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Figure 1: Example results of our automatic changes in skin appearance predicted by our method. Changes are due both to mechanical
deformations and to involuntary dilation or constriction of blood vessels caused by emotions; all affect the skin’s hemoglobin distribution.
Our real-time model allows simulation of both, based on in vivo measurements of real subjects, and runs in real-time (this scene with five
heads runs at 53 frames per second). Our method is easily adopted into existing animation pipelines. From left to right, we show a sad smile,
anger, the neutral pose, fear and disgust. The different hemoglobin maps produced by our model are shown in Figure 2.

Abstract

Facial appearance depends on both the physical and physiological
state of the skin. As people move, talk, undergo stress, and change
expression, skin appearance is in constant flux. One of the key
indicators of these changes is the color of skin. Skin color is deter-
mined by scattering and absorption of light within the skin layers,
caused mostly by concentrations of two chromophores, melanin and
hemoglobin. In this paper we present a real-time dynamic appear-
ance model of skin built from in vivo measurements of melanin
and hemoglobin concentrations. We demonstrate an efficient imple-
mentation of our method, and show that it adds negligible overhead
to existing animation and rendering pipelines. Additionally, we
develop a realistic, intuitive, and automatic control for skin color,
which we term a skin appearance rig. This rig can easily be coupled
with a traditional geometric facial animation rig. We demonstrate
our method by augmenting digital facial performance with realistic
appearance changes.

1 Introduction

Facial appearance constantly changes as people talk, change ex-
pression, or alter their physical or emotional state. Previous work
mainly focuses on the geometric aspects of these changes, such as
animating the facial surface (e.g. wrinkle structures, skin stretch-
ing). We refer the reader to the survey by Ersotelos and Dong for
a comprehensive cross section of the different techniques [2008].
Equally important are changes in skin color caused by differences
in hemoglobin concentration [Moretti et al. 1959], which may also
occur due to histamine reactions or other skin conditions such as
rashes and blushing. Blushing in particular conveys a number of
emotions such as shame, arousal, and joy. Figure 1 illustrates sev-
eral of these physical and emotional states. Despite their ability to
transmit emotion, these dynamic changes in skin pigmentation are
largely ignored by existing skin appearance models.

The creation of dynamic skin shading in film and game workflows
depends mostly on artists, who carefully create all necessary skin
textures. In the context of dynamic shading, an appearance rig is
a structure that defines the details of the skin textures of 3D facial
models. As models become more and more complex, it becomes in-
creasingly difficult to define a consistent appearance rig that works
well for many different characters; textures for each character must
be created individually by hand, a slow and costly process that
requires experienced digital artists. (Alternative facial animation
techniques circumvent this difficulty by relying on performance
capture [Sagar 2006; Bradley et al. 2010] to simultaneously obtain
dynamic geometry and appearance, but they are not designed to
derive a generic, transferable model.)

In this work, we develop a real-time, dynamic facial color appear-
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Figure 2: Hemoglobin maps controlling the skin color in Figure 1.
These maps are generated automatically by our method. Darker
areas of the maps indicate higher concentrations of hemoglobin.

ance model, using the common approximation of skin as a two-
layered translucent material. Color appearance is defined by the
distribution of two chromophores: melanin and hemoglobin. While
this model is an approximation, it has proven to well describe a
wide range of natural skin appearances [Donner and Jensen 2006;
Donner et al. 2008]. We drive this model with in vivo measure-
ments of melanin and hemoglobin concentrations for different fa-
cial expressions and conditions. The results of our measurements
are highly-detailed hemoglobin and melanin maps for a variety of
expressions, without the need for artist intervention.

We assume that the thickness of the skin epidermis is not affected
by surface deformations during facial expression as it tightly ad-
heres to the underlying deeper tissue [Ryan 1995]. Note that the
facial melanin concentration and distribution is static within the
skin during animation. This is because melanin is embedded within
the keratinocyte cells of the epidermis, and the timeframe of change
for melanin concentration is hours to weeks [Park et al. 2002], not
the short periods associated with facial movement. This leaves the
distribution of hemoglobin (the primary carrier of oxygen in the
blood) as the only potentially varying factor that affects skin color.
We also aim to separate local phenomena that change the perfusion
of hemoglobin in a characteristic pattern from global effects that
change the overall perfusion. Accurately modeling the dynamics of
blood flow in the face would ultimately require a dynamic model
of human blood circulation. A complete model, however, would be
prohibitive, as it would require modeling not only the entire net-
work of vessels and capillaries, but also the dynamic flow, defined
by the interplay of fluid dynamics with vascular compliance and
body mechanics.

To obtain a compact model of hemoglobin perfusion yielding realis-
tic results even under real-time constraints, we build base melanin
and hemoglobin maps. We then code only hemoglobin changes
in our model by using a novel localized variant of the histogram
matching technique. This allows us to treat the characteristic local
patterns in hemoglobin distributions independently of the overall
effect. Naive computation of this approach would involve pro-
hibitive recalculation and storage of the cumulative distribution
functions of the histograms, since it involves analyzing a window
around each pixel. Instead, we make the key observation that typ-
ical hemoglobin concentrations resemble a Gaussian distribution,
which allows us to store only its mean and standard deviation.

To render different expressions, we couple an efficient, yet realistic,
skin shader with our appearance rig. This provides automatic pig-
mentation changes according to changes in facial expression. As
the overhead of our model is low, these realistic effects come at es-
sentially no additional cost. While our approach is general enough
to complement most existing animation techniques, we focus on
blend shapes consisting of the six universal facial emotions: anger,
disgust, fear, happiness, sadness and surprise [Ekman 1972], plus
the effects of physical exhaustion and alcohol consumption.

2 Related Work

Appearance models for faces have attracted much attention in re-
cent years. In this section we focus on those techniques most

closely related to our work. For a more thorough treatment we refer
the reader to the survey by Igarashi et al. [2007].

2.1 Physical Appearance Models

The following techniques are all capable of reproducing skin re-
alistically, and can be controlled heuristically to various degrees
(e.g. parameter maps, scaling, etc.). None of these techniques,
however, is tied to any real measure of mechanical deformation or
physiological state of the skin itself.

Through independent component analysis, it is possible to ex-
tract hemoglobin and melanin pigmentation from a single skin im-
age [Tsumura et al. 1999]. Adding a pyramid-based texture anal-
ysis/synthesis technique allows very realistic effects such as alco-
hol consumption and tanning [Tsumura et al. 2003]. Weyrich et
al. [2006] analyze variations in the reflectance of facial skin under
varying external conditions of a subject (hot, cold, sweaty, etc.); us-
ing a histogram interpolation technique [Matusik et al. 2005], they
achieve color transfers and face changes between conditions.

Donner et al. [2008] simulate skin reflectance by accounting for
lateral inter-scattering of light between skin layers. Using known
chromophore spectra, they derive spatial chromophore distributions
from multi-spectral photographs of skin through inverse rendering.
Ghosh et al. [2008] use structured light and polarization to deter-
mine skin layer properties using an additive multi-layered scattering
model. They capture the heterogeneous appearance of the face, and
vary it through scaling of their model components.

The multi-image texture representation of skin presented by Cula
et al. [2005] focuses on surface microgeometry, and takes into ac-
count appearance variations caused by changes in illumination and
viewing direction. In the field of dermatology, Cula et al. [2004] use
bidirectional imaging to create the Rutgers Skin Texture Database,
focusing mainly on skin disorders, for medical applications.

In principle, mechanisms underlying facial perfusion changes have
been studied in dermatology. Such reports are based on ex vivo
histological examination of thin sections of biopsied tissue, or
in vivo non-invasive point measures of blood derivatives (such
as reflectance spectrophotometric measures of skin color or laser
Doppler velocimetric measurements of blood flow) [Matts 2008].
The novelty of our work lies in the direct in-vivo mapping of
hemoglobin concentration and distribution across large areas of the
skin, and how changes correlate with dynamic facial expression. It
is precisely this large-scale phenomenon that drives the subtle, yet
noticeable, dynamic changes in facial skin color.

2.2 Emotional Appearance Models

Kalra and Magnenat-Thalmann [1994] describe a texture-based
model to simulate skin changes from blushing and pallor. Regions
in the face are separated by masks in the texture; the user inter-
actively defines different shading functions within each mask, and
linearly weights these masks to achieve different looks.

Jung et al. [2006] accumulate pre-designed 2D textures in a 3D
stack, from palest to reddest. Each emotion correlates to a given
depth, and the fetched texture is then used as the base color for
a skin shader. In a follow-up publication [Jung et al. 2009], they
parameterize skin changes via a set of fourteen emotional states
[Plutchik 1980], along with a high-level description of each (such
as rosy cheeks or red blotches in the face). Melo and Gratch [2009]
forgo textures, directly applying a user-defined color change in dif-
ferent areas of the face to simulate blushing.

Yamada and Watanabe [2007] investigate blood flux due to anger
and dislike. They simultaneously measure changes in facial skin
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Figure 3: Samples of images captured to analyze changes in blood perfusion (top), with the corresponding hemoglobin maps (bottom).

temperature and color for these emotions, and map them to an av-
erage facial color image. Hue and saturation are multiplied by an
arbitrary enhancement coefficient to make changes more distinct.

The results of the works discussed above are almost completely
user-guided, with no correlation to actual hemoglobin measures.
In contrast, we propose a compact, linear model of hemoglobin
perfusion based on in vivo observations of facial performances, and
under different global conditions. This makes our model well suited
for real-time renderings of facial appearance.

3 Acquisition

Here we describe our acquisition setup, method, and observations,
which will lead to the development of our model. We use a custom
reconstruction of the non-contact SIAscopeTM system [Cotton et al.
1999], to capture accurate reconstructions of the hemoglobin and
melanin distribution within the facial skin. The system uses a Fuji
Finepix S2 Pro and two Portaflash 336VM flashes, with the flashes
cross-polarized and positioned on each side of the camera. This
setup is low-cost, and using the reconstruction method of Cotton et
al. [1999] we obtain hemoglobin and melanin maps that, in contrast
to other methods, are quantitatively calibrated [Matts et al. 2007].

This method is based on a spectral, multi-layered model of skin
coloration [Cotton and Claridge 1996]. A limitation of this model is
that it does not account for lateral scattering and thus over-estimates
the blur of the underlying chromophore distribution. This feature
has little impact on the analysis presented here but in fact allows a
valuable optimization for our real-time renderer (see Section 6).

We acquired data from four subjects (one Caucasian female, 33
years old; three Caucasian males, 26, 33, and 35 years old) under a
number of different, partially extreme facial expressions, as shown
in Figures 3 and 4. To cover a representative range, we included
expressions of the six basic emotions [Ekman 1972]. Each expres-
sion was acquired multiple times, with other varying expressions in
between. In addition, we measured one subject under two “global”
conditions: at high exercise level (after descending and climbing
9 flights of a staircase; subsequent measurements for one minute)
and under alcohol consumption (500 ml beer, spread over one hour;
regular measurements during this period).

3.1 Initial Findings

Throughout the experiments, the changes induced by a given ex-
pression were highly repeatable. As expected, melanin concen-
trations stayed constant across measurements of an individual.
Hemoglobin, however, varied greatly. In studying the variations
in blood flow, we made the following core observations:

1. Visible blood is mainly contained within the ascending and de-
scending capillaries originating from the relatively superficial
sub-papillary plexus. This becomes apparent when studying
hemoglobin maps such as the high-resolution examples in Fig-
ure 4 and is consistent with the fact that visible light (400–

Figure 4: Facial hemoglobin distribution of a 33-year-old Cau-
casian female and of a 26-year-old Caucasian male. Dark pixels
denote high concentration.

700 nm) cannot penetrate deeply into the optically turbid dermal
layers [Anderson and Parrish 1981].

2. The mechanical deformation of facial expressions may lead not
only to drainage of blood in compressed regions, but also to a
perfusion increase in other regions. This is most noticeable over
the cheek bones, where, for instance, the blood concentration
increases during a smile.

3. While the qualitative changes connected with a single expres-
sion correspond well across subjects, there are large differences
in each individual’s spatial pattern of perfusion.

4. Conversely, this subject-specific pattern appears to be very static
and only subject to decrease or increase of local blood concen-
tration.

5. Global effects cannot be simulated by simply globally increas-
ing blood concentrations. Figure 5 (top row) plots the temporal
perfusion variations due to high exercise level and to alcohol
consumption at five representative facial positions, showing two
distinctly different spatial distributions of perfusion increase.

A core question of our investigation was whether the expression-
induced transitions between different perfusion levels take place at
noticeable time scales. Our measurement device, however, does not
offer the temporal resolution to measure such effects directly: the
acquisition speed is limited by the camera read-out, which amounts
to 5.5 seconds per image. To work around this issue, we used
a time-multiplexing scheme often used to measure periodic mo-
tions (see, e.g., Yu et al. [2007]): we performed two acquisition
sequences, where the subject was alternating between a neutral and
a smile expression, synchronized by an acoustic signal of period pe
that prompted an expression change. At the same time, the camera
would take an image every pa seconds. The resulting images for this
sequence (pe = 5s, pa = 5.5s) are shown in Figure 6. Reordering
the acquired images as shown in the figure allows reconstruction
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Figure 5: Perfusion changes of five representative points denoted
in Figure 7. Top Row: Two global factors (high exercise level and
high alcohol level). Bottom Row: Concentration changes in the
denoted areas during the temporal sequence shown in Figure 6.

of an up-sampled version of the cyclic expression changes with
an effective sampling rate of 0.5 seconds (see Figure 6). We later
increased the sampling rate to (pe = 5s, pa = 5.25s), which effec-
tively samples at 0.25-second intervals. Both rearranged sequences
observe two full expression cycles, which results in 22 and 44 cap-
tures in total, respectively.

Figure 5 (bottom row) shows that despite the long duration of the
experiment, the expression-induced blood variations were highly
reproducible; our subjects were able to consistently produce the
same expressions multiple times. In addition, neither sequence
exhibits transitional phases between the neutral and the smile ex-
pression. This leads us to propose that:

6. Dynamic effects in the transition of expression-induced perfu-
sion changes are of lesser visual importance and may hence be
ignored in a practical model.

In the next section we use the above six observations to develop a
simple, practical model for blood variation.

4 Color Appearance Model

The principal quantity controlled by our color appearance model is
the spatially-varying concentration of hemoglobin. As any changes
in blood concentration are bound to the location of vessels and cap-
illaries (observations 1 and 4 from the previous section), we express
perfusion variations by dynamically modifying a static, “neutral”
hemoglobin texture map Hn. This map may be hand-painted, or
acquired from real subjects. We use our measurements of different
facial expressions and conditions to derive the relative changes that
must to be applied to Hn to produce a desired appearance. Thus,
our model is data-derived, not data-driven; we do not directly apply
the measured maps when rendering.

Our approach is to use a localized variant of histogram matching
(HM) to modify the neutral hemoglobin map Hn. To transform Hn
to the blood distribution H of a joyful smile, for example, we must
alter each pixel value in Hn, such that locally, within a radius r
region, that pixel would contribute to a new distribution of concen-
trations which matches the histogram of the corresponding region
in H. Traditional HM achieves this globally by determining the per-
centile q of each pixel’s intensity in a source image’s histogram, and
mapping q to a new intensity that corresponds to the qth percentile
in a destination image’s histogram. This involves looking up the
cumulative distribution function (CDF) of the source histogram and

0 20 40 60 80 100
Time (seconds)

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Figure 6: Our time multiplexing scheme. Top: We sample the
expressions at varying time offsets from the expression transition.
Bottom: The images were taken in column-major order (as num-
bered), with a short phase shift between acquisition and expres-
sion changes. This gives a consistent 5-image temporal sequence
of four expressions (neutral/smile/neutral/smile) when arranged in
row-major order.

the inverse CDF of the destination histogram [Heeger and Bergen
1995]. To localize this approach, we use histogram CDFs within
a sliding window around each pixel in Hn. This would normally
require recomputation (or storage) of two CDFs per pixel, which
would be prohibitive for real-time applications.

4.1 Approximate Local Histogram Matching

In order to turn localized HM into a tractable problem, we lever-
age the observation that for a wide range of skin appearances,
hemoglobin distribution is near-Gaussian (see Figure 7). This al-
lows us to approximate hemoglobin histograms with Gaussian dis-
tributions, thus compressing each local histogram to a two-valued
description of mean µ and standard deviation σ . For a given ra-
dius r, these descriptors are easily extracted for every pixel x in a
hemoglobin map H, as:

µ(x) =
(
H ∗ f

)
(x) ,

σ(x) =
√(

H2 ∗ f
)
(x)− µ(x)2 , (1)

with the averaging convolution kernel f (u) = 1
πr2

(
‖u‖ ≤ r

)
.

Adjusting a pixel’s concentration Hn(x) from a distribution
(µn(x), σn(x)) to a target distribution (µ(x), σ(x)) now involves
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Figure 7: Example hemoglobin distributions and their Gaussian
approximation for representative areas of the face. (The origin of
the histograms and their approximations are color-coded; yellow is
referred to by Figure 5, its histogram is omitted for space reasons.)

the CDFs of two Gaussian distribution:

H(x) = CDF−1
σ(x),µ(x)

[
CDFσn(x),µn(x)

(
Hn(x)

)]
. (2)

Due to the affine similarity of Gaussians, this mapping simplifies to
a scale and bias:

H(x) = µ(x) +
σ(x)
σn(x)

(
Hn(x)− µn(x)

)
. (3)

This simplification represents a physiologically plausible yet com-
putationally efficient model to blend between perfusion distribu-
tions, yet maintaining the structural characteristics of the underly-
ing vascular system. In the following subsection we show how to
control this mechanism in the context of facial animation.

4.2 Model Parameters

Equipped with Equation (3), it is now possible to span an appear-
ance space defined by a palette of target hemoglobin distributions
Hi, i = 1 . . . k. We define a mean-free base concentration:

H0 = Hn − µn , (4)

and a set of scales and biases:

bias0 = µn, biasi = µi, i > 0 ,

scale0 = 1, scalei =
σi

σn
, (5)

the argument “(x)” being ommitted for readability. These allow the
seamless transformation of the neutral hemoglobin distribution to
any desired blend of texture characteristics of a set of basis distri-
butions Hi, by applying an affine combination of scales and biases,

H =
k

∑
i=0

wibiasi + H0

k

∑
i=0

wiscalei , (6)

where wi are relative weights that sum up to one. The main bene-
fit of this representation is storage efficiency, as the low-frequency
nature of these biases and scales can be exploited (see Section 6).
Following existing terminology in geometric animation, we refer to
the set of wi as parameters of an appearance rig.

In order to acquire a given subject’s basis set of hemoglobin dis-
tributions, we gather the respective perfusion maps using our mea-
surement setup and manually warp them to align with a photograph
of the neutral expression. The complex deformations during ex-
pression changes make it prohibitive to align the acquired maps at
pixel accuracy. This precludes simply interpolating between pre-
captured distributions. Instead, using Equation (1), we determine
the statistics used to derive the parameters in (5). Thus, even when
image alignments are not perfect, we still achieve good results.

The non-local support of the histograms implicitly leads to a nat-
ural separation of low-frequency changes from high-frequency de-
tails (as opposed to frequency-based approaches to separate global
changes from local structure [Guo and Sim 2009]). This has two
additional advantages: First, it becomes possible to apply relative
changes derived from an existing subject’s native hemoglobin map
to other (for instance hand-painted) maps. This allows for appear-
ance transfer between characters. Second, as the hemoglobin scale
si and bias bi textures store relatively low-frequency information
(see Figure 8), we can downsample them to minimize their memory
footprint, without significant loss of information. This makes our
approach practical for real-time applications.

Melanin Mean-Free Hemoglobin Hemoglobin
Hemoglobin Scale Bias

Figure 8: Different maps used by our algorithm. The hemoglobin
scale and bias maps shown here belong to the smile expression
(Hemoglobin Scale shown at 90x scale for visualization purposes).

5 Geometry-dependent Rigging

Our appearance model considers hemoglobin changes that are ei-
ther tightly bound to the geometric deformations of the skin, or con-
trolled by a global state that incorporates emotional and physiolog-
ical parameters. Accordingly, we use a common rig for geometry
and appearance control where these are correlated, and introduce
independent parameters for the global state. As global effects are
unique to facial expressions, we model both expression-related and
global effects using a basis of hemoglobin statistics, as described in
the previous section.

There are a number of different geometric animation approaches
that either globally or locally control geometry [Ward 2004]. The
three most common approaches create animation rigs based on
blend shapes, bones, or a combination of both. Many of these
approaches use either global or local weights of influence; our
weight-based, linear model can be adapted to most existing tech-
niques. While there are no intrinsic limitations to any of these
approaches, our method lends itself particularly well to global blend
shapes [Deng et al. 2006], an approach commonly used in produc-
tion environments [Richie et al. 2005]. We demonstrate the appli-
cability of our model in a production pipeline in Section 7, with an
implementation in Autodesk R© Maya R© 2010.

6 Implementation

Our real-time facial color animation rig has four components (in
execution order):

1. interpolation of facial shapes

2. obtaining hemoglobin change from the scale and bias textures

3. computing the base color of the skin

4. simulation of subsurface scattering in the skin

To compute the animation as efficiently as possible, we use graphics
hardware and stream out blend shapes using DirectX R© 10. This cir-
cumvents the limitation that only four blend shapes can be packed
into per-vertex attributes at once. We store a set of transformed
vertices into a buffer, which allows us to apply an unlimited number

A Practical Appearance Model for Dynamic Facial Color        •        141:5

ACM Transactions on Graphics, Vol. 29, No. 6, Article 141, Publication date: December 2010.



of blend shapes using multiple passes [Lorach 2007]. Wrinkles are
rendered using the recent approach of Jimenez et al. [2011], based
on masking wrinkle zones and efficiently adding the influence of
multiple normals coming from different zones using partial deriva-
tive normal maps.

We precompute the actual color of skin using the spectral model of
Donner et al. [2008]. This model predicts spectral absorption σa
and reduced scattering σ

′
s coefficients based on the volume concen-

trations of hemoglobin in the dermis and epidermis, and the volume
concentration and type of melanin in the epidermis. Table 1 sum-
marizes these parameters to this model.

Parameter Description Range
Cm Melanin fraction 0− 0.5
βm Melanin type blend 0− 1
Che Hemoglobin fraction (epi) 0− 0.1
Chd Hemoglobin fraction (dermis) 0− 0.32

Table 1: Physiological parameters describing skin spectral absorp-
tion and scattering.

For the simulation of subsurface scattering, we use the method by
Jimenez et al. [2009; 2010]. We perform the sum-of-gaussians
texture-space diffusion [d’Eon et al. 2007] as a postprocess in
screen-space, by modifying the width of the convolution kernel
according to depth gradient information. The method scales well
with geometric detail, yet still retains high visual fidelity. Since lat-
eral color bleeding due to subsurface scattering is already explicitly
captured as part of the acquisition process, we use post-scattering
texturing [d’Eon et al. 2007] to avoid blurring the albedo twice.
We describe this in more detail below. As the screen-space ap-
proximation depends on pre-scattering blur, we separate the diffuse
illumination, the albedo, and the specular reflectance into different
render targets, and then selectively apply subsurface scattering only
to the diffuse component. We then composite these components
back together to produce the final image.

Recall that the parameter maps obtained as part of the acquisition
process are blurred due to light scattering in the skin layers (see
Section 3). This intrinsic blurring of the maps allows us to further
optimize the rendering process: we use a precomputed skin color
lookup table that is indexed by the local value in the melanin and
hemoglobin parameter maps. Note that this is a departure from
previous work, where these maps are used as inputs to a heteroge-
neous subsurface scattering simulation, as in [Donner et al. 2008].
Were we to use the maps in this fashion, there would be excessive
blurring of the chromophore contributions.

Our skin color lookup table contains RGB color values which are
pre-computed across the space of parameters shown in Table 1. We
compute each entry using the total diffuse reflectance predicted by
the two-layered translucent skin model, with Che = 0.25Chd. As
the skin model is spectral, and is highly non-linear with respect to
the effects of chromophores on RGB color, we sample the space
of melanin and hemoglobin cubicly to help maximize the use of
the texture space. This allows us to use a smaller table, while still
spanning the space of useful parameters. To find the index (u, v)
in the space of the texture given a melanin and hemoglobin volume
fraction, we apply:

u = 3
√

Cm , v = 3
√

Chd (7)

where melanin varies along the u axis, and hemoglobin varies along
the v axis. Figure 9 shows this lookup table.

The hemoglobin scale si and bias bi textures are downsampled to
256x256 resolution, as justified in Section 4. During rendering,
we perform a standard subsurface scattering simulation using pa-
rameters for colorless skin. We then modulate the resulting value
with the color from the lookup table, indexed by the melanin and
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Figure 9: Skin color lookup texture. The melanin blend (βm) is
61% eumelanin and 39% pheomelanin, and epidermal hemoglobin
(Che) is 25% of dermal hemoglobin (Chd).

hemoglobin values at each point. We use the specular model of
Kelemen and Szirmay-Kalos [2001] with spatially-varying param-
eters for roughness and specular intensity [Weyrich et al. 2006].

7 Results

Here we demonstrate our novel skin appearance rig under various
expressions and conditions. All of the images in this section use
hemoglobin maps of the 26-year-old male subject and were ren-
dered in real-time. In many of our examples, the hemoglobin maps
are inset into the lower-left corner of the images. Note that due
to the delicacy of skin color and the widely-varying gamut of dis-
play devices we suggest viewing the PDF version of this paper on
a color-calibrated monitor.

Figure 1 shows five emotional basis states, a sad smile, anger, the
neutral pose, fear, and disgust. The hemoglobin maps generated
by our rig are shown in Figure 2. Note the wide variation in ap-
pearance across the expressions. Some of the color is caused by
blood perfusion due to deformation, while some is due to capillary
dilation. In reality, extreme emotions like anger or fear trigger a
very strong dilation or constriction of blood vessels. This causes
significant involuntary blushing or pallor [Goldstein 2006], which
is difficult to measure experimentally. With our model, these effects
are easily simulated by scaling the global hemoglobin with respect
to the neutral pose, as shown for the anger and fear poses. The
global hemoglobin was scaled by 127% and 81% respectively in
those cases, adding more expressiveness and realism to the images.

Figure 10 shows two additional physiological states, exercise and
alcohol consumption, applied to a neutral pose. Although these
changes may appear subtle, they increase realism and convey emo-
tions, and free animators from the cumbersome tweaking of skin
textures. Figure 13 shows close-up comparisons of the neutral and
disgust poses, where the automatic changes predicted by our model
are clearly shown. Our approach is general enough that any ex-
pression, emotion or state may be added, and allows for multiple
combinations of poses (see Figure 11).

Neutral Exercise Alcohol
Figure 10: The neutral geometric pose of a face rendered with a
neutral hemoglobin map (left), and predicted hemoglobin perfusion
after exercise (middle) and after alcohol consumption (right).
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Figure 11: Example of blending poses: from left to right, the character transitions from the neutral pose to full anger (third image), to a
combination of full anger and full surprise (fifth image). The last image adds the changes after physical exercise.
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Figure 12: Various emotional states predicted by our model. The top row uses our method to dynamically predict the hemoglobin perfusion.
The bottom row uses the neutral state hemoglobin map (best viewed on a calibrated monitor).

Figure 13: Close-up of the neutral and the disgust poses. The
changes in hemoglobin distribution are generated by our model.

As shown in this section, the encoded hemoglobin changes are di-
rectly transferrable to different characters. They can also be applied
to a different neutral map, either captured from a real subject or
created manually by an artist. We believe this feature can greatly
improve the workflow in production environments, as it hides the
details of facial color animation, but exposes useful controls. As a
proof-of-concept integration, we have implemented it as a shader in
mental ray R© within Autodesk R© Maya R© 2010, and used it to render
a small cartoonish animation (see video in the supplementary ma-
terial). The artist has immediate feedback on the color variation of
the skin, and can render final results off-line.

Finally, we make neutral hemoglobin and melanin maps available
at ACM Portal, together with the skin color lookup table. The maps
can be directly used for rendering or taken as a starting point to
create different variations.

8 Conclusions

We have demonstrated an efficient, low-overhead skin appearance
rig for predicting skin color changes during facial animation. Our
dynamic model uses a novel local histogram matching technique,
allowing efficient calculation of blood perfusion in skin layers. The
model is anatomically motivated, and is based on statistical infor-
mation gathered from in vivo measurements of hemoglobin perfu-
sion. We have validated our model using these measurements, and
shown potential applications, such as appearance transfer, and the
synthesis of novel poses with realistic variations.

Due to the intrinsic chromophore blurring in our measurements,
our rendering method adds minimal overhead, and lends itself to a
real-time GPU implementation. While we have used blend shapes,
our model integrates well with any standard geometric rig; we have
demonstrated it in a pre-existing workflow pipeline of a common
commercial software package (please refer to the video).

The current model focuses on skin color only. There exist other
equally important aspects to skin appearance, such as wrinkles and
pores. These, however, present geometric and topographic as well
as rendering challenges. Coupling these to chromophore changes
would be one direction for future work. Using a more standard-
ized expression classification system, such as FACS [Sagar 2006],
would simplify the use of our appearance rig in other fields, such
as the behavioral and cognitive sciences. Our method could also be
used in an inverse fashion, to detect emotions based on deformation
and color cues.
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One limitations lies in the use of the SIAscope algorithms. They are
able to detect overall concentrations of melanin and hemoglobin,
but not depth of deposition, or other features, such as hemoglobin
oxygenation. We plan to develop a more robust system capable of
providing more detailed and accurate physiological information.
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