq.(21) provides a relative percentage
comparison between the two solutions. If we denote the
goal potential(or currenj field at nodei as ¢' and the
computed potentialor currenj field at the same point as

¢', the root-mean-squar@ms) error is given by

rms= (20

and the normalized integral difference squa(RitDS) is
given by

Jr(é(x) — $(x))?dI(x)
Jré(x)ZdT (x)

NIDS (%)= X 100%.

(21
The problem was solved using bilinear basis functions

with the mesh systematically refined in each coordinate
direction. The convergence plots for potentials and cur-

average characteristic element siguare root of the
average of the areas of each elemgntand the solution
degrees of freedortDOF). The slopes of the NIDS lines

in Figs. 2 and 3 are 2.7 and 2.5, respectively, and thus
the problem has a linear convergence rate of at least
0o(h?).

Figure 4 shows the potential and the current values at
five evenly spaced points, determined by settifrg 0
and varying{ from 0 to m. Effectively, this is a slice
from the top to the bottom of the sphere from the lowest-
resolution mesh, which allowed the solution fields at
different refinement levels to be compared. The plot on
the left shows the potential on the outer surfage (
=R,) and the plot on the right the current at the inner
surface (=R;). Note that the reference potential is set
to 0 mV at /=0 on the outer surface and the no-flux
boundary condition ensures that the current is always
zero atr=R,.

Reassuringly, as the mesh was refined, the solution
approached the analytic solution and the numerical
implementation of the transfer matrix was validated. This
allowed us to confidently proceed towards the construc-
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FIGURE 2. Convergence analysis for the extracellular poten- FIGURE 3. Convergence analysis for the normal current flow
tial on the surface of both spheres for the analytic test prob- through the inner sphere surface for the analytic test prob-
lem. Shown are the two error measures defined in Egqs.  (20) lem. Shown are the two error measures defined in Eqs.  (20)
and (21) as functions of mesh refinement  (h) and solution and (21) as functions of mesh refinement  (h) and solution
matrix size (solution degrees of freedom ). matrix size (solution degrees of freedom ).

tion and validation of a porcine model to be used 10 glements of the above surfaces. Such a representation
investigate the new inverse algorithm. allows for the construction of an efficient, anatomically
accurate computational model of the pig.

A summary of the results achieved from this fitting
procedure using the porcine data is given in Table 1. The

The geometric organization of the torso and its con- [ited porcine model is shown in Fig. 5. Due to the
stituents are of central importance to the ECG inverse /€anness of the young pig, the fat layer was not explicitly
algorithms described in the section on formulation of the Modeled. This generic model is referred to later as the
activation inverse approach. This is primarily due to the M°del with level O refinemerisee Table Band provides
calculation of the transfer matrix, which relates heart & ramework on which to validate certain aspects of the
transmembrane potentials to torso potentials. Our ulti- wholg procedureée.g._, the appropriate mesh resplutl_on o
mate aim is to validate ECG inverse algorithms usimg use in the cgmp.utatlonal forwarq mobjg@ustomlzatlon
vivo data obtained from pigs. To achieve this, a compu- ©f this generic pig model for a given pig experiment has
tational model of a pig is required. To construct our P€€N previously describéd”
generic pig model, we obtained a sequence of cross-
sectional CT torso images from a young 20 kg pig that

was artificially ventilated. Each CT image was acquired ANALYSIS OF MODEL CONVERGENCE USING

with the lungs fully inflated. FORWARD CALCULATIONS
Images were digitized to provide a three-dimensional

data set of the endocardial, epicardial, lung, fat, and skin  The model discretization process introduces numerical
surfaces. These data were then used with a previouslyapproximation errors into the solution procedure. By re-

developed nonlinear optimization procedure that incorpo- fining the mesh, and thereby increasing the number of
rates nonlinear constraints and smootfing obtain a solution degrees of freedom, the error associated with the
parametric representatiotbased onC! cubic Hermite discretization process generally decreases. Once the

PORCINE MODEL DEVELOPMENT
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Analytic 4% 4 - 8x8 —F— 20 X 20 Ko showing the outer skin layer, lungs, and heart from an ante-
rior perspective. Dark lines show the smoothly continuous
FIGURE 4. Comparison between the analytic and the numeri- elements of the lowest resolution computational mesh.

cal extracellular potentials at r=R, and the currents at r
=R, for the analytic test problem. )
Electrocardiac Sources

To solve the forward problem of electrocardiology, a
mesh has been refined to a point where the change incardiac source that specifies the electrical distribution of
solution is less than an acceptable tolerance, the solutionthe myocardium is required. This source may either be
is said to have converged. recorded by invasive means, approximated using electri-

In order to use the inverse ECG algorithm to confi- cal models of the myocardium, or approximated using
dently quantify electrocardiac activity, the effects on the recordings from sources thought to represent the epicar-
results of computational mesh resolution must be inves- dial potential distribution from a heart inside a torso. For
tigateda priori. This section presents an analysis of the our convergence analysis, two different cardiac sources
solution convergence based on forward ECG calcula- were used.
tions, for which torso potentials were computed using a  The first was a simple dipole source with a fixed
prespecified electrocardiac source together with the trans-center and varying magnitude and direction. The direc-
fer matrix for the computational model. tion was specified for 300 times steps at time intervals of

2 ms? The use of such a source allows one to investigate
the mesh resolution necessary for a converged epicardial

TABLE 1. Summary of the results obtained by fitting potential to body surface potential forward problem—a

piecewise bicubic Hermite surfaces to digitized CT slices of a necessary prerequisite before attempting a traditional epi-

particular pig. The rms errors compare digitized data points to dial ial i d Whil h .
their orthogonal projections onto the fitted surfaces. cardial potential inverse procedure. lle such an In-

verse is not the aim of the present work, it is assumed

Number of rms error that this analysis will provide valuable insight into the
Surface data points (mm) . . L .
mesh resolution required for accurate activation inverse
Epicardial 1603 1.23 reconstructions.

;e‘;t"e”tz'?'f ggg 1‘1‘; The second source was a surface activation profile.
T (Iaunn;ce oo11 514 This was derived from an activation map obtained using
Right lung 2640 271 an eikonal model of cardiac act?vatfi)”’rand4 solved on a
Outer torso 2417 2.47 finite-element model of the canine he&t* The result-

Average rms 186 ing activation profile produced by the eikonal model on

the canine heart was then transformed to the geometry of
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FIGURE 6. Epicardial surfaces (top row ) and ventricular chambers (bottom row ), with activation profiles displayed as a color
field, shown from anterior and posterior views. The activation profile of the canine ventricles (left two columns ) was fitted to the
epicardial and endocardial surfaces of the porcine model (right two columns ), which resulted in an activation range of 0-52 ms
compared with 0—55 ms for the canine heart. The canine activation was generated from an eikonal model (see Ref. 33) with
experimentally determined endocardial activation times used as boundary conditions. The porcine activation sequence was one

of the heart sources used in the convergence analysis.

the porcine heart model by projecting nodal values or- importance to our proposed inverse studies. This is in
thogonally onto the surface of the porcine heart and contrast to the epicardial potentials approach, which can
fitting the field using least squares. This resulted in change dramatically with  surrounding tissue
slightly different activation times on the two geometri- impedancé? No attempt has been made to measure the
cally different meshes. The original canine activation conductivities of various organs during the porcine ex-
profile and the fitted porcine profile are illustrated in Fig. periments and we have chosen to use the values in Table
6. The activation field of the canine model has a range 2 in our inverse analysis.
of 0-55 ms, while the porcine model has a range of
0-52 ms.

Comparison Methodology

Material Properties To compare the effect of model refinement, a number

The material conductivities used for this study were Of metrics were used to quantify the differences between
derived from a number of papép§lv3oand were chosen a particular result from two different simulations. Given
to be consistent with those of other torso models in the the temporal and spatial nature of each solution set, the
literature>® A summary of the conductivity values used data were reduced by comparing the potential distribu-
for the forward ana|ysis is given in Table 2. Since acti- tion over a subset of nodes at a fixed time. In addition to
vation sequences have been shown to be virtually inde- Egs. (22) and (23), the maximum and minimum poten-
pendent of the surrounding torso conductiftyhe exact ~ tials were also compared.

values of the conductivities are thought to be of minimal ~ Table 3 shows mesh statistics at the generic and the
converged refinement level for each surface of the

model. The initial level of refinemenrtevel 0 refers to

TABLE 2. Material conductivities used for the porcine model. the mesh resolution achieved from the geometric fitting.
Values were sourced from experimental papers  (see Refs. 10, Each level of refinement involved refining the surfaces
11, and 30) and other torso models (see Refs. 5 and 9). once in each of the two parametrig) directions. The
Resistivity ~ Conductivity Ratio to epicardium was refined an additional time in the circum-
Tissue (Qcem) (mSmm™)  torso cavity ferential (£,) direction to achieve a refinement level of
Blood 159 0.63 2.86 2.5. Two measures were used to characterize the level for
Intracellular 333 0.30 1.36 refinement of each surface. These were the number of
EXt[ace”U'af zggg g-gg é-gg degrees of freedortwhich is directly related to the order
ungs . . H H
Torgo e 0.22 100 of the basis function and the number of nodesd a

characteristic element sizdenotedh). The characteristic
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TABLE 3. Mesh statistics for each surface of the generic porcine model. Each surface has the

refinement level required for a geometrically accurate mesh (level 0) and the refinement level

required for a computationally converged solution. Refinement level 0 refers to the surfaces

created from geometric fitting. Each additional level of refinement involves refining the surface
uniformly in each of the parametric (&) directions.

Geometric Characteristic
Refinement DOF element size
Surface level Nodes Elements per coordinate h (mm)
0 37 40 142 21.3
Epicardium 1 152 160 602 10.6
2 622 640 2658 5.3
Left lung 0 74 80 290 17.9
1 306 320 1218 8.9
Right lung 0 74 80 290 20.4
1 306 320 1218 10.2
Left 0 27 30 102 13.0
ventricle
1 112 120 442 7.0
Right 0 38 42 146 14.8
ventricle
1 158 168 626 7.4
Skin 0 254 264 1010 37.3
1 1034 1056 4130 18.6

element size was defined to be the square root of theand the relative root-mean-squared error is defined as
average element area.

We use two main metrics to quantify the difference ||¢ ¢ I
between a master signal matrid®g) and a comparison relative rms= ﬁkﬂi (23
Bll2

signal matrix @g). The first metric is the similarity

index (SI), or correlation coefficient, which is indepen- R ) i
dent of the magnitude of the two signals. It quantifies the WHere, for a similarity index or relative rms at a fixed
linear relationship between two variables and is insensi- S2mple(or fixed point on the torso ¢ is the kth col-
tive to scaling or translation in the magnitudes of the Umn (row) of the ®g matrix, % is thekth column(row)
vectors with respect to one another. The Sl thus providesof the ®; matrix, ande is the Mx1 (1xS) vector of

a measure of the degree to which the spatiotemporalones.

topography of the fields differ between two samples. The  In addition to the two main error metrics, the magni-
second metric is the relative root-mean-squared errortudes of the maxima and minima potential values were
(relative rmg, which quantifies the difference in the also compared between different solution fields. This er-
magnitude between two fields. It is sensitive to a scaling ror metric can be extremely sensitive to changes between
or translation in the magnitudes of one vector with re- the fields as they simply compare a single potential

spect to another. value, while the relative rms and SI compare the fields as
The similarity index is defined as a whole. As the fields were compared at the relative
sparse nodal locations of the lowest-resolution model,

similarity index changes in the locations of the maxima and minima po-

tentials were not considered.

(d5-©)(Ps-©)

k gk
_ 5 lel2 Convergence Analysis With The Moving Dipole Source
. (¢5-e)? e (- e)? Using the dipole source specified in the section on
b5 hg— W B Pp— W electrocardiac sources, a range of simulations at different
2

refinement levels was performed to quantify the effect of
(22 varying the mesh resolution on solution convergence.
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TABLE 4. Effect of refining the epicardial surface on the torso surface potentials using a
moving dipole source. All regions, apart from the epicardium, were maintained at the
refinement level set by the reference model  (both lungs and torso surface at level 1 refinement ).
The various comparison metrics are listed in the first column. The second column outlines the
different levels of refinement used for each surface, while the remaining columns show the
comparisons at different time instances. Level 2.5 corresponds to refining the level 2 mesh in

just the circumferential direction.

Epicardial
refinement QRS
Measure level Peak P Peak R Peak T integral
0-1 0.032 0.047 0.105 0.041
Rel. rms 1-2 0.001 0.003 0.003 0.002
2-2.5 0.001 0.001 0.003 0.002
0-1 1.000 0.999 0.997 0.999
Sl 1-2 1.000 1.000 1.000 1.000
2-2.5 1.000 1.000 1.000 1.000
0-1 10.39 14.33 —12.00 8.15
Max. A¢% 1-2 —-0.07 —-0.09 0.28 -0.04
2-2.5 0.22 0.07 0.06 0.06
0-1 0.56 0.90 —8.42 -0.10
Min. A¢% 1-2 0.09 —-0.02 0.28 0.00
2-2.5 0.04 0.01 0.09 0.02

To quantify the changes between refined meshes, theFrom this large number of simulations, a reference
potentials at the nodal positions from the least-refined model, which had each region at an appropriate resolu-
case(level 0) were used to compute the error measures. tion for a converged forward solution, was chosen. This
There were 37 sites on the epicardium and 254 sites onreference model contained the epicardium refined to
the torso surface used for the comparisons. level 2, the left and right lung to level 1, and the torso to

Key events in the cardiac cycle were used as temporallevel 1 refinement.
markers for comparisons. They were peak P at 115 ms, To illustrate the process, Table 4 summarizes the ef-
peak R at 240 ms, and peak T at 505 ms. The QRS fect that epicardial surface refinement had on the result-
interval was considered to span 190-290 ms. Theseing torso potentials. In this case, a level 1 refinement of
times were determined by solving the forward problem the epicardium produced a converged solution. Other
and examining the resultant signals on the dominant simulations show that the epicardial potentials them-
chest leads. selves did not converge until the epicardium was refined

Since the use of the dipole source was to determineto level 2. The average element length for the refined
the appropriate mesh resolution for a traditional potential model was 5.3 mm on the heart. This model resulted
inverse, no blood masses were included in the forward from a double refinement for the hedftom 40 to 640
simulations involving this source. An isoparametric for- elements and single refinements for the lun¢fsom 80
mulation was used in the forward solutions, i.e., the to 320 elemenisand torso(from 264 to 1056 elements
dependent variablépotentia) was approximated using
the same basis functions as used to approximate the
geometry (cubic Hermite interpolation Epicardial po-
tentials were calculated from the dipole source inside the  The process described in the previous section was
heart as part of the solution process and these potentialsepeated using the activation profile specified in the sec-
changed with heart mesh refinement. Therefore, for this tion on electrocardiac sources.
analysis, both epicardial and torso surface potentials Since the activation sequence was derived from an
were compared. eikonal solution on a ventricular heart mod&jjust the

To test whether a model with a certain refinement QRS interval of the cardiac cycle was considered. As
level had converged, a particular region was progres- outlined in the section on electrocardiac sources, the ac-
sively refined until there was no significant change in the tivation sequence progressed for a total of 52 ms. Key
solution. To determine the appropriate resolution of the events of the QRS interval were used as temporal mark-
entire mesh, this process was repeated with the otherers for comparisons. They were peak Q at 12 ms, peak R
regions in the mesh at various levels of refinements. at 31 ms, and peak S at 43 ms. The QRS interval

Convergence Analysis With Activation Sequence Source
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TABLE 5. Effect of refining the epicardial surface on the torso potentials using an activation

source. All regions, apart from the epicardial surface, were maintained at the refinement level

for the reference model (left and right ventricular chambers, both lungs, and torso surfaces at
level 1). The column layout is the same as Table 4.

Epicardial
refinement QRS
Measure level Peak P Peak R Peak T Integral
0-1 0.071 0.298 0.250 0.057
Rel. rms 1-2 0.014 0.058 0.131 0.036
2-25 0.002 0.009 0.032 0.006
0-1 0.997 0.938 0.989 0.998
SI 1-2 1.000 0.998 0.994 1.000
2-25 1.000 1.000 1.000 1.000
0-1 —14.67 —1.88 —26.56 —12.55
Max. A¢% 1-2 -1.81 -3.10 -3.96 -0.87
2-25 0.12 0.81 1.37 1.35
0-1 3.08 44.42 3.38 -1.02
Min. A¢% 1-2 0.42 16.98 —1.02 -1.97
2-25 0.05 -0.25 2.65 0.39

spanned 0—52 ms. These times were again determined byACTIVATION RECONSTRUCTIONS USING THE
solving the forward problem and examining the resultant PORCINE MODEL
signals on the torso surface.

The use of a prescribed activation sequence meant To illustrate the activation inverse approach USing a
that refinement of the myocardial surfaces had no effect realistic pig geometry, we present here results using
on the resulting activation times, since they were simply Simulated data. A known activation profile was generated
interpolated from the unrefined model, as illustrated in by specifying a number of initial activation sitéshown
Fig. 6. This is in contrast to the moving dipole source, as purple spheres in Fig).7Activation times were then
for which the epicardial potentials were calculated as generated for all points on the heart surfaces based on
part of the solution process. the distance to the nearest activation sfighich is

Following the section on convergence analysis with equivalent to solving a simple activation model in a
the moving dipole source, the changes between refinedhomogeneous heaurt
meshes were quantified using just the potentials at the Given thisgoal activation profile, torso surface poten-
nodal positions on the torso surface of the unrefined tials were generated by solving E@5). This resulted in
model (254 siteg. Again, convergence was determined potentials at all points on the torso surface in the abso-
by altering the refinement level of a given region, while |ute range of 0—4 mV. Gaussian noise with an absolute
holding all other regions constant. Table 5 summarizes magnitude of 100uxV rms was added to these torso
the effect of epicardial surface refinement on computed surface signals and used as input for the inverse proce-
torso potentials. To obtain converged solutions using the dure. This is somewhat larger than one would typically
activation source, one refinement in egctiirection was  encounter in a clinical setting, but is used here to provide

needed for each surface. a stern test of the inverse process. At this stage no
geometric or correlated noise had been added to the
system.

Summary of Convergence Analysis The transfer matrix used to generate this map con-

In summary, Table 3 details the statistics for each sisted of 1034 rows and 422 columns. The upper and
level of refinement for each surface. For the activation lower bounds of each activation time was set to 0 and
heart source, convergence was achieved using a level 1100 ms, as defined by the activation sequence and the
refinement of all surfaces. The moving dipole heart body surface potentials. A sigmoidal activation functfon
source required a level 2 refinement for the epicardial was used to represent the action potential. The magnitude
surface and level 1 refinements for the lungs and outer of the transmembrane jump of E¢Q) was fixed at 100
torso. Thus, this model was selected for the simulations mV and the width of the upstroke duration was 5 ms.
in the next section, which illustrate the inverse proce- A series of simulations were performed, with various
dure. for the regularization parametdih) in Eq. (10). The
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computed activation field was found to be fairly insen-

sitive to the amount of regularization. Theoretically, with

the critical points and times accurately defined, the prob-
lem becomes well posed. However, in practice, the zero-
crossing algorithm is only able to provide an estimation
of the critical point locations and their corresponding

times. With high levels of regularization, smoother acti-

vation fields resulted. However, this did not necessarily
result in an improved inverse solution. The maxima and
minima tended to be damped out, resulting in a poorer,
but smoother activation field.

A comparison between the measured and calculated
activation maps is given in Fig. 7. The measured and
reconstructed activation profiles are shown on the left
and right pairs of epicardial surfaces, respectively. The
goal activation sequence had a range of 24—74 ms with
a duration of 50 ms. The inversely reconstructed activa-
tion sequence ranged from 24 to 75 ms with a duration
of 51 ms. The goal and computed body surface potentials

5
0

and activation sequences were compared using the met-

rics defined in Eqs(22) and (20). The goal and com-
puted body surface signals had a rms error of 0.94 mV
and a Sl of 0.998. The relative rms error between the
goal and computed activation times was 5.6 ms, while
the SI was 0.880 and the maximum error was 17.8 ms.
Thus, the activation inverse approach successfully recon-
structed the electrocardic source.

CONCLUSIONS

>
$
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FIGURE 7. Goal and computed activation
fields displayed on the epicardial and en-

docardial surfaces (layout as described in
Fig. 6). The goal activation map is shown
on the left two columns and the com-

puted activation map on the right two col-

umns. Dark purple spheres represent the

initial seed points used to generate the

activation sequence.

We have discussed in some detail the solution of the
governing equations, including a practical generalization
of some previously published identiti#sWe have de-
scribed the process used to construct the porcine model
from CT images. A careful convergence analysis of the
forward problem was conducted in order to provide a
model with an appropriate resolution for the inverse
problem.

A new analytic solution was derived for a spherical
geometry and this was used to illustrate the accuracy and
convergence properties of the numerical procedure used
in the transfer matrix construction. The numerical solu-
tions converged to the analytic solutions in a linear fash-
ion.

Finally, the inverse process was illustrated by recon-
structing the activation sequence using simulated data
with a porcine model. With Gaussian noise of 10¥
and no geometric noise, the resulting activation sequence
was successfully reconstructed.
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APPENDIX A: TRANSFER MATRICES FROM A
BOUNDARY VALUE PROBLEM PERSPECTIVE fﬂ V- (oiV ¢dp)wdQ)
H

Let ), be the domain of the hearl,y=0Q, (the
closed surface of the heprtp; the intracellular potential, =f wo; Ve, ndl“—f o V- VwdQ)
¢ the extracellular potentialg,,= ¢i— ¢ the trans- Th R
membrane potential, ana; and o, the intracellular and
extracellular conductivity tensors, respectively. :fr WC’iV¢>m'ndr—Jr ¢pmo;VW-ndl’
From bidomain theory, insid€,, we have " "

+f V-(o;VW) ¢, dQ. (28
V-([01+ 06V o)==V (0.V dpy). (24) OH

Inserting Eq.(28) into Eq. (27), we get
This is a Poisson equation fap, in which the source
term is the right-hand side of E@24).
One can solve this partial differential equation using a L W[ o+ 0e]V ¢he- ndl’ — JF ¢el 07+ 0 ]VW-ndl’
weighted residuals approach. hethe a(yet unspecified : :

weighting function. From weighted residuals we then
have + 0 V- ([oi+ 0e] VW) pdQ
H

+f WcriV¢>m«ndF—J ¢mo; Vw-ndl’
f V.([o-i+¢re]V¢e)wdQ+f V- (o7V ¢pp)WwdQ=0. Iy Iy
Qy Oy

(25 + fﬂ V- (a,VW) ¢,,dQ =0, @9
H

Using Green’s theorem, we get L L .
9 9 which is a generalization of Eq31) from Yamashita?

Equation(29) is general—no assumptioitapart from
differentiability and integrability have been made om,
L WL o+ 0]V e ndl’ - fﬂ [0+ 0]V peVW-NdQ o;, or 0. In the paper by Yamashit4,it was assumed
" H that w was a Green’s function satisfying

¥ ngV'("iV“Sm)Wdﬂzo' 8 V- ([01+ 0] VW) + (X)) =0 (30
and
wheren is the unit outward normal.
Applying Green’s theorem again to the second inte- o.YW-n=0 on Tg, (31)

gral, we get

where 5(X;) is the Dirac delta distribution centered at a
point X, within the torso and'y is the surface of the
fr W[lfiJrUe]V¢>e'ndF—fF ¢l o1+ o] VW-ndl torso. This resulted in the removal of the first volume
H H integral in Eq.(29).
In practice, such a Green'’s function for the heart can-
+L) V- ([oi+ 0] VW) hed () not be found analytically, since botlr; and o, are in
. general anisotropic and inhomogeneous. If one assumes
that they are homogeneous then both conductivity ten-
+fQHV'(”iV¢m)WdQ:O' @7 sors can be represented by constant33 matrices,
which are diagonal in the coordinate system defined by
the myocardial fibers and sheets. The fiber and sheet
This is the standard boundary integral equation for orientations in the heart are very complex and this an-
Poisson’s equation with a general source term. For isotropy means that it is not possible to solve E8Q)
the special case of the source being given by analytically, even under the assumption of equal anisot-
—=V-(07V ¢, this term can be transformed in a similar ropy ratios. This holds irrespective of whether we strive
manner to the above, i.e., for a proper Green's functiofi.e., impose Eq(31)] or
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merely look for a free-space Green's functiqalso

known as a fundamental solutiprwhich is a solution of ~n(x)d1“(x)—kaefr dm(X) VW(X,Xo)

Eq. (30) with appropriate boundary conditions at infinity H

(i.e., the no-flux condition o'y is ignored. -N(X)dI'(X) — Ko apm(Xo) = 0. (39

If one assumes further that the heart domain is iso-
tropic in both the extra and intracellular domains, then _ ) )
one can apply a standard boundary element procedure to The equation of more interest is the case whegn

Eq. (29). For this, we takav to be the free-space Green’s €I’y (i.e., X on the boundary of the domainTo derive
function, i.e., a solution of this equation, considex, at a smooth point on the

boundary of(),; and construct a hemispherical region of
radiuse centered ak,. Let Q}, be the extended region

V- (VW) +8(x0) =0, (32 (i.e., Qy plus the hemispherical regignThenx, is in-

terior to Q/, so Eq.(36) is valid with T'y; replaced by

where X, is now an arbitrary point in space andvan- dQ;. One now considers this equation as lig If I,

ishes at infinity. In three dimensions, the solution of this is the boundary of the hemispherical region, dhd, the

equation is boundary of that part of) that is outside the hemi-
sphere(so 9Q[,=T',UT _,), then we find that as long as
the surface ak, has a unique tangent plane,

W(X!XO) = mv (33)
whereR=|r|,=[x—Xg|» is the distance measured from Is'?g frgqse(x)Vw(x,xo)-n(x)dF(x)
Xg-
With w defined as above, inside(),,, and assuming .1 ) _ de(Xo)
material isotropy (i.e., o=0il, o.=0., and o, _2?8477R2 2R (V) =——%—, (37

=ko,, wherek is a constant Eq. (32) can be used to
simplify the domain integrals in Eq29), thus
wherey is some point on the hemisphere of radiughe

mean value theorem has been applied
fﬂ V[ o1+ 0] VW(X,X0) } de(X)dQ(X) Similarly,
H

:(1+k)0efS) V- [VW(X,X0) ] ¢e(X)d€2(X)

H

lim fr Dm(X)VW(X,Xp) - n(x)dI"(x)

=—(1+Kk)oepe(Xo), (39 cl0
T -1 2 _ ¢m(X0)
fﬂ V[0, VW(X,Xo) ] bn(X)AQ () SR TR el = (38
:kUefQ V- [VW(X,X0) | pm(X)d€2(X) It can also be shown that
=—Koedm(Xo) - (35
IimJ W(X,Xg)V pa(X) - N(x)dI"(x) =0 (39
Thus Eq.(29) becomes 07T,
(1+K)oe f W(X,X0)V ¢he(X) - N(x)dT (x) and
Iy
—(1+ k)oef Be(X) VW(X,Xo) - n(x)dI"(X) |imf W(X,X0)V dm(X) - n(x)dT(x)=0.  (40)
'y |0 Iy

—(1+ k)cre¢e(Xo)+kUef W(X,X0) V bl X) _ _ _ _
Iy As lim, o' _,—Ty and, while the integrands are sin-
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gular (when x, is on I'y), the integrals exist in the
standard sense, so one can write C(Xo) Pe(Xo) + fr De(X) VW(X,X0) - N(X)dI"(x)
H

k k
+ Tk X0 dm(X0) + ¢
lim j (each integrand dI'

. X f bm(X) VW(X,Xg) - N(X)dI(X)
Iy
:LH (same integrand dI". (41 :f WX Xo) oo 1 K
ry oitoe Ge 1+k

Substituting Eqs(37)—(41) into Eq. (36) and dividing X fr W(X,X0) V py(X) - n(X)dI'(x), (42

through by (& K)o, we obtain the general boundary .
integral equation where
(1 if xpeQy
2 if xpel'y and I'y smooth atx,
C(xg)={ internal solid angle (43)

yp= if xoel'y and I'y not smooth atx,

L 0 if X outside Oy

andge(x) =V ¢po(X) - n(x) is the normal extracellular cur- &
rent at the poinix. all coefficients ¢
Equation(42) relates¢, and ¢,, at the pointx, to the of potentials from o
values of., dm, de, andV ¢,,-n everywhere ol . Eq. (42) .
OnTy,Vé,-nis 0 since transmembrane potentials are and Eq. (44) .
confined to the heart, which removes the last integral in N
Eq. (42). H
Outside the heart, the torso potential, is governed all coefficients qi
by of currents from
=l Eq (a2 S G
and Eq. (44) q'N
V(Y $)=0, (44)
where
N is the number of tissue regions outside the heart,

¢ is a vector of nodal values ap in regioni,
where o is the conductivity of the passive torso tissues. ¢y, is a vector of nodal values ap,, on the heart,
This can be solved using a coupled finite-element/ @; is a vector of nodal values ap, on the heart,

boundary-element procedu#®Continuity of (extracellu- ~ d s a vector of nodal values af on the surface
lar) potential and current across the myocardial bound- of regioni, and

aries provides the link between Eq&14) and (42. e IS @ vector of nodal values aj on the heart

In the usual way, one can discretize the boundaries of surface.

all regions involved, and assemble the following matri-  The coefficient matrices include all the continuity

ces: constraints. Also, sincé¢,,/dn is 0 onI'y, this term is
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not present in Eq(45). It is worth noting that the coef-
ficients of ¢, in Eq. (42) are justk/k+1 times the

coefficients of, in that equation. Use of this fact al-
lows one to speed up the assembly of E4p).

APPENDIX B: ANALYTIC SOLUTION

From Fig. 1, we denoteﬁg1 to be the potential inside
the inner sphere ang2" the potential between the inner
and outer spheres. From E¢{R4) we have for O<r
=Ry,

V2( o+ ¢m) =0. (46)

o',-i-a'e

Now, in polar spheroidal coordinates, we chakg to

be the potential field generated by a centric dipole of

magnitudep= (py,py,p,) in rectangular Cartesian coor-
dinates, inside a sphere of radil®; with a no-flux
boundary condition aRq, i.e.,

(R3+2r® . o
dn(r,0,0)= T(pxcosesmgﬂtpysmasmg
+p;€0SY). (47)

Here, 6 is the circumferential anglg; is the azithimuthal

angle, andP;'(cos() is the associated Legendre polyno-

mials of degreen and ordem. With ¢, chosen, Eq(13)
is satisfied andp,, is itself a solution to Laplace’s equa-
tion inside the first sphere.

Thus, from Eq.(46) if ¢, is a solution to Laplace’s
equation, then we need to fing, such that ¢

—(oilo;+ o) Py, satisfies Laplace’s equation inside the

833

eral expression forcﬁien must also only contain those
coefficients, i.e.,

. D
':(r,ﬂ,{)=(A110086’+ Bllsin 0)( C11r+ T;-) Siné’

Do1
+ Ao]_ COlr + -7

D 00
cos{+ Aqg C00+ —

o bnl1.0.0). (49

o+

Grouping the coefficients
Co=A0Co0: C1=A01Co1,
Do=Ao0Doo;

D1=A01Doa,

we obtain, for the inner sphere,

smg

. D
a(r,6,0)=(Aq,c0860+ By Sin 0)( Cyf +—

cos{+

D
C°+TO

D,
+ C1r+r—2

(50

In the outer sphere Lapalace’s equation must be sat-

first sphere. The general solution to Laplace’s equation in isfied for #2"'. From orthogonality of spherical harmonic

polar spheroidal coordinates is

[

"r,0,0)=> > [AnncoSmo)+B,,sinmo)]

n=0 m=0

X

D
Con "+ rnTQ) PR(cosy). (48)

From the orthogonality of spherical harmonic func-

tions, we note that as our choice @f,, only contains the
(0, 0, (0, D and (1,2) (m,n) coefficients, then the gen-

functions, the general solution for the outside sphere is
hence

H
#2'(r,0,¢)=(E;,cos6+F;sin 0)( Gyf + r—;l) sin¢

H
+| Gqr + 5 | COS{ +

H
Go+ —) (51

The resulting expressions fop, in the inner and
outer spheres are hence
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¢e(ra0,§)
. Dll . Dl
(Aq,c080+B41Sinb) Cur+r—2 sing+ C1r+r—2 cos{+Cy 0<r=Ry,
B Hus H, Ho
(Ellcosa+Flls|n0)(G11r+ )sm§+ Glr+ cos§+GO+— Ri<r=R,.
(52)

Substituting Eq.(52) into Eq. (14), we find that con-

tinuity of potential across the inner sphere boundary im-

plies
ot 0 _ ¢ 4 20 53
0 R_l_ 0 R_lv ( )
Hiq D4
Eqql G1aRy+ Rz =Aqq| CaRy + RZ
Ri( ot oe) Px:
Hiq D4
Fi1| GuaRy + R2 =By C1Ry + Ri
30’i (55)
Ri(o+a0) Y
H D 30’i
GiRi+ =7 =CiRy+ (56)

RZ R¥(o,+ g

Substituting Eq(52) into Eq. (15), we find that con-
tinuity of current across the inner sphere boundary im-
plies

O'HO (O'i+0'e)Do

= , (57)
Ri R}
2H, 2D,
0B G11— R3 =(oi+0e)Ay| C11— " |’
1
(59
F (G 2Hu ) (o,+ 0B (c 2D“)
o - — ogto — |,
111 G11 R e)B11| C11— R
(59
2H, 2D,
(o Gl—Eg— =(O’i+0'e) C Eg— . (60)
1 1

Substituting Eq.(52) into Eg. (16), we find that no
flux across the outer sphere implies

2H 44

G~ R—g=0,

(61)
(62

(63)

Substituting Eq(52) into Eq.(17), we find that speci-
fication of a reference potential at the top of the outer
sphere implies

(64)

H
G R1+ R2 +G0 d’ref

Equations(53)—(64) form two independent sets of linear
equations. The first set contains Eq54), (55), (58),
(59), and (61), which involve the eight unknowné,
B11, C11, D11, Eq1, F11, G117, @andH;. The second set
contains Eqs(53), (56), (57), (60), and(62)—(64), which
involves the eight unknown§,, C, Dy, D1, G, G4,
Hg, andH;.

To solve the first set of equations, three of the eight
unknown coefficients must be fixed. When selecting the
coefficients to fix, it should be noted that ba®y, and
H,, cannot be fixed together, since they are related
through Egq.(61). Because it is desirable to have the
resultant circumferential variation directly dependent on
the underlying dipole orientation that is generatitg,,
the Cq4, D11, andH; coefficients were chosen so as to
normalize the equations in the radial direction. With
these three coefficients fixed, we obtain from Egfl),

11:R_§' (65
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From Egs.(58) and (59), we find

(071 0g)R}(RICy;—2Dyy)

= A= ahAq,, (66
11 2U(R?_R2)Hll 11 11, (66)
(oi+0e)R(RICy;—2Dyy)
W 20 RDH, v Bu
and thus from Eqgs(54) and (55) we obtain
U7 (o1+ 0o a(2RE+REH 11— R3(CaR + D1y ]
= Bpx, (68)
5 —30R3
H (‘Ti+0'e)[a(2R§+Rg)Hll_Rg(CllRi—’_Dll)]py
=Bpy- (69)

To solve the second set of equations, one of the un-
known eight coefficients must be fixed. In choosing the
coefficient it should be noted th&t, [and thusD, from
Eqg. (57)] cannot be fixed since it is implicitly zero from
Eq. (63). It should also be noted that @, or Gy is fixed
the resulting expression fap, in the outer sphere will
not depend on the dipole source generatiiyg. For this
reason, and to be consistent with the choice of coeffi-
cients from the first set of equatiorns; is the coefficient
chosen to be fixed. Thus, from E¢3), we find that
Ho=0 and thereforeD,=0 from Eq. (57). This gives
Co=G, from Eq. (53).

From Eqg.(62) we have

_2H1 -0
1~ Rg ’ ( )
and thus from Eqgs(56) and (60), we obtain
_ 3RIHRY) (01 0RIC—20ip) s
L 2[(201+ 20+ 0)RI+ (0 +0e—0)R3] 11
30ip;
+—0i+0e (71
and
3R (0 +0x)R3C,— 20,
2[( i AN ipz] (72)

1 2[(2014 200+ 0)R3+ (01 + 0o— ORI
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The final coefficient can then be obtained from Eq.
(64), i.e.,

IR,[ (0 + 0o)RIC; — 207p,]

2[(201+20¢+ 0)R + (0+ 0e— )R]
(73

Go= ref—

To obtain a particular solution for numerical testing,
we choseR;=1 andR,=3, p=(1,2,1), 0,=2, 0.=4,
0=2,C;4=1,D1;=1,Hy;=1,Ci=1, and¢,=0. The
full set of 16 coefficients for this particular case is given
by

52 81
A11:1_7’ E11:1_7,
104 162
Bu=77. Fu=77.
2
Cii=1, G11:2_7:

D=1 Hy=1,

3

C]_:l, Gl:a,

B 87 B 81
171220 Tt 122
B —-27 B —-27

071220 YO0 1227

Dy=0, Hy=0

The final expressions for the extracellular potential
and normal current for this particular case are given by
Egs. (18) and (19). A

It should be noted that bot,,, and ¢ contain a 1r?
singularity atr =0. The effect of this singularity must be
taken into account when performing an integration of the
type in Eq.(25). Because of the form of.', the singu-
larity from ¢, cancels out. The resulting singularity
from ¢y acts like a dipole source when integrated with
the weighting function. The correction factor that hence
needs to be added to the left-hand side of &Q) is

* .

p°-r
47Tp* . VW(pS ,X0)= ?, (74)
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where p*=(A11D11,B11D11,D1) is the pseudodipole
singularity sourcepg =0 is the location of the singular-
ity, and w(p§ ,xo) is the free-space Green's function
defined by Eq.(33).
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