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Abstract

We have developed a computational modelling and simulation framework for cardiac electro-

mechanics which for the first time tightly couples cellular, tissue, and whole heart modelling

paradigms. Application of the framework has been demonstrated in simulations of the electrical

activation and mechanical contraction of cardiac myocytes, myocardial tissue, and models of

ventricular structure and function.

The framework has been implemented as part of the CMISS computational modelling en-

vironment. This allows for detailed specification of tissue microstructure and the variation of

cellular models and their material parameters over a geometric domain of interest. Through

previous work in CMISS we have access to a large pool of existing models and methods on

which to base this work.

A key aspect of our framework is the implementation of methods allowing the dynamic

specification of mathematical models at run-time using CellML – an XML language designed

to store and exchange computer based biological models. We use these methods to enable the

specification of cellular level models using CellML, thus providing a very powerful method to

simply “plug” cellular models into the distributed tissue and organ level models. While in this

work we have developed specific cellular models, and their CellML description, the framework

is now developed to the point where a non-expert user could pull out a given model and plug-in

their own model. This allows cellular modellers to develop their models and then bring them

into a distributed model of tissue or organ physiology.

We present a review of cellular electrophysiology and mechanics models. As a demonstra-

tion of the ability of CellML to describe cardiac cellular models in a computationally useful

manner we have encoded the majority of these models into CellML. The CellML descriptions of

these models are provided as they were used in the computational simulations which generated

all results presented for the models directly from the CellML encoded models.



iv

While the work described in this thesis focuses on cardiac electro-mechanics, the frame-

work has much wider applicability. As such, this work forms the beginning of a generalised

simulation framework for the IUPS Physiome Project, with the goal being models describing

entire organisms from proteins through to organ systems.
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Chapter 1

Introduction

The human heart has just one function – to contract approximately once per second for every

minute in every day for every year in your lifetime: more than 2.2 billion contractions over

seventy years. These contractions are required to pump blood around the body. Failure in this

single function caused an estimated 16.5 million deaths in the year 2001, or 29.3 % of deaths

worldwide (World Health Organization 2002) and heart disease is the single largest killer of

men in New Zealand. With better understanding of cardiac function will come the possibility

of improved detection and treatment of such diseases and hopefully a reduction of the mortality

rate.

Mathematical models and simulation techniques are developed in this thesis which extend

the current cardiac models to encompass electro-mechanical aspects of cardiac function from

the cellular to whole organ spatial and temporal scales. Through extension of the current models

and simulation tools we are better able to investigate phenomena in which capturing the interac-

tion of electrophysiology and mechanics is crucial to the models ability to predict physiological

function. Some examples where inclusion of this interaction offers greater insight are models

of cardiac arrhythmia, ventricular pacing when undergoing cardiac resynchronisation therapy,

and the effect of mechanosensitive ion channels on tissue and organ behaviour underdifferent

conditions.

The quantity of molecular and cellular detail required in a tissue or organ model depends

very much on what one is trying to model. We have, therefore, developed and implemented

a framework which enables a modeller to easily change the cellular model(s) underlying their

tissue or organ model. This thesis presents the development of this framework based on its
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application to cardiac electro-mechanics, but as discussed in Section 4.5 this work has already

been applied in other models and will be used even more as the IUPS Physiome Project moves

forward. As part of the feasibility study performed using this framework, we investigate both a

lightweight and a very computationally demanding cellular electro-mechanics model in tissue

models. We will also examine various models based on a simplified left ventricle (LV) geometry.

Modelling of biological tissue requires the use of simplifying approximations which main-

tain a balance between computability and physiological accuracy. The approximations occur at

both the cellular and tissue levels. At the cellular level, it is currently inconceivable to attempt

to track an individual ion’s actual movements through the cellular membrane and within subcel-

lular compartments and its interactions with various proteins while trying to model the billions

of interacting cells in a piece of tissue. Then at the tissue level it is currently computationally

impossible to accurately model the complete, deforming, three dimensional geometry of all the

cells and connective tissue which combine to form a piece of cardiac tissue. In both these cases,

approximations must be made which simplify the physiology into a system that is both com-

putationally feasible and yet capable of representing the fundamental physiology of the system

with sufficient detail to simulate cardiac function in health and disease. In addition to providing

a description of the modelling and simulation framework developed to simulate cardiac electro-

mechanics, this thesis describes the approximations made in the development of such models

and shows that the models are both computationally feasible and capable of reproducing the

observed physiological reactions of cardiac muscle to multiple and varied experimental stimuli.

We now present a brief overview of the physiology and anatomy of the heart and then pro-

vide an overview of the main method on which the techniques developed are based – the finite

element method. Finally, a general description of the remainder of this thesis is given.

1.1 The Heart

The heart is a four chambered pump, with the two smaller chambers (atria) used to prime the

larger chambers (ventricles). The right ventricle (RV), filled by the right atrium (RA) through

the tricuspid valve, pumps blood to the lungs via the pulmonary artery through the pulmonary

valve. The oxygen enriched blood then returns from the lungs into the left atrium (LA), from

where the left ventricle (LV) is filled through the mitral valve. The oxygenated blood is then

pumped through the body by the LV via the aorta. Figure 1.1 shows a schematic illustration

detailing the anatomy of the heart.



1.1 THE HEART 3

Left atrium

Right atrium

Aorta

Aorta

Aortic valve cusps

Left ventricle

Superior vena cava

Pulmonary veins

Left atrium

Pulmonary artery

Orifices of coronary arteries

Right atrium

Right ventricle

Interventricular septum

Left ventricle

Right ventricle

Mitral valve

Tricuspid valve

FIGURE 1.1: Anatomy of the heart (Katz 1992).

The contraction of the heart is initiated by a wave of electrical excitation travelling through

the myocardium in the sequence illustrated by Figure 1.2. Neither the initiation nor the con-

duction of this excitation involves the central nervous system. Specialised heart cells initiate an

electrical signal which is propagated throughout the heart via a specialised conduction system.

The conduction of this electrical signal determines the sequence of the muscular contraction.

Disruption of the electrical conduction, therefore, can have grave consequences for the mechan-

ical function of the heart.

Electrical excitation in a healthy heart begins at the sinoatrial node (SAN), the normal car-

diac pacemaker giving rise to the term “sinus rhythm” to describe normal electrical excitation.

Following Figure 1.2, the excitation wavefront takes approximately 45 ms to emerge from the

SAN, 40 ms to travel across the atria to the atrioventricular node (AVN). In normal hearts, the

AVN is the only region of electrical conductivity between the atria and ventricles. Electrical ex-

citation takes at least 100 ms to pass through the AVN, then 30 ms to be conducted through the

Purkinje system and a final 30 ms to propagate throughout the ventricular myocardium (Brown

& Kozlowski 1997). These numbers are approximate and average for adult human hearts.

The myocardium is a very complex and heterogeneous tissue, consisting of layers of inter-

connected sheets of tissue separated by cleavage planes (Hooks, Tomlinson, Marsden, LeGrice,

Smaill, Pullan & Hunter 2002, Dokos, Smaill, Young & LeGrice 2002, LeGrice, Hunter, Young
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FIGURE 1.2: Schematic illustration of the activation sequence of the heart (Brown & Kozlowski

1997). The red figures are the speed of the electrical wave in m · s−1; blue figures are the time to

travel from the AV node to various points in the myocardium, in ms.

& Smaill 2001, LeGrice, Smaill, Chai, Edgar, Gavin & Hunter 1995). Each sheet is 3 to 4 cells

thick and loosely coupled together by the perimysial collagen network. Myocytes are arranged

longitudinally in fibres which lie in the plane of the sheets. The fibres are bound together by the

endomysial collagen network. Thus, adjacent fibres are coupled, electrically and mechanically,

more strongly in the plane of the sheet than transverse to it. When describing material properties

of the myocardium it is therefore required to do so with respect to the three micro-structural axes

evident in the tissue: fibre, sheet, and normal. This micro-structure is schematically illustrated

in Figure 1.3.

As shown in Figure 1.3(a), the orientation of the material axes varies through the wall of

the LV. Using detailed measurements, geometric models have been created which include the

variation of the material axes throughout the porcine (Stevens 2002) and canine (Nash 1998)

ventricles. Illustrations of the variation is provided in Figure 1.4.

Following the rapid spread of electrical excitation through the specialised conduction system

of the ventricles, the electrical wave propagates through the myocardium. Conduction of the

wave is fastest along the fibre axis, due to the strong electrical coupling between the myocytes

through gap junctions. Lower conductivity is shown between fibres within a sheet, and lower

still between sheets. This preferential electrical conduction can be represented by orthotropic

conductivity tensors related to the micro-structural material axes.
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FIGURE 1.3: A illustration of the heterogeneous micro-structural detail of cardiac tissue. (a)

shows a section of the LV wall to illustrate the variation of the fibre and sheet orientation through

the wall of the ventricle. A detailed view of the micro-structure is shown in (b), demonstrating

the micro-structurally based material coordinate system consisting of the fibre, sheet, and normal

axes.

(a) Canine. (b) Porcine.

FIGURE 1.4: Anatomically based finite element models of canine and porcine ventricles. Three

layers of streamlines are used to visualise the epicardial (silver), mid-wall (gold), and endocar-

dial (green) fibre directions which vary continuously through the wall. The red surfaces are the

endocardial left and right ventricular surfaces in both models.
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Conduction of the wave of excitation through the myocardium is based on depolarisation of

myocytes beyond a threshold causing the initiation of an action potential. The action potential

propagates over the cellular membrane without significant delay (Berne & Levy 1993) before

propagating to connected myocytes through gap junctions. Action potentials are caused by the

opening and closing of particular populations of ion channels in the cellular membrane. Ions

passing through these channels from the extracellular volume to the intracellular, or vice versa,

give rise to currents causing changes to the transmembrane potential which defines the action

potential.

Of particular importance to this work is the calcium ion. In myocardial cells, a small influx

of calcium ions into the cell at the beginning of the action potential triggers a huge release of

calcium from internal stores. The binding of these calcium ions to the cellular contractile pro-

teins initiates active contraction of the myocyte. The amount of calcium released determines

the force that can be generated by the cell (amongst many other contributing factors). Fol-

lowing contraction, the calcium is returned to the intracellular stores and primed for the next

contraction.

1.2 Finite Element Modelling

The development of anatomically based representations of organ geometry and tissue properties

is the essential first step in the construction of an integrated model of whole organ function. We

now introduce a finite element method for representation of these fields.

The finite element method is one of the most commonly used approaches to numerically

represent spatially distributed fields. Traditionally, finite element models use low-order La-

grangian interpolation and, with very few exceptions, only one type of interpolation scheme

in the solution domain. For a detailed introduction to the finite element method readers are

referred to Zienkiewicz & Taylor (1994). We present here a different approach which uses

high-order Hermitian interpolation to provide improved efficiency and convergence properties

(Hunter 1975, Bradley, Pullan & Hunter 1997) for representing the nonlinear andC 1-continuous

variation typical of many biological fields.

In the notation used below, ξi is the local finite element coordinate in the ith direction

(0 ≤ ξi ≤ 1), u represents the field variable and un its value at local node n of a given el-

ement. ∆(n, e) maps the local node n of element e to its unique global number for a particular
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mesh. Continuity of the derivative of u with respect to ξi across element boundaries is achieved

by defining additional nodal parameters which are the partial derivatives of the field variable

u with respect to the local coordinate

(

∂u

∂ξi

)

n

. Illustrating this concept in one dimension, ba-

sis functions are chosen to ensure that nodal derivatives which contribute to the interpolation

within an element are shared by two adjacent elements in order to maintain derivative continu-

ity across different boundaries. Derivative continuity requires cubic interpolation and therefore

four element parameters. These parameters are specified as the nodal value and its derivative

with respect to ξ for two nodes per element in one dimension. Thus:

u(ξ) = a+ bξ + cξ2 + dξ3, and therefore
du

dξ
= b + 2cξ + 3dξ2,

where

a = u1, b = u′1, c = 3u2 − 3u1 − 2u′1 − u′2, d = u′1 + u′2 + 2u1 − 2u2,

or, rearranging,

u(ξ) = H0
1 (ξ)u1 +H1

1 (ξ)u′1 +H0
2 (ξ)u2 +H1

2(ξ)u
′
2 (1.2.1)

where H1
n represents the derivative of H0

n with respect to ξ and u′n =

(

du

dξ

)

n

. The four one

dimensional cubic-Hermite basis functions are drawn in Figure 1.5.

1

0
1

1
0

H0
2 (ξ) = ξ2(3 − 2ξ)

1

H0
1 (ξ) = 1 − 3ξ2 + 2ξ3

0
1

H1
2 (ξ) = ξ2(ξ − 1)

1
0

slope=1

H1
1 (ξ) = ξ(ξ − 1)2

ξ

ξ

ξ

ξ

slope=1

FIGURE 1.5: One-dimensional cubic-Hermite basis functions.

To constrain continuity across element boundaries in the global coordinate system, rather

than in the local ξ coordinate system, a further modification is required. The derivative
(

du
dξ

)

n
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defined at node n is dependent upon the element ξ-coordinate in the two adjacent elements. It

is more useful to define a global node derivative
(

du
ds

)

n
where s is arc-length and then use

(

du

dξ

)

n

=

(

du

ds

)

∆(n,e)

·
(

ds

dξ

)

n

(1.2.2)

where
(

ds
dξ

)

n
is an element “scale factor” which scales the arc-length derivative of global node

∆ to the ξ-coordinate derivative of element node n.

5

43

6

1 2

1

5 3

6 4

2

x2

x1

x3

7 87

8

ξ1

ξ3

ξ1=0 ξ1=1

ξ3=1

ξ2=0

ξ2=1

ξ3=0

ξ2

ξ1

ξ3

ξ2

FIGURE 1.6: Schematic and local node numbering of a three dimensional element shown in

physical space on the left and transformed into ξ-space on the right.

Achieving derivative continuity in three dimensions for the element shown in Figure 1.6

requires eight values per node:

u,
∂u

∂ξ1
,
∂u

∂ξ2
,
∂u

∂ξ3
, and

∂2u

∂ξ1∂ξ2
,
∂2u

∂ξ1∂ξ3
,
∂2u

∂ξ2∂ξ3
,

∂3u

∂ξ1∂ξ2∂ξ3

The second-order cross-derivative terms arise from the need to maintain cubic interpolation

along every element edge in each ξ direction. To illustrate, if we consider a particular edge of a

three dimensional element where moving between nodes corresponds to only increasing in ξ1.

The cubic variation in u can be uniquely specified by u and
∂u

∂ξ1
at each node. However,

∂u

∂ξ2
,

∂u

∂ξ3
and

∂2u

∂ξ2∂ξ3
should also vary cubically and are completely independent of these parameters.

Thus six additional parameters are specified for each node. Thus tricubic interpolation of these
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nodal parameters is given by

u(ξ1, ξ2, ξ3) =
2
∑

k=1

2
∑

j=1

2
∑

i=1

[

H0
i (ξ1)H

0
j (ξ2)H

0
k(ξ3)un +H1

i (ξ1)H
0
j (ξ2)H

0
k(ξ3)

(

∂u

∂ξ1

)

n

+

H0
i (ξ1)H

1
j (ξ2)H

0
k(ξ3)

(

∂u

∂ξ2

)

n

+H0
i (ξ1)H

0
j (ξ2)H

1
k(ξ3)

(

∂u

∂ξ3

)

n

+

H1
i (ξ1)H

1
j (ξ2)H

0
k(ξ3)

( ∂2u

∂ξ1∂ξ2

)

n
+H1

i (ξ1)H
0
j (ξ2)H

1
k(ξ3)

( ∂2un

∂ξ1∂ξ3

)

n
+

H0
i (ξ1)H

1
j (ξ2)H

1
k(ξ3)

( ∂2un

∂ξ2∂ξ3

)

n
+H1

i (ξ1)H
1
j (ξ2)H

1
k(ξ3)

(

∂3u

∂ξ1∂ξ2∂ξ3

)

n

]

(1.2.3)

where the nodal index n = 4(k − 1) + 2(j − 1) + i and

H0
1 (ξ) = 1−3ξ2+2ξ3, H1

1 (ξ) = ξ(ξ−1)2, H0
2 (ξ) = ξ2(3−2ξ) and H1

2 (ξ) = ξ2(ξ−1) (1.2.4)

as shown in Figure 1.5. To simplify notation, let

u (ξ1, ξ2, ξ3) =
∑

m

ψm (ξ) um, (1.2.5)

where um represents the vector of nodal values and their derivatives and ψm are formed from the

products of the one dimensional basis functions given in Equation (1.2.4), and the summation

over m is taken over all these quantities.

As in the one dimensional case, to preserve derivative continuity in physical x-coordinate

space rather than in ξ-coordinate space the global node derivatives need to be specified with

respect to physical arc-length. There are now three arc-lengths to consider: si, measuring arc-
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length along the ξi-coordinate, for i = 1, 2, 3. Thus

(

∂u

∂ξ1

)

n

=

(

∂u

∂s1

)

∆(n,e)

·
(

ds1

dξ1

)

n
(

∂u

∂ξ2

)

n

=

(

∂u

∂s2

)

∆(n,e)

·
(

ds2

dξ2

)

n
(

∂u

∂ξ3

)

n

=

(

∂u

∂s3

)

∆(n,e)

·
(

ds3

dξ3

)

n
(

∂2u

∂ξ1∂ξ2

)

n

=

(

∂2u

∂s1∂s2

)

∆(n,e)

·
(

ds1

dξ1

)

n

·
(

ds2

dξ2

)

n
(

∂2u

∂ξ1∂ξ3

)

n

=

(

∂2u

∂s1∂s3

)

∆(n,e)

·
(

ds1

dξ1

)

n

·
(

ds3

dξ3

)

n
(

∂2u

∂ξ2∂ξ3

)

n

=

(

∂2u

∂s2∂s3

)

∆(n,e)

·
(

ds2

dξ2

)

n

·
(

ds3

dξ3

)

n
(

∂3u

∂ξ1∂ξ2∂ξ3

)

n

=

(

∂3u

∂s1∂s2∂s3

)

∆(n,e)

·
(

ds1

dξ1

)

n

·
(

ds2

dξ2

)

n

·
(

ds3

dξ3

)

n

(1.2.6)

Equations (1.2.3)–(1.2.6) provide a means of interpolating spatially varying fields that are

C1-continuous.

Previously, two alternative approaches to modelling the geometry of the heart have been

used. The original canine heart was modelled using a prolate spheroidal coordinate system with

bicubic-linear field interpolation (Nielsen, LeGrice, Smaill & Hunter 1991, Nash 1998). Use

of the LV like prolate spheroidal coordinate system reduced the number of degrees of freedom

in the model allowing for a concise and compact computational description of the canine ven-

tricles but imposed some non-physiological constraints on the model (Stevens 2002). More

recently, models have been developed using the rectangular Cartesian (RC) coordinate system

as the need for this compact computational description no longer outweighs the increasing need

for physiological complexity in the models. The canine model has now been transformed to

the RC coordinate system (Tomlinson 2000) and the porcine ventricular model was developed

completely in RC coordinates (Stevens 2002) using tricubic-Hermite field interpolation.

As with geometry, cubic-Hermite interpolation can effectively be used to represent the vari-

ation in microstructurally based material directions. This is demonstrated in Figure 1.4 which

shows the microstructural fibre field in the prolate spheroidal canine model and the RC porcine

model.
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An overview of the application of cubic-Hermite finite elements to finite deformation elas-

ticity and electrical activation models is provided in Appendices B and C, respectively. Greater

detail on the implementation and use of cubic-Hermite finite elements can be found in many of

the theses from our group (e.g., Bradley 1998, Nash 1998, Buist 2001, Stevens 2002).

1.3 Thesis Overview

The research encompassed in this thesis can be divided into three components: development

of a method for dynamic specification of mathematical models at run-time through the use of

CellML; development of a mathematical modelling and numerical simulation framework for

cardiac electro-mechanics at the cellular, tissue, and organ spatial and temporal scales; and the

application of these tools to specific models of cardiac electro-mechanics. This work is targeted

at providing an initial simulation environment capable of bringing together different aspects of

the IUPS Physiome Project, which is described in Chapter 4.

To test the methods we have developed and implemented which enable the use of CellML in

this work (Section 4.3), we present in Chapter 2 a comprehensive review of published cellular

models. All simulation results presented in this chapter are generated directly from the CellML,

as are the model descriptions provided in Appendix A.

Chapter 3 builds on the base of models provided in Chapter 2, and demonstrates how

models of cellular electrophysiology and mechanics can be coupled together. Several cellular

electro-mechanics models are presented that are capable of reproducing some key experimen-

tal data. We then describe the modelling and simulation framework we have developed for

cardiac electro-mechanics based on tightly coupling the cellular level active tension dynamics

into tissue and organ level continuum models. Simulations are presented which test the models

developed and ensure the accuracy and reliability of the numerical results.

This work forms part of the IUPS Physiome Project. In Chapter 4 we present an overview

of the Physiome Project and provide more information about the CellML language. The mod-

els described in this thesis are all simulated using the CMISS computational biology package

which is also described in this chapter. Chapter 4 describes our implementation of an initial

simulation framework suitable for a wide range of the multi-scale modelling being done as part

of the Physiome Project. We use cardiac electro-mechanics as a case study for the use of the

framework. We also discuss the future of this framework and its application to other modelling
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areas.

In Chapter 5, the models of cardiac electro-mechanics developed are used with the frame-

work we have developed to provide insight to some real physiological problems. Discussion

of these results follows in Chapter 6, where we also discuss some future uses of the models

developed. A list of publications from this work is provided in Section 6.3.

Full descriptions of all the cellular models used in this thesis are provided in Appendix A,

generated from the CellML version of each of the models. Appendices B and C provide some

background information on the theory and implementation of finite elasticity and electrical ac-

tivation finite element modelling. Appendix D provides a description of the contents of the

compact disc that accompanies this thesis.



Chapter 2

Cellular Modelling Review

This chapter attempts to summarise the development of cellular electrical and mechanical mod-

elling from the work of Hill (1938), Hodgkin & Huxley (1952), and Huxley (1957) through to

today’s sophisticated models. While the focus of this thesis is on cardiac cells, some non-cardiac

cellular models are included here as many cardiac cellular models are derived from earlier work

on nerve and muscle cells (Fozzard & Lipkind 1995). The models presented here are designed

to represent the average properties of a group of cells forming part of a tissue, rather than one

particular cell. The heart contains 1010 cells and it is infeasible to model each one individually,

nor is it necessary because all the cells are tightly coupled both electrically and mechanically

and one cell behaves like its neighbours.

2.1 Introduction

In a very general sense, cellular models can be separated into two broad categories: biophys-

ical and simplified models. Biophysical models attempt to accurately model the underlying

physiology whereas simplified models mathematically represent a particular cellular property –

typically the cardiac action potential in the case of electrophysiological models. Biophysically

based models tend to have the advantage of greater predictive power but are fairly computa-

tionally intensive while simplified models are ideal for certain simulations where resources are

limited, either physically or due to the simultaneous solution of multiple cell simulations, and

only a specific aspect of the system is being investigated. For example, if one is only interested

in the propagation of the activation wave along a one-dimensional fibre, a simple polynomial
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model of activation (Hunter, McNaughton & Noble 1975) might be appropriate.

As well as the distinction between biophysical and simplified, models also tend to be thought

of in terms of the particular aspect of the cellular physiology they are modelling. In this work

we concentrate on modelling the electrophysiology and mechanical behaviour. Also, there are

models which model the cell as a whole and those which model just one component of the cell,

where a component is a general term which could mean anything from a single transmembrane

ion channel model to the full calcium dynamics subsystem of the cell. There are also models

which combine multiple component models together and/or model both the electrophysiology

and mechanical behaviour and their interaction – looking at excitation contraction coupling and

mechano-electrical feedback.

An important feature of this review is that all the mathematical models have been marked-up

in CellML (Section 4.1.1). Thus, all simulations presented in this chapter and the mathematical

equations provided in Appendix A are consistent. The CellML models are all provided on the

attached CD, see Section D.2 for more information.

2.1.1 Overview

Figure 2.1 graphically illustrates the time line of the development of the cellular models re-

viewed or developed in this thesis. While this figure (and this section) attempts to encompass

the significant models in this area, the figure is by no means a complete listing of all cardiac

cellular models. In Figure 2.1 the coloured arrows are used to indicate that a given model has

some connection to an earlier model or models. For example, the Luo & Rudy (1991) model

was further developed and presented as the Luo & Rudy (1994) model which was again further

developed into the Jafri, Rice & Winslow (1998) model.

Also shown in Figure 2.1 is a time line of the development of the Intel R©1 microprocessors.

This development can be interpreted as a general indication of the typical computational power

a scientist of the time would have had available in their laboratory or on their desktop. It is

interesting to note that the complexity of the mathematical models at least keeps up with the

development of the microprocessor, such that for a modeller to be able to solve a single cell

model in real time they would need the most powerful desktop computer at that time, if not

something more advanced. Certainly with the pure computational power accessible in most

1Intel, 386, 486, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States of America and other countries.
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1971 − 4004
1972 − 8008
1974 − 8080

1978 8086−8088

1982 − 286

1985 − 386

1989 − 486

1993 − Pentium

1997 − Pentium II

2001 − Pentium IV, 2GHz
2000 − Pentium IV
1999 − Pentium III

1999 − Celeron

2002 − Pentium, 1.8GHz, 1GB RAM

1962 Noble

1975 McAllister et al.

1977 Beeler & Reuter

1952 Hodgkin & Huxley

1961 FitzHugh/Nagumo

1998 Jafri et al.

1994 Luo & Rudy

1991 Luo & Rudy

1985 DiFrancesco & Noble

1957 Huxley

1938 Hill

1998 Fenton & Karma

1975 Hunter et al.

Electrophysiolgical Mechanics

1980 van Capelle & Durrer

1980 Ebihara & Johnson

1987 Drouhard & Roberge

1996 Aliev & Panfilov

2004 N−LRd

1998 Guccione et al.

1993 Guccione & McCulloch

1998 Hunter et al.

1998 Nash

2003 Markhasin et al.

1998 Noble et al.

2002 Clancy & Rudy

2001 Nickerson et al.

2004 Nash & Panfilov

2004 N−LRd−HMT

2004 FK−HMT

1994 Rogers & McCulloch

FIGURE 2.1: Time line of the development of the cellular models reviewed and developed in this

thesis. The models on the left are focused on electrophysiology, those on the right on mechanical

behaviour, and those down the middle are coupled electro-mechanics models. The blue text

through the centre of the figure provides the progressive development of Intel microprocessors.
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homes today a modeller is able to accomplish the solution of models that could not even be

attempted when the first Hodgkin & Huxley (1952) or Noble (1962) simulations were run on

huge, punch-card based mainframe computers.

The remainder of this chapter reviews the most of the models illustrated in Figure 2.1 de-

scribing their development and any improvement made to them over the years. The exceptions

are the two coupled electro-mechanics models developed as part of this work (FK-HMT and

N-LRd-HMT), which are covered in Section 3.1.

2.1.2 Nomenclature and Conventions

Generally most cellular models use similar nomenclature and conventions. To aid the use of the

models reviewed here, the model descriptions have all been adjusted from the original publica-

tions to ensure consistency throughout all the models reviewed. Particular care has been taken

to ensure that the similar conventions are used across all the models and that the models are

self-consistent for units and dimensionality.

Conventions

All the models reviewed below have been formulated using the electrophysiological conven-

tion described by Noble (1962). The transmembrane electric potential (denoted as Vm) is the

potential of the bulk intracellular cytoplasm with respect to the extracellular space, the rest-

ing potential is a negative quantity, and the action potential is a positive variation – requiring

outward currents to be positive. This needs to be consistent when comparing different cellular

electrophysiology models and also when using the models in distributed simulations.

The main requirement for the cellular mechanical models is that the model’s representation

of stress and strain is consistent with that at the tissue and organ levels. We achieve this through

the use of the fibre extension ratio, described in Section 2.1.3 below, at both the tissue and

cellular modelling levels. As will be described, the fibre extension ratio is readily calculated for

a given tissue strain state.
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Units and Dimensionality

With the development of standards such as CellML, which requires every quantity to be asso-

ciated with an appropriate unit definition, it is hoped that model definitions will become much

more specific in terms of units. The models reviewed here all predate a common specification

of such standards to represent them – which sometimes leads to incompatibilities between the

models. To avoid such compatibility issues and to ensure models may be easily compared all

models below have been described in terms of a common underlying set of units. The base set

of units are defined in Table 2.1 and those derived from these are given in Table 2.2.

Quantity S.I. Base Units Cellular Modelling Units

Name Symbol Multiplier Symbol

Amount of substance mole mol 10−9 nmol

Electric current Ampere A 10−6 µA

Length metre m 10−3 mm

Mass kilogramme kg 10−9 ng

Temperature Kelvin K K

Time second s 10−3 ms

TABLE 2.1: The standard base units used in all the cellular modelling in this thesis and their

relationship to base S.I. units.

2.1.3 Fibre Extension Ratio

The fibre extension ratio is a non-dimensional localised measure of uniaxial cellular deforma-

tion. A value of 1.0 corresponds to a cell at its resting length, typically taken as 100.0 µm.

Values greater than 1.0 indicate the cell is being stretched and a value less than 1.0 implies the

cell is being compressed in the fibre direction. While a cardiac cell is usually only stretched

through the application of external forces, compression can be caused either passively by the

surrounding tissue or through active contraction of the cell.

In cellular models the fibre extension ratio is defined as the ratio of the current length of the

cell, L, to the cellular resting length, L0, and is denoted λ,

λ =
L

L0
. (2.1.1)

This is, of course, another way of expressing material strain with respect to the fibre axis. When

modelling myocardial tissue, there are three microstructural axes and the strain in each of these
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Derived Quantity Cellular Modelling Units

Units Synonym

Area mm2

Volume mm3

Voltage mm2 · ng · ms−3 · µA−1 mV

Conductivity mm−2 · ng−1 · ms3 · µA2 mS

Membrane conductance mm−4 · ng−1 · ms3 · µA2 mS · mm−2

Tissue conductivity mm−3 · ng−1 · ms3 · µA2 mS · mm−1

Current density µA · mm−2

Volume current µA · mm−3

Charge ms · µA nC

Capacitance mm−2 · ng−1 · ms4 · µA2 µF

Specific capacitance mm−4 · ng−1 · ms4 · µA2 µF · mm−2

Concentration nmol · mm−3 mM

Concentration rate nmol · mm−3 · ms−1 mM · ms−1

Force mm · ng · ms−2 nN

Stress (pressure) mm−1 · ng · ms−2 mPa

Energy mm2 · ng · ms−2 pJ

Power mm2 · ng · ms−3 nW

TABLE 2.2: The standard derived units for the cellular modelling in this thesis, both in terms of

the base units from Table 2.1 and the commonly used synonyms.
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axes can be expressed as extension ratios,

λii =
√

2Eii + 1, (2.1.2)

where Eii are the axial strain components from the Green strain tensor, Equation (B.1.4).

In the fibre direction, it is generally assumed that intact cells can be passively stretched to

approximately 2.4 µm and internal structure prevents compression and/or contraction below

approximately 1.6 µm. This results in a physiological range of

0.8 . λ . 1.2

Knowledge of the range of λ is important in the simulation of tissue models and is used to

impose physiological constraints on the numerical methods used in such simulations (Sec-

tion 3.2.2).

2.2 1952 Hodgkin & Huxley

Over the period 1935 – 1952 Hodgkin & Huxley performed a series of experiments concerned

with the flow of electric current through the surface membrane of a squid giant nerve fibre.

These experiments led to the publication in 1952 of the first biophysically based model of the

electrophysiology of a single cell (Hodgkin & Huxley 1952). This model laid the foundation

for much of the electrical modelling of cardiac cells, with some of the mechanisms from this

model still in use today – most models incorporate at least a few “Hodgkin-Huxley” type gating

variables (see Equation (2.2.2)).

Given the relevance of this spectacularly successful paradigm model (Noble & Rudy 2001)

to all of the following electrophysiology models, we devote more attention to its description.

In this model Hodgkin & Huxley presented the idea that the electrical behaviour of the axon

membrane may be represented by the equivalent electrical circuit shown in Figure 2.2. This

analogy shows that current can be carried through the membrane by charging the membrane

capacity or by movement of ions through resistances in parallel to the capacity.

Hodgkin & Huxley break the membrane current into three components: sodium, potassium,

and a leak current (made up by chloride and other ions). Each component current is determined

by a driving force conveniently measured as an electrical potential difference and a permeabil-

ity coefficient which has the dimensions of conductance. Their experiments suggested that the
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FIGURE 2.2: Electrical circuit representing the membrane. RNa = gNa
−1, RK = gK

−1, and

Rl = gleak
−1.

conductance for the sodium and potassium currents were functions of time and membrane po-

tential while that of the leakage current was constant, as were the equilibrium potentials for

all three components of the membrane current. They also observed that changes in membrane

permeability were dependent on membrane potential, not membrane current.

Possibly the most significant contribution of their work was the suggestion that changes

in ionic permeability depended on the movement of some component of the membrane which

behaved as though it had a large charge or dipole moment. With this suggestion, they also state

that for such components to exist it would be necessary to suppose that their density is relatively

low and that a number of ions cross the membrane at a single (selective) active patch – i.e., a

selective transmembrane ion channel. In their model Hodgkin & Huxley describe two such

components – one sodium sensitive, with both activation and inactivation molecules, and one

potassium sensitive, with slower kinetics and no blocking or inactivation molecules.

This model and all the following electrophysiology models make extensive use of an ion’s

equilibrium, or Nernst, potential. An ion’s equilibrium potential is calculated using the Nernst

equation, which describes the relationship between the ratio of concentrations of an ion across

a membrane and the electrical potential difference across the membrane when the ion is dis-

tributed in equilibrium. The Nernst potential for ion X is given by:

EX =
RT

zXF
ln

(

[X]o
[X]i

)

, (2.2.1)
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where R is the natural gas constant, T is the absolute temperature, zX is the ion’s valence, [X]o

denotes extracellular concentration of the ion, and [X]i is the intracellular concentration.

The complete Hodgkin & Huxley mathematical model of a squid giant axon is given in

Section A.2. In summary, the activation variables of the Na+ (m) and K+ (n) currents and the

inactivation variable of the Na+ current (h) are governed by an ordinary differential equation of

the form
dx

dt
= α (1 − x) − βx, (2.2.2)

where x is one of m, h, or n and t is time. α and β are the voltage-dependent opening and

closing rates, respectively, of the molecular gates (see Section A.2 for their formulations). As

mentioned, the ionic currents are defined as the product of a permeability coefficient and the

potential difference between the membrane potential and the ion’s equilibrium potential

INa = gNa (Vm − ENa) (2.2.3)

IK = gK (Vm − EK) (2.2.4)

Ileak = gleak (Vm − Eleak) , (2.2.5)

where Vm is the membrane potential,ENa,EK , andEleak are the constant equilibrium potentials

of the channels. gleak is the constant conductance for the leakage channel and gNa and gK are

given by

gNa = gNam
3h (2.2.6)

gK = gKn
4. (2.2.7)

The kinetics of the membrane potential are then defined as the sum of the ionic currents

dVm

dt
=
Istim − (INa + IK + Ileak)

Cm

. (2.2.8)

Istim is an applied stimulus current and Cm is the membrane capacitance per unit area.

Figure 2.3 shows the results Hodgkin & Huxley model simulations with a repetitive stimulus

of 400 µA · mm−3 applied at a frequency of 10 Hz.

2.3 Simplified Models of Cardiac Cellular Electrophysiology

This section reviews models derived to represent cardiac cellular electrophysiology without

explicit inclusion of ion channel mechanisms. These simplified models attempt to replicate
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FIGURE 2.3: Results from simulating the Hodgkin & Huxley (1952) model. The Ileak current is

amplified, right scale, to better illustrate its time course. The model is stimulated at a frequency

of 10 Hz with a current of 400 µA · mm−3 for a duration of 0.5 ms.
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certain key features of the electrophysiology, such as propagation, restitution behaviour, and

activation properties. The distinction in complexity between these “simple” models and the

later biophysical models is not always clear but is illustrated by comparing the three differential

equations in the Fenton & Karma (1998) model (Sections 2.3.4 and A.16) to the 31 in the Jafri

et al. (1998) model (Sections 2.4.7 and A.18).

2.3.1 1961 FitzHugh/Nagumo

FitzHugh (1961) and Nagumo, Animoto & Yoshizawa (1962) independently published a gen-

eralisation of van der Pol’s equation for a relaxation oscillator to provide a simplified unifying

concept for the theoretical study of axon physiology. This model has become known as the

FitzHugh-Nagumo model of nerve membrane.

By considering the Hodgkin & Huxley (1952) model as one member of a large class of

non-linear systems showing excitable and oscillatory behaviour and through the application of

phase space methods, FitzHugh reduced the four state variable Hodgkin & Huxley model to a

two state variable model. This model can be taken as representative of a wide class of non-

linear excitable-oscillatory systems which show threshold and refractory properties as well as

oscillations or infinite trains of responses.

Section A.3 presents the full mathematical model of FitzHugh and Nagumo, Animoto &

Yoshizawa, but rather than using the non-dimensional equations given in the original publication

of these models the equations have been formulated in terms of the “real” membrane potential.

Results of simulating with this model are presented in Figure 2.4.

1994 Rogers & McCulloch

In 1994 Rogers & McCulloch published a modification of the FitzHugh-Nagumo model de-

signed to make the model more characteristic of cardiac electrical behaviour. As shown in Fig-

ure 2.5, the modified model (Section A.14) removes the hyperpolarisation from the refractory

part of the action potential.

The modification Rogers & McCulloch made was to the second term in the Iion equation,

with the additional multiplication by the activation variable (Equation (A.14.4)), and changes in

model parameter values.
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FIGURE 2.4: Results from the FitzHugh-Nagumo model, for an applied stimulus of

400 µA · mm−3 at a frequency of 2.5 Hz with a duration of 0.5 ms.
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FIGURE 2.5: Results from the Rogers & McCulloch (1994) and Aliev & Panfilov (1996) modi-

fied FHN models plotted with the original FHN model. Notice the lack of the hyperpolarisation

region in the tail of the action potential for the modified models. For all models, a stimulus of

400 µA · mm−3 is applied at 100 ms for 0.5 ms.
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1996 Aliev & Panfilov

Aliev & Panfilov (1996) proposed another modification of the FitzHugh-Nagumo model which

simulates the restitution property of cardiac tissue, adequately represents the shape of the ac-

tion potential, and can be used effectively in computer simulations, particularly, in whole heart

modelling. The model is given in Section A.15, with the simulated action potential presented in

Figure 2.5.

The restitution properties of this model are shown in Figure 2.6. Electrical restitution is

the property in cardiac tissue where the action potential duration (APD) is dependent on the

stimulus frequency, characterised here by the basic cycle length (BCL) (the period between

stimuli).
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FIGURE 2.6: An illustration of the restitution ability of the Aliev & Panfilov (1996) modified

FitzHugh-Nagumo model. (a) presents sample action potentials at three stimulus frequencies and

(b) provides a summary of the restitution properties of the model (cf. Aliev & Panfilov (1996,

Fig. 3). In all simulations a 400 µA · mm−3 stimulus current is applied at required frequency for

a duration of 0.5 ms.

2.3.2 1975 Hunter et al.

Hunter et al. (1975) look at the mathematics of electrical impulse propagation in excitable cells,

namely conduction in fibres of uniform geometry. One motivation for this work was establishing

a quantitative technique for calculation of conduction velocities in nerve fibres.
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The model Hunter et al. (1975) developed built on earlier work which assumed that at a given

threshold potential an instantaneous change in membrane electromotive force occurs – which is

incorrect, as the ionic current was known to be a smooth (even if sometimes steep) function of

potential. Thus, Hunter et al. (1975) propose various continuous polynomial functions for the

ionic current. Polynomial functions were used as they could be chosen to give very good fits

to current-voltage relations found in excitable cells without having to include more than a few

powers in the polynomial equation.

Like the earlier discontinuous models however, the polynomial models still model the ionic

current as purely voltage-dependent, whereas in real cells the ionic current is also an indepen-

dent function of time. Hunter et al. (1975) mention some contemporary models which include

time dependence through the addition of a recovery variable. However, for the purposes of

reproducing the conduction process Hunter et al. (1975) state that this is an unnecessary modi-

fication since at normal temperatures it is the activation properties that limit conduction.

The third order polynomial model is presented in Section A.5 – this version of the model

has become known as the cubic model of electrical activation and used in various studies of

electrical propagation in continuum tissue models. Plotting the current-voltage relationship

for this model illustrates the cubic nature of this model, as shown in Figure 2.7(a), and the

continuous activation of the membrane potential can be seen in Figure 2.7(b).
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FIGURE 2.7: Results from simulation of the Hunter et al. (1975) cubic polynomial model of

activation. The activation is initiated with an applied 1 ms duration stimulus of 100 µA · mm−3.
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2.3.3 1980 van Capelle & Durrer

In a study of the role of spatial interaction among excitable elements in the mechanisms un-

derlying cardiac arrhythmia, van Capelle & Durrer (1980) developed a simplified membrane

electrical activation model. Like the FitzHugh-Nagumo type models, their model consists of

two variables of state: the transmembrane potential (Vm) and a generalised excitability variable,

(Y ). Y can have any value between 0 (maximal excitability) and 1 (complete in-excitability).

The state of a “cell” in this model, is then completely determined at any time by Vm and Y . In

this way, Y is essentially playing the role of the m, h, and n gating variables in the Hodgkin &

Huxley kinetics.

The full van Capelle & Durrer (1980) model is given in Section A.9, and the results of

simulating this model are presented in Figure 2.8.
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FIGURE 2.8: Results from the van Capelle & Durrer (1980) model, for an applied stimulus of

100 µA · mm−3 at a frequency of 2 Hz with a duration of 1.0 ms.

2.3.4 1998 Fenton & Karma

In a study examining reentry phenomenon in cardiac tissue, Fenton & Karma (1998) developed

an ionic activation model that retains the minimal ionic complexity necessary to reproduce

quantitatively the restitution curves that describe how the pulse duration and its propagation
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velocity depend on the time interval after repolarisation during which the membrane recovers

its resting properties. They concentrate on the action potential duration and conduction veloc-

ity restitution curves because these dictate the dynamics of the depolarisation wavefront and

repolarisation wave-back, and the interaction between these two fronts – most important for

modelling reentry. When modelling wave dynamics, these two properties are more fundamental

quantities than the shape of the action potential.

The model, given in full in Section A.16, consists of three ionic currents: a fast inward cur-

rent that is responsible for depolarisation of the membrane and only depends on one inactivation-

reactivation gate (v); a slow, time-independent, outward current that is responsible for repolar-

isation of the membrane; and a slow inward current activated during the plateau phase of the

action potential and only depends on one inactivation-reactivation gate (w).

Fenton & Karma chose their model parameters to fit the restitution curves from four sources.

Three of the sources were previously published biophysical ventricular cell models: the Beeler

& Reuter (1977) model (BR), and modified versions of the Beeler & Reuter (MBR) and Luo

& Rudy (1991) (MLR-I) models. The modification made to the models was to speed up the

calcium dynamics by a factor of two. The fourth source (GP) was some experimental steady-

state curves from optical recordings of membrane potentials on the epicardial surface of the left

ventricle of a guinea pig during plane wave pacing at fixed cycle lengths. The results of the

model for each of the versions are presented in Figure 2.9.

In Figure 2.10, the action potential for the BR version of the Fenton & Karma model is

plotted with that from the full Beeler & Reuter (1977) ventricular myocyte model.

2.4 Biophysically Based Models of Cardiac Cellular Electro-

physiology

Biophysically based cellular models are derived from extensive experimental observations and

are designed to model, in varying amounts of detail, the underlying physiological mechanisms

(especially gated ion channels) rather than just reproduce the action potential. Due to the inclu-

sion of the physiological detail these models tend to have much greater predictive power than

the simplified models presented in the previous section, but that same detail leads to very large

(and typically stiff) systems of ordinary differential equations – which is still a limiting factor

in the use of this class of model in large scale tissue and organ models.
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FIGURE 2.9: Results from the Fenton & Karma (1998) model, for an applied stimulus of

80 µA · mm−3 at a frequency of 2 Hz with a duration of 1.0 ms. (a) shows the action poten-

tial for each of the four versions of the model – Beeler & Reuter (1977) (BR/MBR), Luo &

Rudy (1991) (MLR-I), and the experimentally derived version (GP); (b) and (c) present the ionic

currents and the gating variables, respectively, for the GP version of the model.



30 CELLULAR MODELLING REVIEW

-100

-60

-20

 20

 1000  1200  1400  1600  1800  2000

FK
BR 1977

PSfrag replacements

Vm

Cm

I

Iion

INa

IK

Ileak

m
V

µA · mm−2

ms

FIGURE 2.10: Comparison of the action potentials calculated from the BR version of the Fenton

& Karma model and those from the original Beeler & Reuter (1977) model, for a S1-S2-S3

stimulus protocol (cf. Fenton & Karma (1998, Fig. 4))

As mentioned previously, these models were largely based on the model of the squid axon

by Hodgkin & Huxley (1952). But with ever improving experimental techniques the models

are gradually leaning more and more toward stochastic modelling of populations of individual

channels governed by more biochemically-oriented models. Differential equations can then be

formulated from these stochastic channel population models to give approximations for inclu-

sion into whole cell models.

2.4.1 1962 Noble

Following the discovery that there were at least two K+ conductances in the heart, IK1 and IK
(initially known as IK2), Noble (1962) developed a model to test whether this combination of

K+ currents plus a Hodgkin & Huxley type Na+ channel could be used to describe the long-

lasting action and pacemaker potentials of the Purkinje fibres of the heart.

The sodium current equations in this model are very similar to the Hodgkin & Huxley (1952)

description, with the curves now fitted to voltage-clamp data from Purkinje fibre experiments.

The IK1 current is assumed to be an instantaneous function of the membrane potential and falls

when the membrane is depolarised (a time-independent rectification current). The IK2 current

slowly rises when the membrane is depolarised, described using Hodgkin & Huxley’s (1952)

potassium current equations (see Section 2.2), with two main modifications: the maximum
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value, gK2
, was made much smaller than in nerve in order that the increase in gK2

produced by

depolarisation should not offset the decrease in gK1
; and the rate constants were divided by 100

in order to take account of the very much slower onset of this effect in Purkinje fibres.

The full Noble (1962) model is given in Section A.4, with results from simulating the model

presented in Figure 2.11. Figure 2.11(a) shows the action potentials generated for the free

running (pacemaker) version of the model and those for the quiescent version. Noble (1962)

obtain a quiescent version of their model by adding 0.001 mS · mm−2 to the K+ conductance –

see the g K add parameter in Section A.4.

-100
-80
-60
-40
-20

 0
 20
 40

free running
quiescent and stimulated

PSfrag replacements
Vm
Cm

I
Iion
INa
IK

Ileak

m
V

µA · mm−2

ms
(a) Membrane potential, Vm

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
m
h
n

PSfrag replacements
Vm
Cm

I
Iion
INa
IK

Ileak
mV

µA · mm−2

ms
(b) Gating variables

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  500  1000  1500  2000  2500  3000

PSfrag replacements
Vm
Cm

I
Iion

INa

IK

Ileak
mV

µ
A
·m

m
−

2

ms
(c) Transmembrane ionic currents

FIGURE 2.11: Results from simulating the Noble (1962) model. (a) shows the action potentials

generated by the free running (pacemaker) version of the model and those for the quiescent

version of the model with two stimuli of 400 µA · mm−3 with a duration of 1 ms. (b) and (c) are

results for the free running model.
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2.4.2 1975 McAllister et al.

With the development of better and more extensive experiments on cardiac membranes, McAl-

lister, Noble & Tsien (1975) found that previous cardiac models based on modifications to the

Hodgkin & Huxley (1952) nerve model were inadequate in important ways. Using the wealth

of data then available, McAllister et al. (1975) developed a new model of cardiac Purkinje fibres

containing many significant advances from the Noble (1962) model.

The model contains two time-dependent inward currents: a fast sodium current (INa, similar

to that of Hodgkin & Huxley (1952)); and a secondary inward current (Isi) with slower kinetics

was identified and is partly carried by calcium ions. There is a transient outward chloride cur-

rent (Iqr) activated during strong depolarisations. Finally, instead of the single K+ current of

Hodgkin & Huxley (1952) and Noble (1962), McAllister et al. (1975) found three distinguish-

able time-dependent potassium currents (IK2, Ix1
, and Ix2

). None of these potassium currents

quantitatively resembled the squid potassium current.

In addition to these currents, McAllister et al. (1975) expand the time-independent leakage

current from the Hodgkin & Huxley (1952) nerve model into three distinct components, based

on the possible ionic composition of the currents. The outward background current is carried

mainly by K+ (IK1) and corresponds to the outward membrane current that may be recorded

below the Ix1
and Ix2

threshold in Na+-free solutions. They also define an inward background

current carried by Na+ which gives the measured resting potential deviation from that of the

potassium equilibrium potential (the primary cause of the resting potential value). The third

component came from experimental evidence that Cl− contribute to the current flow during the

pacemaker and plateau phases of the action potential. While McAllister et al. (1975) formulated

the three background time-independent currents in terms of specific ions, they note that there

was at that time no reliable means to experimentally dissect the total background current so their

formulation was rather tentative and does not imply that there necessarily exists such distinct

membrane channels.

Figure 2.12 presents the results this model, which is given in full in Section A.6. The

currents and gating variables are all shown along with the spontaneous action potentials.
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FIGURE 2.12: Simulation results for all the currents and gating variables in the McAllister et al.

(1975) Purkinje fibre model, illustrating the pacemaker functionality of the model. In figures

(b)–(f) the left hand axis denotes the scale for the gating variables and the right hand denotes the

current scale.
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2.4.3 1977 Beeler & Reuter

In 1977 Beeler & Reuter published the first mathematical model of the cardiac ventricular action

potential. This model formulated the cardiac ventricular action potential from transmembrane

ionic currents using Hodgkin & Huxley (1952) type equations, in a similar manner to the model

by McAllister et al. (1975) for the cardiac Purkinje fibre. The Beeler & Reuter (1977) model

became the framework for the development of later more comprehensive models of cardiac

ventricular action potentials and has been used extensively in simulations of action potential

propagation in multicellular models of cardiac tissue (Noble & Rudy 2001).

The model includes four individual components of ionic current. The two inward voltage-

and time-dependent currents are the excitatory sodium current (INa) and a secondary or slow

current primarily carried by calcium ions (Is). For outward currents, there is a time-independent

potassium current (IK1) which exhibits inward-going rectification, and a voltage- and time-

dependent current primarily carried by potassium ions (Ix1
). Both IK1 and Ix1

were adopted

from the McAllister et al. (1975) model, while the pacemaker current (IK2) and Ix2
were

dropped as there was no convincing experimental evidence for the presence of these currents in

ventricular myocardium.

The fast sodium current (INa) was adapted from Hodgkin & Huxley (1952) with the addition

of a slow inactivation gating variable (j) based on experimental evidence that re-activation of

INa was much slower than inactivation. The secondary inward current (Is) was the main focus

of the Beeler & Reuter (1977) model and included an initial model of intracellular calcium

handling (Figure 2.13(b)). The full model is given in Section A.7 and the results from simulation

with this model are presented in Figure 2.13.

1980 Ebihara & Johnson

In 1980, Ebihara & Johnson published possibly the first mathematical model focused on a single

cardiac transmembrane ionic current – the fast sodium channel (INa). While previous models

had been developed for this current, the lack of experimental data for the kinetics of the channel

under physiological conditions led to ad hoc assumptions in such models (Ebihara & Johnson

1980).

The aim of the Ebihara & Johnson (1980) model was to provide a quantitative description of

the kinetics of the fast sodium channel using voltage-clamp data obtained from small spherical
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FIGURE 2.13: Simulation results for all the currents and gating variables in the Beeler & Reuter

(1977) ventricular model. In figures (c)–(f) the left hand axis denotes the scale for the gating

variables and the right hand denotes the current scale. (b) gives the intracellular calcium concen-

tration.
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clusters of tissue-cultured heart cells. The kinetic data were fit to the Hodgkin & Huxley (1952)

model to facilitate comparison of the kinetics to those of other studies.

While the model given by Ebihara & Johnson (1980) was only for the INa current, this

model can be treated as a direct replacement for INa in the Beeler & Reuter (1977) ventricular

myocyte model. This full cellular model (including corrections published in Spach & Heidlage

(1993)) is given in Section A.8. Figure 2.14 shows a comparison of the Ebihara & Johnson

modified model with the original Beeler & Reuter model.

1987 Drouhard & Roberge

Using more recent and extensive voltage-clamp data, Drouhard & Roberge (1987) further re-

vised the Hodgkin-Huxley formulation of the INa current for ventricular myocardial cells. They

developed the kinetics of the fast sodium channel to represent a good compromise between

available experimental data and to lead to a reasonable average representation of the cardiac

Na+ current.

As with the Ebihara & Johnson (1980) model, that of Drouhard & Roberge can be used as

a replacement for the fast sodium channel in the original Beeler & Reuter ventricular myocyte

model. The full cellular model is given in Section A.11 and Figure 2.14 compares this version of

the Beeler & Reuter model with the previous Ebihara & Johnson version, as well as the original

Beeler & Reuter (1977) model.
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FIGURE 2.14: Comparison of the original Beeler & Reuter model with the INa modified Ebihara

& Johnson (BREJ) and Drouhard & Roberge (BRDR) versions (cf. Drouhard & Roberge (1987,

Fig. 6)). The stimuli used follow that specified by Drouhard & Roberge (1987, Table 2) – BR

64.8 µA · mm−3, BREJ 80 µA · mm−3, and BRDR 72 µA · mm−3, all with a 2 ms duration.
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1999 Defibrillation BR

The Drouhard & Roberge modified Beeler & Reuter model (Drouhard & Roberge 1987) was

further modified by Skouibine, Trayanova & Moore (2000) to handle potentials outside the

normal physiological range, allowing the model to be used in defibrillation studies. The full

defibrillation model is given in Section A.21.

2.4.4 1985 DiFrancesco & Noble

Making use of the extensive developments in experimental work since the development of

the McAllister et al. (1975) cardiac Purkinje model (e.g., Fabiato & Fabiato 1975, Colatsky

1980, Gadsby 1980), DiFrancesco & Noble published a new model of cardiac Purkinje fibre

electrophysiology (DiFrancesco & Noble 1985) – a model which remains the most comprehen-

sive of all Purkinje fibre ionic current models. The full description of the model can be found

in Section A.10, and some results from model simulations are shown in Figure 2.15.

This model provided the first description of ion exchangers in a cellular model – the sodium

pump (Na+-K+ exchange), Na+-Ca2+ exchanger and the SR calcium pump. The development

of this model involved a modelling avalanche (Noble & Rudy 2001), in which the addition of

Na+-K+ exchange to match experimental data for K+ concentrations in the extracellular spaces

led to the inclusion of other mechanisms to maintain the intracellular cation balances (Na+ and

Ca2+) since they are all linked via the sodium pump and Na+-Ca2+ exchanger. The model also,

in another first, included intracellular events through the incorporation of a model of calcium

release from the SR.

In a good example of the model’s predictive power, the DiFrancesco & Noble (1985) model

showed that in order to maintain a resting intracellular Ca2+ concentration below 1 µM the Na+-

Ca2+ exchanger must operate with a 3 : 1 (Na+:Ca2+) stoichiometry rather than the widely

accepted (at that time) 2:1. This stoichiometry predicts that there must be a current carried by

the Na+-Ca2+ exchanger and that, if dependent on intracellular calcium, it must be strongly time

dependent. Shortly after the publication of this model experimental data showing the validity of

these predictions was published (Kimura, Noma & Irisawa 1986).

However, while the model keeps the resting calcium concentration within physiologically

acceptable limits, the peak value reached (∼7 µM) is outside those limits (Figure 2.15(d)). This

inaccuracy in the model was corrected in the development of the Hilgemann & Noble (1987)
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FIGURE 2.15: Results from simulating the DiFrancesco & Noble (1985) cardiac Purkinje ionic

current model. In (c), the left axis shows the scale for Irel and the right axis the scale for Iup

and Itr. The left axis in (d) gives the scale for the intracellular calcium transient ([Ca2+]i) with

the scale for the SR uptake and release calcium stores ([Ca2+]up and [Ca2+]rel, respectively) is

shown on the right axis. These results are for the pacemaker version of the model, obtained by

shifting the y gating variable 10 mV (DiFrancesco & Noble 1985).
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atrial cell model (and later versions of the Noble model, i.e., Noble, Varghese, Kohl & Noble

(1998), Section 2.4.8) through the inclusion of intracellular calcium buffers.

2.4.5 1991 Luo & Rudy

In 1991 Luo & Rudy reformulated the Beeler & Reuter (1977) ventricular myocyte model us-

ing new experimental data provided by single cell and single channel recordings. The model

included formulations of the fast sodium current (INa), delayed rectifier potassium current (IK),

and the inward rectifier current (IK1). The plateau potassium current (IKp
) from Yue & Marban

(1988) was also included in the model.

A summary of the results of simulating the Luo & Rudy (1991) model is presented in Fig-

ure 2.16 and the full model is provided in Section A.12.
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FIGURE 2.16: Results from simulations with the Luo & Rudy (1991) ventricular myocyte model.

In (b) the total current for each of the three ionic species is shown, the Na+ current is not shown

to its full peak so the Ca2+ and K+ currents can be seen. A stimulus current of 100 µA · mm−3

is applied with a duration of 1 ms.

Following the formulation of Beeler & Reuter, the Luo & Rudy (1991) model also takes

into account changes in intracellular calcium concentration ([Ca2+]i). The Luo & Rudy model,

however, also incorporates the possibility of changing extracellular potassium concentration

([K+]o), an important factor in ischaemic tissue. The action potential simulations of this model

duplicates the experimentally observed effects of changes in [K+]o on action potential duration

and resting potential (Figure 2.17).
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FIGURE 2.17: Results from simulations of the Luo & Rudy (1991) ventricular myocyte model

with different values for extracellular potassium concentration ([K+]o) – cf. Luo & Rudy (1991,

Figure 4). The legend in (a) gives the [K+]o values, in mM, used for the simulations. (a) shows

the change in action potential duration and resting potential for the different values of [K+]o. In

(b), IK1(T ) is the total time-independent potassium current which shows a strong dependence

on [K+]o, while (c) and (d) show only a weak dependence of IK and Isi on [K+]o. In all the

simulations a stimulus current of 100 µA · mm−3 is applied with a duration of 1 ms.
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2.4.6 1994 Luo & Rudy

Continuing the development of the Luo & Rudy (1991) cardiac ventricular action potential

model, Luo & Rudy (1994) introduced processes that control the dynamically changing con-

centrations of intracellular ions (Ca2+, Na+, K+) and their effects on transmembrane currents.

The model also included cell compartmentalisation (myoplasm and junctional and network sar-

coplasmic reticulum – JSR and NSR respectively) and models the Ca2+ concentration in each

of the three compartments with an initial model of calcium-induced calcium release from the

JSR. Buffering of Ca2+ in the myoplasm (by calmodulin and troponin) and in the JSR (by calse-

questrin) was also incorporated into the model. The full model is presented in Section A.13 with

some summary results in Figure 2.18.
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FIGURE 2.18: Results from simulations with the Luo & Rudy (1994) ventricular myocyte model.

IV is the total time-independent current, and the peak INa is not shown to allow the other currents

to be seen. A stimulus current of 100 µA · mm−3 is applied with a duration of 1 ms.

Due to the extent to which the membrane current formulations and model predictions have

been validated against experimental data the Luo & Rudy (1994) model has become the most
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widely used model of cardiac ventricular myocyte electrophysiology (Winslow, Scollan, Holmes,

Yung, Zhang & Jafri 2000). While the model was originally formulated from guinea-pig data,

it has since been fitted to several species. Due to its prolific use, the base Luo & Rudy (1994)

action potential model has been, and continues to be, developed to remain consistent with ac-

cepted experimental data as it becomes available. Some of the advances in the model by Rudy

and colleagues are described below (see also Sections 2.4.7 and 2.4.9)

Zeng, Laurita, Rosenbaum & Rudy (1995) split the delayed rectifier current (IK) into two

components – IKr (rapid) and IKs (slow), and added the T-type calcium channel (ICa(T )). IKr

incorporated a [K+]o-dependent conductance and the IKs conductance was [Ca2+]i-dependent.

Viswanathan, Shaw & Rudy (1999) refined IKs with the addition of a second gating variable

and reformulated the channel conductance and its [Ca2+]i dependence. This version of the

model also included a reformulation of the calcium-induced calcium release process to pro-

vide a graded response for even a small entry of Ca2+ into the cell. The Viswanathan et al.

(1999) model provided formulations for three different cell types (epi-, mid-, and endocardial

cells) by scaling the IKs current to represent the differing density of these channels through the

ventricular wall.

Faber & Rudy (2000) studied the effect on the action potential and contraction with changes

caused by intracellular sodium overload. This required several modifications to the previous

version of the Luo & Rudy model. Calcium-induced calcium release was once again reformu-

lated to give graded release without threshold, and calcium uptake into the NSR was increased.

The Na+-K+ exchanger current (INaK) was increased and INaCa was also reformulated. For

the case when the cell was experiencing sodium overload, a Na+ activated K+ channel was

introduced.

The continual reformulation of the calcium-induced calcium release process used in the

various Luo & Rudy models is related to the focus of these models being on whole cell electro-

physiology rather than on biophysical details of the mechanisms involved in calcium handling.

This allows for the best use of computational and numerical resources in modelling the electro-

physiology at the cost of excluding possible effects of detailed calcium models.

2.4.7 1998 Jafri et al.

The Luo & Rudy models described in the previous section contain a lot of biophysical detail

in the cellular electrophysiology but represent the calcium subsystem with phenomenological
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models. The Jafri et al. (1998) model adds biophysical detail to the calcium subsystem in the

Luo & Rudy (1994) model. In the Jafri, Rice & Winslow model, several modifications and

additions are made to the Luo & Rudy model:

• the L-type Ca2+ current is replaced with a new formulation based on the mode-switching

Markov-state model of Imredy & Yue (1994);

• the SR calcium release mechanism is replaced with the Markov state model of ryanodine

receptor Ca2+ release channels in the junctional SR membrane (Keizer & Levine 1996);

• ryanodine receptors and L-type Ca2+ channels are assumed to empty into a restricted

subspace located between the junctional SR and T-tubules;

• both high- and low-affinity Ca2+ binding sites for troponin are included; and

• the magnitudes of the IKp
, INa, INaCa, Ins(Ca), and ICa,b currents are scaled to preserve

myoplasmic ionic concentrations and action potential shape.

Figure 2.19 illustrates some simulation results from the Jafri et al. (1998) model, with em-

phasis on the calcium subsystem. The full model is given in Section A.18. A comparison with

the original Luo & Rudy (1994) model simulated action potential is presented in Figure 2.19(a).

When investigating excitation-contraction coupling, many of the phenomena of interest de-

pend on the interval between stimuli and hence evolve over the time course of multiple action

potentials. These phenomena are known as interval-force relations. Due to force generation in

a myocyte being roughly proportional to intracellular Ca2+ concentration and the inclusion of a

detailed calcium subsystem in their model, Jafri et al. (1998) were able to investigate the effects

of pacing rate on force generation.

One of the simulations Jafri et al. (1998) presented examined the transition period between

increasing and decreasing the pacing frequency of the model. This simulation illustrated the

extended range of applicability of the Jafri et al. (1998) model over the Luo & Rudy (1994)

model by producing results comparable to those seen experimentally. The model also allowed a

prediction to be made as to the mechanisms involved in producing the experimentally observed

phenomena.

2.4.8 1998 Noble et al.

The Noble et al. (1998) guinea-pig ventricular cell electrophysiology model is an extension and

update of the earlier Noble, Noble, Bett, Earm, Ho & So (1991) ventricular model built from
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FIGURE 2.19: Results from simulations with the Jafri et al. (1998) and Noble et al. (1998)

ventricular myocyte models. (a) shows the simulated action potential from the Jafri et al. (1998)

(JRW), Noble et al. (1998) (N98) and Luo & Rudy (1994) (LRd) models. In (c), RyRopen is

the sum of the fraction of ryanodine receptors in an open state (JRW only). (d) is the Ca2+

concentration transient from the restricted subspace (diadiac space in Noble et al. (1998) model)

and (f) shows the Ca2+ concentrations in the junctional (JSR) and network (NSR) compartments

of the SR. The concentration of Ca2+ bound to the high- and low-affinity troponin buffers in the

myoplasm are shown in (g) (JRW only), with the high transient using the left scale and the low

transient using the right scale. A stimulus current of 250 µA · mm−3 is applied with a duration

of 1 ms for the Jafri et al. (1998) and Noble et al. (1998) models and 100 µA · mm−3 for the Luo

& Rudy (1994) model.
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the initial Purkinje fibre (e.g., Noble 1962, McAllister et al. 1975, DiFrancesco & Noble 1985)

and atrial (e.g., Hilgemann & Noble 1987, Earm & Noble 1990) cellular models.

This version of the Noble model includes a diadic space between the sarcolemma and junc-

tional SR – equivalent to the restricted subspace of the Jafri et al. (1998) model. In the Noble

et al. (1998) model, the L-type Ca2+ channels (or at least a large fraction of them) empty into the

diadic space and the concentration of Ca2+ in the diadic space is used to both initiate calcium-

induced calcium release from the SR and to terminate the L-type Ca2+ current (ICa(L)). Unlike

the Jafri et al. (1998) model, however, the Noble et al. (1998) assumes that activation of SR

calcium release sites by the diadic space Ca2+ triggers release into the bulk myoplasm.

In addition to the diadic space, the Noble et al. (1998) model splits the delayed potassium

current (IK) into a rapidly activating component (IKr) and a slowly activating component (IKs).

The rapidly activating component is divided into two further components: IKr1 for the fast deac-

tivation component; and IKr2 for the slow component. The slow component of the deactivation,

IKr2, is slower than the deactivation rate of IKs.

The Noble et al. (1998) model also includes mechanisms for cellular contraction and tension

generation, stretch- and tension-dependent processes, and drug-receptor interactions. For the

case of normal, healthy myocytes these processes have little or no effect on the bulk cellular

electrophysiology.

Section A.20 presents the full Noble et al. (1998) model. Some simulation results from this

model are given in Figure 2.19 for comparison with the Jafri et al. (1998) and Luo & Rudy

(1994) models.

2.4.9 2002 Clancy & Rudy

With the exception of the Jafri et al. (1998) model, the above biophysical models were for-

mulated using the traditional Hodgkin & Huxley (1952) scheme – i.e., the whole cell action

potential is simulated from macroscopic descriptions of transmembrane currents generated by a

large ensemble of ion channels. Recently, a large body of knowledge has been accumulated on

the relationships between ion channel structure and function, on the kinetic properties of single

ion channels, and on the modification of ion channels structure and function by genetic defects.

Most of these data were obtained in expression systems (e.g., Xenopus Oocyte), away from the

actual physiological environment where the channel interacts with other types of channels and
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the dynamically changing ionic composition of its environment. Thus, a major challenge is the

integration of this single channel information into the functioning cardiac cell in an effort to

mechanistically relate molecular level findings to whole cell function (Noble & Rudy 2001).

Jafri et al. (1998) used such information in the formulation of their calcium subsystem model

for normal guinea-pig ventricular myocytes. Clancy & Rudy (1999) presented the first appli-

cation of such molecular level data to the formulation of a state specific Markov model of the

cardiac sodium channel (INa). They formulated models for wild-type sodium channels and

∆KPQ mutant channels, a three amino-acid deletion that affects the channel inactivation and is

associated with a congenital form of the long-QT syndrome, LQT3. The Clancy & Rudy (1999)

study showed how a genetic defect in a single type of ion channel could be incorporated into a

whole cell model of electrophysiology.

The model of Clancy & Rudy (1999) was then extended to include models of wild-type and

mutant IKr channels, again using a Markovian state based model (Clancy & Rudy 2001). This

model was used to investigate the effect of HERG2 mutations on the action potential and to

provide insight into the mechanism by which each defect results in a net loss of repolarising

current and prolongation of the action potential duration.

In an excellent example of the usefulness of computational approaches in establishing a

mechanistic link between genetic defects and functional abnormalities, Clancy & Rudy (2002)

performed simulations showing that a single sodium channel mutation can cause both long-QT

(LQT) and Brugada syndromes. Coexistence of these two syndromes seems paradoxical, with

LQT associated with enhanced sodium channel function while Brugada is associated with re-

duced function. Clancy & Rudy (2002) demonstrated in their study that the 1795insD mutation3

of the sodium channel can cause both LQT and Brugada syndromes through interaction with

the heterogeneous myocardium in a rate-dependent manner (see discussion in Section 2.4.10).

This result highlights the complexity and multiplicity of genotype-phenotype relationships.

Clancy & Rudy (2002) conducted simulations of isolated epicardial, endocardial, and mid-

myocardial (M) cells using a model based on the Clancy & Rudy (2001) modified version of

the Luo & Rudy (1994) ventricular cell model. The three cell types are defined by varying the

maximum conductance of the slowly activating delayed rectifier current, IKs, as described by

Viswanathan et al. (1999). A transient outward current (Ito) was also added to the model with

2HERG is the major subunit of the rapidly activating component of the cardiac delayed rectifier, IKr.
31795insD results from the insertion of aspartic acid in the C terminus of SCN5A, the cardiac sodium channel

gene.
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varying maximal conductances in the three cell types. The previous Markov formulation of INa

from Clancy & Rudy (1999) was extended to incorporate new experimental observations and

to better represent various states in both the wild-type and mutant models (see Clancy & Rudy

(2002, Figure 1) for the full models).

The following section describes a model based on the combination of these Markov state

models of IKr and INa with the calcium subsystem model of Jafri et al. (1998). The simulations

presented in this section illustrate the effects of some of these channel mutations on whole cell

action potential simulations.

2.4.10 2004 Nickerson – Clancy & Rudy

Here we present a model developed through the combination of the Markov state models based

on the Luo & Rudy (1994) ventricular cell model. The wild-type and mutant INa and IKr

models of Clancy & Rudy (1999, 2001, 2002) are combined with the detailed calcium subsystem

model of Jafri et al. (1998) to produce a very detailed biophysical model of ventricular cell

electrophysiology and calcium dynamics, with the ability to link in several specific genetic

mutations. The spatial variation of channel properties described by Viswanathan et al. (1999)

and Clancy & Rudy (2002) provides the basis for a specification of epicardial, endocardial, and

midmyocardial cell types.

The starting point for this model was the Jafri et al. (1998) model, with the detailed calcium

dynamics model and the Markov state models for the ryanodine release channels in the SR

membrane and the L-type calcium channel in the sarcolemma. From this base model, IK was

divided into the rapidly (IKr) and slowly (IKs) activating components described by Zeng et al.

(1995) with the calcium-dependent maximal conductivity of the IKs current from Viswanathan

et al. (1999). The IKr current was then replaced with the Markov state model formulated by

Clancy & Rudy (2001), and the INa current was replaced with either the wild-type or 1795insD

mutant Markov state models of Clancy & Rudy (2002). ICa(T ) from Zeng et al. (1995) was

included in the model, as was the Ito current used by Clancy & Rudy (2002) (Dumaine, Towbin,

Brugada, Vatta, Nesterenko, Nesterenko, Brugada, Brugada & Antzelevitch 1999). Figure 2.20

gives a schematic view of the complete cell model with the Markov state models, including both

the wild-type and mutant INa channels.

The full model descriptions are given in Section A.24 for the wild-type model and Sec-

tion A.25 for the 1795insD sodium channel mutation. Figure 2.21 shows some results from the
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simulation of the wild-type Nickerson – Clancy & Rudy (N-LRd) model. Results are shown for

the three cell types described by the model: endocardial, midmyocardial, and epicardial cells.

The cell types are distinguished by differences in density of IKs and Ito channels. In epicardial

cells the density ratio of IKs to IKr is GKs/GKr = 23 and the maximal conductance of Ito is

Gto = 0.011 mS · mm−2. For midmyocardial cellsGKs/GKr = 7 andGto = 0.005 mS · mm−2,

and for endocardial cells GKs/GKr = 19 and Gto = 0.0005 mS · mm−2 (Viswanathan et al.

1999, Clancy & Rudy 2002). In epicardial cells, the maximal permeability of ICa(L) was re-

duced by 50 % to obtain realistic durations of simulated action potentials (Dumaine et al. 1999).

In their study, Clancy & Rudy (2001) showed that as the density of functional IKr channels

was reduced in midmyocardial cells the generated action potentials lengthened. They found that

a 75 % reduction in IKr channel density resulted in early after depolarisations, when the model

was paced with a period of 1000 ms. A similar simulation is presented in Figure 2.22, with

comparable results.

Clancy & Rudy (2001) studied several HERG mutations, including the T474I and R56Q

kinetic mutations. The T474I mutation alters the gating properties and reduces the macroscopic

IKr, and was modelled by changing the voltage dependence of the activation transition rates and

by reducing Gkr by 35 %. R56Q is a mutation in the PAS domain of the amino terminal which

has the effect of greatly increasing the rate of deactivation of IKr. This mutant was modelled by

increasing the transition rates between the open and closed states. In their simulations, Clancy

& Rudy (2001) showed that these two mutations affected the action potential duration in a rate

dependent manner, with the largest effect seen in midmyocardial cells with decreasing rate.

Figure 2.23 shows this effect for the case when the cycle length is 2000 ms, which gives rise to

the early after depolarisations with the R56Q mutant channel.

The Clancy & Rudy (2002) model described Markov state models for the wild-type INa

channel and the 1795insD mutant channel, which results from the insertion of aspartic acid in

the C terminus of the INa gene (SCN5A). In their simulations, Clancy & Rudy (2002) show

that the morphology of the mutant’s action potential changes with pacing rate. They found that

at fast rates (300 ms), the epicardial cells with the 1795insD mutant INa channel had an action

potential that alternated between the characteristic spike-and-dome and the loss of the dome.

At slower rates (750–1000 ms), however, the characteristic morphology returns. Figure 2.24

presents the results of simulating the N-LRd model at these pacing rates in epicardial cells with

the wild-type and 1795insD mutant models.

Figure 2.25 presents a simulation which demonstrates the cellular basis of one of the ECG
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FIGURE 2.21: Results from the wild-type N-LRd model for the different cell types: epi-

cardial (epi), midmyocardial (mid), and endocardial (endo). For all cell types a stimulus of

250 µA · mm−3 is applied for 1 ms. Epicardial cells GKs/GKr = 23, Gto = 0.011 mS · mm−2;

midmyocardial GKs/GKr = 7, Gto = 0.005 mS · mm−2; and endocardial GKs/GKr = 19,

Gto = 0.0005 mS · mm−2.
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FIGURE 2.22: The effect of reducing the density of functional IKr channels on the midmyocar-

dial action potential. Results are shown for reductions of 25, 50, and 75 % and for the wild-type

(WT) midmyocardial cell. The model is paced with a period of 1000 ms with a stimulus of

250 µA · mm−3 applied for 1.0 ms.
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FIGURE 2.23: The effect of the T474I and R56Q kinetic mutations of the IKr channel, compared

to the wild-type (WT) model. The model is paced with a period of 2000 ms with a stimulus of

250 µA · mm−3 applied for 1.0 ms.
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FIGURE 2.24: The 1795insD mutation of the INa channel affects the action potential of epi-

cardial cells in a rate dependent manner. Here we show the results of simulating the N-LRd

epicardial cell model with the wild-type (WT) and 1795insD mutant INa channel at various pac-

ing rates. The alternating morphology of the mutant action potential at the fast rate (300 ms) is

clearly visible in (a). The effect of this mutation at slower rates ((b),(c)) is not as large. In all

cases the model is stimulated with an applied current of 250 µA · mm−3 with a duration 1 ms.
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changes associated with the 1795insD mutation, that indicative of Brugada syndrome. The

results shown in Figure 2.25 would manifest on the ECG as ST-segment elevation, a phenomena

associated with Brugada syndrome (cf. Clancy & Rudy (2002, Figure 8(a))).
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FIGURE 2.25: Comparison of 1795insD mutant epicardial (Epi) and midmyocardial (Mid) cel-

lular action potentials. At fast rates, mutation induced changes in epicardial action potential mor-

phologies cause dispersion of plateau potentials and a voltage gradient from epicardial to mid-

myocardial cells. The model is paced with a period of 300 ms with a stimulus of 250 µA · mm−3

applied for 1.0 ms.

Special Note

The model described here is simply an example of how the various Markov state models of spe-

cific processes can be combined into a model of cellular electrophysiology. While this model

is capable of reproducing some of the results of the Clancy & Rudy (2001, 2002), there is still

work to be done validating and stabilising the model. Of particular note is that the Markov state

models of INa and IKr (and their associated mutant variations) were developed using the phe-

nomenological intracellular calcium dynamics model incorporated in the Luo & Rudy models.

This phenomenological model has been replaced here with the biophysically detailed model of

Jafri et al. (1998), resulting in substantially different calcium kinetics. These differences tend to

lead to unstable behaviour of the model when combined with some of the channel mutations and

pacing rates, where the instability comes from intracellular calcium oscillations. This suggests

that further fine-tuning of the interaction between the calcium subsystem and the Markov state

models of INa and IKr and their mutations is required.

Furthermore, the length of the two models presented in Sections A.24 and A.25 highlights

the usefulness of CellML 1.1 over 1.0 (Section 4.1.1). If these models were to be implemented

in CellML 1.1, the bulk of the model would not need to be duplicated. Given the two models
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are identical except for the INa channel states component, a common base model could be used

to specify the common components. The specialised wild-type and 1795insD mutant models

would then import the common base model and add the specialised INa channel state compo-

nent.

2.5 Cardiac Mechanics

2.5.1 1938 Hill

The work of modelling the mechanical behaviour of muscle began with the work of A. V. Hill

who studied both the mechanical and thermal consequences of muscular contraction. A histor-

ical and personal perspective of this work can be found in Hill (1970). With the publication of

his seminal article in 1938, the Hill model was firmly established as what was to become one of

the great models of classical muscle mechanics.

Hill (1938) described active skeletal muscle as being the combination of a undamped elas-

tic component in series with a damped contractile component (Figure 2.26). Resting muscle

consists of the elastic element but only to a minor degree the damped element. Hill (1938)

examined three cases of sustained contraction suited to this two component model. Here we

illustrate the Hill (1938) model for the isometric contraction example.

CCEC

FIGURE 2.26: Schematic of the Hill (1938) model of skeletal muscle, consisting of a undamped

EC and a damped CC in series.

During isometric contraction the total length of the muscle remains constant. Assume the

contractile component (CC), with initial length lc, stretches the elastic component (EC), initial

length le. The subsequent lengths at time t are yc and ye, respectively. The active state of the

CC is is defined by Hill’s characteristic equation

(T + a) (v + b) = const (2.5.1)

and we assume that the response of this equation is instantaneous upon stimulation and is main-

tained by tetanus. The total force, T , exerted by the muscle is proportional to the stretch of the

EC if we assume the EC is perfectly elastic (T = α (ye − le), where α is constant).
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In isometric contraction, the rate of lengthening of the EC is equal to the rate of shortening

of the CC, giving

v = −dyc

dt
=

dye

dt
=

dT

dt
α−1. (2.5.2)

Substituting for v into the characteristic Equation (2.5.1) results in

(T + a)

(

dT

dt
+ αb

)

= const = (T0 + a)αb (2.5.3)

where T0 is the full tension for the given total muscle length. Rearranging this equation gives

dT

dt
=

(T0 + a)αb

T + a
− αb, (2.5.4)

which is the model presented in Section A.1.

Results from solution of this model are presented in Figure 2.27 using the material param-

eters from Hill (1938) for frog sartorius muscle at 0 ◦C and 23 ◦C. Material parameters for

the 0 ◦C simulation are given in Section A.1 and those for 23 ◦C can be found on the attached

compact disc Section D.2.
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FIGURE 2.27: Development of isometric tension following activation of the contractile compo-

nent in frog satorius muscle. cf. Hill (1938, Figure 15)

The two important concepts in the Hill model are that the EC is a passive element whose

properties are independent of contraction and the CC force-velocity relationship is instanta-

neous. Later experimental data has since disproved these concepts leading to the demise of

the classical approach to muscle mechanics (Simmons & Jewel 1974). This led to a paradigm

shift to the contemporary approach to muscle mechanics based upon known structure of striated

muscle in addition to the observed behaviour upon which the classical models were built. At

the core of the new paradigm was the sliding filament theory first proposed by H. E. Huxley

(Huxley 1953, Huxley & Hanson 1954), which was first formulated into a theory of muscular

contraction by A. F. Huxley (Huxley 1957).
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2.5.2 1957 A. F. Huxley

Based on the sliding filament theory (Huxley & Hanson 1954), Huxley (1957) developed a

new theory for the mechanism of contraction in striated muscle. This theory was based on the

observed microstructure of myofibrils, shown here in Figure 2.28. Many myofibrils combine to

provide the contractile machinery of a muscle cell.

myosin
filament

actin
filament

Plane of
cross−sectionZ

IHA

S−filament
Cross−section

sarcomere

FIGURE 2.28: A schematic view of the arrangement of the filaments within a myofibril, as shown

by Huxley (1957). When the muscle length changes, the myosin (red) and actin (blue) filaments

slide past one another in each of the zones where they overlap. Only the S-filaments are actually

stretched or shortened.

As shown in Figure 2.28, Huxley (1957) described the myofibrils as a series of sarcomeres

connected at the Z lines. Within a sarcomere, the A band is the region of overlap between the

myosin and actin filaments. The actin filaments are anchored in the Z lines and extend into

the A band as far as the beginning of the less dense H region. When the muscle lengthens or

shortens, the myosin and actin filaments slide past each other. The myosin and actin proteins

are the principal constituents of their respective filaments. Corresponding I filaments of the two

ends of a sarcomere are connected by a very extensible connection, the S filament.

Rather than the then accepted view that contraction on the molecular level occurred via some

kind of protein folding or coiling, Huxley (1953) proposed that contraction occurred via the

myosin and actin filaments sliding past one another. The basis of this theory is that each of the

myosin filaments has side pieces which can slide along the main backbone of the thick filament,

with the extent of the movement being limited by an elastic connection. These sliding mem-

bers can bind temporarily with sites on adjacent actin filaments, the connections being made

spontaneously but broken only by a reaction, requiring energy to be supplied from metabolic

sources. The essential feature of this system is that the rates of the reactions by which connec-

tions are made or broken are assumed to depend on the position of the sliding member relative

to the backbone of its myosin filament. Figure 2.29 provides an illustration of this system. Hux-

ley (1957) presents a detailed description of the operation of this system and its mathematical

formulation, briefly summarised below.
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FIGURE 2.29: Diagram illustrating the mechanism which Huxley (1957) proposed for the devel-

opment of tension in striated muscle. The section of filament shown is in the right hand half of

an A band (Figure 2.28), so the actin filament is attached to a Z line which is out of the picture to

the right. The green arrows indicated the relative motion between the filaments when the muscle

shortens.

With reference to Figure 2.29, Huxley (1957) theorised that M and A are initially detached.

M oscillates about its equilibrium position, O, as a result of thermal agitation, and if A is ever

within range of M there is a chance that combination will occur. The combination can only

occur in the region to the right of O (Figure 2.30, f rate relation). If combination occurs the

tension in the elastic element will be exerted on the actin filament and the AM combination

moves toward O as the muscle shortens. While there is always the chance that the link between

M and A will be broken, the rate constant is small until AM passes O, at which point the

link is soon broken to prevent the elastic link, now in the reverse direction, resisting shortening

(Figure 2.30, g rate relation). The AM link is broken by the binding of a high energy phosphate

compound, XP , to a site near A. This system is summarised in Equations (2.5.5)–(2.5.7) with

the f and g rate relations shown in Figure 2.30.

1

2

3

4

5

O

PSfrag replacements g

gf

h x

A + M
f

−→ AM (2.5.5)

AM + XP
g

−→ AXP + M (2.5.6)

AXP −→ A + X + PO4 (2.5.7)

FIGURE 2.30: Dependence of the binding (Equation (2.5.5), f ) and dissociation (Equa-

tion (2.5.6), g) reaction rates on x (Figure 2.29). The vertical scale is such that (f + g) at x = h

is 1.

Now it is assumed that the elastic elements obey Hooke’s law with a spring stiffness of

k nN · mm−1 and n is the proportion of the contraction sites at which M is combined with the
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corresponding A. The average value of the work done at one myosin site as one actin site is

carried past it by the shortening of the muscle is then given by

∞
∫

−∞

nkx dx, (2.5.8)

and the corresponding average force is obtained by dividing by the distance between A sites

along the actin filament, l. The total tension in the muscle is the sum of the tensions generated

by all the contraction sites within one half-sarcomere. The number of these sites for a muscle

of 1 mm2 cross-sectional area is ms/2, where m is the number of M sites per unit volume of

muscle and s is the sarcomere length. The tension per unit area is, therefore, given by:

T =
msk

2l

∞
∫

−∞

nkx dx. (2.5.9)

Huxley (1957) went on to describe how Equation (2.5.9) could be used in energy calcula-

tions using various forms of the f and g reaction rates, with the best relations being those shown

in Figure 2.30. In doing this it was also shown that the sliding filament theory could provide a

good fit to the relationships derived by Hill (1938).

2.5.3 1993 Guccione & McCulloch

Guccione & McCulloch (1993) recognised that the most significant problem in developing a

continuum mechanics model of the beating heart was the lack of knowledge concerning the

constitutive relation for active stress in cardiac muscle. To plug this gap Guccione & Mc-

Culloch (1993) proposed constitutive relations for active stress in cardiac muscle and fit the

material parameters of these relations to experimental data from the literature. Unlike previ-

ous models, primarily based on the skeletal muscle models of Hill (Section 2.5.1) and Huxley

(Section 2.5.2), the Guccione & McCulloch model was able to describe the deactivation effect

experimentally observed following rapid length perturbations.

The Guccione & McCulloch (1993) model predicted active tension developed by a cardiac

muscle fibre from peak intracellular calcium ion concentration, time after onset of contraction,

and sarcomere length history. The intracellular free calcium transient was independent of length

and calcium ions were able to bind to two sites on troponin-C, with length dependent association

and dissociation. The availability of actin sites for interaction with myosin was determined
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from the total number of actin sites, free calcium, and calcium bound to troponin-C, and was

modelled with a first order differential equation. Active tension is then related to actin binding

site availability by a general cross-bridge model where bridges attach in a single configuration

at a constant rate while the force in each cross-bridge varies linearly with position, and the rate

of detachment depends on both position and time after onset of contraction. The fibre active

tension is the integral of the individual cross-bridges.

Model parameters were obtained by trial and error so that predictions matched reported

experimental observations of active tension development in rat right ventricular trabeculae.

2.5.4 1998 Guccione et al.

Guccione, Motabarzadeh & Zahalak (1998) developed a model of active tension development

in cardiac muscle through modification of the Distribution-Moment (DM) model (Zahalak &

Ma 1990, Zahalak & Motabarzadeh 1997). The DM model was aimed at deriving tractable

constitutive relations for skeletal muscle from biophysical cross-bridge theories and in contrast

to previous models of striated muscle contraction all model parameters have physical meaning

and assumptions concerning biophysical events within the cell are consistent with available

data.

The DM model emphasises the important role of the moments of the actin-myosin bond

distribution function and the theory leads to a relatively simple third order state variable model

for contraction dynamics in which the state variables are the three lowest moments of the bond

distribution function (Zahalak & Ma 1990). These three moments have simple macroscopic

interpretations as muscle stiffness, force, and elastic energy. With the introduction of free in-

tracellular calcium ion concentration as a fourth state variable, Zahalak & Ma (1990) formu-

lated a compatible model of excitation-contraction coupling for the DM model. Zahalak &

Motabarzadeh (1997) then further investigated the mathematical relations between models of

calcium activation kinetics and the cross-bridge dynamics.

To adapt the DM model to cardiac muscle, Guccione et al. (1998) modified the number of

regulating calcium binding sites on each troponin molecule and the cross-bridge attachment and

detachment rate functions for large cross-bridge strains. The model was primarily developed to

determine whether or not a model could achieve the deactivation effect (as described above

in Section 2.5.3) as a consequence of high cross-bridge detachment rates at high cross-bridge

strain, without making any provisions for length dependent calcium-troponin dissociation. Guc-
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cione et al. (1998) show that this is, indeed, possible and that their model was the first to be

capable of showing this result.

2.5.5 1998 Hunter et al.

Hunter, McCulloch & ter Keurs (1998) presented a model of passive and active cardiac muscle

mechanics suitable for use in continuum mechanics models of the whole heart. The model

was based on an extensive review of experimental data from a variety of preparations, species

and temperatures. They developed a model consisting of four components which is capable of

reproducing a number of physiologically significant experimental observations.

The four components are: passive elasticity of cardiac tissue; the rapid binding of calcium

ions to troponin-C and its slower tension dependent release; the kinetics of tropomyosin move-

ment and availability of cross-bridge binding sites and the length dependence of this process;

and the kinetics of cross-bridge tension development under perturbations of muscle length. The

modelling of passive elasticity presented by Hunter et al. (1998) is more relevant to models of

tissue and interacting cells. As such, it is described in Appendix B (Section B.3).

As described previously, contraction of cardiac myocytes is initiated by calcium ions binding

to troponin-C molecules. This initiates a chain of events in the thin filament which results in

the availability of binding sites for the myosin heads of the cross-bridges. The model of Hunter

et al. (1998) does not include any representation of intracellular calcium kinetics, instead using

a simple exponential relationship to specify the calcium ions available for binding to troponin-

C during a typical cellular twitch. The version of the Hunter et al. (1998) model presented in

Section A.17 assumes this calcium transient is supplied as an input parameter into the model.

The model for calcium binding to troponin-C developed by Hunter et al. (1998) includes

rapid binding and tension dependent release as observed in various experiments. The binding of

calcium ions to troponin-C is very fast and limited by the diffusion of ions from the release sites

on the junctional sarcoplasmic reticulum (SR) (first term of Equation (2.5.10)). The release of

calcium ions from troponin-C was known to be dependent on the mechanical state of the muscle,

and this dependence was shown to be due to changes in tension rather than length (Hunter et al.

1998), shown in the second term in Equation (2.5.10).

d[Ca2+]b
dt

= ρ0[Ca2+]i

(

[Ca2+]b − [Ca2+]b

)

− ρ1

(

1 − T

γTo

)

(2.5.10)
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Tropomyosin movement resulting from calcium binding to troponin-C controls the avail-

ability of actin sites available for cross-bridge binding. Hunter et al. (1998) introduced a non-

dimensional parameter z (0 ≤ z ≤ 1) to represent the proportion of actin sites available for

binding. With the observation that tension increases exponentially with a first order rate con-

stant that depends on the level of calcium activation, Hunter et al. (1998) proposed first order

kinetics for the form of z. In a significant improvement over previous models, the Hunter et al.

(1998) z kinetics are dependent not only upon the concentration of calcium bound to troponin-C,

but also the current muscle length:

dz

dt
= α0

[(

[Ca2+]b
C50

)n

(1 − z) − z

]

, (2.5.11)

where the material parameters C50 and n are also length dependent and fitted from experimental

data. Isometric tension was then shown to be the algebraic relationship

To = Tref (1 + β0 (λ− 1)) z. (2.5.12)

Like the distribution moment model described in Section 2.5.4, the model of Hunter et al.

(1998) was developed for use in large scale macroscopic models. As such, this model presented

an empirical description of tension development in myocytes that can be related back to the

underlying molecular processes. The basis of this model is the fading memory model (Bergel &

Hunter 1979, Hunter 1995), in which a nonlinear function of tension is written as a linear super-

position of dynamic length changes. This model makes use of the fading memory assumption

that the current tension is influenced more by recent length changes than earlier changes in

describing the nonlinear function as

Q (T, To) =
N
∑

i=1

Ai

t
∫

−∞

e−αi(t−τ)
•

λ (τ) dτ, (2.5.13)

where
•

λ≡ dλ
dt

is the velocity of the current length change and λ is described in Section 2.1.3.

Hunter et al. (1998) limit the number of rate constants in Equation (2.5.13) (N ) to three, in line

with experimental observations. With use of constant velocity experiments, Hunter et al. (1998)

derived the following expression for the dynamic active tension

T = To

1 + aQ

1 −Q
, (2.5.14)

giving the observed tension T as the isometric tension To scaled by a nonlinear function of the

hereditary integral of length changes (Equation (2.5.13)).
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A modified version of the Hunter et al. (1998) model is presented in Section A.17. The mod-

ification is to transform the hereditary integral, Equation (2.5.13), into the equivalent differential

equation formulation given in Equation (2.5.15). This transformation was done to make it much

easier to implement the model in CellML and, thus, include into simulations using CMISS.

Qi = Ai

t
∫

0

e−αi(t−τ)
•

λ (τ) dτ i = 1. . .3

⇒ dQi

dt
= −Aiαi

t
∫

0

e−αi(t−τ)
•

λ (τ) dτ + Ai

•

λ (t)

= −αiQi + Ai

•

λ (t) i = 1. . .3 (no sum on i)

(2.5.15)
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FIGURE 2.31: Results from the solution of the Hunter et al. (1998) model. (a) shows the in-

tracellular calcium transient (Cai, scaled by a factor of 10), the calcium bound to troponin-C

(Cab), and the generated active tension (right scale) for an extension ratio of 1.0. (b) illustrates

the length dependence of the active tension with a series of isometric twitches (using the calcium

transient shown in (a)) at the specified values of the extension ratio (Section 2.1.3). The effects of

different length steps on active tension are shown in (c), with a close-up in (d). The three length

steps shown are: a 1.0 % shortening over a 1 ms time period (0.01-1.0); a 2.0 % shortening over

1 ms (0.02-1.0); and a 2.0 % shortening over 5 ms (0.02-5.0).
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2.5.6 1998 Nash

In developing a mathematical model of the mechanics of the canine ventricles, Nash presented

a steady state tension-length-calcium relationship for the active force generated during systole

(Nash 1998). Building upon the models developed by Hunter (1995) and Hunter, Nash & Sands

(1997), Nash used the following equation for active tension.

T (λ, Caactn) =
Camax(Caactn)h

(Caactn)h + (C50)
h
Tref [1 + β (λ− 1)] (2.5.16)

Parameter values are given in Section A.19.

Equation (2.5.16) gives the active tension as a function of muscle length, λ, and the acti-

vation level of the muscle, Caactn. The activation level is a measure of the free intracellular

calcium ions available for cross bridge binding and tension development. Caactn = 0 for tissue

at rest and Caactn = 1 for maximally activated muscle. Thus, by varying the activation level

Nash was able to simulate cardiac systole and demonstrate reasonable agreement with experi-

mental observations of the canine cardiac cycle. Figure 2.32 illustrates the relationship between

calcium activation level and active tension for the Nash (1998) model.
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FIGURE 2.32: Illustration of the calcium-tension relationship of the Nash (1998) active tension

model for various values of extension ratio (see key for values). Caactn is the activation level of

the muscle, see Section A.19 for parameter values and equations.

Due to its significance in the previous work done in our group, the Nash (1998) is used as

part of the validation for the simulation methods developed and implemented in this thesis.

2.5.7 2003 Markhasin et al.

Markhasin, Solovyova, Katsnelson, Protsenko, Kohl & Noble (2003) presents a review of the
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development of experimental and theoretical duplex models that were conceived to test the hy-

pothesis that well-organised inhomogeneity may be a prerequisite for normal cardiac function.

The concept of the duplex comes from the idea that heterogeneity in cardiac tissue can be sim-

ulated using two individually controlled and mechanically interacting elements. In the work

discussed in Markhasin et al. (2003) either or both of these elements can be biological (e.g., thin

papillary muscles or trabeculae) or virtual (a mathematical model).

Duplexes have been developed and characterised in three different configurations: a biolog-

ical duplex, with both elements biological; a virtual duplex, with both elements being described

by models; and a hybrid duplex, with a model element interacting in real-time with a biological

duplex. For each of these configurations the two elements can be in either parallel or series.

Initial versions of the virtual elements used a cardiac mechanics and calcium dynamics

model of contraction (Katsnelson, Izakov & Markhasin 1990, Izakov, Katsnelson, Blyakhman,

Markhasin & Shklyar 1991). This has recently been extended through the merging of the me-

chanics model with the Noble et al. (1998) electrophysiology model (Solovyova, Vikulova,

Katsnelson, Markhasin, Noble, Garny, Kohl & Noble 2003).

Experimental and numerical studies performed using the muscle duplex method has pro-

vided support for the hypothesis the well-organised inhomogeneity is required for normal car-

diac function and suggested that electrical and mechanical heterogeneity are normally syner-

gistic (Markhasin et al. 2003). Markhasin, Solovyova, Katsnelson, Protsenko, Kohl & Noble

also assert that the muscle duplex method is provides a method to assess various mechanisms

underlying pathophysiological conditions that have previously been inaccessible concepts.

2.6 Cardiac Electro-Mechanics

2.6.1 2001 Nickerson et al.

Nickerson (1998) developed a method of coupling the computationally efficient Hunter et al.

(1998) cardiac mechanics model (Section 2.5.5) to the biophysically detailed electrophysiology

model of Jafri et al. (1998) (Section 2.4.7). This method was then formalised in Nickerson,

Smith & Hunter (2001), but rather than the Jafri et al. (1998) model they used the Noble et al.

(1998) electrophysiological cellular model.
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This work provided the basis for most of the electro-mechanical coupling between cellular

mechanical and electrical models used in this thesis. Nickerson et al. (2001) provide a method

whereby electro-mechanical coupling is achieved through the calcium dynamics model, which

is usually defined by (or at least heavily reliant on) the electrophysiology model, driving the

active tension development. Mechano-electric feedback can also be included through the ad-

dition of length-, velocity-, or force-dependent terms or mechanisms in the electrophysiology

model. The most notable of these in the model of Nickerson et al. (2001) is the force dependent

dissociation of calcium ions from troponin-C. When performing this coupling it was also shown

to be important to ensure that the model parameters are consistent between the electrical and

mechanical models.

2.6.2 2004 Nash & Panfilov

Nash & Panfilov (2004) presented an electromechanical model of excitable tissue in order to

study reentrant cardiac arrhythmia. In this model they developed a cellular electro-mechanics

model based on the Aliev & Panfilov (1996) activation model (Section 2.3.1). The Aliev &

Panfilov (1996) model was modified to include the effect of mechanical deformation on the

activation and recovery kinetics and a new differential equation was introduced to model the

time course of active tension.

A version of the full Nash & Panfilov (2004) cellular model is given in Section A.23. This

version of the model does not include the mechanical deformation effects on the activation and

recovery kinetics as in our tissue and organ level models these effects are included into the

continuum activation model (monodomain or bidomain).





Chapter 3

Modelling Cardiac Electro-Mechanics

Previous work (Hunter et al. 1997, Usyk, LeGrice & McCulloch 2002, Kerckhoffs, Bovendeerd,

Kotte, Prinzen, Smits & Arts 2003, Kerckhoffs, Faris, Bovendeerd, Prinzen, Smits, McVeigh

& Arts 2003) has modelled the electrical excitation and mechanical contraction as two separate

processes weakly coupled together through the use of the excitation wavefront to initiate active

contraction of the tissue. We extend this work by developing a framework generalising these

types of tissue and organ models to allow for varying levels of coupling between the electro-

physiology and mechanics at the cellular, tissue, and organ levels. Depending on the cellular

model being used, the coupling can also be extended down to the molecular and protein levels.

Appendices B and C provide brief overviews of the theory of finite deformation elasticity

and electrical activation and propagation, respectively, and their numerical formulation as used

in this work. Section 3.2 details how these two methods can be coupled together and, through

inclusion of the cellular models described in Section 3.1, provide the ability to model cardiac

electro-mechanics at the tissue and organ levels.

In Section 3.1 we present two cellular level electro-mechanics models developed for use in

testing the modelling framework. The first model can be used to obtain tissue and organ models

very similar to previous models (Hunter et al. 1997, Usyk et al. 2002, Kerckhoffs, Bovendeerd,

Kotte, Prinzen, Smits & Arts 2003, Kerckhoffs, Faris, Bovendeerd, Prinzen, Smits, McVeigh

& Arts 2003), where a propagating electrical activation wave is used to drive the mechanical

contraction at the cellular level. The second model contains a detailed biophysical description of

cellular electrophysiology including the intracellular calcium dynamics. This has the advantage

over previous models that it includes some mechano-electric feedback, but the disadvantage that
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it is a very computationally demanding model to integrate. Section 3.4.3 provides comparisons

of computational performance using the two different models in various tissue level models.

3.1 Cellular Electro-Mechanics

Here we present two models of cellular electro-mechanics developed for use in this thesis.

These models will be used in the distributed tissue and ventricular models described later in this

section and in Chapter 5. Each of these models demonstrates different aspects of the modelling

framework developed in this thesis.

The first model (FK-HMT) is based on coupling the Fenton & Karma (1998) simplified

activation model to the Hunter et al. (1998) mechanics model. This illustrates how a simple

model of activation can be used to drive the mechanical contraction at the cellular level and

then in larger scale distributed models. The second model couples the complex biophysically

detailed N-LRd electrophysiology model (Section 2.4.10) to the Hunter et al. (1998) mechanics

model. With this model we demonstrate tighter coupling between the electrophysiology and

mechanics as well as the introduction of some mechano-electric feedback.

3.1.1 FK-HMT

In some cases simplified cellular models may be desirable to enhance computational perfor-

mance while still maintaining the electro-mechanics characteristics required for the study being

performed. Examples where such models might be useful are: normal sinus activation; elec-

trical reentry phenomena where the reentry is caused by conduction blocks; and localisation of

pacing sites for implantable defibrillation devices or resynchronisation therapy.

Here we present a model developed through the coupling of the Fenton & Karma (1998)

simplified activation model (Section 2.3.4) to the computationally efficient Hunter et al. (1998)

model of cardiac mechanics (Section 2.5.5). Following the method described by Nickerson et al.

(2001), the activation model is used to provide the calcium transient input required to drive the

active and dynamic development of cellular tension.

The Fenton & Karma (FK) model, however, lacks a calcium transient. As noted in Sec-

tion 2.3.4, the FK model was derived from the Beeler & Reuter (1977) and Luo & Rudy (1991)
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models and these models both use the same model of intracellular calcium changes based on

the slow inward current. Thus, through the inclusion of this relatively simple model of cal-

cium dynamics we have a version of the FK activation model which includes enough detail of

intracellular calcium dynamics for use in driving the Hunter, McCulloch & ter Keurs (HMT)

mechanics model.

The full Fenton & Karma–Hunter, McCulloch & ter Keurs (FK-HMT) model is given in

Section A.22 with some illustrative simulation results presented in Figures 3.1 and 3.2.

 1000  1250  1500  1750  2000  2250

Time (ms)

Vm
Cai

T

FIGURE 3.1: A train of isometric twitches obtained from simulations with the FK-HMT cellular

model. Membrane potential (Vm), intracellular calcium concentration (Cai) and active tension

(T) are normalised to illustrate their overlapping time transients. A 1 ms 80 µA · mm−3 stimulus

current is applied with a cycle length of 1000 ms.

The FK-HMT model developed here includes only electromechanical coupling – there is

no mechano-electric feedback in this model, as demonstrated by the length steps in Figure 3.2

having no effect on the calcium or membrane potential transients. As such, it is suitable for

use in simulations of normal cardiac tissue with application to, for example, studies of: normal

activation and contraction in tissue and organ level models; reentry phenomena and the effect

of contraction on reentry; and location of pacing sites for implantable defibrillator’s and resyn-

chronisation therapy. It would be possible to modify one (or all) of the three “currents” in the

model to add a length dependence or add the calcium release from troponin to the intracellular

calcium transient, and hence have some measure of mechano-electric feedback in the model.

While doing so expands the applicability of this model in tissue and organ level simulations,

such modifications rapidly begin to negate the advantages of using such a computationally effi-

cient model.
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FIGURE 3.2: The same train of action potentials as Figure 3.1 but now showing the effect of two

length steps on the actively developed tension, as described by the FK-HMT model. The first

twitch is performed with λ = 1.0 with a step down to λ = 0.99 occurring during the second

twitch with a duration of 1 ms. This new length is retained until a second step during the third

twitch down to λ = 0.98, again over a period of 1 ms.

Cellular Heterogeneity

The variation of cellular behaviour throughout the myocardium is crucial to the normal function-

ing of the heart. One of the most dramatic intrinsic heterogeneities in the heart is the presence of

a layer of cells midmyocardial or M cells, roughly located in the middle of the ventricular wall

(Antzelevitch, Sicouri, Litovsky, Lukas, Krishnan, Di Diego, Gintant & Liu 1991). This layer

consists of cells which have distinct electrophysiological properties and its presence has been

observed in numerous species (e.g., canine (Yan, Shimizu & Antzelevitch 1998) and human

(Drouin, Charpentier, Gauthier, Laurent & Le Marec 1995)).

The most notable feature of the midmyocardial cells is the prolongation of the cellular ac-

tion potential at slow pacing rates compared to the epicardial and endocardial cells. Several

modelling studies have been performed examining the effect of this APD distribution through

the ventricular wall – see Henry & Rappel (2004) for a recent example. The variation of APD

can be included in the FK-HMT model via several mechanisms. In Figure 3.3 we show some

results matched to action potential (AP) records from human myocytes performed by Drouin

et al. (1995), where the change in APD is achieved through altering the slow outward currents

repolarisation time constant.

APD is measured here as the time between maximal positive slope during the AP upstroke

and maximal negative slope during the AP repolarisation phase. Analysis of the APs from the

simulation illustrated in Figure 3.3 gives APDs of 437 ms for the midmyocardial cell type,
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FIGURE 3.3: Following the same pacing protocol as used in Figure 3.1, we show how altering

the repolarisation time constant of the slow outward current can give APD results consistent

with those recorded from human midmyocardial (mid), epicardial (epi), and endocardial (endo)

myocytes (cf. Drouin et al. (1995, Figure 2 & Table 2)). The different APDs are obtained with

τr values of: 150 ms for the midmyocardial cell; 144 ms for the epicardial; and 142 ms for the

endocardial. The default value for the modified LR-I version of the FK-HMT model is 130 ms.
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352 ms for the epicardial, and 329 ms for the endocardial cell type.

3.1.2 Nickerson – Clancy & Rudy – Hunter, McCulloch & ter Keurs

The FK-HMT model described above is a very useful and computationally efficient model suit-

able for a wide range of applications involving basically healthy normal tissue. When modelling

unhealthy or abnormal tissue, however, it is often critical to be able to capture changes or mod-

ifications on the scale of individual mechanisms. To enable the description of such changes, we

present here a model of cellular electro-mechanics based on the wild-type N-LRd electrophys-

iological model (Section 2.4.10). This model describes in great detail the electrophysiology

of cardiac cells including a detailed biophysical model of the intracellular calcium subsystem.

Cellular heterogeneity is intrinsic in the model based on the density of certain transmembrane

ionic channels in the epicardial, endocardial, and midmyocardial cell types (see Figure 2.21).

This model also allows for the inclusion of certain well characterised genetic mutations into the

electrophysiology (see Figures 2.23 and 2.24).

As with the FK-HMT model above, we couple the N-LRd model to the Hunter et al. (1998)

mechanics model. The coupled model is known here as the Nickerson – Clancy & Rudy –

Hunter, McCulloch & ter Keurs (N-LRd-HMT) model of cardiac cellular electro-mechanics.

The full N-LRd-HMT model is given in Section A.26 and a brief overview of the model is

presented here.

The major component of communication between the cellular electrophysiology and me-

chanics is the intracellular calcium subsystem. In the N-LRd-HMT model the calcium sub-

system is derived from the Jafri et al. (1998) model of calcium dynamics. Nickerson (1998)

presented an electro-mechanics model which coupled the Jafri, Rice & Winslow (JRW) and

HMT models together. Following Nickerson (1998), the calcium binding to troponin-C kinetics

from the HMT model is replaced with the kinetics for the low affinity troponin-C binding sites

from the JRW model. The JRW kinetics are modified to include the tension dependent release

of calcium from the low affinity troponin-C binding sites. Due to differences in the development

of the JRW and HMT models, various parameter values require adjusting to correctly match the

calcium binding kinetics to the active tension development.

Figure 3.4 presents a series of isometric twitches obtained from solution of the N-LRd-

HMT model for the three cell types, as they are described in Section 2.4.10. This shows the

electromechanical coupling between the models. The mechano-electric feedback aspects of the
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N-LRd-HMT model are presented in Figure 3.5 with simulations where various step decreases

in length are performed during an isometric twitch.
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FIGURE 3.4: Isometric twitches as simulated by the N-LRd-HMT electro-mechanics model for

epicardial (epi), midmyocardial (mid), and endocardial (endo) cell types.

The results given in Figure 3.5 highlight the mechano-electric feedback in the N-LRd-HMT

model. Following a shortening length step, calcium is released from troponin-C (Figure 3.5(d))

and becomes available in the common intracellular calcium pool (Figure 3.5(e)). From the

intracellular space the extra calcium is taken up into the SR (Figures 3.5(f) and 3.5(g)). Very

little of the extra calcium uptake translocates through to the release channels of the SR (not

shown). The calcium uptake into the SR overcompensates once the filaments start binding

calcium again, causing the free intracellular calcium concentration to drop below the isometric

level (Figures 3.5(e) and 3.5(g)). Increase of the calcium concentration in the SR stores results

in an increase in the leakage of calcium from the SR (Figure 3.5(h)).

As shown in Figure 3.5(b), the AP shape and duration are virtually unaffected by these

length changes. This is due to the majority of the calcium ions released from troponin-C being

absorbed internally by the intracellular calcium subsystem. The largest changes in transmem-

brane ion transport are seen in the Na+-Ca2+ exchanger current (Figure 3.5(i)), which demon-

strates a very minor effect compared to the intracellular calcium dynamics changes. Figure 3.5

also shows that the changes observed in the intracellular calcium handling are dependent on the
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severity of the length step.

3.2 Modelling Tissue Electro-Mechanics

Modelling cardiac electro-mechanics on a spatial scale larger than that of the single cell mod-

els described above requires the coupling of two processes: the spread of electrical excitation

through the tissue; and the mechanical behaviour of the tissue. In a normal mammalian heart,

the spreading wave of electrical excitation triggers contraction of the cardiac muscle which is

responsible for the pumping of blood required to sustain life. While these processes can be

modelled independently, it is well established that feedback occurs in both directions between

them (Kohl 1995).

A large body of research exists for modelling the spread of electrical excitation through-

out cardiac tissue and the whole heart (for reviews, see Hunter, Pullan & Smaill 2003, Kléber

& Rudy 2004, Smith, Nickerson, Crampin & Hunter 2004). Numerous methods have been

developed to model the spread of electrical excitation varying from discrete models in which

individual cells are electrically coupled to their neighbours via variable resistive elements (gap

junctions) through to continuum based models. Continuum models are based on the assumption

that the length scales of the physically observable phenomena are large in comparison to the

underlying discrete structure of the material. Our group has developed numerical simulation

techniques for solving continuum models of electrical excitation, based either on the bidomain

model (Appendix C) or an eikonal type model for activation times (Tomlinson 2000, Tomlinson,

Pullan & Hunter 2002). While we have the tools to model the full bidomain model, in this work

we have used the simplified monodomain model (Section C.2) as we are currently modelling

isolated pieces of tissue. This allows a significant saving in terms of computational cost and

model complexity. The numerical formulation we have used in this work, known here as the

grid-based finite element (GBFE) method, is presented in Section C.3.

Similarly, a large body of research also exists for modelling the mechanical behaviour of

cardiac tissue (for example, see Hunter et al. (2003) and Smith et al. (2004) for reviews). In the

past, many models of cardiac mechanics considered only the passive properties of the muscle.

This was due to both model complexity and the lack of experimental data during the systolic

phase of the cardiac cycle (or contraction of isolated tissue preparations). This allowed the

use of quasi-static models of finite deformation elasticity to be applied to the heart with great

success. Finite element continuum models of cardiac mechanics are the most prevalent in this
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FIGURE 3.5: Comparison of an isometric twitch from the N-LRd-HMT model with transients

obtained from simulations with various length steps. The key is given in (a) where the length

steps shown are: a 1.0 % shortening over a 1 ms time period (0.01-1.0); a 2.0 % shortening

over 1 ms (0.02-1.0); a 2.0 % shortening over 5 ms (0.02-5.0); and a 10.0 % shortening over

2 ms (0.1-2.0) (cf. Figure 2.31). These twitches are from the midmyocardial cell type of the

N-LRd-HMT model with a stimulus current of 250 µA · mm−3 applied at 0 ms for a duration

of 1 ms.
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field and the use of high order interpolation in which our group specialises is well suited to these

types of models. The finite elasticity finite element (FE) formulation we have used in this work

is given in Appendix B.

The development of models of these two processes has largely occurred independently, and

it is only recently that we have begun to obtain the computational power and experimental data

required to develop models of electro-mechanics in cardiac tissue. In this work we have taken

the two methods described in Appendices B and C and coupled them together to produce a

technique for the numerical solution of biophysically detailed cardiac electro-mechanics mod-

els. The method developed uses cellular models of electro-mechanics to drive the dynamic

active material properties of the model while the cellular models themselves get feedback from

both the electrical excitation and the deforming mechanical model. The mechanical deforma-

tion of the FE geometric models also feeds into the excitation model affecting the propagation

of electrical activation and cellular electrophysiology.

We now describe the technique developed to model cardiac electro-mechanics at the tissue

and organ levels using the previously described cellular models. The first step is the inclusion

of active contraction in the finite elasticity model. This then provides a full specification of

an active mechanics model which can be coupled to the electrical activation model as described

below. Implementation of the numerical solution of electro-mechanics models is also discussed.

It is important to note that the methods described below make no use of prior knowledge

of the cellular model being used in the tissue model. The only caveat is that it is assumed

that the cellular model will be providing the active tension – at a minimum, the active tension

component in the fibre material direction is expected but sheet and normal components can also

be specified.

3.2.1 Finite Deformation Elasticity with Active Contraction

The cellular mechanisms involved in active contraction of myocytes are discussed in Section 3.1

above. Incorporation of the actively generated cellular tension into models of cardiac tissue re-

quires extending the passive finite elasticity modelling formulation presented in Appendix B.

When modelling electro-mechanics we are specifically interested in the dynamic active be-

haviour of the tissue and the inclusion of active material properties into the finite deformation

modelling paradigm is therefore a crucial first step in developing a model of cardiac electro-

mechanics.
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We assume active contraction of muscle fibres generates force only in the direction of the

fibre axis (Figure 1.3), which aligns with the ν1-coordinate in the deformation theory (Ap-

pendix B). Therefore only one term of the true (Cauchy) stress tensor is altered and the the full

Piola-Kirchhoff stress tensor with respect to the microstructural axes can be written

T αβ =
1

2

(

∂W

∂Eαβ

+
∂W

∂Eβα

)

− paαβ

(ν) + T
ρo

ρ

∂Xα

∂ν1

∂Xβ

∂ν1
, (3.2.1)

where T = T (t, λ11, . . .) is the active tension generated by a fibre at the time for which the

stress tensor is being evaluated and ρo

ρ
= 1 as we assume an incompressible material. λ11 is

the fibre axis extension ratio described in Section 2.1.3. Addition of active tension to the stress

tensor seems a minor addition to the model, but we will show how the addition of dynamic

behaviour to a traditionally quasi-static method results in a huge increase in the computational

cost of the numerical simulation of such models.

For the purposes of this thesis we have followed the above assumption and only included

active tension generated in the fibre direction. The implementation of this method, however,

allows for active tension components to be specified aligned with any or all of the fibre, sheet,

and normal material axes, taking into account the strain in all material directions.

Previous work in our group has used a steady-state tension-length-calcium relationship (Sec-

tion 2.5.6) for the active tension, T , in Equation (3.2.1) (Nash 1998, Stevens 2002, Remme,

Nash & Hunter 2004). This approach has also assumed a near constant activation level over the

entire solution domain. The method we develop in this thesis allows for T to be defined directly

from cellular models spatially distributed throughout the solution domain.

3.2.2 Coupling Electrical Activation and Finite Elasticity

Although electrical excitation and mechanical contraction are physiologically interdependent,

the quasi-static techniques used for the solution of the finite elasticity tissue models and the fact

that the electrical and cellular processes take place on much faster timescales allows for some

uncoupling in continuum model simulation. Figure 3.6 presents an overview of the algorithm

developed for the solution of coupled electro-mechanics in continuum tissue models. This al-

gorithm allows for the semi-independent solution of the finite elasticity and electrical activation

models at a given instant in time, resulting in two solution steps separated by an update step in

which information is transferred between the models. This is advantageous because it enables us

to make use of the code base provided by CMISS for the individual components of the algorithm
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with the addition of the communication and updating processes. As discussed in Section 6.1,

however, this requires further investigation to determine if this actually inhibits performance of

the simulations performed in this thesis. The two solution steps are semi-independent because

they both utilise the same underlying cellular model(s) in their respective solutions.

Model specification

Any simulation starts with a description of the model and some initial conditions. In this case the

model definition includes a FE geometry (including the continuum representation of the fibrous

microstructure), the constitutive material law for the mechanical model, the electrical activation

model to use, continuum material parameters for both excitation and mechanics models, and

specification of the cellular model. The simulation framework we have developed allows for

spatial variation of not only cellular model parameters but cellular models themselves.

Boundary and initial conditions in an electro-mechanics model will typically be restrictions

on the movement of sections of the geometric model, possibly an applied pressure to some

surfaces, and an electrical stimulus of some kind. The electrical stimulus could be applied

internally through the use of pacemaker cells within the solution domain (e.g., SAN cells or

Purkinje fibre cells), but in this work transmembrane volume currents will usually be applied at

the desired location(s).

Solution procedure specification

Once the model has been specified the numerical techniques to be used in solution of the model

need to be specified. The FE method for finite elasticity requires a system of nonlinear equations

to be solved over the solution domain. This system is rearranged into a set of residuals which

must be minimised with respect to the set of solution variables using a root finding technique.

The electrical activation and finite elasticity models both involve, at some point, in a linear

system of equations of the form Ax = b to be solved for the unknown values of x. Due to the

structure of the different A matrices, the two models will generally obtain better performance

with different linear solvers. These linear solvers and their parameters need to be specified for

each of models.

In addition to the solution techniques to be used in the solution of the electrical activation

and finite elasticity models, the spatial and temporal discretization to be used by each of the
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3. Initialisation

− approximate cellular models at Gauss points
− solve system of nonlinear equations

− update "cell" model for every
length change

t∆

t∆

− increment cellular models to:

− new potential field solution(s) at:
time +

time +

− geometry
− cellular model
− activation model
− constitutive relationship
− boundary and initial conditions

mathematical equations
and material properties

− activation solution technique
− mechanics solution technique
− temporal discretisation
− spatial discretisation
− cell model integration

activation and
mechanics

− cellular extension ratios
− cellular shortening velocities
− tissue conductivity tensor

1. Model specification

2. Solution procedure specification

4. Activation solution step

5. Mechanics solution step

material properties
6. Update cellular & activation

PSfrag replacements

time = 0

time = time + ∆t

FIGURE 3.6: Overview of the algorithm developed for the coupled solution of cardiac electro-

mechanics over a continuum solution domain. See text for detail.
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models needs to be specified. The spatial resolution of the finite elasticity model will be given

by the interpolating basis functions used for the deformation and pressure fields, where we

typically use high order cubic Hermite interpolation (Section 1.2). When using the grid-based

finite element (GBFE) method with either the bidomain or monodomain activation models, the

solution domain is subdivided into trilinear FEs where the spatial resolution of the model is

given by the size of these elements. It has been shown that a spatial resolution on the order

of 200 µm is required for a converged activation solution (Sands 1997, Buist 2001, Pollard

2003, Hunter et al. 2003). Time discretization on the order of 10 µs is required to obtain a

converged activation solution (Hunter et al. 2003). The quasi-static nature of the finite elasticity

formulation, however, allows for much larger time intervals between solution steps. The limiting

size of this interval is, however, still under investigation and will most likely be found to be

specific for a given model.

Further to the specification of the solution techniques for the activation and mechanics mod-

els, the numerical method used for the solution of the cellular model must also be specified.

Cardiac electro-mechanics cell models will consist of a system of ordinary differential equa-

tion (ODE)s. This system, which could be very large and very stiff, must be integrated over

the desired time interval to give the cellular state at the next time point for use in both the acti-

vation and mechanics models. The stiff nature of some cellular models may require even finer

time resolution for their integration than the 10 µs required by the activation model. Such time

resolution can be achieved through the use of adaptive time stepping ODE integrators. For ex-

ample, the LSODA (Hindmarsh 1983) and RADAU (Hairer & Wanner 1996) integrators have

been found to perform well with the range of cellular models presented in Chapter 2.

Initialisation

Having specified the model and solution techniques, there are some initialisations that are only

required to be performed once. For the mechanics model, an initial solution step may be re-

quired to incorporate any residual strains (Omens & Fung 1990, Rodriguez, Omens, Waldman

& McCulloch 1993, Costa, May-Newman, Farr, O’Dell, McCulloch & Omens 1997) into the

model in order to obtain a true stress-free reference state required for the finite elasticity (Nash

1998, Stevens 2002). The electrical activation model needs to compute initial tissue conductiv-

ities throughout the solution domain and also assemble the initial matrices.

The initialisation stage marks the end of the simulation set-up phase. We are now ready

to solve the model. Model solution is split into two parts – first the time dependent electrical



3.2 MODELLING TISSUE ELECTRO-MECHANICS 81

activation model is solved for the current time step and then the mechanics model is solved

given the current active state of the cellular model(s). The two solution steps are iterated upon

for the duration of the full temporal solution domain with an update at each time step.

Activation solution step

Solution of the electrical activation model takes the current potential field solution and solves

for a given time interval (∆t) using the GBFE method (Section C.3). The actual solution of the

activation model and the integration of the ionic current model will need to be performed on

a very fine temporal scale (δt ≈ 10 µs) whereas in this algorithm we are interested in a larger

scale time resolution. Thus, ∆t is usually in the range 1–10 ms.

This solution step will result in new potential fields over the solution domain at the time

t + ∆t. As part of the solution process the cellular fields at each node in the GBFE mesh will

be at their t+ ∆t value.

The main feedback from the finite elasticity model into the cellular model will be through

the cellular strain, and in some cases the velocity with which the strain is applied. The strain

and shortening velocities at each cell in the continuum model is determined in the update step.

For the case when there is a dependence on the velocity of length changes, we say the cellular

model provides a dynamic active tension and it is this dynamic tension that will generally be

used as the initial active tension input into the finite elasticity model.

Mechanics solution step

Section 3.2.1 describes how the active tension is incorporated into the FE formulation of the fi-

nite elasticity equations given in Section B.3. Gauss-Legendre quadrature (or Gaussian quadra-

ture) is used to numerically integrate these equations through the use of weighted sums of

integrand evaluations using specified sets of independent variables (Nash 1998). The spatial

location of the Gauss points at which the integrands are evaluated are determined by an ele-

ment’s interpolating basis function and the resolution of the quadrature scheme. Throughout

the solution of the finite elasticity equations at a given point in time, the full stress tensor (Equa-

tion (3.2.1)) is evaluated at each of the Gauss points. In the models we have developed in this

thesis, the active tension contribution to each of these stress tensor evaluations comes from the

cellular model governing the active behaviour of the tissue surrounding the Gauss point.
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When using Newton’s method to solve the finite elasticity equations, a Jacobian matrix

needs to be created for each load step to determine the direction to search for the required root

(Section B.3.2). As shown in Equation (B.3.13), the Jacobian matrix is a combination of the

rate of change of each solution variable with respect to each of the other solution variables.

This matrix is numerically evaluated by perturbing each solution variable by a small amount

and calculating the change in each of the other variables, which is used to estimate the required

derivatives.

For the formulation of the finite elasticity equations used here, the solution variables mostly

consist of displacements of nodal coordinates and nodal derivatives for all the nodes in the so-

lution domain not fixed by a specified boundary condition. As such, the perturbations of the

solution variables is analogous to localised application of mechanical deformation of the solu-

tion domain. Thus, the perturbations result in changing the length of the cells in the region of

tissue surrounding the point being perturbed with those physically closest to the point exhibiting

the largest effect, while the effect decreases further from this point. As shown in Section 3.1

the active tension generated by a cell is highly dependent on the cell length with a nonlinear

relationship between length and tension.

We have found that the changes in active tension caused by these perturbations are essential

to the convergence of Newton’s method. If a constant active tension value is used throughout

the calculation of the Jacobian matrix, it is very difficult, and in most cases impossible, to obtain

a converged solution to the finite elasticity equations. We found that for very small increments

of the activation level over the solution domain, converged solutions may be obtained while

using a constant value of active tension at a given Gauss point for the Jacobian evaluation. To

obtain such small increments over the solution domain given the rapid upstroke of the cellular

tension transient, however, would result in a small temporal step between solutions of the finite

elasticity model and ∆t would tend toward δt. This results in a solution method that is very

time consuming and possibly not required.

Through incorporation of the solution of the cellular model for every evaluation of the

stress tensor, we have developed a method which provides a converged solution for much larger

changes in activation level throughout the solution domain. During the solution of the finite elas-

ticity model the stress tensor evaluations will typically be performed at the Gaussian quadrature

points, requiring the calculation of the active tension from the cellular model at a given spatial

location. We tested two methods for this calculation, both of which make use of the fact that

the active tension at the Gauss point is going to be dominated by the cell physically closest to

the Gauss point, with influence from the cells surrounding that cell, and then very little to no
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influence from cells more distal (Figure 3.7(a)). Here we refer to the nodes of the GBFE mesh

as cells.

Method one, illustrated in Figure 3.7(b), updates the cellular fields based on the current

deformation of the geometry given by the finite elasticity model. The cellular model is then

integrated at the influential cells and the active tension value is interpolated to the value required

at the Gauss point. Method two, Figure 3.7(c), interpolates the cellular fields from the influential

cells to values at the Gauss point and then integrates the cellular model at the Gauss point using

these values. In three dimensions both methods consist of 27 influential cells.

Method two requires that all the influential cells are modelled with the same cellular model.

While this is lacks the generality of method one, it is felt that the case when a Gauss point is

spatially located very close to the boundary of two cell types will be very rare and did not occur

in any of the models in this thesis. Further refinement of method two could be performed to

enable the solution of any such cases that may occur. Method one requires that the local mate-

rial strain be evaluated at each of the influential cells, which is a particularly time consuming

process. In method two, however, we already have the local material strain at the Gauss point as

part of the finite elasticity model. In three dimensions, method one involves 27 cellular model

solutions whereas method two has 1.

Comparisons of the two methods has shown that method two is significantly less time con-

suming when running simulations, while obtaining quantitatively the same answer. The time

saved in model solution easily compensates for the lack of generality, especially given that in

all the models in this thesis we never encountered the problem described above. Thus, we have

used method two for all the simulations described in this thesis. Potentially this method will

need to be improved to cover future model requirements or techniques could be employed to en-

sure the more general method one is made computationally tractable. While this discussion has

focused on evaluating the full stress tensor at a Gaussian quadrature point, the methods are both

applicable to any spatial location in the solution domain given that point’s material coordinates

in local element space.

The final problem to overcome in the process of coupling cellular dynamics models into

the finite elasticity model is the fact that in the calculation of the Jacobian matrix for Newton’s

method (Section B.3.2) we are essentially applying perturbations of cellular lengths in regions

of the tissue model. To the cellular model, these appear as instantaneous length steps which,

as shown in Figures 3.2 and 3.5, result in a rapid decrease of the dynamic active tension to

near 0 before recovery to the new isometric tension value for the new cellular length. Such
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(a) Interpolation from GBFE nodes to Gauss points.

1. Cellular fields
from activation model

2. Calculate strain at
influential GBFE nodes

3. Solve cellular model at
each influential GBFE node

4. Interpolate active tension

to Gauss point
from influential GBFE nodes

5. Solve FE model

Converged?

Yes

No

(b) Method one.

1. Cellular fields
from activation model

2. Interpolate cellular fields
from influential GBFE nodes

to Gauss points

Gauss point
3. Solve cellular model at

5. Solve FE model

Converged? No

Yes

(c) Method two.

FIGURE 3.7: The two methods developed for calculating active tension at a Gauss point. (a)

shows a cube element with the Gaussian quadrature points shown as large silver spheres and

GBFE nodes (or cells) as smaller tan spheres. The cells which influence the active behaviour of

the tissue at the gold Gauss point are shown in green, the cell with the greatest influence is shown

in red. The blue lines indicate the volume of tissue assumed to influence the active behaviour

of the material at the gold Gauss point. This example uses a very coarse GBFE mesh to aid

presentation, see Figure 3.8(d) for a grid closer to that required for actual model solution. (b) and

(c) show the two methods developed for the calculation of active tension for a given Gauss point

(gold) from the cellular values at the influential grid points (green and red).
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rapid changes in active tension wreak havoc with the numerical techniques we are employing to

solve the finite elasticity equations. We note here that these applied length changes are purely

an artifact of the numerical method being used to solve the model. We can therefore neglect

any dynamic changes in active tension due to the length changes and use only the non-dynamic

active tension from the cellular model in the finite elasticity model solution for a given instant

in time. The dynamic component of the active tension is included from the cellular model due

to the initial active tension applied to the finite elasticity model from the activation solution step

being computed using the full dynamic model.

For some models, it is conceivable that evaluation of active tension may require the integra-

tion of some ODEs. To enable this, the framework implementation has the ability to perform

a dummy integration step of the cellular model for each active tension calculation. Here the

dummy step size is assumed large enough to allow transient effects of the applied numerical

length steps to dissipate so as to allow a converged finite elasticity solution to be obtainable.

Finally, we note that the length perturbations applied to the cells during the solution of the fi-

nite elasticity equations are the basis of a numerical technique and not based on the physiology.

As such, the perturbations can possibly result in cellular extension ratios outside the physio-

logical range for cardiac myocytes described in Section 2.1.3. When the value of the extension

ratio falls outside the physiological range during the application of the numerical technique non-

physiological active tensions will result. In these cases the limiting extension ratio values can

be used in the evaluation of active tension – in effect, the maximal and minimal active tensions

are capped at their values for the corresponding limiting extension ratio. A converged mechan-

ics solution step is only accepted if the cellular extension ratio values throughout the solution

domain are within the physiological limits.

Update cellular and activation material properties

Having completed the activation and mechanics solution steps we have a global activation and

cellular solution for the time t+∆t but with the deformation from time t and a new deformation

solution based on the activation and cellular solution at time t+ ∆t. We now update the GBFE

mesh to match the new deformed geometry and update the any activation model parameters

dependent on geometry (i.e., the conductivity tensor).

Local material strain in each of the material axes is calculated at each of the GBFE nodes

and the cellular lengths are updated in line with the new deformation solution. If required,
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the velocity of the length changes can also be calculated at each of the nodes from the change

in length and the known time step (∆t). Similarly, the sheet and normal axial strains can be

transfered to cellular fields for models which include mechanosensitive mechanisms dependent

upon other forms of deformation. Membrane area or intracellular volume sensitive ion channels,

for example, which are now attracting significant interest in this field (Barritt & Rychkov 2005).

Finally, the current time is incremented (t = t + ∆t) and we return to the activation model

solution step to solve for the next time interval.

3.3 Framework Validation

Previous work based on CMISS have presented simulation results using a steady-state tension-

length-calcium relationship to provide an approximation of active tension in cardiac tissue

(Hunter et al. 1997, Nash 1998, Stevens 2002). These investigations have provided the basis

of a basic validation of the numerical implementation of the framework developed in this thesis.

We now use the implementation of this tension-length-calcium relationship to compare simu-

lation results with our framework to check the numerical results obtained from our framework.

The CellML version of the steady-state tension-length-calcium relationship used in the following

simulations is provided in Section A.19 and a description of the model is given in Section 2.5.6.

3.3.1 Tissue Cubes

We begin with possibly the simplest example of active contraction. A cube, measuring 4 mm

on an edge, is initially at rest in an unloaded state. The calcium activation level is increased

in a step-wise manner from the rest value of 0.0 to the fully activated state at 1.0. We com-

pare here the results obtained from simulating the contraction of this cube using the previous

implementation (Nash 1998) with those from the cellular based framework developed in this

thesis.

With the cellular based model we compare the results obtained using four resolutions of

cellular spatial discretization. The first resolution is one which overlays the underlying Gaussian

quadrature points for the finite elasticity integration (Figure 3.8(a)) – this results in an identical

model to the previous implementation, but now with the active mechanics equation defined via

CellML. Then we use three different grid resolutions to confirm that the same solution can be
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(a) Gauss points (b) Coarse grid

(c) Medium grid (d) Fine grid

FIGURE 3.8: The five different configurations of a 4x4x4 mm cube of cardiac tissue. (a) shows

the Gaussian quadrature points used in the solution of the finite elasticity model. The grid points

for the lowest resolution grid lie on the same points in the element. (b)–(d) show the increasing

grid resolutions used in the simulations. The coarse grid has an initial grid point spacing of

500 µm, the medium of approximately 364 µm, and the fine grid 200 µm.

obtained when interpolating the active tension from the grid points used in the GBFE used to

solve the electrical activation model (Figures 3.8(b)–3.8(d)).

A homogeneous cube

The first simulation performed assumes that the tissue is an isotropic material. We use the pole-

zero (Section B.3) material constitutive law with the same parameter values in the fibre, sheet,

and sheet-normal directions (Table 3.1). While the material properties are isotropic, the fibre

direction is used to specify the axis along which the active contraction occurs. In this simulation

the fibres are aligned with the x-axis.
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Parameter Value

a11 = a22 = a33 0.475

k11 = k22 = k33 2.0 kPa

b11 = b22 = b33 1.5

TABLE 3.1: The pole-zero material parameters used for the isotropic tissue cube model. These

values correspond to the fibre-axis material parameters from Remme et al. (2004).

Results from this isotropic model, summarised in Figure 3.9, show that for this example

an identical solution is achieved for both the original model and the cellular based version of

the model, for all the different grid resolutions give the same solution (Figure 3.9(i)). Here we

calculate the root mean squared (RMS) error as

RMS =

√

√

√

√

√

√

N
∑

i=1

(Gi − gi)
2

N
, (3.3.1)

where N is the number of nodes,Gi are the original method’s deformation solution at each node

i (including derivative information where appropriate), and gi are the current implementation’s

solution at each node i.

We now repeat the same simulation using the orthotropic material parameters for porcine

cardiac tissue (Remme et al. 2004). The material parameters are given in Table 3.2 and the fibre,

sheet, and normal axes are aligned with the x, y, and z rectangular Cartesian axes respectively.

A summary of the results from simulation of this orthotropic tissue cube model is presented in

Figure 3.10. Results from the isotropic cube model are superimposed to illustrate the effect of

the orthotropic material properties compared to the isotropic material.

Figures 3.9(h) and 3.10(g) nicely illustrate the combination of the pole-zero constitutive

law with an incompressible material. As the sheet and normal extension ratios approach their

pole values (
√

2 ∗ aii + 1 ⇒ 1.396 (isotropic) and 1.496, 1.699 (sheet and normal, respectively,

for orthotropic)), the tissue becomes stiffer resulting in a much reduced contraction in the fi-

bre direction despite the increasing calcium level. With the homogeneous material and active

mechanics the extension ratio changes are similarly homogeneous and the plots given in Fig-

ures 3.9(h) and 3.10(g) are identical at all points within the cube of tissue.

Notice the larger lateral expansion in the normal direction (z-axis) than in the sheet direc-

tion (y-axis) shown in Figures 3.10(a)–3.10(g) compared to the matching isotropic results in

Figures 3.9(b)–3.9(h). Note also the greater fibre compression achieved at a given calcium ac-
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(a) Geometry and boundary conditions for this simulation. The nodes represented by

the green spheres are fixed in the y-z plane and that represented by the gold diamond is

restricted to slide along the x-axis. The solid cylinders indicate the material fibre axis.

(b) Ca = 0.0 (c) Ca = 0.2 (d) Ca = 0.4

(e) Ca = 0.6 (f) Ca = 0.8 (g) Ca = 1.0
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FIGURE 3.9: Results from simulating the contraction of an isotropic 4x4x4 mm cube of cardiac

tissue using the pole-zero constitutive law, with parameters given in Table 3.1, and the steady-

state tension-length-calcium active mechanics model. Figures (b)–(g) are the deformed solutions

for the specified calcium activation levels, with the initial geometry superimposed (silver lines).

(h) plots the calculated extension ratios against the calcium activation level and (i) plots the RMS

errors for the different model configurations.
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(a) Ca = 0.0 (b) Ca = 0.2 (c) Ca = 0.4

(d) Ca = 0.6 (e) Ca = 0.8 (f) Ca = 1.0
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(g) Extension ratios vs. calcium activa-

tion.
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FIGURE 3.10: Results from simulating the contraction of an orthotropic 4x4x4 mm cube of

cardiac tissue using the pole-zero constitutive law and the steady-state tension-length-calcium

active mechanics model. Material parameters are given in Table 3.2. Initial geometry and bound-

ary conditions are identical to those given in Figure 3.9(a). Figures (a)–(f) are the deformed

solutions for the specified calcium activation levels, with the initial geometry (silver lines) and

isotropic solutions (red lines) superimposed. (g) plots the calculated extension ratios in each of

the three material axes against the calcium activation level and (h) plots the RMS errors for the

different model configurations.
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Material Axis Parameter Value

Fibre a11 0.475
k11 2.0 kPa
b11 1.5

Sheet a22 0.619
k22 2.0 kPa
b22 1.5

Normal a33 0.943
k33 2.0 kPa
b33 0.442

TABLE 3.2: The pole-zero material parameters used for the orthotropic porcine tissue cube

model. These values are taken from Remme et al. (2004).

tivation level in the orthotropic model due to the increased expansion in the sheet and normal

directions which are less stiff than in the isotropic model. We also note that mass is conserved

as shown by the scalar product of the fibre, sheet, and normal extension ratios being equal to

1.0000 at all calcium activation levels.

The effect of fibre angles

We now alter the orthotropic cube model to include a realistic distribution of material fibre axes

through the cube, as if the cube was taken from the ventricular wall. The distribution of material

axes is illustrated in Figure 3.11(a), showing the rotation of the fibre axes from the epicardial

surface through to the endocardial.

For an initial simulation, identical boundary conditions from the previous cube models (Fig-

ure 3.9(a)) are applied. As shown in Figures 3.11(b)–3.11(g), this results in some interesting

deformation of the cube. Figure 3.11(h) provides an illustrative plot of the three axial extension

ratios against the calcium activation level for a point near the initial centre of the cube. Due to

the varying orientation of the material axes the deformation is no longer homogeneous and the

extension ratio curves vary throughout the cube.

The deformation shown in Figures 3.11(b)–3.11(g) illustrates the large deformations that

are possible when simulating the active contraction of a passive piece of tissue. As seen by the

shortening of the fibre (red) arrows and lengthening of the sheet (green) and normal (blue) ar-

rows, the material is contracting in the fibre direction and expanding in the other directions due

to the incompressible nature of the material. Due to the changing orientation of the fibres the
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(a) Geometry used in this simulation. The red arrows are aligned with the fibre axis,

the green with the sheet axis, and the blue with the normal axis. Larger arrows are

shown on the “epicardial” (x = 0) and “endocardial” (x = 4) faces, and the rotation of

the fibre axis through the wall is shown with smaller red arrows. Boundary conditions

are identical to those in Figure 3.9(a).

(b) Ca = 0.0 (c) Ca = 0.2 (d) Ca = 0.4

(e) Ca = 0.6 (f) Ca = 0.8 (g) Ca = 1.0
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(h) Example extension ratios vs. calcium activa-

tion plot, taken from near the middle of the cube.
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FIGURE 3.11: Results from simulating the contraction of a 4x4x4 mm cube of cardiac tissue.

The pole-zero material parameters used are given in Table 3.2. Figures (b)–(g) are the deformed

solutions for the specified calcium activation levels, with the initial geometry superimposed (sil-

ver lines). (h) plots the calculated extension ratios against the calcium activation level and (i)

plots the RMS errors for the different model configurations.
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deformation is no longer homogeneous and the boundary conditions imposed on the model are

perhaps less useful in terms of a real physiological problem. However, this simulation is only

meant as a test of the implementation of the framework developed and we are more concerned

in this case with being able to generate comparable results to those from the previous imple-

mentation. Once again, we note that conservation of mass is obeyed with the scalar product of

the fibre, sheet, and normal extension ratios being equal to 1.0 at all calcium activation levels.

Figures 3.9(i) and 3.10(h) show that there are only very small (peak RMS ∼ 10−13, Equa-

tion (3.3.1)) differences between the deformations calculated using each of the grid based meth-

ods compared to the original model implemented in CMISS. Figure 3.11(i) shows no difference

between all the grid based methods and the original method implemented. This shows that

for these three, relatively simple, examples we can be confident that the new method based on

CellML we have implemented in CMISS is capable of reproducing the results of the previous im-

plementation. We now continue the evaluation of the implemented framework with a geometry

and boundary conditions a bit closer to those of the heart.

3.3.2 A Ventricular Doughnut

Having gained a measure of confidence that the implementation of the framework developed

in this thesis works for fairly simple models, we now test it further. The next model we test

continues the use of the steady-state tension-length-calcium relationship used in the previous

section and detailed in Section 2.5.6. We use this model of active tension in a doughnut shaped

geometry representative of a section of a rat LV near the basal plane. The geometry used in the

following models is presented in Figure 3.12.

In all the following simulations we use the same base set of mechanical boundary conditions,

as described in Figure 3.12. The boundary conditions hold the “base” of the ventricular section

in its initial geometry in the basal plane. This is representative of the connection between the

basal skeleton of the ventricle with the rest of the body, which is assumed to remain unmoved

during the contraction of the heart.

As with the above cube models, we compare the simulation results obtained from four dif-

ferent grid resolutions with those obtained from the original implementation of the model (Nash

1998). The four grid resolutions are illustrated in Figure 3.13 with a close-up view of two of the

elements in the doughnut.
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FIGURE 3.12: The geometric mesh of a doughnut shaped piece of cardiac tissue used in val-

idation of the implementation of the simulation framework developed in this thesis. The inner

diameter of the torus is 4 mm and the outer is 10 mm, with a height of 5 mm. The red arrows

indicate the direction of the tissue fibres, rotating from +60◦ at the epicardial surface through to

−60◦ on the endocardial surface (relative to the horizontal plane). Mechanical boundary condi-

tions applied to this model fixed the coordinates of the basal nodes (green spheres) and also fixed

the in-plane derivatives of these nodes.

Active contraction

The first model of the doughnut ventricular geometry given in Figure 3.12 simulates active

contraction of the tissue using the steady-state tension-length-calcium relation. We assume all

the tissue is activated at the same time and the calcium activation level is increased in a stepwise

manner. The only boundary conditions are those described in Figure 3.12.

Figure 3.14 summarises the results obtained from this model. These results show the ex-

pected twist and wall thickening associated with contraction of the ventricular wall during nor-

mal cardiac rhythm.

As with the previous cube models we simulate the contraction using both the original imple-

mentation and several versions of the CellML based implementation using different resolutions

for the GBFE (Figure 3.13). Comparisons of the deformation solutions for each of the different

grid resolutions to those of the original implementation show the solutions are identical, with

an RMS error of 0.0 (Equation (3.3.1)) for all grid resolutions (see Figure 3.11(i)).
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(a) Gauss-based grid (b) Coarse grid

(c) Medium grid (d) Fine grid

FIGURE 3.13: The five different configurations of the doughnut model shown in Figure 3.12.

(a) shows the Gaussian quadrature points used in the solution of the finite elasticity model. The

grid points for the lowest resolution grid lie at the same points in the elements. (b)–(d) show the

increasing grid resolutions used in the simulations. The coarse grid has an average initial grid

point spacing of 341 µm (9792 grid points), the medium of 245 µm (25200 grid points), and the

fine grid 138 µm (133200 grid points).
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(a) Ca = 0.00

(b) Ca = 0.25 (c) Ca = 0.50

(d) Ca = 0.75 (e) Ca = 1.00

FIGURE 3.14: Results from simulating active contraction of the doughnut ventricular section.

The red arrows indicate the deforming fibre directions on the epicardial surface of the model and

figure captions give the corresponding calcium activation level. Boundary conditions are shown

in Figure 3.12.
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Application of a pressure boundary condition

The first phase of the cardiac cycle is the passive inflation of the LV as the ventricular cavity

fills with blood. This is simulated in the doughnut model through the application of a pressure

boundary condition to the endocardial surface of the doughnut. This has the effect of stretching

the fibres before contraction begins.

Figure 3.15 presents the results of a simulation where the doughnut ventricular geometry

is first inflated to a cavity pressure of 1.0 kPa and then allowed to freely contract using the

same steady-state tension-length-calcium active tension model used above. As shown in this

figure, the initial contraction is quite different from the non-inflated model (Figure 3.14). As

the calcium activation level increases, however, the two models converge to the same solution as

the active tension begins to have greater influence on the deformation than the applied pressure

boundary condition. This is shown in Figure 3.15 by the merging of the blue and red lines as

Ca approaches 1.0.

Like the previous doughnut model, all the different grid resolutions (Figure 3.13) result in

identical deformations as the original model implementation. The RMS difference between the

different implementations is 0.0, as calculated by Equation (3.3.1).

Isovolumic contraction

Following the passive inflation of the LV in the cardiac cycle, there is the period during which

the excitation wavefront passes through the tissue and the ventricular wall begins to contract

(Figure 5.2). During this period the pressure in the LV cavity increases until it overcomes the

aortic impedance and blood begins to flow out through the aortic valve. This period before the

opening of the aortic valve is known as isovolumic contraction.

We model this period in the doughnut by coupling a cavity volume region to the ventricular

wall (Section 5.1.2). This allows for the solution of the pressure required to be applied to the

ventricular wall to keep the cavity at a constant volume. Figure 3.16 provides some results from

the isovolumic contraction of the doughnut following an initial inflation to a cavity pressure of

1.0 kPa.

While the results shown in Figure 3.16 continue significantly above the range of physio-

logical pressure experienced by a normal ventricle, they serve the purpose of testing the im-
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(a) Ca = 0.00 (b) Inflated to 1.0 kPa

(c) Ca = 0.25 (d) Ca = 0.50

(e) Ca = 0.75 (f) Ca = 1.00

FIGURE 3.15: Results from simulating active contraction of the doughnut ventricular section

following an initial inflation to a cavity pressure of 1.0 kPa. Displacement boundary conditions

are shown in Figure 3.12. The red lines are the contraction solutions from Figure 3.14.
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(a) Ca = 0.0 (b) Inflation to 1.0 kPa

(c) Ca = 0.4 → 21 kPa (d) Ca = 0.6 → 40 kPa

(e) Ca = 0.8 → 51 kPa (f) Ca = 1.0 → 56 kPa

FIGURE 3.16: Results from simulating isovolumic contraction of the doughnut ventricular sec-

tion following an initial inflation to a cavity pressure of 1.0 kPa. Displacement boundary con-

ditions are shown in Figure 3.12. Red surface and silver lines show the deforming ventricular

cavity mesh with the initial cavity mesh shown by the blue lines. The specified pressures are the

cavity pressure for each calcium activation level.
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plementation of the cellular based framework. For these results, we again see that the cellular

based models achieve identical deformations compared to the original active contraction model

implementation (Nash 1998). The RMS error from this comparison for all calcium activation

levels and all the grid resolutions (Figure 3.13) is 0.0 (Equation (3.3.1)).

3.3.3 Summary

We have used the above cube and doughnut models to illustrate that the implementation of

the cellular based framework developed in this thesis for active mechanics is capable of giving

solutions quantitatively identical to those of the original implementation. These models have

been used only to test the implementation under conditions similar to those expected to be found

in various parts of more physiologically and anatomically based models.

In a departure from what has been previously possible in CMISS, we now examine the

performance of the implemented framework with true models of coupled electro-mechanics. We

first use a simplified cellular model to aid in the understanding of the ability and performance

of the framework. This is followed by a model using a biophysically based cellular model to

ensure that the framework is capable of handling the detailed and complex cellular models that

are required to capture the behaviour necessary for some pathological conditions.

3.4 Cardiac Electro-Mechanics in a Cube

Having established confidence in the implementation of the simulation framework we have de-

veloped, we now test the ability of the framework with a real coupled model of cardiac electro-

mechanics. The model presented here is the simple cube model (Figure 3.9(a)) using the or-

thotropic material parameters given in Table 3.2 and the tissue monodomain material properties

are shown in Table 3.3. This simple geometric model is used to allow the understanding of

the performance of the cellular models, material constitutive law, and the simulation frame-

work without the complex behaviour of varying fibre axes and anatomically based geometry.

Chapter 5 presents models which include these and other complexities with results from the

simulations run with these models.

In this model the active contraction of the tissue is now driven by the propagating wave

of electrical excitation initiated by the application of a stimulus current. This results in non-
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uniform deformation throughout the cube dependent on the state of electrical activity in that

region of tissue. To be able to resolve this deformation within the given convergence criteria, the

geometric finite element mesh needed to be refined. The refined geometry is given in Figure 3.17

with the applied mechanical and electrical boundary conditions also shown.

(a) (b)

FIGURE 3.17: (a) shows the geometry and boundary conditions used for the cardiac cube model.

The overall cube measures 4x4x4 mm, consisting of 64 unit cubes. The nodes represented by

green spheres are fixed in the y-z plane and that represented by the gold diamond is restricted

to slide along the x-axis. The solid cylinders within the cube indicate the fibre orientation. An

electrical stimulus is applied on the x = 4 face, indicated by the red face of the cube. (b) provides

the spatial locations for the cellular transients to be presented.

3.4.1 FK-HMT

We first test our framework using the epicardial version of the simplified FK-HMT cardiac cellu-

lar electro-mechanics model (Section 3.1.1). An electrical stimulus current of 150 µA · mm−3

is applied with a duration of 1 ms and a period of 1000 ms, as illustrated in Figure 3.17. A

summary of the results of this simulation is presented in Figure 3.18.

As shown by the cellular transients in Figure 3.18(d), the simulation results shown in Fig-

ure 3.18 are for the second contraction/relaxation cycle. This illustrates, at least for this model,
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(a) 1000 → 1080 ms

(b) → 1220 → 1300 ms

(c) → 1400 → 2000 ms
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(d) Cellular transients.

FIGURE 3.18: A sample of the simulation results from the FK-HMT based cube electro-

mechanics model (with the epicardial material parameters). (a)–(c) show the deformation solu-

tions in 20 ms (a,b) and 150 ms (c) time steps with transmembrane potential iso-surfaces passing

through. (d) provides plots of three cellular parameters at the spatial locations indicated by the

matching coloured sphere in Figure 3.17(b). See text for full description and Section D.3 for an

animation of the simulation.
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Material Axis Parameter Value

Fibre σ11 0.01 mS · mm−1

Sheet σ22 0.003 mS · mm−1

Normal σ33 0.0015 mS · mm−1

TABLE 3.3: The orthotropic material parameters for the monodomain activation model in a cube.

σii are the intracellular conductivities in the given material axis.

that the framework is capable of simulating repetitive cycles. The coloured surfaces passing

through the cube in Figures 3.18(a) and 3.18(b) represent the membrane potential range of

−15– + 5 mV. The sharp activation wavefront appears in only one of the frames compressed

into a barely discernible plane which is red (5 mV) on one side and blue (−15 mV on the

other. The more dispersed repolarisation wave is more easily observed in several of the frames

in Figure 3.18(c).

Figure 3.18(d) provides plots of membrane potential, active tension, and extension ratio for

the five locations shown by the coloured spheres in Figure 3.17(b). The extension ratio plot

illustrates the stretching that occurs within the tissue as the cube begins to contract in a spa-

tially distributed manner. As the stimulated face of the cube begins to contract first the still

passive tissue near the mechanically fixed boundary is stretched by the forces applied to it by

the contraction of the active tissue. The closer the tissue is to the fixed boundary, the longer

the period before the onset of contraction, and the more it is stretched. Despite these mechan-

ical differences, the action potentials clearly show no effect of this stretching (or contraction),

highlighting the lack of any mechano-electric feedback in the FK-HMT model. The slight dif-

ferences observable in the action potentials from the different spatial locations can be attributed

to the changing electrical diffusion properties of the tissue as the material shortens along the

fibre axis while lengthening along the sheet and normal axes.

These results show the activation wave progressing with a finite velocity (0.145 mm · ms−1)

through the tissue, whereas the repolarisation wave is much more dispersed with the repolarisa-

tion phase of the cellular APs virtually indistinguishable (Figure 3.18(d)). This is followed by

the tension and extension ratio transients, where the only significant differences at the cellular

level are shown in the activation phase. Both sets of transients closely match between points

through the cube during recovery to the resting state.

The simulation in Figure 3.18 used the algorithm described in Section 3.2.2 with the dy-

namic active tension (see the activation solution step in Section 3.2.2). Figure 3.19 shows a
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comparison between this simulation and one performed using the non-dynamic active tension

for the entire simulation (assumes a constant and homogeneous shortening velocity of 0). The
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FIGURE 3.19: Comparison of the dynamic and non-dynamic active tension models (Sec-

tion 3.2.2) at two spatial locations in the cube. The active tension and extension ratio transients

are for the magenta (left) and green (right) cells shown in Figure 3.17(b).

dynamic tension uses the velocity history in the calculation of active tension and displays a

prominent dip below zero for all the cells shown in Figures 3.18(d) and 3.19. The negative

active tension indicates that the muscle tissue is shortening faster than the maximum shortening

velocity of the cells, given in its simplest form and ignoring the high order rate constants by

•

λmax =
α1

aA1
. (3.4.1)

We initially suspected that the dip into negative active tension was a convergence issue with

the use of active tension at the Gauss points smearing out the sharp wavefront shown in the

GBFE domain (the cellular level of the model). This could result in more contraction than

would be the case if the exact active tension at the cells was driving the contraction. Upon

further investigation, however, we found this not to be the case. Refining the geometry to the

point where the Gauss points were of a similar resolution as the GBFEs provided evidence

that we did have a converged solution and that the dip is a real feature of the model rather

than simply a numerical artifact. This leads to the material parameters of the three constituent

component models (cellular, electrical activation, and finite elasticity). The material parameters

for each of these components have largely been established in isolation from the others and

few are based on a common animal species or tissue preparation. A mismatch in any of the

model material parameters would explain the apparently overly rapid shortening of the tissue
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in these simulations. In particular, the dynamic active tension at the cellular level needs to be

matched to the passive elasticity at the tissue and organ levels. We discuss these issues further

in Sections 6.1 and 6.2 but continue here with the existing material parameters. It is also worth

noting that this is the first time the velocity dependent dynamic aspects of the HMT model have

been incorporated into tissue models and these results suggest that further investigation of the

cellular material parameters is required. A further point to note is that the model lacks any

viscous damping, which has been found to significantly slow unloaded shortening (de Tombe

& ter Keurs 1992). This suggests that inclusion of viscous damping may remove the negative

dip in active tension.

3.4.2 N-LRd-HMT

Following successful demonstration of our modelling framework in a cube model using a fairly

simple cellular model we now test the framework with the significantly more complex N-LRd-

HMT cellular model. Like the simulation presented above, we are using the epicardial version

of the N-LRd-HMT cellular electro-mechanics model. The cube is identical to that in the FK-

HMT model with the only change being to increase the stimulus current to 250 µA · mm−3. A

selection of results from this simulation are presented in Figure 3.20.

As with the results shown in Figure 3.18 for the FK-HMT based model, the initial activa-

tion wave passes through the cube very rapidly with all the membrane potential iso-surfaces

compressed into a single plane. The epicardial N-LRd-HMT based model, however, has an

AP profile with a spike-and-dome morphology. This morphology is shown in the simulation

results by a more dispersed set of iso-surfaces passing through the cube following the initial

activation wavefront as the cellular potentials drop back through the −15– + 5 mV range of the

iso-surfaces. The final set of iso-surfaces are even more dispersed and illustrate the repolarisa-

tion wavefront.

Comparing the cellular transients in Figure 3.20(d) with those in Figure 3.18(d), there are

clear differences. While the most significant differences between the transients in Figure 3.20(d)

occur during the initial electrical and mechanical activation there are also differences in the re-

covery phase. This is in contrast to the transient from the FK-HMT simulation in Figure 3.18(d)

where the transients merge together as the cube returns to rest.
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(a) 10 → 50 ms

(b) → 60 → 100 ms

(c) → 200 → 600 ms
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(d) Cellular transients.

FIGURE 3.20: A sample of the simulation results from the N-LRd-HMT based cube electro-

mechanics model. (a)–(c) show the deformation solutions in 10 ms (a,b) and 100 ms (c) time

steps with transmembrane potential iso-surfaces passing through. (d) provides plots of three

cellular parameters at the spatial locations indicated by the matching coloured sphere in Fig-

ure 3.17(b). See text for full description.
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3.4.3 Computational Performance

The models described in Sections 3.4.1 and 3.4.2 are very computationally demanding to solve,

requiring a high performance computer for the numerical simulations. We performed these

simulations on an IBM Regatta P690, consisting of 32 1.3 GHz Power 4 processors with 32 GB

of physical memory. We present here a summary comparison of the computational cost of the

two models given in Sections 3.4.1 and 3.4.2 over interval of the first 1000 ms simulation time.

Figure 3.21 plots the memory requirements for the two models over the first 100 ms of sim-

ulation time. This figure shows that the required memory initially climbs, but quickly reaches a

plateau which is relatively constant for the remainder of the 1000 ms simulation. The FK-HMT

based cube model plateaus at approximately 545 MB memory required while the N-LRd-HMT

model requires three times that amount of memory with a plateau around 1.5 GB. This is a num-

ber which indicates the current implementation of our modelling framework based in CMISS is

going to be extremely memory intensive as we move toward organ level models using a complex

model like the N-LRd-HMT . After all, these simulations are for a 4x4x4 mm cube of tissue

with a GBFE mesh resolution of 0.125 mm consisting of only 35, 937 nodes.
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FIGURE 3.21: Comparison of the memory requirements for the FK-HMT and N-LRd-HMT

based cube electro-mechanics models.

In Figure 3.22 we present a breakdown of the time taken in each of the cube models for

the different steps in the solution algorithm (Figure 3.6). The three steps are: the update step,

where the electrical activation model is updated from the deformed finite elasticity model; the

activation model solution step; and the finite elasticity mechanics solution step.

Figure 3.22(a) presents the comparison of wall clock times for each of the models and Fig-

ure 3.22(b) compares the actual computational time (CPU), for each of the 1 ms solution in-

tervals. The wall clock time is the actual real world time taken to run the simulation and the
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computational time is the amount of time the process takes to run. The computational time is

generally much larger since we are using multi-threaded software capable of running on more

than one processor and the computational time is the sum over all the processors used in the

simulation. The ratio of computational time to wall time can be used as a measure of the speed

increase obtained by using multiple processors.
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FIGURE 3.22: Comparison of the computational time for the FK-HMT and N-LRd-HMT based

cube electro-mechanics models. (a) shows the comparison of wall clock times and (b) the actual

computational times for each of the 1 ms solution intervals over an entire 1000 ms simulation.

The same key is used in both graphs. See text for full description.

The FK-HMT cube simulation (Section 3.4.1) was performed using twelve processors on the

IBM Regatta machine and the N-LRd-HMT simulation (Section 3.4.2) used eight processors.

The plots shown in Figure 3.22 appear quite noisy due to the large dependence of these times on

the load on the computer at the time of the simulation. This computer is a shared resource and as

such there are numerous users running simulations and performing other tasks on the machine

at any time, leading to a high load on the machine. The brief periods when the computational
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times show sudden dips or increases can be attributed to the machine load changing for some

unrelated reason rather than anything to do with the cube model simulations.

A clear illustration of the numerical complexity of the N-LRd-HMT model is provided

by the huge peak in the activation model solution time in both Figures 3.22(a) and 3.22(b)

during the first 150 ms of the simulation. This peak corresponds to the activation wavefront

passing through the tissue electrically and mechanically activating all the cells in the model. The

activation kinetics of the N-LRd-HMT cellular model are represented via a very stiff system of

ODEs requiring far more time to numerically integrate than the recovery kinetics.

Figure 3.23 provides the cumulative total times for both models over the full 1000 ms simu-

lation, again separated into the three components of the solution algorithm. Here the difference

between computational and wall clock time is highlighted. As one would expect, the update

times for both models shows no significant difference and has very little difference between

wall clock and computational time (an obvious, but perhaps insignificant, area for improvement

in implementation).
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FIGURE 3.23: Comparison of the total computational times for the FK-HMT and N-LRd-HMT

based cube electro-mechanics models. See text for full description.

The solution of the electrical activation model for the FK-HMT based model shows a 3.7

speed-up between total wall clock time and total computational time. The N-LRd-HMT based

model has a 5.9 speed-up. Ideally we would want the speed-up factor to be close to the number

of processors used in each of the simulations – 12 for the FK-HMT model and 8 for the N-LRd-

HMT model. The activation model solution at each time involves two parts: the solution of a

system of linear equations and the integration of the cellular model. The solution of the linear
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equations requires the non-parallelised initial matrix assembly at each time step and will be the

same for both models. Integration of the cellular model, however, is ideally suited to massive

gains through the use of multiple processors. The total speed-up for a given activation step,

therefore, will be dominated by the cellular model integration if the cell model is sufficiently

complex to require a reasonable amount of numerical work in its integration (as for the N-LRd-

HMT model). Otherwise, the non-parallelised matrix assembly will dominate (the case for the

FK-HMT model). Section 5.5 provides data showing that for the case when the matrix assembly

is not required at each time step (i.e., when solving electrical activation only) the speed-up for

the models is much closer to the ideal case (Figure 5.47).

Despite having much better multiprocessor performance, it is obvious from Figure 3.23 that

activation solution of the N-LRd-HMT based model took much longer to solve. For a 1000 ms

simulation, the FK-HMT model took 10.5 hours compared to 28.9 hours for the N-LRd-HMT

based model (wall clock time).

Looking at the mechanics solution step, both Figures 3.22 and 3.23 show relatively similar

times for the FK-HMT and N-LRd-HMT based models. This is despite the FK-HMT simulation

being performed using 12 processors and the N-LRd-HMT model using 8 processors. The extra

numerical complexity due to the stiffness of the N-LRd-HMT ODEs can be neglected here since

the models are not integrated during the mechanics solution steps in these simulations. For the

mechanics solution step the FK-HMT based model and the N-LRd-HMT based model both had

a factor of 6.6 speed-up of total computational time over total wall clock time. The FK-HMT

based model had a total wall clock time of 27.9 hours for the solution of the finite elasticity

mechanics and the N-LRd-HMT based model 27.8 hours.

The total wall clock times for the two simulations were 42.2 hours for the FK-HMT based

model and 60.3 hours for the N-LRd-HMT based model. Total computational time was 229

hours for the FK-HMT based model and 360 hours for the N-LRd-HMT based model, giving

speed-up factors of approximately 5.4 and 6 over the full numerical simulations.



Chapter 4

Toward a Simulation Environment for the

Physiome Project

The focus of this thesis is cardiac electro-mechanics and the development and implementation

of a simulation framework suitable for this purpose in tissue and organ level models. The frame-

work described in this thesis is, however, equally applicable to a wide range of physiological

processes and organ systems. In particular, this work is seen as a crucial step in the develop-

ment of an all-encompassing simulation environment for integrating from proteins through to

organisms, a goal of the IUPS Physiome Project. More detail on the Physiome Project is given

in Section 4.1, with a graphical overview provided by Figure 4.1.

The original idea for this framework was to “simply” extend existing simulation tools to

include the full coupling of electro-mechanics between the cellular and tissue/organ levels

of the modelling hierarchy. This approach was significantly enhanced by the decision to in-

clude in the framework the ability to specify cellular level models via CellML (Section 4.1.1).

While it is hoped to further enhance the framework with the use of other markup languages

currently under development (e.g., FieldML (http://www.physiome.org.nz/fieldml/pages/) and

AnatML (http://www.physiome.org.nz/anatml/pages/)), at this time they are not in a sufficiently

stable or suitable state to allow inclusion in the framework.

The simulation framework developed here is built upon the extensive base provided by the

CMISS software package developed in-house at the Bioengineering Institute at The University

of Auckland. Section 4.2 provides an overview of this software and Section 4.4 describes how

the framework developed here was integrated into the package.
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4.1 The IUPS Physiome Project

The Physiome Project will provide a framework for modelling the human body, using com-

putational methods that incorporate biochemical, biophysical, and anatomical information on

cells, tissues, and organs. The main project goals are to use computational modelling to analyse

integrative biological function and to provide a system for hypothesis testing (Hunter & Borg

2003). The term ’physiome’ comes from ’physio’ (life) and ’ome’ (as a whole), and is intended

to provide a “. . . quantitative description of physiological dynamics and functional behaviour

of the intact organism” (Bassingthwaighte 2000).

The Physiome Project has built upon the idea that no single model can possibly encompass

the 109 dynamic range of spatial scales (cf. 1 nm pore size of an ion channel to the 1 m scale of

the human body) or the 1015 range of temporal scales (cf. 1 µs typical of Brownian motion to the

70 year (109 s) typical human lifetime) (Hunter, Robbins & Noble 2002). Instead, a hierarchy of

models is required where each model covers more limited spatial and temporal scales and then

techniques are developed to link these models together (as this thesis is doing for the case of

cardiac electro-mechanics). Figure 4.1 illustrates such a hierarchy specifically for the heart as

used in this research, but a similar diagram can be drawn for any of the organ systems. Using this

approach, at any given level in the hierarchy there is a ‘black box’ that groups all the detail at the

level below into a mathematical expression. The parameters of this expression are determined

from experiments, but can be related to another, more detailed, model at the finer spatial or

temporal level (Hunter & Borg 2003). For the example of cardiac electro-mechanics, this results

in a hierarchy ranging from gene networks, signal transduction pathways and stochastic models

of single channels at the fine scale, up to systems of ordinary differential equations representing

cell level function and partial differential equations representing the continuum properties of

tissue and the heart, at the coarse scale (Hunter et al. 2002).

To link the rapidly growing knowledge-base of biological data into a physiome modelling

framework, formal vocabularies need to be developed to reduce the growing heterogeneity of

terms (Crampin, Halstead, Hunter, Nielsen, Noble, Smith & Tawhai 2004). Standards need

to be developed to formalise the description of experimental data and mathematical models of

physiological processes. Ontologies (taxonomies together with a set of domain specific rules for

linking objects within a taxonomy) that incorporate semantic descriptions of modelling concepts

make the modelling environment richer and unambiguous. To develop a framework for building

tool-sets for the Physiome Project, computer based representations of models are required. To

this end, various ontologies and representation languages which include these ontologies are be-
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FIGURE 4.1: The hierarchy of modelling for the Physiome Project used in this research. Also

shown is the link downward to the protein and molecular levels.
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ing developed under the Physiome Project, helping to communicate biological models through

tools for building, sharing, interpreting, and visualising models (Crampin et al. 2004). The most

complete of these languages is CellML, which is used extensively in this research, and is covered

in detail in the following section.

4.1.1 CellML

CellML– http://www.cellml.org – is a language developed at the Bioengineering Institute for the

description and exchange of computer based biological models. It is a language built using

eXtensible Markup Language (XML) developed by the World Wide Web consortium (W3C).

More information on the W3C and the XML language can be found at http://www.w3c.org and

http://www.w3c.org/XML, respectively. CellML began as a method for storing model configura-

tion information for a computational simulation program of cardiac cellular models (Nickerson

1998). It was then redesigned and generalised. The CellML 1.0 recommendation was released on

the 8th of August 2001 (Hedley, Nelson, Bullivant & Nielsen 2001, Hedley, Nelson, Bullivant,

Cuellar, Ge, Grehlinger, Jim, Lett, Nickerson, Nielsen & Yu 2001) and the 1.1 specification is

almost at the recommendation stage (Cuellar, Lloyd, Nielsen, Bullivant, Nickerson & Hunter

2003).

XML is a structured document format that is both human and machine readable. It is a

format that is well supported by numerous software development teams with many free im-

plementations of processors available that could be easily incorporated into CellML processing

software. XML is also a format readily usable over the Internet, facilitating the exchange of

models between databases and processing software. The XML specification also allows for the

combination of multiple XML-based languages in one document. These are just a few of the

reasons why XML was chosen as the metalanguage for CellML.

The philosophy behind the development of CellML was to use existing standards and lan-

guages wherever possible before resorting to creating native elements. Some examples of this

are the use of: MathML 2.0 (http://www.w3c.org/Math) (Ausbrooks, Buswell, Carlisle, Dalmas,

Devitt, Diaz, Froumentin, Hunter, Ion, Kohlhase, Miner, Poppelier, Smith, Soiffer, Sutor & Watt

2001) to specify the mathematical equations; RDF (http://www.w3c.org/RDF) as the basis of the

metadata framework; and vCard (http://www.w3.org/TR/vcard-rdf) objects for the description of

persons.

The root of a CellML document is always a model element. A model consists of a network
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of interconnected components. Models are organised into the following structures.

• Components, which are the smallest functional units in a model. Each component con-

tains the mathematics that describes the behaviour of the portion of the system represented

by that component. The mathematics is specified using MathML and equations operate

on variables defined in that component.

• Connections, which are used to connect components together and to map variables in

one component to variables in another. The specification of such mappings includes di-

rectional information such that processing software can determine the correct data flow.

• Groups, which allow the modeller to indicate the existence of logical, physical, or user

defined groups of components.

• Metadata, which provide context for the model (see below).

One of the key features ensuring robustness and re-usability of CellML components and

models is the requirement that all variables and numbers be declared with units (Hedley, Nel-

son, Bullivant & Nielsen 2001). To achieve this, CellML includes a comprehensive specification

of how to define dimensionality and an extension to MathML to provide specification of units

for numerical constants given in equations. This includes a dictionary of standard units which

consists of the International System of Units (SI) (Bureau International des Poids et Mesures

1998) and its derived units (Bureau International des Poids et Mesures 2000) plus some addi-

tional units commonly used in the cellular modelling community. CellML provides a facility

for the definition of new units which can be defined in terms of the units defined in the dictio-

nary. This functionality allows model authors to work in whatever set of units they feel most

comfortable with, while still ensuring that their models can be integrated with those of other

authors using a different set of units. With the definition of units, variables that are defined with

differing units can still be connected as long as they have the same dimension.

Metadata is usually defined as “data about data”. It is the supporting information that

provides context to a resource. In CellML, the model (i.e., the structure and mathematics

of the model) is the resource, information that puts the model into a wider context is meta-

data. Metadata in CellML includes information such as the literature reference that supports

the model, the identity of the creator(s) of the model, and the species for which the model is

relevant. There is a full specification for CellML metadata available on the CellML website:

http://www.cellml.org/public/metadata/cellml metadata specification.html.

Annotations for individual equations and variables can be incorporated in a CellML docu-

ment through the use of CellML metadata. Appendix A provides numerous CellML models that
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have been displayed in a format suitable for printing. The comments about the various compo-

nents, variables, and equations in each model are obtained from the metadata of that model.

CellML 1.1 and future developments

The discussion above describes the basics of all CellML documents. There has, however, been

continuing development of the CellML language and a CellML 1.1 specification is nearing the

final recommendation version1. The main addition to CellML 1.1 over 1.0 is the ability to import

units, variables, and components into one model from another. This import functionality makes

use of the modular structure of the core CellML elements to provide model authors with the

ability to reuse parts of other models (Cuellar et al. 2003).

With the CellML 1.1 specification, the core modelling representation language is approach-

ing completeness. The focus of language development is now on the inclusion of Physiome

ontologies in CellML. As part of the Physiome Project, structural and functional ontologies are

being developed. The serialisation of such ontological information into a CellML model will

be accomplished initially through the use of CellML metadata. Model authors will be able to

use the appropriate ontological taxonomy to annotate their models, components, and equations

using existing metadata structures or extensions of such structures. This additional information

will allow much greater contextual data to be specified.

4.2 CMISS

CMISS is a computational package for modelling the structure and function of biological sys-

tems. It is designed to model the anatomy and material properties of organ systems (e.g., cardio-

vascular, respiratory, and special sense organs) from the component organs (e.g., heart, lungs,

and eyes) down to the cellular and subcellular levels, including the coupling that occurs between

and within all these levels. Equations derived from physical laws of conservation are solved to

predict the integrative behaviour of an organ from knowledge of the anatomical structure and

tissue properties. The tissue properties used in these organ simulations can incorporate tissue

structure and cellular processes, together with spatial variation of the parameters characterising

these processes. CMISS has facilities for fitting models to geometric data from various imaging

modalities (e.g., MRI, CT, and ultrasound) and has a rich set of tools for graphical interaction

1http://www.cellml.org/public/specification/20030930/cellml specification.html
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with the models and the display of simulation results. Control of CMISS is via graphical user

interfaces, an interactive console based interpreter, or batch-mode scripting.

The origins of CMISS are based in the PhD work of Peter Hunter (Hunter 1975) as a finite

element program for stress analysis of large deformations in the heart. It has since evolved into a

general purpose biological systems modelling tool in the areas of Continuum Mechanics, Image

analysis, Signal processing, and System identification. Recently, work has begun to modularise

CMISS to enable the development of specialised and focused tools for various medical and

other applications. The main academic goal of CMISS is to support the IUPS Physiome Project

(Section 4.1). Figure 4.2 gives a few examples demonstrating some of the capabilities of CMISS,

also see Christie, Bullivant, Blackett & Hunter (2002) for a detailed review of the abilities of

CMISS in relation to the heart.

4.3 Incorporation of CellML into CMISS

Prior to this work, the standard method of implementing a new cellular model in CMISS was to

hand-code the equations in Fortran and add this to the CMISS code base. This method has two

main disadvantages: the author of the Fortran code is normally translating a published piece of

work, which leads to errors in the translation and typographical errors; and the generated code

is embedded in and specific to CMISS and thus not easily transferred to another modelling or

simulation package. This assumes that the published model itself is free from error.

To avoid these problems, we decided to make CMISS capable of importing its cellular mod-

els from a CellML model representation. This provides the ability to store models in a free and

open format, where the models could conceivably originate from various sources (for example,

the original model publication could have provided a CellML version of the model, or it could

have come from a public database or model repository; see Figure 4.3).

The first step in implementing this ability in CMISS was to develop CellML processing soft-

ware capable of providing CMISS with all the information required from the model to be able to

run computational simulations with the cellular models. In the spirit of the community develop-

ment effort with the CellML project, we decided to develop our software in a sufficiently general

way that it could be used as a generic CellML processor. To achieve this, a draft Application

Program Interface (API) for use when accessing an in-memory computational representation of

a CellML model was designed and an initial C++ implementation of this API was developed and
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(a) A geometric mesh of the porcine lung and

heart surfaces created from CT images.

(b) A geometric mesh of the human stomach

exterior surface embedded in a volume visual-

isation of the visible man data set from which

the geometry was created.

(c) A visualisation of the virtual human torso

model showing the surface layers of skin, fat,

muscle, lungs, and heart.

(d) A geometric mesh of the airways in the hu-

man lung.

FIGURE 4.2: Some examples of the capabilities of CMISS. The geometries illustrated in (a) and

(c) are used in the forward and inverse problems of electrocardiography and equations of heat

and mass transport can be solved using the lung geometry in (d).



4.3 INCORPORATION OF CELLML INTO CMISS 119

made available (Section 4.3.1). At this stage the API is implemented for a subset of CellML 1.0

relevant to models of cellular electrophysiology and mechanics used in this work, but will be

extended to cover the full CellML 1.1 specification.

With an API defined and implemented the ability to import CellML was added to CMISS,

allowing the definition of cellular models via CellML. While the API implementation provided

all the information required to run computational simulations, there still remains the problem

of translating the mathematical equations, stored as MathML objects, into a format suitable for

use inside CMISS. This translation is very specific to the target implementation of the equations

and as such is outside the scope of a general CellML API implementation, although access to

the MathML objects is through the API. Section 4.3.2 describes the process developed and

implemented for the translation of a CellML model to a format suitable for CMISS.

Now cellular models no longer need to be hard-coded in Fortran in the CMISS code base.

Scientists are free to develop their cellular model using software that is perhaps better suited

to single cell modelling or any package they are comfortable with (Matlab, Mathematica, Lab-

VIEW, etc.). Then, provided there exists a method for exporting CellML, it should be possible to

take the cell model and perform tissue and whole heart simulations that are based on the model

(Figure 4.3). With this framework, a cellular modeller/physiologist can work on their cell model

and then very easily see the effect in a large scale tissue simulation.

Another important requirement for the use of CellML models in tissue modelling is the abil-

ity to specify spatial variation of models and parameters within a model. For example, when

modelling the spread of excitation from the pacemaker cells in the sinus node into the atria a

modeller would typically want to use different cellular electrophysiological models for each of

the two regions of tissue. Another example is the variation of ion channel distributions through

the ventricular wall, where the modeller might want the same model represented at all points in

the ventricles but need to specify a spatial distribution of channel densities. While the specifi-

cation of spatially dependent models and/or parameters is outside the scope of CellML, it was

something that needed to be included in the incorporation of CellML into CMISS (Section 4.3.3).

4.3.1 The CellML 1.0 API

The aim of this part of the project was to develop a generic in-memory computational repre-

sentation of a CellML model and to provide standard methods for accessing the data contained

in the model. To achieve this, an initial draft Application Program Interface (API) for CellML
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FIGURE 4.3: Here we illustrate how CellML can be used to allow the development of cellular

models (and material constitutive laws) using software designed for this purpose, while allowing

the models to be easily incorporated into tissue and organ level models. The cellular modelling

and simulation packages listed are examples of software that can already understand CellML

or are working on gaining that understanding. (COR - http://cor.physiol.ox.ac.uk; CESE - http://cese.

sourceforge.net; Virtual Cell - http://www.nrcam.uchc.edu; iCell - http://ssd1.bme.memphis.edu/icell; LabHEART

- http://www.lumen.luc.edu/lumen/DeptWebs/physio/bers.html).

1.0 was developed. The use of an API provides a layer of abstraction between an application

and the implementation of a CellML processing library, which is a collection of subroutines and

functions stored in one or more files, usually in compiled form, for linking with other programs.

Documentation of the API is provided on the attached compact disc (Section D.1).

The API consists of classes that represent the structures defined by CellML (models, compo-

nents, variables, etc.; Section 4.1.1) and a basic version of the W3C MathML Document Object

Model (DOM) (http://www.w3c.org/Math/DOM) to enable interaction with the mathematics of

the model. The class definitions specify the methods used to access and manipulate the data

they contain.

This draft API has been implemented in C++ and the code has been “open-sourced” and

made available on SourceForge.net, the world’s largest Open Source software development

website, under the CellML project: http://cellml.sourceforge.net. This implementation is de-

signed to be compiled into a library which can be linked with an application to provide CellML

processing capabilities. The implementation supports most of the CellML 1.0 API, and plans are

currently under development to add support for the full CellML 1.1 specification.

The MathML DOM implementation currently in the API implementation is very basic, pro-
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viding support for only the subset of MathML required for the models used in this thesis. It is

hoped that more thorough implementations of the content MathML DOM will become avail-

able either through the CellML project or through the W3C math project. By using the MathML

DOM specification in our CellML API implementation, we should be able to plug in such im-

plementations quite easily.

Use of the CellML API implementation in CMISS first involves the parsing of the required

model(s) into a standard XML in-memory representation (in this case we are using the DOM

standard (http://www.w3c.org/DOM)). This representation of the CellML model is then processed

by the API implementation into the native CellML memory model representation suitable for in-

teraction with the model. Once the native memory model has been created for all the required

models, the translation of the MathML can be performed to generate computable code as de-

scribed in the following section.

4.3.2 Translation of CellML to Computable Code

As stated previously, translation from MathML data objects to something that is computable

depends heavily on the target computational environment one wishes to aim at. During this

research, several translation methods have been developed for different targets.

The first translation involved the use of an eXtensible Stylesheet Language Transformation

(XSLT) to transform a CellML document directly into a document suitable for printing, as used

to generate Appendix A from the various cellular models described in Chapter 2. A similar, but

more detailed, translation to the Virtual Cell (Moraru, Schaff, Slepchenko & Loew 2002, Loew

& Schaff 2001) internal VCML format was accomplished through the use of XSLT combined

with custom Java classes. This transformation provided the basis for Virtual Cell to gain the

ability to import cellular models into its MathModel interface.

While very useful for their given purposes, these XSLT-based translations are fairly limited

in terms of computational usefulness. Translating MathML into LATEX for compilation into a

postscript file does not require a great deal of information about the equations, and the cus-

tomised classes for the Virtual Cell transformation were quite complicated and specific to the

Virtual Cell. A better, general purpose, method is to use generic CellML processing software,

such as that described in the previous section, to abstract the application away from all the

details of CellML. This allows an application to focus on processing the mathematics without

needing to know anything about the internal working of CellML.
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Using this approach, it is then possible to develop a math processor which can work directly

with the MathML DOM data objects provided by the CellML API implementation. Such a

processor can, in a target independent manner, produce a list of equations that contains the

full mathematical model described in a given CellML model. This layer of abstraction from

the MathML DOM provides the ability to add postprocessing functionality to the mathematical

model. For example, it is potentially useful to simplify equations where possible to improve

the efficiency of the model. A math processor is provided in the example applications that are

included in the CellML API C++ implementation (Section D.1), which is the same processor as

that used in CMISS.

Figure 4.4 summarises the work flow when using this approach. In this process, the CellML

API implementation is responsible for providing a MathML document object that contains all

the resolved mathematics for the model. The mathematics are resolved through the use of group

and connection information to resolve variables used in equations and also any additional equa-

tions or expressions that need to be added to correct unit inconsistencies. From the resolved

MathML document object, the math processor creates a list of equation objects, which cur-

rently provide a more simulation biased view of the MathML but provide for future addition of

postprocessing of the mathematics. The list of equations is then written out into code specific to

CMISS, this entails sorting the equations into an order correct for evaluation using Fortran (the

language of CMISS) and writing out a subroutine that follows the CMISS specified interface for

a cellular model. The platform’s native compiler is then used to compile and link this subroutine

into a dynamic object which can be loaded into the execution space of CMISS where it can be

freely accessed during simulations.

The math writer described above and in Figure 4.4 was designed and implemented to write

out code specific for use in CMISS. It was fairly easy, however, to develop a general interface

for writing out the content MathML contained in the equation objects. Included in the C++

implementation of the CellML API is an example application which makes use of this interface to

define a new format for writing out the equations. This application will take a CellML model and

generate a Fortran program which, when linked with the RADAU integrator (Hairer & Wanner

1996, http://www.unige.ch/math/folks/hairer/software.html), is capable of integrating any of the

electrophysiology models described in Chapter 2.

As mentioned previously, the implementation to date has only supported what was required

for the models used in this research. There are three limitations of this implementation that

need to be considered when using CellML models within the framework developed in this the-

sis. Firstly, no implementation of the units checking and conversion of either variables or equa-
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FIGURE 4.4: An illustration of the work flow involved in the generation of code suitable for

use in CMISS from a CellML source. The upper dashed box encapsulates the processes that are

internal to the CellML API Implementation, and the lower encapsulates those internal to CMISS.

The math processor is independent and external to both of these.
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tions has been implemented, it is assumed that all models conform to the units specified in Ta-

bles 2.1 and 2.2. Secondly, only the mathematical operators required by the models presented

in Chapter 2 have been implemented (see Appendix A for the actual equations). Finally, the

implementation requires that all expressions are in a standard “this variable equals that expres-

sion” format and all bound variables for the differential equations need to resolve to a common

variable. Some examples that will work with the current implementation are:

dVm

dt
= − 1.0

Cm

∑

Iion;

gK = gK

√

[K+]o
5.4

,

(4.3.1)

whereas these equations would not work:

Cm

dVm

dt
= −

∑

Iion;

gK

√

[K+]o
5.4

= gK.

(4.3.2)

With the development of postprocessing methods at the math processor stage of the process,

these limitations would be relaxed.

4.3.3 Spatially Varying Models and Model Parameters

When implementing the ability to define cellular models in CMISS via CellML, the opportunity

was taken to significantly re-factor the way CMISS handled the definition of multiple cell types

within a single tissue model. Prior to this work, multiple cell types, or variants, were required

to all be defined in a single model and each of the sub-models shared a common parameter

space. This required all the variants to define all the parameters, which results in extra memory

overheads if the models each have largely differing numbers of parameters. The sub-model to

be used for each computational cell was defined through the use of a cell variant field defined

over the tissue model which was used to switch to the correct sub-model in the full cellular

model.

The process of implementing the use of CellML to define the cellular models provided the

ability to modularise the cellular models with finer control. Thus, each cell variant now has

its own CellML model and its own parameter space resulting in more efficient use of memory

as each model only needs to keep its own parameters rather than the full set of all the models.

Some examples where this functionality might be useful are shown in Figure 4.5.
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(a) (b)

FIGURE 4.5: Here we illustrate two cases where the ability to define distinctly separate models

might be useful. (a) shows a cube of tissue that has Purkinje-like fibres (gold) penetrating the

tissue. Using the implemented framework, the fibres could be defined using a Purkinje fibre

model (e.g., Section 2.4.4) while the remainder of the tissue represented by normal myocytes

(e.g., Section 2.4.6). In (b), we show an ischaemic region of tissue (red) surrounded by a border-

zone (green) and healthy tissue (blue). Depending on what is being modelled, it is possible that

each of these regions could need their own specialised cellular model.

In addition to being able to specify a spatial distribution of cellular models, it is also neces-

sary to have the ability to specify spatial variation of material parameters within models. As the

implementation was extended to incorporate the spatial distribution of models discussed above,

the specification of spatial variation of model parameters was similarly extended. Due to this

work in CMISS, modellers are free to specify very detailed spatial distributions of model pa-

rameters. Examples of such parameter variation are discussed in Section 2.4.10 and Figure 4.6

provides some visualisations of these parameter variations.

4.4 Use Case: Cardiac Electro-Mechanics

We have described above a method for the generic specification of mathematical expressions in

CellML and the dynamic incorporation of these expressions into CMISS. Focus is now shifted

from the generic to the specific and we discuss the use of this framework in the context of

modelling cardiac electro-mechanics. The algorithm developed in this thesis for computational

modelling of cardiac electro-mechanics is summarised in Figure 3.6 and it is with reference

to this algorithm that we now describe the implementation of our modelling and simulation
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(a) Gto (b) GKs/GKr

FIGURE 4.6: Examples showing the variation of the Gto and GKs/GKr parameters through

the ventricular wall as given in Section 2.4.10. In (a), Gto is 0.0005 mS · mm−2 at the endo-

cardial surface (blue), 0.005 mS · mm−2 in the midmyocardium, and 0.011 mS · mm−2 at the

epicardial surface (red). In (b), GKs/GKr is 19 at the endocardial surface (yellow), 7 in the

midmyocardium, and 23 at the epicardial surface (red). The geometry is a wedge taken from the

LV free wall of the porcine ventricular model.

framework using CellML and CMISS.

Model specification

Standard CMISS methods are used to specify tissue and organ continuum models. This includes

the specification of the finite element description of the model geometry and the interpolating

basis functions to be used (Section 1.2). At this stage we also specify in CMISS that we wish to

solve electrical activation and finite elasticity over this solution domain, and define the contin-

uum material parameters and boundary conditions for these two components of the model.

Previously at this point in the model definition, CMISS users would be able to choose from a

limited list of cellular models to describe the ionic current model used in the electrical activation

model. We have now added enormous flexibility by allowing the user to choose to define their

model in CellML. When specifying the model, all cellular models to be included in the model

must be provided encoded as CellML files and then spatial distribution of these models can be

described over the solution domain (Figure 4.5). The cellular model material parameters and

boundary conditions are then specified, which could easily include the spatial distribution of

parameter values within a model (Figure 4.6).
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Solution procedure specification

With the model fully specified, we next need to define the methods that will be used to solve the

model for a given simulation. This involves standard CMISS methods for choosing, for example,

the linear solver to use when solving the GBFE method for the electrical activation model, or

the integrator to be used to integrate the cellular model(s) ODEs. Each of these choices will

lead to various parameter options dependent on the solvers chosen: iteration limits, maximum

step sizes, matrix preconditioners, etc..

In Figure 3.6 we include spatial discretization of the solution domain into the solution proce-

dure specification. For the finite elasticity model this will be determined by the basis functions

used to represent the deformation fields and is thus distinct from the actual model specifica-

tion. In the case of the electrical activation model, however, the model specification relies on

knowledge of the spatial discretization defined for the GBFEs to specify the cellular models.

The GBFE nodes are treated as continuum cells and these nodes are used to define the spatial

distribution of cellular models and model parameters. Ideally one would like to be able to spec-

ify the spatial distribution of cellular models and parameters based purely on the much coarser

finite element geometry representation and have the GBFE nodes inherit this information from

such a specification. Through the use of functional grouping methods in CMISS it is possible to

almost hide the fact that these GBFE nodes are being used to define the spatial distribution, but

this is not an ideal solution.

Initialisation

As discussed in Section 3.2.2, there is some initialisation that is performed once at the beginning

of a electro-mechanics simulation. The framework we have implemented adds nothing here to

the standard CMISS methods.

Activation solution step

Solution of the electrical activation model using the GBFE method has been well characterised

elsewhere (see Appendix C for appropriate references). The piece of the solution that we have

modified is the integration of the cellular model into the continuum propagation model.
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The implementation of the electrical activation modelling in CMISS treats the cellular model

as simply a black box which has an input of the applied diffusive pseudo stimulus current and an

output of the temporal derivative of membrane potential. Traditionally, these black boxes have

been described by specific cellular electrophysiology models embedded in routines directly in

the CMISS code. Spatial distributions of cellular models was handled through the combination

of the different cellular models into a single routine and the use of a spatially varying parameter

to switch between the different models in the routine.

With the development of the CellML based approach in this work we have removed the need

to hard code cellular models directly into CMISS. Through the implementation of a complete

framework for specification of spatially varying cellular models we have removed the require-

ment to combine all cellular models for a given tissue model into a single cellular model. Now

each GBFE node knows what model is being used at that location and the full parameter set for

that model and spatial location. The CellML defined models can then be accessed through the

dynamic shared object created for each model as they defined (Figure 4.4).

Mechanics solution step

We have discussed in Section 3.2.2 the requirement that the dynamic active tension is updated

for every deformation applied to the solution domain during the mechanics solution step. This

is achieved in our framework by updating the cellular model parameters at either the finite

elasticity Gauss points or GBFE nodes (Figure 3.7) and directly calling the appropriate cellular

model routine or performing a dummy integration of the cellular model.

This again illustrates the advantages of the CellML based approach we have developed in

combination with the ability to describe spatial distribution of cellular models. At any location

in the solution domain we can determine the appropriate cellular model for that location and

interpolate the full model parameter set for that point in one-, two-, or three-dimensional space.

These features meant it was trivial to implement method two from Figure 3.7, providing an

enormous decrease in the computational time required for simulation runs – a very desirable

feature given the time taken for some models (Section 5.5).
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Update cellular and activation material parameters

The final step in the implementation of the modelling and simulation framework we have devel-

oped was the update step providing the coupling between the deforming finite elasticity model

and the electrical activation model. At the continuum model level, this work had already been

done (e.g., the updating of the conductivity tensor and the spatial location of the GBFE nodes).

For use in our framework we needed to add methods to CMISS allowing for the updating

of cellular model parameters which are dependent on deformation. In the work presented in

this thesis the two parameters of interest are the fibre extension ratio and its temporal derivative

(i.e., velocity of shortening). These parameters are readily obtained from the local material

strain tensor at the location of the GBFE node being updated which itself is calculated from the

FE nodal displacements of the continuum model.

The methods developed for use at this point in the algorithm (Figure 3.6) for updating the

global cellular material parameters at the completion of each time step are also used to keep the

local model parameters updated during the mechanics solution step described above.

4.5 Other Applications

CellML is a language that can be used to describe any system of annotated mathematical equa-

tions. As described in Section 4.3 above, we have implemented a method in CMISS which

essentially enables the dynamic specification of a set of equations specified in CellML to be

accessible in CMISS at run-time.

This functionality has already been used for two applications outside the scope of the work

presented in this thesis. The first application was in the modelling of substrate transport through

the wall of a distal tubule model in the kidney. In this model, CMISS was used to model the

fluid flow down the tubule with the substrate transport mechanisms described by models written

in CellML that could be interpreted at run-time to give the equations defining the kinetics of

substrate transport between the compartments represented in the model.

The second application is in the definition of finite elasticity material constitutive relation-

ships. Previously, CMISS allowed the user to specify a spatial distribution of material parame-

ters but due to various implementation details only one constitutive relationship could be spec-
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ified for the entirety of the material. By allowing the constitutive relationships to be defined

using CellML, the finite elasticity code in CMISS is now able to utilise the same code developed

above for the distribution of cellular models and their parameters to describe a spatial distri-

bution of material constitutive relationships and their parameters. The initial requirement for

this ability came from a breast modelling project where a breast geometrical model consists of

several different materials (skin, fat, muscle, and fibroglandular tissue) with distinct differences

in material behaviour (Rajagopal, Nielsen & Nash 2004).

Further application of the work in this thesis has also begun in other organ systems which

involve electro-mechanics. A large system in which modelling of electro-mechanics is becom-

ing more important is the musculo-skeletal system. For obvious reasons the electrical excitation

and mechanical contraction of skeletal muscles is nearly as important as that of the heart. While

the detail of the skeletal muscle electro-mechanics differs from cardiac muscle, the underly-

ing methods we have developed for the cardiac models is equally applicable to skeletal muscle

(Fernandez & Hunter 2004). With CellML it is trivial to replace the cardiac cellular models with

skeletal and simulations of, for example, knee flexion can be made (Fernandez, Buist, Nickerson

& Hunter 2004).

Similar to skeletal muscle, smooth muscle also undergoes active contraction in response to

stimuli. While skeletal and cardiac muscle are quite similar, smooth muscle is significantly

different. Once again, however, the underlying modelling framework developed in this thesis

should be capable of representing models of contracting smooth muscle. Initial investigation of

this has recently begun in the area of modelling an active bronchial airway (Muttaiyah, Tawhai

& Thorpe 2004).



Chapter 5

Toward a Whole Heart Model of

Electro-Mechanics

In Chapter 3 we presented a modelling framework suitable for use in simulations of cardiac

electro-mechanics. We demonstrated application of the framework to simulations using various

configurations of tissue cube and doughnut geometric models (Section 3.3) and two examples

of cellular electro-mechanics models (Section 3.4). Chapter 4 described the implementation of

this simulation framework and its relevance to the IUPS Physiome Project.

We are now going to extend the modelling toward something more physiologically realistic,

although still short of the desired full heart model. In this chapter, we present some results from

simulations of electro-mechanics in a simple model of the LV. The LV geometry was primarily

chosen due to the large number of recent publications examining cardiac resynchronisation

therapy (CRT) and the electrical and mechanical effects of such therapy on the LV.

In the field of CRT there have been a large number of experimental (Usyk, Mazhari &

McCulloch 2000, Kawaguchi, Murabayashi, Fetics, Nelson, Samejima, Nevo & Kass 2002,

Leclercq, Faris, Tunin, Johnson, Kato, Evans, Spinelli, Halperin, McVeigh & Kass 2002, Wyman,

Hunter, Prinzen, Faris & McVeigh 2002, Peschar, de Swart, Michels, Reneman & Prinzen

2003, Kerckhoffs, Faris, Bovendeerd, Prinzen, Smits, McVeigh & Arts 2003) and theoreti-

cal (Usyk et al. 2002, Kerckhoffs, Bovendeerd, Kotte, Prinzen, Smits & Arts 2003, Kerckhoffs,

Faris, Bovendeerd, Prinzen, Smits, McVeigh & Arts 2003) studies examining LV pump function

under normal sinus activation and activation via electrical stimulation by various pacing proto-

cols. Experimental studies have also investigated intra-ventricular resynchronisation (Wyman,
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Hunter, Prinzen & McVeigh 1999, Kawaguchi et al. 2002, Leclercq & Kass 2002, Verbeek,

Vernooy, Peschar, Cornelussen & Prinzen 2003) and quantification of interventricular asyn-

chrony (Wyman et al. 1999, Verbeek, Vernoot, Peschar, van der Nagel, van Hunnik & Prinzen

2003, Kass 2003) during left bundle branch block (LBBB) and CRT.

These experimental studies typically analyse their data through the use of a fairly stylised

geometrical representation of an LV. The models also consist of a similar LV geometry, with

Usyk et al. (2002) being an exception where they model both left and right ventricles. The LV

is the most significant pumping chamber in the mammalian heart and, thus, understanding LV

function and dysfunction is of critical importance.

Hence, through the application of our modelling framework to a similar LV model we are

able to tap the wealth of experimental data available in the recent literature as well as having

similar mathematical models to compare with. The basic LV geometry is shown in Figure 5.1.

In order to compare to some of this data we first need to describe suitable boundary conditions

for simulation of a “typical” cardiac cycle in the LV model. These are presented in Section 5.1.

FIGURE 5.1: Simplified geometric model of the LV, showing the reference rectangular Cartesian

axes. The red arrows indicate the material fibre axis, the green arrows are aligned with the sheet

axis, and the blue matches the sheet-normal axis. The mid-septum region of the LV is indicated

by the green endocardial surface.

In addition to the types of simulation data shown in Chapter 3 with cellular transients and

deformed geometry solutions it is useful when discussing LV function to provide a more global

measure of electrical and mechanical behaviour. The mechanical measures we will be using are
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the volume and pressure changes of the LV cavity which can be easily calculated as described

in Section 5.1. For the electrical behaviour we will be making use of some previous work

in CMISS to allow the calculation of various clinical electrocardiogram (ECG) leads. A brief

summary of how these are calculated is presented in Section 5.2.

5.1 The Cardiac Cycle

The cardiac cycle is classically described by a Wigger’s diagram (Figure 5.2), which illustrates

the relative temporal relationship between global mechanics and electrical transients. Of partic-

ular interest in Figure 5.2 are the clinical ECG and the LV pressure and volume transients. In

this work we take a simplified view of the cardiac cycle and segment the mechanical cycle into

three components: inflation, isovolumic contraction, and ejection.

5.1.1 Inflation

The first component of the cardiac cycle we consider is the final push of blood into the LV

generated by contraction of the left atrium (LA) during atrial systole. This gives what we are

calling the initial inflation of the LV which we model with the application of a pressure boundary

condition to the endocardial surface of the LV model.

Some results demonstrating the application of such pressure boundary conditions are shown

in Figures 3.15(b) and 3.16(b) for the ventricular doughnut model and in Figure 5.10 for the LV

model. While the current implementation of the modelling framework allows for application

of a spatially varying pressure boundary condition, the models presented in this thesis use a

constant pressure applied over the entire endocardial surface.

5.1.2 Isovolumic Contraction

In our model, the end of the inflation phase coincides with the initiation of electrical activation

of the LV. As shown in Sections 5.3 and 5.4 below, we have performed LV simulations using

several different stimuli to initiate the electrical activation and drive the mechanical contraction

of the LV.
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FIGURE 5.2: The Wigger’s diagram, showing the nine phases of a cardiac cycle. The upper solid

trace shows the LV cavity pressure with the LV cavity volume shown in the middle solid trace.

An indication of the temporal relationship between the electrical activity of the heart and the

mechanical is given by the stylised ECG trace at the bottom of the diagram. From Katz (1992).
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The first period of contraction occurs with a constant volume of blood in the ventricular

cavity (the mitral and aortic valves are closed) leading to this being the isovolumic contraction

component of the cardiac cycle. As the wave of electrical activation moves through the ven-

tricular tissue initiating mechanical contraction pressure in the LV cavity increases. Once the

cavity pressure exceeds that in aorta the semilunar valves open and blood begins to flow out of

the LV.

To model the effect of this constant volume of blood on the ventricular wall, we add a

FE mesh representing this volume to the LV model and constrain these elements to have a

constant total volume (Figure 5.3). Using the method developed by Nash (1998), this cavity

region is coupled to the ventricular wall to act as feedback mechanisms to weakly constrain

the deformation of the ventricular wall. Then as the ventricular wall contracts, the endocardial

nodes shared between the wall and cavity meshes (blue spheres in Figure 5.3) deform with a

tendency to reduce the size of the cavity mesh. The cavity model then calculates the pressure it

must maintain to remain isovolumic and this pressure is then applied to the endocardial surface

in a spatially homogeneous manner (Nash 1998). Figure 3.16 presents a series of isovolumic

simulation results for the doughnut ventricular model using this method.

FIGURE 5.3: An example of a cylindrical ventricular wall mesh (gold/silver) coupled to a cav-

ity region (green/red). The common nodes shared between the two meshes are shown as blue

spheres.

5.1.3 Ejection

The end of isovolumic contraction is announced with the opening of the semilunar valves as the

ventricular pressure surpasses the arterial impedance. As shown in Figure 5.2 there is initially

a rapid ejection of blood from the LV which produces an abrupt decrease in LV volume. This

is followed by a longer period of reduced ejection as the cavity pressure begins to lessen, the
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end of this period marks the termination of ventricular systole and the closing of the semilunar

valves. The first component of the diastolic phase is a period of isovolumic relaxation as the

ventricle relaxes and pressure rapidly decreases. Once the LV cavity pressure drops below that

in the LA the mitral valve opens and gives rise to rapid filling of the ventricle followed by a

slower filling phase. The final period of diastole is the final push of blood into the ventricle

caused by atrial systole, as described above in Section 5.1.1.

Simulation of the fluid dynamics during mechanical contraction and relaxation of the LV is

a very computationally and numerically demanding problem. To make simulation of this phase

of the cardiac cycle more tractable, various simplified fluid dynamics models have been used

to model the flow of blood out of the LV. In an extension to the isovolumic model introduced

above, Nash (1998) attaches one non-coupled cavity node to a variable impedance in one spatial

axis while restricting any movement in the other two dimensions. By observing the volume of

blood still enclosed by the ventricular wall this allows blood to be ejected from the ventricular

cavity while still maintaining a constant total cavity mesh volume. Another common approach

has been to use two-element (Usyk et al. 2002) and three-element (Bovendeerd, Arts, Huyghe,

van Campen & Reneman 1992, Kerckhoffs, Bovendeerd, Kotte, Prinzen, Smits & Arts 2003,

Kerckhoffs, Faris, Bovendeerd, Prinzen, Smits, McVeigh & Arts 2003) Windkessel models

(Westerhof, Elzinga & Sipkema 1971, Westerhof, Elzinga & van den Bos 1973) to relate cavity

dynamics to aortic flow and pressure.

In this work, we are focused on developing the framework for generalised coupled electro-

mechanics in cardiac tissue. We are therefore more interested in a simple model for ejection

capable of reproducing the general trends mentioned above with minimal additional compu-

tational expense. Thus, we have developed a method whereby the FE node in the LV cavity

mesh (the silver sphere in Figure 5.4) has a displacement specified along the base-apex axis

allowing for ejection of blood out of the ventricular cavity similar to the method developed by

Nash (1998) but without any added degrees of freedom in the finite elasticity model. All other

cavity nodes not coupled to the ventricular wall are fixed in all directions and derivatives. This

is illustrated for a simple cylinder in Figure 5.4.

Using the method described in Figure 5.4 it is possible to control the volume of blood en-

closed by the ventricular wall at a given point in the cardiac cycle. In order to perform simula-

tions that represent something physiologically reasonable, we have proscribed a cavity volume

transient obtained from that given in Figure 5.2. The starting point of the specified volume tran-

sient is the end of isovolumic contraction. The transient is specified as a volume fraction, so the

absolute values are obtained based on the initial volume of the cavity at end diastole (i.e., fol-
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(a) (b)

FIGURE 5.4: Illustration of the allowed movement of the free cavity FE node. The cavity nodes

shown as blue spheres are coupled to the ventricular wall mesh (gold lines/silver surface) and

those represented as silver cubes are fixed in all directions and derivatives. The free cavity node

is the silver sphere with its allowed movement in the base-apex axis illustrated by the arrows in

(a). This node is initially positioned in the basal plane of the ventricular geometry. (b) shows

an exaggerated contraction solution, where the free cavity node has been moved out of the basal

plane. The red surface is the boundary of the isovolumic mesh, with the volume of blood currently

ejected from the ventricle being the fraction of this volume above the blue basal plane.

lowing the initial inflation phase), and all values can be scaled to match a desired peak ejection

fraction. Using this method allows for the specification of the cavity volume at each point in

time but the cavity pressure remains a free parameter in the model.

5.2 Estimating Clinical ECGs

When describing whole heart electrical activity, by far the most common measurement is the

clinical ECG. The heart is one of the largest and most often electrically excited muscles in the

mammalian thorax. As such, electrical recordings from the surface of the torso will be domi-

nated by the electrical activity of the heart allowing inference of the heart’s electrical behaviour

to be made from such recordings. Various methods for recording ECG signals have been devel-

oped (see Cheng (2001) for a review), with the most common being the 12-lead ECG.

The standard 12-lead uses six precordial electrodes placed on the thorax at the heart level

and three extremity electrodes placed on the left leg and the right and left arms. The extremity

electrodes are used to derive a reference potential against which the other electrodes are mea-
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sured relative to. A sample ECG can be seen in Figure 5.2 and the three extremity leads are

illustrated in Figure 5.5.

Previous work in our group has looked at the forward problem of electrocardiography, where

potential solutions at the heart surface are propagated through a torso model to produce ECG

traces (Bradley 1998, Buist & Pullan 2001, Buist 2001, Buist & Pullan 2003). Methods have

been developed that allow various heterogeneity and anisotropy to be included in the torso

model (lungs, skeletal muscle and fat layers, etc.) and for the electrotonic load of the torso to

be incorporated into the activation solution of the heart (see Buist & Pullan (2003) for a good

review). Alternatively, simplified models have also been developed that allow equivalent cardiac

source dipoles to be calculated from cellular dipoles that are calculated from the transmembrane

potential gradients scaled by local tissue conductivity (Bradley 1998, Buist 2001, Buist & Pullan

2003).

In this work, we are after a global measure of cardiac electrical behaviour in order to com-

pare between the different LV models presented in this chapter. We therefore use the simplified

dipole source model for the forward problem. A single dipole source is calculated for each

FE in the LV model for each solution time interval. These sources are then placed into a ho-

mogeneous and isotropic torso volume and the static Laplace equation is solved to obtain the

torso surface potentials at each point in time (Bradley 1998, Buist 2001). The full set of leads

from the 12-lead ECG can then be calculated by differencing the torso surface potentials from

suitable spatial locations. Figure 5.5 shows the LV geometric model placed in the torso volume

model with the electrode locations for the three extremity leads.

Using CMISS, the calculation of the source dipoles is easily incorporated into the electro-

mechanics simulations of the LV models. The dipoles are then saved for use in the torso model

separately to the LV simulations. The existing implementation of the dipole calculations in

CMISS is almost completely serial (i.e., not parallelised very well) and as such is a significant

contributor to computational time when performing these simulations (Figure 5.47). We reduce

this fixed cost by only evaluating the dipoles every second time step during the model solution,

but significant improvement may be obtained through parallelisation of this code. Once the

dipole solutions are obtained, the forward torso model can be solved using a normal desktop

computer in a brief period of time (i.e., approximately 5 minutes for a 1 second heart beat).

As stated, this method produces a potential field described over the torso surface at each time

point in the solution domain. This potential field can then be drawn as illustrated in Figure 5.6

using the LV activation solution from the heterogeneous FK-HMT model. These potential maps
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Lead I

Lead II

Lead III

FIGURE 5.5: Illustration of the LV geometric model placed inside the torso volume model. The

transparent blue surface shows the original human heart model created with the torso model,

including left and right ventricles and the entire atria. The epicardial surface of the LV model is

green and the endocardial surface is red. The locations of the extremity electrodes are given by

the gold spheres and the reference electrode required for the model solution is given by the green

cube. Leads I, II, and III from the standard 12-lead ECG are also shown.

are similar for the various simulations using the LV model presented below and we show the

results in Figure 5.6 as an illustration of the results possible using this relatively simple method.

For the purpose of analysing the simulation results we will focus on the ECG signals taken from

these torso simulations.

5.3 Sinus Rhythm in a Left Ventricular Model

We first present simulations in which the LV model is paced in a manner representative of nor-

mal sinus rhythm. Buist (2001) has previously modelled initiation of electrical activation in a

ventricular wedge model through the use of a Purkinje fibre network coupled to the myocardial

tissue at the fibre end points. While such Purkinje activation would be closer to reality, here we

follow the work of Tomlinson (2000) and specify the initial activation times at various points

on the LV endocardial surface. A stimulus current is then applied at these points following the

specified activation profile to give an initiation of Purkinje-like activation with no extra compu-

tational cost. The applied stimulus distribution is shown in Figure 5.7, where the stimulus times

are derived from the initial activation times from the canine ventricular model of Tomlinson

(2000). As shown in Figure 5.7 the earliest activation occurs in the lower mid-septal wall and

the latest activation is toward the base of the free wall.

Using the Purkinje-like stimuli illustrated in Figure 5.7 we simulate normal sinus rhythm in
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(a) 0 → 40 ms

(b) → 50 → 90 ms

(c) → 300 → 420 ms

(d) → 430 → 470 ms

FIGURE 5.6: An illustration of torso surface potential solutions obtained using the method de-

scribed in Section 5.2. These surface potentials are generated from the electrical activity in the

heterogeneous FK-HMT sinus rhythm simulation in Figure 5.14. The torso surface is coloured

with the potential calculated over the surface, using the scale given. Within the torso surface, the

cellular based dipole sources are drawn as silver arrows, with the length of the arrow defined by

the strength of the dipole.
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FIGURE 5.7: Illustration of the Purkinje-like stimulus used to approximate sinus rhythm in the

LV model, the left panel shows the septal wall and the right is the LV free wall. The coloured

endocardial surface shows the time of electrical stimulation of the endocardial surface, with red

being the earliest activation at time 0 ms and blue the latest site of stimulation at 16 ms (the

contour bands are in 2 ms intervals). The non-coloured regions of the endocardial surface have

no stimulus current applied. A stimulus current of 150 µA · mm−3 is applied with a duration of

1 ms.

the LV geometry given in Figure 5.1. Following Section 5.1, the cardiac cycle is simulated with

the following steps, subject to the displacement boundary conditions specified in Figure 5.8:

1. the LV is inflated to a cavity pressure of 1.0 kPa;

2. the time loop begins and electrical stimuli applied in sequence;

3. isovolumic contraction phase;

4. once cavity pressure exceeds arterial impedance (10 kPa), ejection begins and for each

time step:

(a) an isovolumic electro-mechanics solution step is performed;

(b) the cavity free node displacement is adjusted to match the enclosed blood volume

to that specified by the proscribed volume transient – for each displacement in these

iterations a mechanics solution step is performed but the state of electrical activation

remains constant;

(c) final cavity pressure and volume values are determined for this time step and time is

incremented.

The displacement boundary conditions illustrated in Figure 5.8 attempt to replicate similar

conditions to the in vivo ventricle (Stevens 2002). The mitral and aortic valves are here com-

bined into a single opening at the base of the LV where they are rigidly attached to the basal

skeleton of the heart. With the given boundary conditions this valve ring is forced to maintain its

location and shape. Since we are fixing the base of the ventricle we would like to leave the apex

free to deform as dictated by contraction of the myocardium. When using the GBFE method
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FIGURE 5.8: The displacement boundary conditions imposed on the LV model during sinus

rhythm. The FE nodes represented by the green spheres are fixed in all three coordinate axes and

their circumferential and transmural derivatives are also fixed. The red nodes at the apex are fixed

in all coordinates and derivatives except the x-coordinate. The blue endocardial surface indicates

the mid-septal region of the LV.

(Section C.3), however, there are numerical issues with the FE elements collapsing at the apex,

issues which are very sensitive to certain modes of deformation. To restrict the occurrence of

these deformations we are forced to restrain the apical nodes in a non-physiological manner.

While this restriction probably does not interfere significantly with global ventricular function,

there are implications for the mechanics of the tissue in close proximity to the apex which will

be discussed below.

Tissue level material parameters for this model are summarised in Table 5.1 for the pole-

zero mechanical material law and Table 5.2 presents the monodomain electrical conductivities.

In the homogeneous model the FK-HMT cellular material parameters used are those described

in Section 3.1.1 for the human epicardial cell type and the heterogeneous model uses all three

cell type variants.

In setting the tissue conductivity values given in Table 5.2, we have decided to use trans-

versely isotropic conductivities. Recent studies have shown that decisive evidence for the use

of fully orthotropic conductivities in tissue level models is not yet available (Colli-Franzone,

Guerri & Taccardi 2004). There is also wide variation reported in the literature for the values of

the different conductivity components (Roth 1997). It has, however, been suggested that the ra-

tio of fibre to cross-fibre conductivity is important, with a ratio of 10 : 1 (longitudinal:transverse)

estimated (Roth 1997) and used (Hooks et al. 2002, Hooks 2002). Note, however, that although

in this model we are using transversely isotropic conductivities the simulation framework al-

lows for the specification of orthotropic conductivities as well as spatial distribution of these

parameters (as described in Figure 5.9 for the pole-zero parameters).
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Type Parameter Apex Sub-apex Normal Base

Coefficient k11 2.22 kPa
k22 2.22 kPa
k33 2.22 kPa

k12 = k21 2.0 kPa 2.0 kPa 1.0 kPa 2.0 kPa
k13 = k31 2.0 kPa 2.0 kPa 1.0 kPa 2.0 kPa
k23 = k32 2.0 kPa 2.0 kPa 1.0 kPa 2.0 kPa

Pole a11 0.136 0.227 0.475 0.423
a22 0.136 0.227 0.619 0.555
a33 0.136 0.227 0.943 0.845

a12 = a21 0.3 0.4 0.8 0.4
a13 = a31 0.3 0.4 0.8 0.4
a23 = a32 0.3 0.4 0.8 0.4

Curvature b11 2.22 1.67 1.5 1.5
b22 2.22 1.67 1.5 1.5
b33 2.22 1.67 0.442 0.442

b12 = b21 1.5 1.0 1.2 1.0
b13 = b31 1.5 1.0 1.2 1.0
b23 = b32 1.5 1.0 1.2 1.0

TABLE 5.1: A summary of the pole-zero material parameters used in the sinus rhythm LV model.

The parameters are based on those given by Remme et al. (2004) with modifications near the

apex and base to aid convergence. The apex, sub-apex, normal, and base regions of the LV are

described in Figure 5.9.

FIGURE 5.9: The different regions of the LV used in the pole-zero material parameter specifica-

tion in Table 5.1. The apex nodes are shown as red spheres, the sub-apex as silver spheres, the

normal nodes are gold spheres, and base nodes are green. The material parameters in Table 5.1

are specified at these nodes and linearly interpolated as required at intermediate spatial locations.
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Material Axis Parameter Value

Fibre σ11 0.263 mS · mm−1

Sheet σ22 0.0263 mS · mm−1

Normal σ33 0.0263 mS · mm−1

TABLE 5.2: The monodomain tissue conductivities for the sinus rhythm LV model, based on

values given by Hooks et al. (2002).

5.3.1 Residual Strain and Atrial Systole

As described in Section 5.1.1 above, the first phase in our model of the cardiac cycle is atrial

systole. During this phase the LA contracts and blood is forced into the diastolic LV. This is

represented in the model by the application of a pressure boundary condition on the endocardial

surface of the LV – here we apply a 1.0 kPa pressure.

Discussed in Section 3.2.2, an initial mechanics solution step is required if a model specifies

residual strains to be incorporated. In the LV model, we specify a simple distribution of residual

strain by setting the initial fibre extension ratios. At the apex and its surrounding tissue the initial

fibre extension ratio is set to 1.0. Above the apex region, there is a linear transmural variation of

initial fibre extension ratio from 0.95 at the endocardial surface to 1.05 at the epicardial surface.

Figure 5.10(a) provides the deformation solution obtained from inclusion of the residual

strains and Figure 5.10(b) gives the deformed solution following the application of the endocar-

dial surface pressure.

With an inflated model we can now move on to the next phase of the cardiac cycle and

examine the active contraction of the myocardium and ejection of blood from the ventricle.

First, however, we simulate electrical activation of the inflated geometry without any contraction

to provide a comparison for the computational performance of the method developed as well as

being able to compare the electrical activity of the contracting versus non-contracting models.

5.3.2 Electrical Activation

We now take the inflated model from Figure 5.10(b) and perform electrical activation simula-

tions using the FK-HMT electro-mechanics model. In these simulations there is no contraction

of the myocardium, we are focusing on the electrical activity of the model.
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(a) Residual strain. (b) Inflated to 1 kPa.

FIGURE 5.10: Results from simulating the deformation of the LV model through the application

of a simple distribution of residual strain (a) and an applied pressure of 1.0 kPa on the endocardial

surface. The blue lines represent the initial undeformed geometry and all other graphics are

shown deformed.

Homogeneous FK-HMT

The first of the electrical activation simulations we present uses the epicardial cell type variant

of the FK-HMT cellular electro-mechanics model (Section 3.1.1) with the inflated LV model.

Figure 5.11 presents a summary of the results of this simulation, with a sampling of cellular AP

signals from the simulation given in Figure 5.12.

In Figure 5.11(a) the sharp electrical activation wave can be seen progressing through the

LV from the Purkinje-like endocardial stimulus, represented by the sharp transition between

the blue resting potential and red plateau potential. The much smoother repolarisation wave is

shown in Figures 5.11(b)–5.11(d) with a significantly more gradual transition back to the rest-

ing potential (coloured blue). Figure 5.11(e) shows that, as expected, without further electrical

stimulus the ventricle completely returns to resting potential levels. From the selection of cel-

lular AP signals presented in Figure 5.12, it is clear that they all have identical characteristics

with the only difference being the time of initiation of the AP.

Following the method described above in Section 5.2, the electrical activation solution from

this simulation can be used in a forward model to calculate torso surface potentials. These

potential transients can then be used to calculate ECG signals as a measure of global electri-

cal activity over the entire LV. See Figure 5.6 for an example of the surface potential images

obtained from the torso model. The ECG signals from this model are given in Figure 5.16.
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(a) 10 → 50 ms

(b) → 240 → 280 ms

(c) → 290 → 330 ms

(d) → 340 → 380 ms

(e) → 390 → 430 ms

FIGURE 5.11: FK-HMT based activation of inflated homogeneous LV with Purkinje-like stimu-

lus. Each image shows the internal element faces drawn as transparent surfaces coloured with the

cellular transmembrane potential spectrum. The spectrum scale is shown in mV. See Figure 5.12

for a selection of cellular action potential signals from this simulation and Section D.3 for an

animation of the full simulation results.
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(a) Cellular action potentials. (b) Spatial location of APs

FIGURE 5.12: A selection of cellular AP signals from the homogeneous activation model pre-

sented in Figure 5.11. The colour of the action potentials in (a) matches the corresponding sphere

in (b) which indicates the spatial location of the cell from which the signal is calculated.

Heterogeneous FK-HMT

The above sinus rhythm simulation is now repeated using a heterogeneous cell type distribu-

tion in the inflated LV model. We use a simple distribution of the epicardial, midmyocardial,

and endocardial cell types described in Section 3.1.1 with the distribution throughout the LV

illustrated in Figure 5.13. While this distribution of cell types is rather arbitrary and lacks any

of the complex variation observed experimentally (Drouin et al. 1995), we are focused here on

testing the implemented modelling framework and are less interested in modelling a specific

physiological characteristic.

FIGURE 5.13: Distribution of the three cell types described by the FK-HMT model as used in

the heterogeneous LV model. The epicardial cells are yellow, the midmyocardial blue, and the

endocardial cells are drawn in red.
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Note that the additional heterogeneity added to the LV model in this section is the spatial dis-

tribution of the three cell type variants described in Section 3.1.1. The previous model described

above was obviously already heterogeneous, as shown by the material parameter variation given

in Table 5.1. Thus, although not strictly correct, in this work when referring to the heteroge-

neous LV model we are referring to the model describing the distribution of different cellular

phenotypes.

Results obtained from simulating only electrical activation using the heterogeneous distri-

bution of FK-HMT cell types in the inflated LV are given in Figure 5.14. Cellular AP signals

from a selection of cells throughout the ventricular wall are presented in Figure 5.15.

From Figure 5.14 the activation characteristics closely resemble those displayed by the ho-

mogeneous model in Figure 5.11. In the repolarisation phase, however, the effect of the greater

APD of the midmyocardial cells is clearly displayed with the mid-wall region being the last to

return to rest. This result is also shown by the cellular AP signals given in Figure 5.15 where the

APD differences are more obvious in the mid-wall signals. Table 5.3 provides the actual APD

values for both the homogeneous (Figure 5.12) and heterogeneous (Figure 5.15) activation sim-

ulations.

Location Homogeneous model Heterogeneous model

352 ms 416 ms

352 ms 423 ms

351 ms 423 ms

339 ms 367 ms

350 ms 417 ms

360 ms 434 ms

344 ms 367 ms

351 ms 418 ms

362 ms 437 ms

TABLE 5.3: The APD values for the cellular AP signals given in Figures 5.12 and 5.15, from

the electrical activation only LV simulations. The coloured spheres match those used to provide

signal locations in Figures 5.12(b) and 5.15(b).

The APD values given in Table 5.3 show that even for the homogeneous model there is

variation of APD throughout the myocardium. This illustrates the effect of the electrotonic

loading on each of the cells by their neighbouring cells. For the homogeneous model, all the

APD values are close to the single cell APD of 352 ms for the epicardial cell type (Section 3.1.1).
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(a) 10 → 50 ms

(b) → 240 → 280 ms

(c) → 290 → 330 ms

(d) → 340 → 380 ms

(e) → 390 → 430 ms

(f) → 440 → 480 ms

FIGURE 5.14: FK-HMT based activation of inflated LV with Purkinje-like stimulus and hetero-

geneous cell type distribution. Each image shows the internal element faces drawn as transparent

surfaces coloured with the cellular transmembrane potential. The potential scale is given in Fig-

ure 5.11. See Figure 5.15 for a selection of cellular action potential signals from this simulation

and Section D.3 for an animation of the full simulation results.
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(a) Cellular action potentials. (b) Spatial location of APs

FIGURE 5.15: A selection of cellular AP signals from the heterogeneous activation model pre-

sented in Figure 5.11. The colour of the action potentials in (a) matches the corresponding sphere

in (b) which indicates the spatial location of the cell from which the signal is calculated.

The heterogeneous model displays, as expected, greater variation of APD values through the

ventricular wall. The first group of values (red, green, and blue) are all approximately in the

mid-wall region and have APD values similar to those of the mid-wall cells from the transmural

cell groups (cyan and orange). The two epicardial cells (magenta and black) show significantly

longer AP signals in the heterogeneous model compared to the homogeneous, while the mid-

wall cells (cyan and orange) have APDs slightly shorter than expected for the midmyocardial

cells. The two endocardial cells (yellow and silver) show APD values higher than expected

for even midmyocardial cells, suggesting that these are in fact midmyocardial cells rather than

endocardial and that the comparatively low volume of endocardial cells places little current

load on the midmyocardial cells close to the endocardial boundary. Conversely, the much larger

volume of epicardial cells applies a significant current load on the midmyocardial cells nearer

the epicardial cell boundary.

As with the homogeneous model, we can use the activation solution for the heterogeneous

model to compute the torso surface potential field. The illustrative solutions presented in Fig-

ure 5.6 were computed from the activation solution from this heterogeneous LV model. From

the torso potential solution ECG signals can be derived, with the three extremity leads given in

Figure 5.16 for both the homogeneous and heterogeneous models.
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FIGURE 5.16: Comparison of Lead I, II, and III ECG signals between the homogeneous and

heterogeneous LV activation models. The ECG signals are derived from torso potential solutions,

such as those illustrated in Figure 5.6, from the activation model results given in Figures 5.11

and 5.14.
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5.3.3 Coupled Electro-Mechanics

Progressing from the electrical activation models of sinus rhythm described in Section 5.3.2,

we now present coupled electro-mechanics simulations using both the homogeneous and het-

erogeneous LV models of sinus rhythm. We are using the FK-HMT cellular electro-mechanics

model with identical tissue level material parameters as described in Tables 5.1 and 5.2 and the

Purkinje-like stimulus protocol (Figure 5.7).

Starting from the inflated LV model (Section 5.3.1) we perform steps 2 → 4 of the cardiac

cycle algorithm as outlined on page 141. From the initial inflated geometry, the Purkinje-like

sinus stimulus is applied to initiate contraction, resulting in the LV cavity pressure increasing.

Once the pressure exceeds the 10 kPa arterial impedance imposed on the system the cavity

volume begins to decrease as defined by the volume transient given in Figure 5.17, where we

have arbitrarily set the peak ejection fraction at 50 % of the initial volume.
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End of isovolumic contraction

FIGURE 5.17: The volume transient used to control LV cavity volume during the ejection phase

of the cardiac cycle, where 0 ms is the time at which the arterial impedance is overcome and

ejection begins. The curve was digitised from the LV volume transient given in Figure 5.2.

The volume fraction gives the instantaneous cavity volume as a fraction of the cavity volume

following inflation to 1.0 kPa.

Homogeneous FK-HMT, no ejection

Before examining simulations of models of the cardiac cycle, we first present a simulation

using the homogeneous LV sinus rhythm electro-mechanics model but with no ejection of blood

from the ventricular cavity. This simulation is isovolumic for the duration of the cycle, and

was primarily performed to test the behaviour of the simulation framework when adding the
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mechanics to the activation models above without the added complexity of the cavity volume

changes.

Results from this simulation are given in Figures 5.18 and 5.19 with a summary of the system

dynamics given in Figure 5.20. In addition to testing the modelling and simulation framework

we have developed, this particular simulation will be used to compare to the bi-ventricular (BiV)

pacing protocol in Section 5.4.2 below.

Homogeneous FK-HMT

We now present results of cardiac cycle simulations of the LV model with the homogeneous FK-

HMT model. Tissue and cellular material parameters and the stimulus protocol are identical

to those described above (Tables 5.1 and 5.2, Figure 5.7, and the epicardial cell type from

Section 3.1.1). The cavity volume is controlled to follow the transient given in Figure 5.17.

With the same layout as the isovolumic simulation above, Figures 5.21 and 5.22 present the

results from this simulation, showing the transmembrane potential and deforming geometry of

the LV. These figures also provide the LV cavity volume and pressure signals at corresponding

temporal time intervals. Figure 5.23 summarises the organ and cellular level results from this

simulation.

Heterogeneous FK-HMT

Similar to the homogeneous simulation above, we now present a simulation of the cardiac cycle

in the heterogeneous LV model. This model uses the distribution shown in Figure 5.13 of the

three cell types described by the FK-HMT cellular model (Section 3.1.1) with the specified LV

cavity volume transient (Figure 5.17).

Results of this simulation are presented in Figures 5.24–5.26. Figures 5.24 and 5.25 provide

the deformation solutions for the LV geometry at a selection of time points throughout the

simulation as well as the distribution of transmembrane potential. Figure 5.26 summarises the

cellular and organ level dynamics of this simulation.
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FIGURE 5.18: The first part of isovolumic contraction of the homogeneous LV electro-mechanics

model of sinus rhythm. The graphs provide the cavity pressure at each of the time points shown,

in kPa plotted against time in ms. This model has a constant cavity volume throughout the

simulation. The green lines show the undeformed geometry and the element faces are coloured

by the potential spectrum given in Figure 5.11. These results are continued in Figure 5.19.
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FIGURE 5.19: Continuing the results begun in Figure 5.18 with the homogeneous isovolumic

contracting LV model. These results are summarised in Figure 5.20 and also see Section D.3.
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FIGURE 5.20: Summary of the results presented in Figures 5.18 and 5.19 of the simulation of

electro-mechanics in the homogeneous LV model of sinus rhythm with no ejection. The top

graph shows the lead III ECG signal (left axis) and the LV cavity pressure (right axis). The other

graphs are the cellular AP, tension, and extension ratio signals, with signal colours matched to

the coloured spheres in the accompanying LV image providing the spatial location of the signals.
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FIGURE 5.21: The first part of the cardiac cycle using the homogeneous LV electro-mechanics

model of sinus rhythm. The graphs provide the cavity pressure (left scale, kPa) and volume (right

scale, ml) at each of the time points shown. The green lines show the undeformed geometry and

the element faces are coloured by the potential spectrum given in Figure 5.11. These results are

continued in Figure 5.22.
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FIGURE 5.22: Continuation of the results begun in Figure 5.21 of the cardiac cycle model using

the homogeneous LV electro-mechanics model of sinus rhythm. These results are summarised in

Figure 5.23 and see Section D.3 for an animation of the simulation results.
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FIGURE 5.23: Summary of the results presented in Figures 5.21 and 5.22 of the simulation of

the cardiac cycle in the homogeneous LV model of sinus rhythm. The top graph shows the ECG

signals obtained from this simulation and the second graph plots the LV cavity pressure (left axis)

and volume (right axis). The other graphs are the cellular AP, tension, and extension ratio signals,

with signal colours matched to the coloured spheres in the accompanying LV image providing

the spatial location of the signals.
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FIGURE 5.24: The first part of the cardiac cycle using the heterogeneous LV electro-mechanics

model of sinus rhythm. The graphs provide the cavity pressure (left scale, kPa) and volume (right

scale, ml) at each of the time points shown. The green lines show the undeformed geometry and

the element faces are coloured by the potential spectrum given in Figure 5.11. These results are

continued in Figure 5.25.
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FIGURE 5.25: Continuation of the results begun in Figure 5.24 of the cardiac cycle model using

the heterogeneous LV electro-mechanics model of sinus rhythm. These results are summarised

in Figure 5.26 and see Section D.3 for an animation of the simulation results.
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FIGURE 5.26: Summary of the results presented in Figures 5.24 and 5.25 of the simulation of

the cardiac cycle in the heterogeneous LV model of sinus rhythm. The top graph shows the ECG

signals obtained from this simulation and the second graph plots the LV cavity pressure (left axis)

and volume (right axis). The other graphs are the cellular AP, tension, and extension ratio signals,

with signal colours matched to the coloured spheres in the accompanying LV image providing

the spatial location of the signals.
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5.3.4 Discussion

The simulation results presented in Sections 5.3.2 and 5.3.3 above provide ample evidence that

the modelling and simulation framework that we have developed and implemented works well

for both electrical activation only models and coupled electro-mechanics models using the LV

geometry given in Figure 5.1. The most significant drawback in the framework highlighted by

these simulations is the shear amount of time taken to obtain these results. Section 5.5 provides

a summarised view of this, but we note that the coupled electro-mechanics simulations of the

homogeneous and heterogeneous LV models with ejection took on the order of three weeks to

achieve the 550 ms of simulation time presented in this thesis.

In addition to demonstrating the successful application of our framework to a model more

realistic than a the previous cube model (Section 3.4), these simulations demonstrate func-

tionally reasonable solutions. Using the Purkinje-like sinus rhythm stimulus protocol given in

Figure 5.7, the smooth transmural progression of electrical activation is clear in all these results

with full ventricular activation in less than 70 ms for all of the models of sinus activation. With

the simple transmural fibre variation illustrated in Figure 5.1 and the sequence of contraction

solutions given in Figures 5.18(a)–5.18(c) we show that the LV initially deforms into a more

spherical shape with just the endocardial region actively contracting. Then as the mechanical

activation moves out through the wall to the circumferentially oriented mid-wall fibres the defor-

mation becomes more longitudinal and the twisting motion begins. This is followed once more

by a move toward more spherical deformation as the inclined epicardial fibres are activated and

the twisting increases. These results are perhaps more easily observed in the animation of the

simulation results given in Section D.3.

Sections 5.3.2 and 5.3.3 describe five sinus rhythm simulations based on the FK-HMT cel-

lular model on the LV geometry. These are the electrical activation only models of the ho-

mogeneous and heterogeneous LV, coupled electro-mechanics in the LV with no ejection, and

ejection models using the homogeneous and heterogeneous LV models. In all cases the homoge-

neous and heterogeneous models are identical during the electrical activation phase, as expected

from the cellular model description, and differ during repolarisation. An important feature of

the heterogeneous model is the reversal of the direction in which the repolarisation wave trav-

els through the wall (compare, for example, Figures 5.22(c) and 5.22(d) with Figures 5.25(d)

and 5.25(e)).

Figure 5.27 presents the three ECG extremity leads from each of the five sinus rhythm sim-

ulations. From these signals the similarity of the cellular activation phase between the models
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can be seen on the torso surface. The two activation only models have initially identical ECG

signals and the three electro-mechanics models are also identical to each other but different

to the non-contracting models. These common portions of the ECG signals are followed by

differing traces for all of the models during the tissue repolarisation phase. Most notably, the

two heterogeneous models have significantly increased magnitudes of the T-wave regions of the

ECG signals for the three leads and the contracting models have slightly faster kinetics. The

cause of these differences can be seen in the AP signals given in Figure 5.28(a) which clearly

show that all three electro-mechanics models activate earlier than the activation only models

for each of the spatial locations shown. The T-wave changes are due to the differences in the

repolarisation phases of the cellular APs which give rise to different APDs (Table 5.3).

Figure 5.27(d) presents a comparison of the pressure transients for the three sinus rhythm

electro-mechanics models. As expected, the model with no ejection reaches a much higher

peak pressure compared to the two models with ejection. Comparing the homogeneous and

heterogeneous models that include ejection, we again see identical pressure values during the

initial activation phase of the cycle followed by differences during repolarisation. The volume

transient is identical for both models since it is essentially applied as a specified time varying

boundary condition for both models (Section 5.1.3). The peak pressure achieved by the models

with ejection is consistent with values reported is similar models (Usyk et al. 2002). During the

repolarisation phase of the cycle the heterogeneous model maintains a higher cavity pressure

due to the prolonged APs of the midmyocardial cells giving rise to increased active tension at

the cellular level (Figure 5.28(b)).

5.4 Left Ventricular Pacing

The simulations presented in Section 5.3 above describe a fairly simple model developed to

simulate a normal SAN initiated heart beat. In an extension to this, we now examine the appli-

cability of the modelling and simulation framework we have developed to models which are a

little less normal. In CRT studies there are some commonly used pacing sites that have been

reported in the literature, chosen both for ease of access for placing the stimulus electrodes and

for ability to aid mechanical resynchronisation of the LV pump.

Following the work of Wyman et al. (1999), we have chosen to present simulations exam-

ining two pacing sites in the LV. The first pacing site is located in the subendocardium near

the base of the LV free wall and is referred to here as left ventricular base (LVb) pacing. The
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FIGURE 5.27: Comparison of the tissue level results from the sinus rhythm simulations. The full

simulation results are given in Section 5.3.2 for the electrical activation only models (A. homo-

geneous and A. heterogeneous) and Section 5.3.3 for the coupled electro-mechanics models with

the homogeneous (C. homogeneous) and heterogeneous (C. heterogeneous) models with ejection

and the homogeneous model with no ejection (C. no ejection). (a)-(c) give the three extremity

ECG signals and (d) the ventricular cavity pressure (and the volume for the two ejection models).
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FIGURE 5.28: Comparison of the cellular level results from the sinus rhythm simulations. The

full simulation results are given in Section 5.3.2 for the electrical activation only models (A. ho-

mogeneous and A. heterogeneous) and Section 5.3.3 for the coupled electro-mechanics models

with the homogeneous (C. homogeneous) and heterogeneous (C. heterogeneous) models with

ejection and the homogeneous model with no ejection (C. no ejection). The coloured spheres

give the location of each set of signals in the given LV image.
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second location is the right ventricle (RV) apex which we model here as an epicardial stimulus

in the LV model in the approximate location where we would expect the RV to terminate, and

we term this right ventricular apex (RVa) pacing. A third pacing protocol is also investigated

with the combination of the LVb and RVa pacing sites into what we call BiV pacing, which has

been shown to be more beneficial in clinical studies (Kawaguchi et al. 2002, Leclercq & Kass

2002). The pacing locations are clear from the results given below.

5.4.1 Electrical Activation

As with the sinus rhythm simulations in Section 5.3.2, before launching into coupled simula-

tions we first check the behaviour of the pacing models with electrical activation of the inflated

LV. The inflation solution used is that from Figure 5.10 in Section 5.3.1, the tissue continuum

material parameters are identical to those in Table 5.2, and we use the epicardial cell type of the

FK-HMT cellular model (Section 3.1.1). For each of the pacing locations, a group of cells is

stimulated with a current of 150 µA · mm−3 and a duration of 1.0 ms.

Figures 5.29–5.31 present the activation solutions for the three pacing protocols. A summary

of the organ and cellular dynamics is presented in Figure 5.32 where we provide a sampling of

cellular AP signals and global ECGs.

5.4.2 BiV Electro-Mechanics

We now take the BiV paced LV model and examine its electro-mechanical behaviour. Here we

first present a simulation where there is no ejection of blood from the LV cavity forcing the

cavity volume to remain isovolumic for the duration of the 1000 ms simulated heart beat.

The simulation begins with the same inflated geometry as used above in the sinus simulation,

shown in Figure 5.10(b), with the 150 µA · mm−3 BiV stimulus applied at time 0 ms. The me-

chanical boundary conditions in this simulation are the same as those used above (Figure 5.8),

as are the mechanical and electrical continuum material parameters (Tables 5.1 and 5.2). Once

more, the epicardial variant of the FK-HMT cellular electro-mechanics model is used at the

cellular level (Section 3.1.1).

Results from this simulation are given in Figures 5.33 and 5.34 with a summary of the system

dynamics given in Figure 5.35. In addition to testing the modelling and simulation framework
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(a) 10 → 50 ms

(b) → 60 → 100 ms

(c) → 110 → 150 ms

(d) → 300 → 340 ms

(e) → 350 → 390 ms

(f) → 400 → 440 ms

FIGURE 5.29: LVb paced electrical activation on the inflated homogeneous LV model. The green

endocardial surface indicates the mid-septum region. Element faces are coloured by cellular

transmembrane potential with the scale given in Figure 5.6. See Section D.3 for an animation of

this simulation.
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(a) 10 → 50 ms

(b) → 60 → 100 ms

(c) → 110 → 150 ms

(d) → 300 → 340 ms

(e) → 350 → 390 ms

(f) → 400 → 440 ms

FIGURE 5.30: RVa paced electrical activation on the inflated homogeneous LV model. The green

endocardial surface indicates the mid-septum region. Element faces are coloured by cellular

transmembrane potential with the scale given in Figure 5.6. See Section D.3 for an animation of

this simulation.
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(a) 10 → 50 ms

(b) → 60 → 100 ms

(c) → 110 → 150 ms

(d) → 300 → 340 ms

(e) → 350 → 390 ms

(f) → 400 → 440 ms

FIGURE 5.31: BiV paced electrical activation on the inflated homogeneous LV model. The green

endocardial surface indicates the mid-septum region. Element faces are coloured by cellular

transmembrane potential with the scale given in Figure 5.6. See Section D.3 for an animation of

this simulation.
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FIGURE 5.32: A summary of the simulation results from models of the electrical activation using

the three LV pacing examined (Figures 5.29–5.31). (a)-(c) show the ECG and AP signals from

each of the pacing protocols for a single stimulus applied at time 0 ms. The colours of the AP

signals correspond to the spheres in (d) marking the spatial location of the presented signals in

the LV geometry.



172 TOWARD A WHOLE HEART MODEL OF ELECTRO-MECHANICS

we have developed, this particular simulation will be used to compare to the sinus rhythm model

in Section 5.3.3 above.

Having obtained some good results from the isovolumic simulation of a BiV paced heart

beat (Figures 5.33–5.35), we proceeded to attempt a simulation of the full cardiac cycle (see

page 141) initiated through the application of the BiV pacing protocol. Unfortunately, for rea-

sons discussed below in Section 5.4.4, we were unable to obtain physiologically reasonable or

numerically stable solutions past the early stages of ejection. The results we did obtain, how-

ever, are presented in Figures 5.36 and 5.37.

5.4.3 LVb and RVa Electro-Mechanics

To further test our framework, we attempted simulations of the cardiac cycle using the homoge-

neous LV model with contraction initiated via both the LVb and RVa pacing protocols. As with

the BiV cycle simulation above, several issues of physiological reality and numerical stability

surfaced during these simulations to wreak havoc with the solution process. These issues are

discussed below in Section 5.4.4.

In both the LVb and RVa simulation, the most complete solutions were obtained by altering

the mechanical boundary conditions applied to the LV. The boundary conditions described in

Figure 5.8 were applied with the exception that some endocardial valve nodes were free to

move in the vertical (x-axis) direction. For the LVb simulation the mid-septal valve nodes

were released in the x-axis, and for the RVa simulation the mid free wall valve nodes were

free to move vertically. These changes in boundary conditions resulted in altered deformed

geometries following the inflation phase of the cardiac cycle and these solutions are shown in

Figures 5.38(a) and 5.40(a) below.

The mechanical and electrical continuum material parameters in both these simulations are

the same as those used previously (Tables 5.1 and 5.2). The epicardial variant of the FK-HMT

cellular electro-mechanics model is used at the cellular level (Section 3.1.1).

Results from the LVb simulation are given in Figures 5.38 and 5.39 and those from the RVa

simulation in Figures 5.40 and 5.41.
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FIGURE 5.33: The first part of isovolumic contraction of the homogeneous LV electro-mechanics

model of BiV pacing. The graphs provide the cavity pressure at each of the time points shown,

in kPa plotted against time in ms. This model has a constant cavity volume throughout the

simulation. The green lines show the undeformed geometry and the element faces are coloured

by the potential spectrum given in Figure 5.11. These results are continued in Figure 5.34.
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FIGURE 5.34: Continuing the results begun in Figure 5.33 with the BiV paced isovolumic con-

tracting LV model. These results are summarised in Figure 5.35 and also see Section D.3.
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FIGURE 5.35: Summary of the results presented in Figures 5.33 and 5.34 of the simulation of

electro-mechanics in the homogeneous LV model of BiV pacing with no ejection. The top graph

shows the lead III ECG signal (left axis) and the LV cavity pressure (right axis). The other

graphs are the cellular AP, tension, and extension ratio signals, with signal colours matched to

the coloured spheres in the accompanying LV image providing the spatial location of the signals.
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FIGURE 5.36: The working section of the cardiac cycle using the homogeneous LV electro-

mechanics model of BiV pacing. The graphs provide the cavity pressure (left scale, kPa) and

volume (right scale, ml) at each of the time points shown. The green lines show the undeformed

geometry and the element faces are coloured by the potential spectrum given in Figure 5.11. See

Figure 5.37 for a summary of the dynamics and Section D.3 for an animation of these results.
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FIGURE 5.37: Summary of the results presented in Figure 5.36 of the simulation of the cardiac

cycle in the homogeneous LV model of BiV pacing. The top graph shows the ECG signals

obtained from this simulation and the second graph plots the LV cavity pressure (left axis) and

volume (right axis). The other graphs are the cellular AP, tension, and extension ratio signals,

with signal colours matched to the coloured spheres in the accompanying LV image providing

the spatial location of the signals.
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FIGURE 5.38: The working section of the cardiac cycle using the homogeneous LV electro-

mechanics model of LVb pacing. The graphs provide the cavity pressure (left scale, kPa) and

volume (right scale, ml) at each of the time points shown. The green lines show the undeformed

geometry and the element faces are coloured by the potential spectrum given in Figure 5.11. See

Figure 5.39 for a summary of the dynamics and Section D.3 for an animation of these results.
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FIGURE 5.39: Summary of the results presented in Figure 5.38 of the simulation of the cardiac

cycle in the homogeneous LV model of LVb pacing. The top graph shows the ECG signals

obtained from this simulation and the second graph plots the LV cavity pressure (left axis) and

volume (right axis). The other graphs are the cellular AP, tension, and extension ratio signals,

with signal colours matched to the coloured spheres in the accompanying LV image providing

the spatial location of the signals.
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FIGURE 5.40: The working section of the cardiac cycle using the homogeneous LV electro-

mechanics model of RVa pacing. The graphs provide the cavity pressure (left scale, kPa) and

volume (right scale, ml) at each of the time points shown. The green lines show the undeformed

geometry and the element faces are coloured by the potential spectrum given in Figure 5.11. See

Figure 5.41 for a summary of the dynamics and Section D.3 for an animation of these results.
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FIGURE 5.41: Summary of the results presented in Figure 5.40 of the simulation of the cardiac

cycle in the homogeneous LV model of RVa pacing. The top graph shows the ECG signals

obtained from this simulation and the second graph plots the LV cavity pressure (left axis) and

volume (right axis). The other graphs are the cellular AP, tension, and extension ratio signals,

with signal colours matched to the coloured spheres in the accompanying LV image providing

the spatial location of the signals.
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5.4.4 Discussion

In Sections 5.4.1–5.4.3 above, we have presented some preliminary results from attempts to

model various pacing protocols used in CRT. We have successfully modelled the electrical ac-

tivation of the LV model using the left ventricular base (LVb), right ventricular apex (RVa), and

bi-ventricular (BiV) pacing protocols as well as isovolumic contraction of the homogeneous LV

model with BiV pacing. Attempts to simulate electro-mechanics and ejection in the paced LV

models have so far failed.

Figure 5.42 presents the three extremity ECG leads for the successful LV pacing simulations

and the homogeneous sinus rhythm electro-mechanics model with no ejection (Section 5.3.3).

From these results it is clear that BiV pacing is certainly much closer to a normal sinus rhythm

beat as suggested in the literature (Wyman et al. 2002, Verbeek, Vernooy, Peschar, Cornelussen

& Prinzen 2003), producing similar electrical and mechanical dynamics as our Purkinje-like

stimulus protocol in a isovolumic model. The simulations of LVb and RVa pacing in a electrical

activation model show significant differences to the normal sinus ECG leads.

The AP signals given in Figure 5.43(a) show clear differences in the activation sequence

from the paced beats, especially the LVb and RVa protocols where the electrical wave propa-

gation is no longer dominated by the transmural direction. The cellular tension and extension

ratio signals shown in Figure 5.43 reinforce that BiV pacing in our homogeneous LV model re-

sults in behaviour close to the Purkinje-like sinus rhythm stimulus. Further work is required to

determine if this similarity continues for models that include cellular heterogeneity and ejection.

In Section 5.4.3 we present results from attempted simulations of LV electro-mechanics

using the LVb and RVa pacing protocols. These simulations failed before the developed cavity

pressure reached the point where ejection would begin. As discussed in Section 5.4.3, the

mechanical boundary conditions in these models were altered from those used in the sinus and

BiV simulations in an attempt to improve the performance of these simulations. These changes

allowed slight improvements in the simulations, but we still fail to achieve anything close to

ejection in these paced models.

Further work is required to fully understand these failures, but we have some initial thoughts

on possible explanations. These simulations fail because regions of the ventricular wall begin

to be stretched to non-physiological lengths during the numerical solution of the finite elasticity

model. This is illustrated in Figures 5.38 and 5.40 (and Section D.3) by the ventricular wall

opposite the point stimulus beginning to bulge outwards as the tissue nearest the stimulus site
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FIGURE 5.42: Comparison of the tissue level results from the LV pacing simulations. The full

simulation results are given in Section 5.4.1 for the electrical activation only models (BiV, LVb,

and RVa) and Section 5.4.2 for the coupled BiV electro-mechanics model (BiV no ejection) and

Section 5.3.3 for the homogeneous sinus model with no ejection (C. no ejection). (a)-(c) give the

three extremity ECG signals and (d) the ventricular cavity pressure.
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FIGURE 5.43: Comparison of the cellular level results from the paced LV simulations. The full

simulation results are given in Section 5.4.1 for the electrical activation only models (BiV, LVb,

and RVa) and Section 5.4.2 for the coupled BiV electro-mechanics model (BiV no ejection) and

Section 5.3.3 for the homogeneous sinus model with no ejection (C. no ejection). The coloured

spheres give the location of each set of signals in the given LV image.
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contracts (Figure 5.44). While such bulging is to be expected given the incompressible my-

ocardium and isovolumic ventricular cavity, as the bulging increases the numerical solution of

the finite elasticity model becomes unstable as the passive fibres which have been stretched are

suddenly activated. Since active tension in the FK-HMT cellular model is proportional to the

cellular extension ratio, these cells rapidly develop large active forces once they are activated.

This causes a large instability which our simulation framework is currently unable to adequately

handle. Thus, the instability could be due to either the cellular model or the numerical simula-

tion framework.

5.5 Computational Performance

All the simulations presented above in Sections 5.3 and 5.4 were performed on an IBM Regatta

P690, consisting of 32 1.3 GHz Power 4 processors with 32 GB of physical memory. We present

here a comparison of a coupled electro-mechanics model and a non-coupled electrical activation

only model. The electro-mechanics model is the homogeneous FK-HMT LV model with no

ejection (Figures 5.18–5.20) and we compare this to the electrical activation only version of the

same model (Figures 5.11 and 5.12).

Figure 5.45 plots the memory requirements for the two models for the duration of the

1000 ms of simulation time. This figure shows that the required memory initially climbs, but

quickly reaches a plateau which is relatively constant for the period when the myocardium is

electrically active. For both models, once the tissue has returned to electrical rest the memory

requirements drop to a very stable plateau of approximately 1.75 GB for the activation model

and 2.25 GB for the coupled electro-mechanics model.

The LV model used in these simulations consists of approximately 320, 000 nodes in the

GBFEs, compared to the 36, 000 nodes in the cube model presented in Section 3.4. Memory

requirements for the FK-HMT cube model peaked at 0.55 GB and for the coupled LV model at

3.8 GB. These data show that for a nine fold increase in the number of GBFE nodes there is

a seven fold increase in the peak memory requirement. While 4 GB of memory is not pushing

the limits of a modern scientific computer, it is important to note that the 320, 000 node GBFE

discretization is not sufficient for a fully converged solution and this is also only a LV model.

In Figure 5.46 we present a breakdown of the time taken in the coupled LV electro-mechanics

model for the different steps in the solution algorithm (Figure 3.6). The three steps are: the up-
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FIGURE 5.44: Comparison of the cellular level results from the failed LV pacing simulations.

The full results obtained from these simulations are presented in Section 5.4.3. The coloured

spheres give the location of each set of signals in the given LV image.
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FIGURE 5.45: Comparison of the memory requirements for the FK-HMT and N-LRd-HMT

based cube electro-mechanics models.

date step, where the electrical activation model is updated from the deformed finite elasticity

model; the activation model solution step; and the finite elasticity mechanics solution step. Also

shown are the solution time data for the activation only model.

Figure 5.46(a) presents the comparison of wall clock times for each of the models and Fig-

ure 5.46(b) compares the actual computational time (CPU), for each of the 1 ms solution in-

tervals. The wall clock time is the actual real world time taken to run the simulation and the

computational time is the amount of time the process takes to run. The computational time is

generally much larger since we are using multi-threaded software capable of running on more

than one processor and the computational time is the sum over all the processors used in the

simulation. The ratio of computational time to wall time can be used as a measure of the speed

increase obtained by using multiple processors.

The electro-mechanics LV simulation was performed using twelve processors on the IBM

Regatta machine and the activation only simulation used eight processors. The plots shown in

Figure 5.46 appear quite noisy due to the large dependence of these times on the load on the

computer at the time of the simulation. This computer is a shared resource and as such there

are numerous users running simulations and performing other tasks on the machine at any time,

leading to a high load on the machine. The brief periods when the computational times show

sudden dips or increases can be attributed to the machine load changing for some unrelated

reason rather than anything to do with the model simulations.

Figure 5.47 provides some cumulative time data for both the coupled model and the elec-

trical activation only model. Here the difference between computational and wall clock time

is highlighted. As expected, the time for computing the cellular dipoles for use in the forward
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torso model is the same for both the coupled and electrical activation only models. It is also

clear that there is no multiprocessing implemented for this section of the simulation framework.
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FIGURE 5.47: Comparison of the total computational times for the activation only LV model and

the coupled electro-mechanics model. See text for full description.

The solution of the electrical activation model for the activation only model shows a 5.4

speed-up between total wall clock time and total computational time, whereas the coupled

model has only a 4.0 speed-up. This is despite the coupled model being run using twelve

processors compared to eight for the activation only simulation. This highlights the advantage

of the activation only model not needing to perform the non-parallel matrix assembly at each

time step (as discussed in Section 3.4.3).

For the mechanics solution step of the simulation algorithm we get a 7.5 speed-up. This is

reasonable for this work, but significantly distant to the ideal linear speed-up (i.e., a speed-up of

12 for this simulation). Section 3.4.3 contains discussion as to why we fall short of the desired

linear speed-up for the different steps in the simulation.

Summing the contribution of each of the steps gives total wall clock times of 113 hours

(4.5 days) for the activation only model and 304 hours (12.6 days) for the coupled electro-

mechanics model. Total computation times were 293 and 1267 hours for the activation only and

coupled models, respectively. This gives overall speed-up factors of 2.6 for the activation only

model and 4.2 for the coupled model. These factors look particularly bad as they are heavily

influenced by the completely serial dipole calculations.





Chapter 6

Conclusions

In this thesis we have developed a modelling and simulation framework which, for the first

time, allows tight coupling between cellular, tissue, and organ level models of cardiac electro-

mechanics. The framework developed is a crucial step along the path to a simulation and mod-

elling environment for the IUPS Physiome Project and while the focus of this work has been on

cardiac electro-mechanics we have demonstrated application of the framework to other physio-

logical systems (Section 4.5).

An important feature of the framework we have developed is the use of CellML to dynami-

cally specify cellular level mathematical models for use in distributed tissue and organ models.

The framework implementation allows for specification of the spatial distribution of models

themselves as well as material parameters within models. An example of this is the hetero-

geneous LV model described in Figure 5.13. This feature begins to provide a plug-and-play

facility where a non-expert user can take a standard tissue or organ model and plug-in their

favourite cellular model (or models) and see what happens. Using their CellML-enabled cell

modelling software, such a user could tinker with their model, change parameters, add drug

interactions, etc., and then relatively easily step back into a tissue or whole heart model and

instantly1 see the effect of such changes on larger scale function.

We have demonstrated application of the implemented framework to various tissue (Sec-

tion 3.4) and ventricular models (Chapter 5) with some very promising preliminary results.

Using a fairly simple cellular model (Section 3.1.1) and a simplistic LV geometrical model

(Figure 5.1) we have performed simulations of a normal sinus rhythm heart beat (Section 5.3)

1Instantly could be a time period of days or weeks depending on the simulations required.
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and examined the behaviour of the LV under various pacing protocols (Section 5.4).

While we have obtained some reasonable results from the models developed in this thesis

and developed a simulation framework capable of much more than just what we have pre-

sented, there are some limitations in our methods. Some of these are discussed in Sections 5.3.4

and 5.4.4. Other limitations are discussed in Section 6.1 below as well as some extensions to

this work that would enhance our methods and overcome some of the limitations. Section 6.2

then presents some additional studies that could be performed using the methods developed in

this thesis and Section 6.3 lists existing publications that have come from this work.

6.1 Limitations and Extensions

During the process of developing the methods and models presented in this thesis various de-

sirable features have been mentioned but not included in this work for different reasons. In this

section we discuss some of these limitations of our work and consider some extensions to this

work that might relieve the limits.

Perhaps one of the most obvious limitations of the models described in this thesis is that

we have used the monodomain approximation for all electrical activation models. This has

been appropriate for the scope of this thesis as we have been developing the framework which

enables the coupling of cellular level models into tissue and organ electro-mechanics models.

In future studies, however, this approximation might no longer be appropriate. Because we have

implemented our modelling framework in CMISS, we can easily use the full bidomain model

when required (Sands 1997, Buist 2001).

As was mentioned in Section 5.3, due to numerical issues with the GBFE method (Sec-

tion C.3) at the LV apex, we were forced to apply additional constraints on the ventricular

deformation in order to obtain stable solutions for the electrical activation model in the myocar-

dial tissue near the apex. This is primarily due to the implementation of the GBFE method used

in this work being defined by regular quadrilateral-shaped elements that are collapsed along at

least one face at the apex. A more efficient implementation of the method has been recently

developed which allows non-regular GBFEs to be defined based on the collapsed host element.

This implementation will hopefully aid in the numerical stability of the electrical activation

model at the apex during mechanical deformation allowing the lifting of the undesirable apex

deformation constraints. Testing of the new implementation is required to determine its effect
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on coupled electro-mechanics models before we can claim the abolition of this limitation.

All of the cellular models reviewed and developed in this thesis have been developed based

on experimental data from various animal species (with the possible exception of the FK-HMT

model fitted to human APD measurements). To be clinically useful, however, models of cardiac

function need to be developed based on human data. Recently, human cellular electrophysiology

models have been published by Iyer, Mazhari & Winslow (2004) and ten Tusscher, Noble, Noble

& Panfilov (2004). As discussed above, by using CellML in our modelling and simulation

framework, model evolutions such as these can easily be incorporated into tissue and organ

models. All that is required is the translation of the published model into CellML. Another issue

related to material parameters is the need to ensure the parameters from the cellular, electrical

activation, and finite elasticity models are all consistent with each other.

As models develop and become more complex we are beginning to see more models that

take an existing model and then add significant detail to a specific mechanism in that model

to enable the modelling of some new experimental observations. An example of this is the

addition of Markov state models for the fast sodium and potassium channels to the dynamic

Luo & Rudy (LRd) model by Clancy & Rudy that enabled the inclusion of specific genetic

mutations into the whole cell electrophysiology model (Clancy & Rudy 2001, Clancy & Rudy

2002). The CellML version of these models included in this thesis, as the N-LRd model, uses

version 1.0 of the CellML language. This results in large XML files that are largely duplicated

between the wild-type and mutant versions of the model. By moving to version 1.1 of the

CellML specification we could remove this code duplication by defining a single base model with

the common components and then used the CellML 1.1 import facility to include the common

components into a model which also defines either the wild-type or mutant fast sodium channel

models. In fact, the base common model would probably also be the culmination of models that

mirrors the development from the original Luo & Rudy (1991) model.

When implementing the simulation framework described in this thesis we have used the

existing code base provided by CMISS (Section 4.4). In CMISS the definition and implementa-

tion of finite elasticity and electrical activation models is distinctly separate. This has resulted

in our simulation framework consisting of quite separate components for the mechanics and

activation with most of the work being in the coupling of these two parts of the CMISS code.

By implementing the framework in this manner, we allow independent specification of the two

constituent components of the coupled electro-mechanics model, which was thought to be a

useful feature. As has been demonstrated in the various tissue and organ models presented in

this thesis (Section 3.4 and Chapter 5) the coupling between the two parts of the code does not
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always work perfectly. Further work is required to determine if greater integration of the finite

elasticity and electrical activation sections of CMISS code would provide enhanced numerical

stability and generality.

Another point to consider is inclusion of active material response directly into the finite

elasticity constitutive relation. As described in Section 4.5, the methods developed in this thesis

for incorporation of CellML into CMISS have been extended to allow specification of the ma-

terial constitutive relationships. This extension uses all the same code in CMISS as the active

contraction modelling and it should be relatively trivial to extend this to allow the inclusion of

the active tension generation component directly into the constitutive relations rather than the

current implementation where the active component is a separate addition to the finite elasticity

stress tensor. If implementing this approach, however, the methods begin to get complicated

when considering the electrophysiology aspects. The idea here would be to use cellular electro-

mechanics models that include not only the electrophysiology and active tension but also the

passive constitutive relations for the material(s) being modelled. While making the full cellular

model more complex, CellML 1.1 could be used to define the master cell model which imports

the standard electro-mechanics model as used in the current work and then defines the consti-

tutive relationships and their connections with the active tension. This method would provide a

method for a more transparent specification of the full tissue or organ electro-mechanics model.

A major deficiency in the Auckland heart models has always been the lack of physiologically

realistic interaction between the ventricular cavity and the myocardium. The method developed

by Nash (1998) and used in this work uses a separate cavity region FE mesh to model the cavity

as a constant volume and then through volume conservation determine the hydrostatic pressure

applied to the endocardial surface (Section 5.1). While this method can be used to simulate

something reasonable it does not allow for a gradient of pressure within the cavity volume or

realistic filling and ejection of blood from the ventricle. While the method we have used for

ejection (Section 5.1.3) could equally be used to push blood into the ventricular cavity, this

requires the specification of the cavity volume through time which is perhaps not the best aspect

of the system to be controlling explicitly. A preferred boundary condition to impose on the

system might be the vascular resistance or aortic flow and pressure. While the inclusion of

a full computational fluid dynamics model for the blood flow in the ventricular cavity might

add more complexity and computational requirements to the models than would be desirable,

a more realistic model could be achieved with inclusion of simplified fluid dynamics models

such as the Windkessel models used in several other studies (Bovendeerd et al. 1992, Usyk

et al. 2002, Kerckhoffs, Bovendeerd, Kotte, Prinzen, Smits & Arts 2003, Kerckhoffs, Faris,

Bovendeerd, Prinzen, Smits, McVeigh & Arts 2003). More work is required to determine the
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effect of such fluid mechanics models on the behaviour of the ventricular tissue.

In Section 5.3 we model normal sinus activation of the LV through the application of elec-

trical stimuli over most of the endocardial surface. The stimuli are applied following a specified

sequence that mimics that observed experimentally following actual Purkinje fibre stimulus via

the AVN originating at the SAN. While this produces a suitable pattern of activation for the

purposes of this thesis, something more anatomically based might be desirable in different sit-

uations. Buist (2001) developed a method for growing a Purkinje fibre tree into a given host

geometry and then incorporating this tree into the activation model where the fibres are only

electrically connected to the myocardial tissue at the terminal points of the fibre branches. Once

again, because our framework is based in CMISS we have access to this method although inves-

tigation is required to determine the behaviour of such a Purkinje fibre model during dynamic

contraction of the tissue. Also, through the use of CellML the Purkinje fibres can easily be

modelled using an actual Purkinje fibre model separately to the remainder of the myocardium.

The final limitation we discuss is the length of time these simulations take to run, especially

the LV sinus rhythm electro-mechanics models that run for a full heart beat. We have shown

that the implemented framework is capable of reasonable performance increases when using

multiple processors for sections of the simulations (Section 5.5). An obvious and immediate

method to decrease the total simulation time would be examine the parts of the simulations that

do not scale well with the number of processors and see if the parallelism in the associated

code can be improved. Some of the obvious targets for this are the dipole calculation and

the evaluation of the cellular model to obtain updated active tension values following length

perturbations.

If we could enhance the implementation to be as parallel as possible then the total simulation

time should scale approximately with the number of processors. The current implementation of

parallel code in CMISS requires the used of shared memory architectures, which has implica-

tions for the number of processors it is possible to use. The IBM Regatta machine that was used

for the simulations in this thesis has a limit of 32 processors able to share a common memory

pool. While other vendors, most notably SGI, have systems able to share memory between a

much larger pool of processors most high processor count systems today are based on a dis-

tributed memory architecture. To capitalise on the number of processors in these systems would

require significant redesign of the CMISS code to move to a distributed memory model.

In addition to making our framework run better on high performance machines there are

also many fundamental algorithmic improvements that could be made. The implementation
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of the framework developed in this thesis is very much a first draft – we now have the tools

that are capable of these simulations but most of the new code added to CMISS was written

with a goal of simply getting something that worked reasonably well but not particularly well

designed. So the first step in improving the performance of our framework is to progressively

work through the code checking for algorithmic improvements while ensuring that simulations

we have already performed are not broken. Of course, this step is dependent on the outcome

of some of the further work discussed above as some of them could easily result in significant

changes to the existing code.

6.2 Future Studies

In this thesis we have developed a comprehensive method for tightly coupling cellular level

models into tissue and organ models of cardiac electro-mechanics. Even without improving the

current work with the extensions and further work described in Section 6.1 above, the frame-

work we have developed is now capable of some significant studies. Here we briefly outline a

few of the studies that could be performed using this work in the short term.

6.2.1 A Whole Heart Model

In this thesis we have developed a general modelling and simulation framework which allows

tight coupling of cellular level processes into tissue and organ level continuum models. We

presented some simulation studies based on a simplified LV geometry. While such studies are

a useful aid for the interpretation of some experimental observations, the real predictive power

of the methods we have developed will not be realised until we move to models based on real

anatomical detail and include at least a RV and possibly the atria.

A detailed finite element model of the porcine left and right ventricles has recently been de-

veloped and the passive mechanical material parameters investigated (Stevens, Remme, LeGrice

& Hunter 2003). Application of the methods developed in this thesis to model electro-mechanics

in this geometry would be a good next step in the progression of this work. We are, unfortu-

nately, currently limited by the computational cost of such a simulation. With further work on

the methods developed, as described in Section 6.1 above, however, such a model should be

possible.
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Once we have a model of the porcine ventricles with which it is possible to perform simula-

tions in a timely manner, we can begin to consider the inclusion of the atria into the geometric

model to complete the full heart anatomically based geometry. Due to the complex structure

of the atria, a first approximation may be to simply cap the ventricular geometry to provide a

rough geometry for use with the cavity fluid dynamics models and actual SAN initiated electri-

cal activation.

6.2.2 Material Parameter Analysis and Estimation

With some of the improvements discussed in Section 6.1, the LV simulations described in Chap-

ter 5 should be able to be performed in significantly less time. Once we have this we will have

a powerful tool for analysing and estimating material parameters for the cellular, tissue, and or-

gan level models combined. This would allow, for example, additional constraints placed on an

optimisation of the passive mechanical parameters at the tissue level that ensure the parameter

space is restricted to those which are suitable for a given active tension model.

6.2.3 Investigation of the Epicardial Border Zone

Reentrant circuits capable of causing ventricular tachycardia (VT) are located in a thin layer of

epicardial cells that survive a transmural infarct. This layer is known as the epicardial border

zone.

Cabo & Boyden (2002) developed detailed cellular electrophysiology models for the elec-

trical remodelling of the epicardial border zone, with separate models for normal (NZ) and epi-

cardial border zone cells (IZ), based on the Winslow, Rice, Jafri, Marban & O’Rourke (1999)

modified LRd model. They present AP simulations for varying [K+]o and BCL’s and examine

conduction in a cable made by combining the two cell types, especially focused on the effective

refractory period and how it affects the propagation of APs down the cable. Pollard, Cascio, Fast

& Knisley (2002) present a model study of the modulation of triggered activity by uncoupling

in the ischaemic border zone, a phenomena shown to coincide with the spontaneous occurrence

of 1B-VT (de Groot 2002). Pollard et al. (2002) use modified LRd simulations to show that

an intermediate amount of cellular uncoupling is an important contributor to phase 1B arrhyth-

mogenesis. The results of Pollard et al. (2002) looked at single cell, two cell (ischaemic and

control myocytes), and multicellular fibres (100 control cells (1 cm) coupled to 100 ischaemic
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cells).

Using our framework we would be capable of reproducing the results given by Pollard et al.

(2002) and Cabo & Boyden (2002) for the cellular and multicellular fibre models. We could then

extend these models to three dimensional transmural myocardium sections and the complete

LV model to investigate the effects of the conduction and AP changes on larger scale models of

electrical activity.

6.2.4 The Genetic Basis of LQT

The N-LRd electrophysiology model was developed in Section 2.4.10 based on the models of

Clancy & Rudy (Clancy & Rudy 2001, Clancy & Rudy 2002). In Clancy & Rudy (2002) they

put forward a possible mechanism whereby a single fast sodium channel mutation is capable of

causing both long-QT and Brugada syndromes. Their mechanism is based on simulations of the

different cell types described by their model (epi-, mid-, and endocardial cell types) showing

how the interaction between these cell types at different pacing rates would cause the changes

at the whole heart and ECG level indicative of these abnormalities.

Using our framework we are capable of performing simulations using the LV geometry

which would hopefully confirm the mechanism proposed by Clancy & Rudy (2002). The first

step in such a study would be to perform more validation of the N-LRd model for each of the

three cell types to confirm they behave as expected. We could then develop an anatomically

accurate description of the distribution of these cell types throughout the LV model. Then sim-

ulations would be performed using the Purkinje-like stimulus protocol (Figure 5.7) at different

pacing frequencies and the effect of the fast sodium channel mutation could be observed.

6.3 Publications
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Appendix A

CellML Models

The content of this appendix has been generated directly from the CellML models created and

described in Chapter 2 and used in this research. This representation of the models is simply

intended to provide a quick reference for the models for the purposes of this thesis – the actual

models are all freely available from the CellML model repository available from http://cellml.

sourceforge.net and http://www.cellml.org, and in the attached compact disc. In the simulations

presented in this thesis, all variables with no initial value are assumed to be zero.

A.1 hill 1938 isometric

This is a CellML version of the model published in 1938 by Hill on the isometric contraction of skeletal muscle.

The (default) initial values contained in this model are for frog satorius muscle at 0 degrees C.

Reference: Hill, A. V. (1938), ‘The heat of shortening and the dynamic constants of muscle’, Proceedings of the

Royal Society of London. Series B 126, 136–195.

“interface” component

We’ll use this component as the ‘interface’ to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

a = 6.4× 109 ng · mm−2

alpha = 1.68× 1011 ng · mm−2

b = 0.59× 10−3 ms−1

To = 1.68× 1010 ng · mm−2
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“isometric contraction” component

The component which contains the isometric tension equation.

Equations defined in this component

The kinetics of the isometric tension development, from equation 1 on page 185 of the original publication.
d(T )

d(t)
=

(

(To + a) ∗ alpha ∗ b

(T + a)
− alpha ∗ b

)

(A.1.1)

The ratio of isometric tension to the maximum possible value.

ratio =







T
To

; if To > 0.0,

0.0 otherwise.
(A.1.2)

A.2 Hodgkin Huxley 1952

This is a CellML version of the model published in 1952 by Hodgkin and Huxley on the electrical activation of

squid axons.

Reference: Hodgkin, A. L. & Huxley, A. F. (1952), ‘A quantitative description of membrane current and its

application to conductance and excitation in nerve’, Journal of Physiology 117, 500–544.

“interface” component

We’ll use this component as the ‘interface’ to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Er = −65.0 mV

gNa max = 120.0× 10−2 mS · mm−2

gK max = 36.0× 10−2 mS · mm−2

gleak max = 0.3 × 10−2 mS · mm−2

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.2.1)

“membrane” component

The membrane component is the ”real” parent component which physically contains its child components. This

component defines the transmembrane potential.

Initial values defined in this component
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Vm = −65.0 mV

Equations defined in this component

This is the main equation for the model, describing the dependency of the time course of tranmembrane potential

on the three ionic currents plus any applied stimulus current.
d(V m)

d(t)
=

(Istim − (INa + IK + Ileak))

Cm
(A.2.2)

“sodium channel” component

The sodium channel is the first of three membrane bound ionic channel proteins in this model. It is primarily

responsible for the upstroke of the action potential.

Equations defined in this component

Calculation of the sodium current.

INa = gNa ∗ (V m − ENa) (A.2.3)

Calculation of the sodium channel’s current conductance based on the activation and inactivation gates.

gNa = gNa max ∗ (m gate)
3.0 ∗ h (A.2.4)

Calculation of the sodium channel’s current equilibrium potential.

ENa = (Er + 115.0) (A.2.5)

“sodium channel m gate” component

This is the voltage dependent activation gate for the sodium channel.

Initial values defined in this component

m = 0.0

Equations defined in this component

Calculation of the opening rate of the activation gate of the sodium channel.

alpha =
0.1 ∗ (25.0− V )

(exp (0.1 ∗ (25.0− V )) − 1.0)
(A.2.6)

Calculation of the closing rate of the activation gate of the sodium channel.

beta = 4.0 ∗ exp

(−V

18.0

)

(A.2.7)

The rate of change of the activation gate of the sodium channel.
d(m)

d(t)
= (alpha ∗ (1.0− m) − beta ∗ m) (A.2.8)
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V = (V m − Er) (A.2.9)

“sodium channel h gate” component

This is the voltage dependent inactivation gate for the sodium channel.

Initial values defined in this component

h = 0.6

Equations defined in this component

The closing rate of the inactivation gate.

beta =
1.0

(exp (0.1 ∗ (30.0− V )) + 1.0)
(A.2.10)

The opening rate of the inactivation gate.

alpha = 0.07 ∗ exp

(−V

20.0

)

(A.2.11)

The rate of change of the inactivation gate.
d(h)

d(t)
= (alpha ∗ (1.0− h) − beta ∗ h) (A.2.12)

V = (V m − Er) (A.2.13)

“potassium channel” component

The potassium channel is the second of three membrane bound ionic channels defined by this model. It is primarily

responsible for the repolarisation phase of the action potential.

Equations defined in this component

Calculation of the potassium current.

IK = gK ∗ (V m − EK) (A.2.14)

Calculation of the potassium channel conductance.

gK = gK max ∗ (n)
4.0 (A.2.15)

Calculation of the potassium channel equilibrium potential.

EK = (Er − 12.0) (A.2.16)

“potassium channel n gate” component

The voltage dependent activation gate for the potassium channel.
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Initial values defined in this component

n = 0.3

Equations defined in this component

Calculation of the opening rate of the activation gate for the potassium channel.

alpha =
0.01 ∗ (10.0− V )

(exp (0.1 ∗ (10.0− V )) − 1.0)
(A.2.17)

Calculation of the closing rate of the activation gate for the potassium channel.

beta = 0.125 ∗ exp

(−V

80.0

)

(A.2.18)

The rate of change in the activation gate of the potassium channel.
d(n)

d(t)
= (alpha ∗ (1.0 − n) − beta ∗ n) (A.2.19)

V = (V m − Er) (A.2.20)

“leak channel” component

A small leakage current, made up by chloride and other ions, with a constant conductance.

Equations defined in this component

Calculation of the leakage current.

Ileak = gleak max ∗ (V m − Eleak) (A.2.21)

Calculation of the equilibrium potential of the leak channel.

Eleak = (Er + 10.613) (A.2.22)

A.3 FitzHugh Nagumo 1961

This is a CellML version of the FitzHugh-Nagumo model, published separately by FitzHugh in 1961 and Nagumo

et. al. in 1962. While the original two-variable model described a non-dimensional activation variable (x or u) and

a non-dimensional recovery variable (y or v), here we formulate the model in terms of the ‘real’ action potential

given by the time course of the transmembrane potential (Vm). In so doing, the time rate of change of the activation

variable describes the total ‘ionic current’ through the membrane with the original model parameters adjusted to

give the correct dimensionality.

Reference: Fitzhugh, R. A. (1961), ‘Impulses and physiological states in theoretical models of nerve membrane’,

Biophysical Journal 1, 445–466.
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Reference: Nagumo, J., Animoto, S. & Yoshizawa, S. (1962), ‘An active pulse transmission line simulating nerve

axon’, Proceedings of the Institute of Radio Engineers 50, 2061–2070.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Vr = −85.0 mV

Vth = −75.0 mV

Vp = 15.0 mV

c1 = 0.175 µA · mm−2

c2 = 0.03 µA · mm−2

b = 0.011 ms−1

d = 0.55

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.3.1)

“membrane potential” component

The component which defines the kinetics of the transmembrane potential.

Initial values defined in this component

Vm = −85 mV

Equations defined in this component

This equation describes the kinetics of the transmembrane, potential - the action potential.
d(V m)

d(t)
=

(Istim − Iion)

Cm
(A.3.2)

The non-dimensional and scaled potential value.

u =
(V m − V r)

(V p − V r)
(A.3.3)

“ionic current” component

Here we define the total ionic current through the cellular membrane - equivalent to the temporal derivative of the

original activation variable.

Initial values defined in this component

Iion = 0.0 µA · mm−2
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Equations defined in this component

The calcuation of the total ionic current.

Iion =

(

c1 ∗ u ∗
(

u − (V th − V r)

(V p − V r)

)

∗ (u − 1.0) + c2 ∗ v

)

(A.3.4)

“recovery variable” component

Here we define the non-dimensional recovery variable, v.

Initial values defined in this component

v = 0.0

Equations defined in this component

The kinetics of the recovery variable.
d(v)

d(t)
= b ∗ (u − d ∗ v) (A.3.5)

A.4 noble model 1962

This is the CellML description of Noble’s 1962 mathematical model of Purkinje fibre action and pace-maker

potentials. The equations formulated by Hodgkin and Huxley (1952) to describe the electrical activity of squid

nerve have been modified to describe the action and pace-maker potentials of the Purkinje fibres of the heart.

Reference: Noble, D. (1962), ‘A Modification of the Hodgkin-Huxley Equations Applicable to Purkinje Fibre

Action and Pace-maker Potentials’, Journal of Physiology 160, 317–352.

“environment” component

“membrane” component

The main component of the model, containing the membrane currents and defining the transmembrane potential.

Initial values defined in this component

V = −78.3 mV Cm = 0.12 µF · mm−2

Equations defined in this component

The kinetics of the transmembrane potential.
d(V )

d(time)
=

(I stim − (i Na + i K + i Leak))

Cm
(A.4.1)
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This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.4.2)

“sodium channel” component

The modified sodium current from the 1952 Hodgkin Huxley model.

Initial values defined in this component

g Na max = 4.0 mS · mm−2 E Na = 40.0 mV

Equations defined in this component

Calculation of the channel conductance.

g Na = (m)
3.0 ∗ h ∗ g Na max (A.4.3)

Calculation of the channel current.

i Na =
(

g Na max ∗ (m)
3.0 ∗ h + 0.14× 10−2

)

∗ (V − E Na) (A.4.4)

“sodium channel m gate” component

The voltage-dependent activation gate for the sodium channel - the m gate.

Initial values defined in this component

m = 0.05

Equations defined in this component

The opening rate for the m gate.

alpha m =
0.1 ∗ (−V − 48.0)

(

exp
(

(−V −48.0)
15.0

)

− 1.0
) (A.4.5)

The closing rate for the m gate.

beta m =
0.12 ∗ (V + 8.0)

(

exp
(

(V +8.0)
5.0

)

− 1.0
) (A.4.6)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.4.7)

“sodium channel h gate” component

The voltage-dependent inactivation gate for the sodium channel - the h gate.

Initial values defined in this component
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h = 0.785

Equations defined in this component

The opening rate for the h gate.

alpha h = 0.17 ∗ exp

(

(−V − 90.0)

20.0

)

(A.4.8)

The closing rate for the h gate.

beta h =
1.0

(

1.0 + exp
(

(−V −42.0)
10.0

)) (A.4.9)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.4.10)

“potassium channel” component

The modified Hodgkin Huxley 1952 potassium channel.

Equations defined in this component

Calculation of the potassium current. The g K add conductance term can be used to obtain a quiescent variant of

the model by setting its value to 0.001 mS/mm2.

i K = (g K1 + g K2 + g K add) ∗ (V + 100.0) (A.4.11)

The conductance of the first ”type” of potassium channels present in this model, using an empirical formaulation.

g K1 =

(

1.2 × 10−2 ∗ exp

(

(−V − 90.0)

50.0

)

+ 0.015× 10−2 ∗ exp

(

(V + 90.0)

60.0

))

(A.4.12)

The conductance of the second ”type” of potassium channels present in this model, using the Hodgkin Huxley

1952 type kinetics.

g K2 = 1.2 × 10−2 ∗ (n)
4.0 (A.4.13)

“potassium channel n gate” component

The voltage-dependent activation gate for the potassium channel - the n gate.

Initial values defined in this component

n = 0.0935

Equations defined in this component

The opening rate for the n gate.

alpha n =
0.0001 ∗ (−V − 50.0)

(

exp
(

(−V −50.0)
10.0

)

− 1.0
) (A.4.14)
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The closing rate for the n gate.

beta n = 0.002 ∗ exp

(

(−V − 90.0)

80.0

)

(A.4.15)

The kinetics of the n gate.
d(n)

d(time)
= (alpha n ∗ (1.0 − n) − beta n ∗ n) (A.4.16)

“leakage current” component

A non-specific background current attributed in part to chloride ions. Can be turned on by specifying an appropriate

value for the conductance (∼0.00075 mS/mm2).

Initial values defined in this component

g L = 0.0 mS · mm−2 E L = −60.0 mV

Equations defined in this component

i Leak = g L ∗ (V − E L) (A.4.17)

A.5 cubic polynomial 1975

This is a CellML version of the cubic polynomial model of activation from the 1975 paper by Hunter et. al.

Reference: Hunter, P. J., McNaughton, P. A. & Noble, D. (1975), ‘Analytical models of propagation in excitable

cells’, Progress in Biophysics and Molecular Biology 30, 99–144.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Vm rest = −85.0 mV

Vm plateau = 15.0 mV

Vm threshold = −75.0 mV

membrane conductance = 0.004 mS · mm−2

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.5.1)
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“membrane” component

In this simple model we only have one component, which we call the membrane. It holds both the evaluation of

the membrane potential ODE and the single current calculation.

Initial values defined in this component

Vm = −85.0 mV

Equations defined in this component

This is the main equation for the model, describing the dependency of the time course of tranmembrane potential

on the single ionic current plus any applied stimulus current.
d(V m)

d(t)
=

(Istim − I)

Cm
(A.5.2)

plateau = (V m plateau− V m rest) (A.5.3)

threshold = (V m threshold − V m rest) (A.5.4)

phi = (V m − V m rest) (A.5.5)

This is the calculation of the single current in this model, and where the model name comes from.

I = membrane conductance ∗ phi ∗
(

1.0− phi

threshold

)

∗
(

1.0− phi

plateau

)

(A.5.6)

A.6 mcallister noble tsien model 1975

This is the CellML description of McAllister, Noble and Tsien’s mathematical model of cardiac action potentials

of Purkinje fibres. It describes transmembrane ionic currents in terms of Hodgkin-Huxley type equations. It is a

significant development of the Noble (1962) model as more currents are added based on new experimental data.

Reference: McAllister, R. E., Noble, D. & Tsien, R. W. (1975), ‘Reconstruction of the electrical activity of cardiac

purkinje fibres’, Journal of Physiology 251, 1–59.

“environment” component

“membrane” component

The main component of the model, containing the definition of the model’s action potential.

Initial values defined in this component

V = −80.0 mV C = 0.1 µF · mm−2
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Equations defined in this component

The kinetics of the transmembrane potential, defined as the sum of the trans-sarcolemmal currents and an applied

stimulus current.
d(V )

d(time)
=

(I stim − (i Na + i si + i K2 + i x1 + i x2 + i qr + i K1 + i Na b + i Cl b))

C
(A.6.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.6.2)

“fast sodium current” component

The fast sodium current, primarily responsible for the upstroke of the action potential.

Initial values defined in this component

E Na = 40.0 mV g Na = 1.5 mS · mm−2

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ (V − E Na) (A.6.3)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 0.019

Equations defined in this component

The opening rate of the m gate.

alpha m =
(V + 47.0)

(

1.0− exp
(

− (V +47.0)
10.0

)) (A.6.4)

The closing rate of the m gate.

beta m = 40.0 ∗ exp

(

− (V + 72.0)

17.86

)

(A.6.5)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.6.6)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium channel - the h gate.
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Initial values defined in this component

h = 0.863

Equations defined in this component

The opening rate of the h gate.

alpha h = 0.0085 ∗ exp

(

− (V + 71.0)

5.435

)

(A.6.7)

The closing rate of the h gate.

beta h =
2.5

(

exp
(

− (V +10.0)
12.2

)

+ 1.0
) (A.6.8)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.6.9)

“secondary inward current” component

The secondary (or sometimes slow) inward current activates much more slowly than the sodium current and it

is responsible for holding up the plateau after the initial activation and for controlling the duration of the action

potential. At the time of this model, it was assumed that the flux of both Na and Ca ions through the cell membrane

was responsible for this current. This channel has an activation gate d and an inactivation gate f. It was observed in

earlier experiments that a portion of this current would not completely inactivate. This is represented by the second

term in the secondary current equation which has an activation variable d1, but no deactivation variable.

Initial values defined in this component

g si = 0.008 mS · mm−2

g si = 0.0004 mS · mm−2

E si = 70.0 mV

Equations defined in this component

Calculation of the second inward current.

i si = (g si ∗ d ∗ f ∗ (V − E si) + g si ∗ d1 ∗ (V − E si)) (A.6.10)

“secondary inward current d gate” component

The voltage-dependent activation gate for the secondary inward current - the d gate.

Initial values defined in this component

d = 0.002
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Equations defined in this component

The opening rate of the d gate.

alpha d =
(V + 40.0)

500.0 ∗
(

1.0− exp
(

− (V +40.0)
10.0

)) (A.6.11)

The closing rate of the d gate.

beta d = 0.02 ∗ exp

(

− (V + 40.0)

11.26

)

(A.6.12)

The kinetics of the d gate.
d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.6.13)

“secondary inward current f gate” component

The voltage-dependent inactivation gate for the secondary inward current - the f gate.

Initial values defined in this component

f = 0.794

Equations defined in this component

The opening rate of the f gate.

alpha f = 0.000987 ∗ exp

(

− (V + 60.0)

25.0

)

(A.6.14)

The closing rate of the f gate.

beta f =
0.02

(

exp
(

− (V +26.0)
11.5

)

+ 1.0
) (A.6.15)

The kinetics of the f gate.
d(f)

d(time)
= (alpha f ∗ (1.0 − f) − beta f ∗ f) (A.6.16)

“secondary inward current d1 gate” component

The activation variable for the slow component of the secondard inward current - the d1 gate (corresponds to the

d’ variable in the MNT paper.

Equations defined in this component

Calculation of the activation variable d1.

d1 =
1.0

(

1.0 + exp
(

− (V +40.0)
6.667

)) (A.6.17)
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“pacemaker potassium current” component

A potassium current activated over the ”pace-maker” range of potentials. Provides the pacemaker function of the

model.

Initial values defined in this component

E K = −110.0 mV

Equations defined in this component

Calculation of the pacemaker current.

i K2 = I K2 ∗ s (A.6.18)

The maximal pacemaker current.

I K2 = 0.028 ∗

(

exp
(

(V −E K)
25.0

)

− 1.0
)

(

exp
(

(V +60.0)
12.5

)

+ exp
(

(V +60.0)
25.0

)) (A.6.19)

“pacemaker potassium current s gate” component

The voltage-dependent gating variable for the pacemaker current - the s gate.

Initial values defined in this component

s = 0.763 E s = −52.0 mV

Equations defined in this component

The opening rate of the s gate.

alpha s =
0.001 ∗ (V − E s)

(

1.0 − exp
(

− (V −E s)
5.0

)) (A.6.20)

The closing rate of the s gate.

beta s = 0.00005 ∗ exp

(

− (V − E s)

15.0

)

(A.6.21)

The kinetics of the s gate.
d(s)

d(time)
= (alpha s ∗ (1.0 − s) − beta s ∗ s) (A.6.22)

“plateau potassium current1” component

The equations for the plateau potassium currents (x1 and x2) are based on experiments performed by Noble and

Tsien (1969) which showed that additional potassium currents were activated in the plateau range of potentials.

They appear to play an essential role in membrane repolarisation.
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Equations defined in this component

Calculation of the first plateau potassium current.

i x1 = x1 ∗ I x1 (A.6.23)

Calculation of the maximal first plateau potassium current.

I x1 = 0.012 ∗

(

exp
(

(V +95.0)
25.0

)

− 1.0
)

exp
(

(V +45.0)
25.0

) (A.6.24)

“plateau potassium current1 x1 gate” component

The voltage-dependent gating variable for the first plateau potassium current - the x1 gate.

Initial values defined in this component

x1 = 0.051

Equations defined in this component

The opening rate of the x1 gate.

alpha x1 = 5 × 10−4 ∗
exp

(

(V +50.0)
12.1

)

(

1.0 + exp
(

(V +50.0)
17.5

)) (A.6.25)

The closing rate of the x1 gate.

beta x1 = 0.0013 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
20.0

)) (A.6.26)

The kinetics of the x1 gate.
d(x1)

d(time)
= (alpha x1 ∗ (1.0− x1) − beta x1 ∗ x1) (A.6.27)

“plateau potassium current2” component

The second of the plateau potassium currents.

Equations defined in this component

Calculation of the second plateau potassium current.

i x2 = x2 ∗ I x2 (A.6.28)

The linear maximal second plateau potassium current.

I x2 = (0.25 + 0.00385 ∗ V ) (A.6.29)
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“plateau potassium current2 x2 gate” component

The gating variable for the second plateau potassium current - the x2 gate.

Initial values defined in this component

x2 = 0.006

Equations defined in this component

The opening rate for the x2 gate.

alpha x2 = 0.000127 ∗ 1.0
(

1.0 + exp
(

− (V +19.0)
5.0

)) (A.6.30)

The closing rate for the x2 gate.

beta x2 = 0.0003 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
25.0

)) (A.6.31)

The kinetics of the x2 gate.
d(x2)

d(time)
= (alpha x2 ∗ (1.0 − x2) − beta x2 ∗ x2) (A.6.32)

“transient chloride current” component

The transient chloride current (i qr) is responsible for the rapid repolarisation from the peak of the depolarisation

spike of the action potential, to the start of the plateau. The current has 2 gating variables, q and r.

Initial values defined in this component

E Cl = −70.0 mV g qr = 0.05 mS · mm−2

Equations defined in this component

Calculation of the transient chloride current.

i qr = g qr ∗ q ∗ r ∗ (V − E Cl) (A.6.33)

“transient chloride current q gate” component

The voltage-dependent activation gate for the transient chloride channel - the q gate.

Initial values defined in this component

q = 0.0
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Equations defined in this component

The opening rate for the q gate.

alpha q = 0.008 ∗ V
(

1.0− exp
(

− V
10.0

)) (A.6.34)

The closing rate for the q gate.

beta q = 0.08 ∗ exp

(

− V

11.26

)

(A.6.35)

The kinetics of the q gate.
d(q)

d(time)
= (alpha q ∗ (1.0− q) − beta q ∗ q) (A.6.36)

“transient chloride current r gate” component

The voltage-dependent inactivation gate for the transient chloride current - the r gate.

Initial values defined in this component

r = 0.126

Equations defined in this component

The opening rate for the r gate.

alpha r = 0.00018 ∗ exp

(

− (V + 80)

25.0

)

(A.6.37)

The closing rate for the r gate.

beta r =
0.02

(

exp
(

− (V +26)
11.5

)

+ 1.0
) (A.6.38)

The kinetics of the r gate.
d(r)

d(time)
= (alpha r ∗ (1.0 − r) − beta r ∗ r) (A.6.39)

“time independent outward current” component

The time-independent (background) current carried by potassium ions.

Initial values defined in this component

E K1 = −30.0 mV

Equations defined in this component

Calculation of the time-independent potassium current.

i K1 =





I K2

2.8
+ 0.002 ∗ (V − E K1)

(

1.0− exp
(

− (V −E K1)
25.0

))



 (A.6.40)
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“sodium background current” component

The sodium background current is a time-independent diffusion of Na ions down their electrochemical gradient,

through the cell surface membrane into the cytosol.

Initial values defined in this component

g Nab = 0.00105 mS · mm−2

Equations defined in this component

Calculation of the sodium background current.

i Na b = g Nab ∗ (V − E Na) (A.6.41)

“chloride background current” component

The chloride background current contributes to maintaining the plateau and helps to determine the action potential

duration.

Initial values defined in this component

g Clb = 0.0001 mS · mm−2

Equations defined in this component

Calculation of the background chloride current.

i Cl b = g Clb ∗ (V − E Cl) (A.6.42)

A.7 beeler reuter model 1977

This is the CellML description of Beeler and Reuter’s mathematical model of membrane action potentials of mam-

malian ventricular myocardial fibres. It describes four ionic currents in terms of Hodkin-Huxley type equations.

Reference: Beeler, G. W. & Reuter, H. (1977), ‘Reconstruction of the action potential of ventricular myocardial

fibres’, Journal of Physiology 268, 177–210.

“environment” component

This component is used to declare variables that are used by all or most of the other components, in this case just

‘time’.

“membrane” component

This component is the ‘root’ node of our model. It defines the action potential variable ‘V’.
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Initial values defined in this component

V = −84.624 mV C = 0.01 µF · mm−2

Equations defined in this component

The ODE governing the membrane potential – given by the summation of the ionic currents and an applied stimu-

lus.
d(V )

d(time)
=

(Istim − (i Na + i s + i x1 + i K1))

C
(A.7.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.7.2)

“sodium current” component

The ”sodium current” component contains the differential equations governing the influx of sodium ions through

the cell surface membrane into the cell. This sodium current is primarily responsible for the rapid upstroke of the

action potential during membrane depolarisation. Note that no initial values are needed on many variables as they

are all directly dependent on the membrane voltage.

Initial values defined in this component

g Na = 4.0 × 10−2 mS · mm−2

E Na = 50.0 mV

g Nac = 3.0× 10−5 mS · mm−2

Equations defined in this component

Calculation of the sodium current in terms of the conductance, membrane potential, and gating variables.

i Na =
(

g Na ∗ (m)
3.0 ∗ h ∗ j + g Nac

)

∗ (V − E Na) (A.7.3)

“sodium current m gate” component

The definition of the voltage-dependent activation gating kinetics for the sodium ion channel (the m gate).

Initial values defined in this component

m = 0.011

Equations defined in this component

The opening rate of the m gate.

alpha m =
−1 ∗ (V + 47.0)

(exp (−0.1 ∗ (V + 47.0)) − 1.0)
(A.7.4)

The closing rate of the m gate.

beta m = 40.0 ∗ exp (−0.056 ∗ (V + 72.0)) (A.7.5)
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The actual kinetic equation for the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.7.6)

“sodium current h gate” component

The voltage-dependent inactivation gate for the sodium channel - the h gate.

Initial values defined in this component

h = 0.988

Equations defined in this component

The opening rate of the h gate.

alpha h = 0.126 ∗ exp (−0.25 ∗ (V + 77.0)) (A.7.7)

The closing rate of the h gate.

beta h =
1.7

(exp (−0.082 ∗ (V + 22.5)) + 1.0)
(A.7.8)

The gating kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.7.9)

“sodium current j gate” component

The voltage dependent slow inactivation sodium channel gate - the j gate.

Initial values defined in this component

j = 0.975

Equations defined in this component

The opening rate for the j gate.

alpha j =
0.055 ∗ exp (−0.25 ∗ (V + 78.0))

(exp (−0.2 ∗ (V + 78.0)) + 1.0)
(A.7.10)

The closing rate for the j gate.

beta j =
0.3

(exp (−0.1 ∗ (V + 32.0)) + 1.0)
(A.7.11)

The kinetics of the j gate.
d(j)

d(time)
= (alpha j ∗ (1.0 − j) − beta j ∗ j) (A.7.12)
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“slow inward current” component

The ”slow inward current” component contains the differential equations governing the transient inward ionic

current. This current is predominately carried by calcium ions and it is largely responsible for maintaining the

plateau of the action potential.

Initial values defined in this component

g s = 9.0 × 10−4 mS · mm−2 Cai = 1.0× 10−4 mM

Equations defined in this component

The reversal potential for the slow inward current.

E s = (−82.3− 13.0287 ∗ ln (Cai ∗ 0.001)) (A.7.13)

Calculation of the slow inward current.

i s = g s ∗ d ∗ f ∗ (V − E s) (A.7.14)

The change in calcium ion concentration.
d(Cai)

d(time)
= (−0.01 ∗ i s + 0.07 ∗ (0.0001− Cai)) (A.7.15)

“slow inward current d gate” component

The voltage-dependent activation gate for the slow inward current - the d gate.

Initial values defined in this component

d = 0.003

Equations defined in this component

The opening rate of the d gate.

alpha d =
0.095 ∗ exp

(

− (V −5.0)
100.0

)

(

1.0 + exp
(

− (V −5.0)
13.89

)) (A.7.16)

The closing rate of the d gate.

beta d =
0.07 ∗ exp

(

− (V +44.0)
59.0

)

(

1.0 + exp
(

(V +44.0)
20.0

)) (A.7.17)

The kinetics of the d gate.
d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.7.18)
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“slow inward current f gate” component

The voltage-dependent inactivation gate for the slow inward current - the f gate.

Initial values defined in this component

f = 0.994

Equations defined in this component

The opening rate of the f gate.

alpha f =
0.012 ∗ exp

(

− (V +28.0)
125.0

)

(

1.0 + exp
(

(V +28.0)
6.67

)) (A.7.19)

The closing rate of the f gate.

beta f =
0.0065 ∗ exp

(

− (V +30.0)
50.0

)

(

1.0 + exp
(

− (V +30.0)
5.0

)) (A.7.20)

The kinetics of the f gate.
d(f)

d(time)
= (alpha f ∗ (1.0− f) − beta f ∗ f) (A.7.21)

“time dependent outward current” component

The ”time dependent outward current” component contains the differential equations governing the voltage- and

time-dependent outward current. This current is predominately carried by potassium ions and it is involved in the

plateau of the action potential and in the re-polarisation phase.

Equations defined in this component

Calculation of the time-dependent outward current.

i x1 = x1 ∗ 8.0× 10−3 ∗ (exp (0.04 ∗ (V + 77.0)) − 1.0)

exp (0.04 ∗ (V + 35.0))
(A.7.22)

“time dependent outward current x1 gate” component

The voltage-dependent gating variable for the time-dependent outward current - the x1 gate.

Equations defined in this component

The opening rate of the x1 gate.

alpha x1 = 5 × 10−4 ∗
exp

(

(V +50.0)
12.1

)

(

1.0 + exp
(

(V +50.0)
17.5

)) (A.7.23)
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The closing rate of the x1 gate.

beta x1 = 0.0013 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
25.0

)) (A.7.24)

The kinetics of the x1 gate.
d(x1)

d(time)
= (alpha x1 ∗ (1.0− x1) − beta x1 ∗ x1) (A.7.25)

“time independent outward current” component

The ”time independent outward current” component contains the equations governing the voltage-dependent, time-

independent outward current. This current is carried by potassium ions and it is involved in the plateau of the action

potential and in the re-polarisation phase. Because the current is time-independent, it can also be described as a

background current.

Equations defined in this component

Calculation of the time-independent outward current.

i K1 = 0.0035

∗
(

4.0 ∗ (exp (0.04 ∗ (V + 85.0)) − 1.0)

(exp (0.08 ∗ (V + 53)) + exp (0.04 ∗ (V + 53.0)))
+ 0.2 ∗ (V + 23.0)

(1.0 − exp (−0.04 ∗ (V + 23.0)))

)

(A.7.26)

A.8 ebihara johnson model 1980

This is the CellML description of Ebihara and Johnson’s mathematical model of the fast sodium current in car-

diac muscle (1980). It describes the ionic current with Hodgkin-Huxley formalism. This model was the first to

specifically target a single channel and attempt to quantify its parameters.

Reference: Ebihara, L. & Johnson, E. A. (1980), ‘Fast sodium current in cardiac muscle: A quantitative descrip-

tion’, Biophysical Journal 32, 779–790.

“environment” component

“membrane” component

In their 1980 paper, Ebihara and Johnson do not include all the ionic fluxes across the membrane of the cardiac

muscle cell, they only describe the fast sodium current. The Ebihara-Johnson model can be coupled to the Beeler-

Reuter model (1977) as a direct replacement for the sodium current. The other ionic currents were very similar to

those found using the Beeler-Reuter model. I have included these equations from the Beeler-Reuter 1977 model in

this CellML description.
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Initial values defined in this component

V = −87.0 mV C = 0.013 µF · mm−2

Equations defined in this component

The main differential equation for the model specifying the rate of change of the transmembrane potential as the

sum of the ionic currents and an applied stimulus current.
d(V )

d(time)
=

(Istim − (i Na + i s + i x1 + i K1))

C
(A.8.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.8.2)

“fast sodium current” component

In the calculation of the fast sodium current there is no variable corresponding to the j gate used in the Beeler-Reuter

model because the experimental results showed no need to include a second deactivation variable.

Initial values defined in this component

g Na = 23.0× 10−2 mS · mm−2 E Na = 29.0 mV

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ (V − E Na) (A.8.3)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 0.0

Equations defined in this component

The opening rate for the m gate. The equation for alpha-m was incorrectly stated in the original 1980 paper, but it

appears as shown below in Spach and Heidlage (1993), who cite a later paper by Johnson as their source (Johnson,

1983).

alpha m =
0.32 ∗ (47.13 + V )

(1.0 − exp ((−V − 47.13)))
(A.8.4)

The closing rate for the m gate.

beta m = 0.08 ∗ exp

(−V

11.0

)

(A.8.5)
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The gating kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.8.6)

“fast sodium current h gate” component

The voltage-dependent inactivation gate of the fast sodium channel - the h gate.

Initial values defined in this component

h = 0.18

Equations defined in this component

The opening rate of the h gate.

alpha h =







0.135 ∗ exp
(

(−80.0−V )
6.8

)

; if V < −40.0,

0.0 otherwise.
(A.8.7)

The closing rate of the h gate.

beta h =







(

3.56 ∗ exp (0.079 ∗ V ) + 3.1 × 105 ∗ exp (0.35 ∗ V )
)

; if V < −40.0,

1.0

0.13∗(1.0+exp(−(V +10.66)
11.1 ))

otherwise.
(A.8.8)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.8.9)

“slow inward current” component

The standard Beeler Reuter (1977) slow inward (calcium) current formulation.

Initial values defined in this component

g s = 9.0 × 10−4 mS · mm−2 Cai = 0.000000177 mM

Equations defined in this component

E s = (−82.3− 13.0287 ∗ ln (Cai ∗ 0.001)) (A.8.10)

i s = g s ∗ d ∗ f ∗ (V − E s) (A.8.11)
d(Cai)

d(time)
= (−0.01 ∗ i s + 0.07 ∗ (0.0001− Cai)) (A.8.12)

“slow inward current d gate” component

The standard Beeler Reuter (1977) activation gate for the slow inward current.

Initial values defined in this component
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d = 0.003

Equations defined in this component

alpha d =
0.095 ∗ exp

(

− (V −5.0)
100.0

)

(

1.0 + exp
(

− (V −5.0)
13.89

)) (A.8.13)

beta d =
0.07 ∗ exp

(

− (V +44.0)
59.0

)

(

1.0 + exp
(

(V +44.0)
20.0

)) (A.8.14)

d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.8.15)

“slow inward current f gate” component

The standard Beeler Reuter (1977) inactivation gate for the slow inward current.

Initial values defined in this component

f = 0.994

Equations defined in this component

alpha f =
0.012 ∗ exp

(

− (V +28.0)
125.0

)

(

1.0 + exp
(

(V +28.0)
6.67

)) (A.8.16)

beta f =
0.0065 ∗ exp

(

− (V +30.0)
50.0

)

(

1.0 + exp
(

− (V +30.0)
5.0

)) (A.8.17)

d(f)

d(time)
= (alpha f ∗ (1.0− f) − beta f ∗ f) (A.8.18)

“time dependent outward current” component

The standard Beeler Reuter (1977) time-dependent outward (potassium) current.

Equations defined in this component

i x1 = x1 ∗ 8.0× 10−3 ∗ (exp (0.04 ∗ (V + 77.0)) − 1.0)

exp (0.04 ∗ (V + 35.0))
(A.8.19)

“time dependent outward current x1 gate” component

The standard Beeler Reuter (1977) gating variable for the time-dependent outward potassium current.
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Equations defined in this component

alpha x1 = 0.0005 ∗
exp

(

(V +50.0)
12.1

)

(

1.0 + exp
(

(V +50.0)
17.5

)) (A.8.20)

beta x1 = 0.0013 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
25.0

)) (A.8.21)

d(x1)

d(time)
= (alpha x1 ∗ (1.0− x1) − beta x1 ∗ x1) (A.8.22)

“time independent outward current” component

The standard Beeler Reuter (1977) time-independent outward (potassium) current.

Equations defined in this component

i K1 = 0.0035

∗
(

4.0 ∗ (exp (0.04 ∗ (V + 85.0)) − 1.0)

(exp (0.08 ∗ (V + 53)) + exp (0.04 ∗ (V + 53.0)))
+ 0.2 ∗ (V + 23.0)

(1.0 − exp (−0.04 ∗ (V + 23.0)))

)

(A.8.23)

A.9 vanCapelle Durrer 1980

This is a CellML version of the 1980 van Capelle & Durrer activation model. This model was designed to be used

in simulations of arrhythmias in a network of coupled excitable elements. They developed a membrane kinetics

model with two variables of state: the transmembrane potential, V; and a generalised excitability parameter, Y.

Reference: van Capelle, F. J. & Durrer, D. (1980), ‘Computer Simulation of Arrhythmias in a Network of Coupled

Excitable Elements’, Circulation Research 47, 454–466.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

T = 50.0 ms−1

af = 3.837854× 10−5 µA · mm−2 · mV−3

bf = 5.84649× 10−3 µA · mm−2 · mV−2

cf = 0.2531834 µA · mm−2 · mV−1

df = 2.356256 µA · mm−2
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Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.9.1)

“membrane potential” component

The component which defines the kinetics of the transmembrane potential.

Initial values defined in this component

Vm = −78.6 mV

Equations defined in this component

This equation describes the kinetics of the transmembrane potential - the action potential.
d(V m)

d(t)
=

(Istim − Iion)

Cm
(A.9.2)

“ionic current” component

Here we define the ionic current through the cellular membrane, defined as the summation of the two component

currents weighted by the excitability variable.

Equations defined in this component

The calcuation of the total ionic current.

Iion = (Y ∗ i1 + (1.0 − Y ) ∗ i0) (A.9.3)

The current-voltage relation for when the membrane is completely inexcitable. van Capelle & Durrer used a simple

three segment piecewise linear function to represent this component of the total current.

i1 =



















(0.05 + 0.005 ∗ (V m + 70.0)) ; if V m < −70.0,

(0.06 + 0.00425 ∗ V m) ; if V m > 0.0,
(

0.05 + 0.01 ∗ (V m+70.0)
70.0

)

otherwise.

(A.9.4)

The current-voltage relation for when the membrane is maximally excitable. This is defined as the addition of a

piecewise function, f, to the i1 component current. van Capelle & Durrer defined i0 as this to improve the efficiency

of their algorithm.

i0 = (i1 + f) (A.9.5)

The function f, used to define the i0 component current, consists of three sections: two linear components joined

by a cubic component. The function was fitted such that both the function value and its derivative df/dVm were
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continuous.

f =



















(0.0784 + 0.02 ∗ (V m + 74.3)) ; if V m < −74.3,

(−0.9884 + 0.0171 ∗ (V m + 27.8)) ; if V m > −27.8,
(

af ∗ (V m)3.0 + bf ∗ (V m)2.0 + cf ∗ V m + df
)

otherwise.

(A.9.6)

“excitability variable” component

Here we define the kinetics of the non-dimensional excitability variable.

Initial values defined in this component

Y = 0.07

Equations defined in this component

The kinetics of the excitability variable. The time constant, T, can be used to scale the duration of the action

potential.
d(Y )

d(t)
=

1.0

T
∗ (Y inf − Y ) (A.9.7)

The voltage dependent steady-state value for the excitability variable. Must be an S-shaped function, increasing

from zero when Vm is more negative than the resting potential to 1 at more positive values of Vm.

Y inf =



















0.0; if V m < −80.0,

1.0; if V m > −60.0,

(V m+80.0)
20.0 otherwise.

(A.9.8)

A.10 difrancesco noble model 1985

This is the CellML description of Di Francesco and Noble’s mathematical model of cardiac action potentials of

Purkinje fibres. It is a significant development on the MNT model (1975), and it remains the most complete of

all Purkinje fibre ionic current models to date. It is a complete replacement for the MNT model. In particular it

considers changes in the interpretation of the i K2 system, includes more accurate experimental data concerning

the fast sodium current and it starts to account for fluctuations in ionic concentrations. In addition, a start is

made on accounting for intracellular calcium movement between the sarcoplasmic reticulum and the myoplasm.

Corrections for the model can be found in an appendix at the end of Earm & Noble, Proc. Roy. Soc. B, Vol

240(1297), 1990.

Reference: DiFrancesco, D. & Noble, D. (1985), ‘A model of cardiac electrical activity incorporating ionic pumps

and concentration changes’, Philosophical Transactions of the Royal Society of London Series B 307, 353–398.
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“environment” component

“membrane” component

The membrane component is the main component for this model, containing the differential equation for the

transmembrane potential (the action potential).

Initial values defined in this component

V = −87.0 mV

R = 8314.41 pJ · nmol−1 · K−1

T = 310.0 K

F = 96485.3 nC · nmol−1

C = 0.08466 µF · mm−2

Equations defined in this component

The action potential equation consists of the sum of the trans-sarcolemmal currents plus an applied stimulus, which

may be used to pace the cell model.
d(V )

d(time)
=

(I stim − (i f + i K + i K1 + i to + i Na b + i Ca b + i NaK + i NaCa + i Na + i si))

C
(A.10.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.10.2)

“hyperpolarising activated current” component

The ”funny” current - activated by hyperpolarisation rather than depolarisation, and consisting of sodium and

potassium components.

Initial values defined in this component

g f Na = 3.39× 10−3 mS · mm−2

g f K = 3.39× 10−3 mS · mm−2

Km f = 45.0 mM

Equations defined in this component

The total current is simply the sum of the two component currents.

i f = (i fK + i fNa) (A.10.3)

i fK = y ∗ I fK (A.10.4)

i fNa = y ∗ I fNa (A.10.5)

The maximal potassium current.

I fK =
Kc

(Kc + Km f)
∗ g f K ∗ (V − E K) (A.10.6)
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The maximal sodium current.

I fNa =
Kc

(Kc + Km f)
∗ g f Na ∗ (V − E Na) (A.10.7)

The reversal potentials for the two ions.

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.10.8)

E K =
R ∗ T

F
∗ ln

(

Kc

Ki

)

(A.10.9)

“hyperpolarising activated current y gate” component

The activation variable for the ”funny” current - the y gate.

Initial values defined in this component

y = 0.2

Equations defined in this component

The opening rate for the y gate.

alpha y = 0.05× 10−3 ∗ exp (−0.067 ∗ (V + 42.0)) (A.10.10)

The closing rate for the y gate.

beta y =
1.0× 10−3 ∗ (V + 42.0)

(1.0− exp (−0.2 ∗ (V + 42.0)))
(A.10.11)

The Hodgkin-Huxley type kinetics for the y gate.
d(y)

d(time)
= (alpha y ∗ (1.0 − y) − beta y ∗ y) (A.10.12)

“time dependent potassium current” component

The time-dependent potassium current, a current dependent on both potassium ion concentration and membrane

potential.

Initial values defined in this component

i K max = 0.2032 µA · mm−2

Equations defined in this component

Calculation of the time-dependent potassium current.

i K = x ∗ I K (A.10.13)

I K = i K max ∗
(

Ki − Kc ∗ exp
(

−V ∗F
R∗T

))

140.0
(A.10.14)
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“time dependent potassium current x gate” component

The voltage-dependent activation variable for the time-dependent potassium current, the x gate.

Initial values defined in this component

x = 0.01

Equations defined in this component

The opening rate of the x gate.

alpha x = 0.5 × 10−3 ∗
exp

(

(V +50.0)
12.1

)

(

1.0 + exp
(

(V +50.0)
17.5

)) (A.10.15)

The closing rate of the x gate.

beta x = 1.3× 10−3 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
25.0

)) (A.10.16)

The kinetics of the x gate.
d(x)

d(time)
= (alpha x ∗ (1.0− x) − beta x ∗ x) (A.10.17)

“time independent potassium current” component

The time-independent background potassium current.

Initial values defined in this component

g K1 = 1.0385 mS · mm−2 Km K1 = 210.0 mM

Equations defined in this component

Calculation of the time-independent postassium current.

i K1 = g K1 ∗ Kc

(Kc + Km K1)
∗ (V − E K)
(

1.0 + exp
(

((V +10.0)−E K)∗F∗2.0
R∗T

)) (A.10.18)

“transient outward current” component

The transient outward current (i to) replaces the i qr chloride-based current of the MNT model. This current is a

calcium-activated, outward rectifier. It has an inactivation gate, r.

Initial values defined in this component

Km to = 10.0 mM

Km Ca = 0.5 × 10−3 mM

g to = 0.316× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the transient outward current.

i to = r ∗ g to ∗
(

0.2 +
Kc

(Km to + Kc)

)

∗ Cai

(Km Ca + Cai)

∗ (V + 10.0)

(1.0 − exp (−0.2 ∗ (V + 10.0)))
∗ (Ki ∗ exp (0.02 ∗ V ) − Kc ∗ exp (−0.02 ∗ V )) (A.10.19)

“transient outward current r gate” component

The activation variable for the transient outward current.

Initial values defined in this component

r = 1.0

Equations defined in this component

The opening rate of the r gate.

alpha r = 0.033× 10−3 ∗ exp

(−V

17.0

)

(A.10.20)

The closing rate of the r gate.

beta r =
33.0× 10−3

(

1.0 + exp
(

− (V +10.0)
8.0

)) (A.10.21)

The kinetics for the r gate.
d(r)

d(time)
= (alpha r ∗ (1.0 − r) − beta r ∗ r) (A.10.22)

“sodium background current” component

A linear resting sodium flux.

Initial values defined in this component

g Nab = 0.203× 10−3 mS · mm−2

Equations defined in this component

Calculation of the background sodium current.

i Na b = g Nab ∗ (V − E Na) (A.10.23)

“calcium background current” component

A resting background leakage calcium flux.

Initial values defined in this component
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g Cab = 0.0226× 10−3 mS · mm−2

Equations defined in this component

Calculation of the calcium leakage current.

i Ca b = g Cab ∗ (V − E Ca) (A.10.24)

The calcium reversal potential.

E Ca =
R ∗ T

F ∗ 2.0
∗ ln

(

Cao

Cai

)

(A.10.25)

“sodium potassium pump” component

The Na-K exchange pump couples the free energy released by the hydrolysis of ATP to transfer sodium and

potassium ions across the cell membrane against their electrochemical gradients. 3 Na ions are pumped out for

every 2 K ions pumped into the cell.

Initial values defined in this component

I NaK = 0.141 µA · mm−2

K mK = 1.0 mM

K mNa = 40.0 mM

Equations defined in this component

Calculation of the Na/K-pump current.

i NaK = I NaK ∗ Kc

(K mK + Kc)
∗ Nai

(K mNa + Nai)
(A.10.26)

“Na Ca exchanger” component

The DFN paper gives two alternative equations for the i NaCa current. The simplest makes the current a sine

function of the total energy gradient. The more realistic model uses an equation which is likely to reproduce better

dependence of i NaCa on intracellular calcium ions. We utilise the more complex version here.

Initial values defined in this component

n NaCa = 3.0

k NaCa = 0.0226× 10−3 µA · mm−2

d NaCa = 0.001

gamma = 0.5
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Equations defined in this component

Calculation of the exchanger current.

i NaCa =k NaCa

∗
[

exp

(

gamma ∗ (n NaCa − 2.0) ∗ V ∗ F

R ∗ T

)

∗ (Nai)n NaCa ∗ Cao

− exp

(−1.0 ∗ (1.0− gamma) ∗ (n NaCa − 2.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
n NaCa ∗ Cai

]

/

(

1.0 + d NaCa ∗
(

Cai ∗ (Nao)n NaCa + Cao ∗ (Nai)n NaCa
))

(A.10.27)

“fast sodium current” component

The DFN model retains a two-variable model of the sodium kinetics, with new equations for the gates m and h. It is

acknowledged however that the model does not represent the slower components of Na inactivation and recovery.

It is also assumed that the sodium channel shows a 12% permeability to K ions.

Initial values defined in this component

g Na = 0.846 mS · mm−2

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)3.0 ∗ h ∗ (V − E mh) (A.10.28)

The reversal potential of the fast sodium channel, assuming a 12% permeability of potassium ions.

E mh =
R ∗ T

F
∗ ln

(

(Nao + 0.12 ∗ Kc)

(Nai + 0.12 ∗ Ki)

)

(A.10.29)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 0.01

Equations defined in this component

The opening rate of the m gate.

alpha m =
200.0× 10−3 ∗ (V + 41.0)

(1.0 − exp (−0.1 ∗ (V + 41.0)))
(A.10.30)

The closing rate of the m gate.

beta m = 8000.0× 10−3 ∗ exp (−0.056 ∗ (V + 66.0)) (A.10.31)



A.10 DIFRANCESCO NOBLE MODEL 1985 237

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.10.32)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium current - the h gate.

Initial values defined in this component

h = 0.98

Equations defined in this component

The opening rate of the h gate.

alpha h = 20.0× 10−3 ∗ exp (−0.125 ∗ (V + 75.0)) (A.10.33)

The closing rate of the h gate.

beta h =
2000.0× 10−3

(1.0 + 320.0 ∗ exp (−0.1 ∗ (V + 75.0)))
(A.10.34)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.10.35)

“secondary inward current” component

Like the MNT model, the kinetics of the secondary inward current are still described in terms of two gate variables

d and f, but the time constants for activation and inactivation processes are much shorter. The fast component, i si

of this current has been divided into the individual ion movements of Ca, K and Na. This current would later be

called the L-type calcium current.

Initial values defined in this component

P Ca = 16.93× 10−3 µA · mm−2 · mM−1

P CaK = 0.01

P CaNa = 0.01

Equations defined in this component

The total i si current is simply the sum of the component calcium, potassium, and sodium currents.

i si = (i siCa + i siK + i siNa) (A.10.36)

Calculation of the calcium component of the second inward current.

i siCa = d ∗ f ∗ f2 ∗ 4.0 ∗ P Ca ∗ (V − 50.0) ∗ F
R∗T

(

1.0 − exp
(

−1.0∗(V −50.0)∗F∗2.0
R∗T

))

∗
(

Cai ∗ exp

(

50.0 ∗ F ∗ 2.0

R ∗ T

)

− Cao ∗ exp

(−2.0 ∗ (V − 50.0) ∗ F

R ∗ T

))

(A.10.37)
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Calculation of the potassium component of the second inward current.

i siK = d ∗ f ∗ f2 ∗ P CaK ∗ P Ca ∗ (V − 50.0) ∗ F
R∗T

(

1.0− exp
(

−1.0∗(V −50.0)∗F

R∗T

))

∗
(

Ki ∗ exp

(

50.0 ∗ F

R ∗ T

)

− Kc ∗ exp

(−1.0 ∗ (V − 50.0) ∗ F

R ∗ T

))

(A.10.38)

Calculation of the sodium component of the second inward current.

i siNa = d ∗ f ∗ f2 ∗ P CaNa ∗ P Ca ∗ (V − 50.0) ∗ F
R∗T

(

1.0 − exp
(

−1.0∗(V −50.0)∗F

R∗T

))

∗
(

Nai ∗ exp

(

50.0 ∗ F

R ∗ T

)

− Nao ∗ exp

(−1.0 ∗ (V − 50.0) ∗ F

R ∗ T

))

(A.10.39)

“secondary inward current d gate” component

The voltage-dependent activation gate for the second inward current - the d gate.

Initial values defined in this component

d = 0.005

Equations defined in this component

The opening rate of the d gate.

alpha d = 30.0× 10−3 ∗ (V + 19.0)
(

1.0 − exp
(

−1.0∗(V +19.0)
4.0

)) (A.10.40)

The closing rate of the d gate.

beta d = 12.0× 10−3 ∗ (V + 19.0)
(

exp
(

(V +19.0)
10.0

)

− 1.0
) (A.10.41)

The kinetics of the d gate.
d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.10.42)

“secondary inward current f gate” component

The voltage-dependent inactivation gate for the second inward current - the f gate.

Initial values defined in this component

f = 1.0

Equations defined in this component

The opening rate of the f gate.

alpha f = 6.25× 10−3 ∗ (V + 34.0)
(

exp
(

(V +34.0)
4.0

)

− 1.0
) (A.10.43)
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The closing rate of the f gate.

beta f =
50.0× 10−3

(

1.0 + exp
(

−1.0∗(V +34.0)
4.0

)) (A.10.44)

The kinetics of the f gate.
d(f)

d(time)
= (alpha f ∗ (1.0− f) − beta f ∗ f) (A.10.45)

“secondary inward current f2 gate” component

The DFN model also includes a description of Ca-dependent inactivation. When calcium ions bind to a regulatory

site on the channel protein, they induce a conformational change such that the channel no longer conducts, and the

secondary current slows or ceases.

Initial values defined in this component

f2 = 1.0

alpha f2 = 5.0× 10−3 ms−1

K mf2 = 1.0× 10−3 mM

Equations defined in this component

The kinetics of the f2 gate.
d(f2)

d(time)
= (alpha f2 ∗ (1.0 − f2)− beta f2 ∗ f2) (A.10.46)

beta f2 =
Cai ∗ alpha f2

K mf2
(A.10.47)

“extracellular sodium concentration” component

A representation of extracellular sodium ion concentration, held constant in this model.

Initial values defined in this component

Nao = 140.0 mM

“intracellular sodium concentration” component

This component contains the description of intracellular sodium concentration change.

Initial values defined in this component

Nai = 8.0 mM
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Equations defined in this component

The rate of change of intracellular sodium concentration is the sum of the ions entering the intracellular volume

via the sodium transmembrane currents.

d(Nai)

d(time)
=

−Am ∗
(

i Na + i Na b + i fNa + i siNa + i NaK ∗ 3.0 + i NaCa ∗ n NaCa
(n NaCa−2.0)

)

V i ∗ F
(A.10.48)

“extracellular calcium concentration” component

A representation of extracellular calcium ion concentration, held constant in this model.

Initial values defined in this component

Cao = 2.0 mM

“intracellular calcium concentration” component

Changes in [Ca]i were first modelled in the BR model and has only been slightly developed in the DFN model.

Calcium is sequestered in the sarcoplasmic reticulum ([Ca]up). A fraction is transferred to a release store in the

junctional SR ([Ca]rel) before being released into the intracellular space. The Ca concentrations in each of these

various stores is modelled together with the transfer between the calcium sites and the Ca transfer across the cell

membrane via the other ionic currents.

Initial values defined in this component

Cai = 0.00005 mM

Ca up = 2.0 mM

Ca rel = 1.0 mM

Ca up max = 5.0 mM

K mCa = 1.0× 10−6 mM2

p = 1.0

tau up = 25.0 ms

tau rep = 2.0 × 10+3 ms

tau rel = 50.0 ms

Equations defined in this component

The calcium current into the uptake store.

i up = alpha up ∗ Cai ∗ (Ca up max − Ca up) (A.10.49)

alpha up =
1.0

tau up ∗ Ca up max
(A.10.50)

The calcium current between the uptake and release stores, which uses a voltage-dependent activation variable -

the p gate.

i tr = alpha tr ∗ p ∗ (Ca up− Ca rel) (A.10.51)

alpha tr =
1.0

tau rep
(A.10.52)
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The opening rate of the p gate.

alpha p = 0.625× 10−3 ∗ (V + 34.0)
(

exp
(

(V +34.0)
4.0

)

− 1.0
) (A.10.53)

The closing rate of the p gate.

beta p =
5.0 × 10−3

(

1.0 + exp
(

−1.0∗(V +34.0)
4.0

)) (A.10.54)

The kinetics of the p gate.
d(p)

d(time)
= (alpha p ∗ (1.0 − p) − beta p ∗ p) (A.10.55)

The calcium release current from the SR into the cytosol.

i rel = alpha rel ∗ Ca rel ∗ (Cai)
2.0

(

(Cai)2.0 + K mCa
) (A.10.56)

alpha rel =
1.0

tau rel
(A.10.57)

The rate of change of calcium concentration in the uptake store.
d(Ca up)

d(time)
=

(

i up ∗ V i

V up
− i tr ∗ V rel

V up

)

(A.10.58)

The rate of change of calcium concentration in the release store.
d(Ca rel)

d(time)
= (i tr − i rel) (A.10.59)

The rate of change of intracellular calcium concentration.

d(Cai)

d(time)
=



i rel ∗ V rel

V i
−



i up +
Am ∗

(

(i siCa + i Ca b) − 2.0∗i NaCa
(n NaCa−2.0)

)

2.0 ∗ V i ∗ F







 (A.10.60)

“extracellular potassium concentration” component

A representation of extracellular potassium ion concentration based on a homogeneous three-compartment model.

Initial values defined in this component

Kc = 4.0 mM

Kb = 4.0 mM

P = 0.7

Equations defined in this component

The rate of change in the cleft potassium concentration is the combination of potassium ions crossing the cellular

membrane and ions diffusing into the volume from the bulk extracellular stores.
d(Kc)

d(time)
=

(

−P ∗ (Kc − Kb) +
Am ∗ i mK

V i ∗ F

)

(A.10.61)
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The total transmembrane potassium current.

i mK = ((i K1 + i K + i fK + i siK + i to) − 2.0 ∗ i NaK) (A.10.62)

“intracellular potassium concentration” component

The change in intracellular potassium ion concentration.

Initial values defined in this component

Ki = 140.0 mM

Equations defined in this component

The rate of change of intracellular potassium concentration is the sum of the ions crossing the membrane.
d(Ki)

d(time)
=

−Am ∗ i mK

V i ∗ F
(A.10.63)

“volumes” component

A component used to group the geometry parameters and calculations.

Initial values defined in this component

radius = 50× 10−3 mm

length = 2 mm

V ecs = 0.1

Am = 40.0 mm−1

Equations defined in this component

The intracellular volume fraction.

V i = (1.0 − V ecs) (A.10.64)

The extracellular volume fraction.

V e = V ecs (A.10.65)

The calcium uptake store volume fraction.

V up = 0.05 ∗ V i (A.10.66)

The calcium release store volume fraction.

V rel = 0.02 ∗ V i (A.10.67)

A.11 drouhard roberge model 1987

This is the CellML description of Drouhard and Roberge’s mathematical model of the fast sodium current in

ventricular myocardial cells. It describes the ionic current with Hodgkin-Huxley formalism, but revises the original
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parameters of the equation.

Reference: Drouhard, J. P. & Roberge, F. A. (1987), ‘Revised formulation of the Hodgkin-Huxley representation

of the sodium current in cardiac cells’, Computers and Biomedical Research 20, 333–350.

“environment” component

“membrane” component

Like the Ebihara-Johnson model (1980), the Drouhard-Roberge model can be used as a direct replacement for the

sodium kinetics of the Beeler-Reuter model. The other ionic equations and membrane potential are quoted from

the original 1977 paper.

Initial values defined in this component

C = 0.013 µF · mm−2

Equations defined in this component

The main differential equation of the model which defines the change of membrane potential as a function of the

total ionic current across the membrane plus an applied stimulus current.
d(V )

d(time)
=

(Istim − (i Na + i s + i x1 + i K1))

C
(A.11.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.11.2)

“fast sodium current” component

The Drouhard-Roberge model uses the Hodgkin-Huxley formulation for the sodium membrane current with only

one inactivation variable (h) rather than the two (h and j) of the Beeler-Reuter model. At the time of the study

(1987) there was still much uncertainty regarding the existence and function of the j gate.

Initial values defined in this component

g Na = 0.15 mS · mm−2 E Na = 40.0 mV

Equations defined in this component

Calculation of the modified sodium current.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ (V − E Na) (A.11.3)

“fast sodium current m gate” component

The modified voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component
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m = 0.0

Equations defined in this component

The opening rate of the m gate.

alpha m =
0.9 ∗ (V + 42.65)

(1.0− exp (−0.22 ∗ (V + 42.65)))
(A.11.4)

The closing rate of the m gate.

beta m = 1.437 ∗ exp (−0.085 ∗ (V + 39.75)) (A.11.5)

The m gate kinetics.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.11.6)

“fast sodium current h gate” component

The modified inactivation gate for the fast sodium channel - the h gate.

Initial values defined in this component

h = 0.99

Equations defined in this component

The opening rate of the h gate.

alpha h = 0.1 ∗ exp (−0.193 ∗ (V + 79.65)) (A.11.7)

The closing rate of the h gate.

beta h =
1.7

(1.0 + exp (−0.095 ∗ (V + 20.5)))
(A.11.8)

The h gate kinetics.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.11.9)

“slow inward current” component

The standard Beeler Reuter (1977) slow inward (calcium) current.

Initial values defined in this component

g s = 9.0 × 10−4 mS · mm−2 Cai = 0.000000177 mM

Equations defined in this component

E s = (−82.3− 13.0287 ∗ ln (0.001 ∗ Cai)) (A.11.10)
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i s = g s ∗ d ∗ f ∗ (V − E s) (A.11.11)
d(Cai)

d(time)
= (−0.01 ∗ i s + 0.07 ∗ (−0.0001− Cai)) (A.11.12)

“slow inward current d gate” component

The standard Beeler Reuter (1977) slow inward (calcium) current activation gate.

Initial values defined in this component

d = 0.003

Equations defined in this component

alpha d =
0.095 ∗ exp

(

− (V −5.0)
100.0

)

(

1.0 + exp
(

− (V −5.0)
13.89

)) (A.11.13)

beta d =
0.07 ∗ exp

(

− (V +44.0)
59.0

)

(

1.0 + exp
(

(V +44.0)
20.0

)) (A.11.14)

d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.11.15)

“slow inward current f gate” component

The standard Beeler Reuter (1977) slow inward (calcium) current inactivation gate.

Initial values defined in this component

f = 0.994

Equations defined in this component

alpha f =
0.012 ∗ exp

(

− (V +28.0)
125.0

)

(

1.0 + exp
(

(V +28.0)
6.67

)) (A.11.16)

beta f =
0.0065 ∗ exp

(

− (V +30.0)
50.0

)

(

1.0 + exp
(

− (V +30.0)
5.0

)) (A.11.17)

d(f)

d(time)
= (alpha f ∗ (1.0− f) − beta f ∗ f) (A.11.18)

“time dependent outward current” component

The standard Beeler Reuter (1977) time-dependent outward (potassium) current.
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Equations defined in this component

i x1 = x1 ∗ 8.0× 10−3 ∗ (exp (0.04 ∗ (V + 77.0)) − 1.0)

exp (0.04 ∗ (V + 35.0))
(A.11.19)

“time dependent outward current x1 gate” component

The standard Beeler Reuter (1977) time-dependent outward (potassium) current gating variable.

Equations defined in this component

alpha x1 = 5 × 10−4 ∗
exp

(

(V +50.0)
12.1

)

(

1.0 + exp
(

(V +50.0)
17.5

)) (A.11.20)

beta x1 = 0.0013 ∗
exp

(

− (V +20.0)
16.67

)

(

1.0 + exp
(

− (V +20.0)
25.0

)) (A.11.21)

d(x1)

d(time)
= (alpha x1 ∗ (1.0− x1) − beta x1 ∗ x1) (A.11.22)

“time independent outward current” component

The standard Beeler Reuter (1977) time-independent outward (potassium) current.

Equations defined in this component

i K1 = 0.35× 10−2

∗
(

4.0 ∗ (exp (0.04 ∗ (V + 85.0)) − 1.0)

(exp (0.08 ∗ (V + 53)) + exp (0.04 ∗ (V + 53.0)))
+ 0.2 ∗ (V + 23.0)

(1.0 − exp (−0.04 ∗ (V + 23.0)))

)

(A.11.23)

A.12 luo rudy I model 1991

This is the CellML description of Luo and Rudy’s mathematical model of the membrane action potential of the

mammalian ventricular cell. It describes six ionic currents and it is a development of the Beeler-Reuter 1977

mammalian ventricular model, using Hodgkin-Huxley type equations.

Reference: Luo, C. & Rudy, Y. (1991), ‘A Model of the Ventricular Cardiac Action Potential’, Circulation Re-

search 68, 1501–1526.
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“environment” component

“membrane” component

The parent component of the model - all other components are ‘contained’ in this one. Defines the transmembrane

potential.

Initial values defined in this component

V = −84.5 mV

R = 8.314× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 96845.0 nC · nmol−1

C = 1.0 × 10−2 µF · mm−2

Equations defined in this component

The membrane potential kinetic equation.
d(V )

d(time)
=

(I stim − (i Na + i si + i K + i K1 + i Kp + i b))

C
(A.12.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.12.2)

“fast sodium current” component

The fast sodium current is primarily responsible for the upstroke of the action potential.

Initial values defined in this component

g Na = 23.0× 10−2 mS · mm−2 E Na = 54.4 mV

Equations defined in this component

Evaluation of the fast sodium current.

i Na = g Na ∗ (m)3.0 ∗ h ∗ j ∗ (V − E Na) (A.12.3)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 1.67× 10−3

Equations defined in this component

The opening rate of the m gate.

alpha m =
0.32 ∗ (V + 47.13)

(1.0− exp (−0.1 ∗ (V + 47.13)))
(A.12.4)
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The closing rate of the m gate.

beta m = 0.08 ∗ exp

(−V

11.0

)

(A.12.5)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.12.6)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium channel - the h gate.

Initial values defined in this component

h = 9.38× 10−1

Equations defined in this component

The opening rate of the h gate.

alpha h =







0.135 ∗ exp
(

(−80.0−V )
6.8

)

; if V < −40.0,

0.0 otherwise.
(A.12.7)

The closing rate of the h gate.

beta h =







(3.56 ∗ exp (0.079 ∗ V ) + 310000.0 ∗ exp (0.35 ∗ V )) ; if V < −40.0,

1.0

0.13∗(1.0+exp(−(V +10.66)
11.1 ))

otherwise.
(A.12.8)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.12.9)

“fast sodium current j gate” component

The voltage-dependent slow inaction gate for the the fast sodium channel - the j gate.

Initial values defined in this component

j = 1.0

Equations defined in this component

The opening rate of the j gate.

alpha j =



















(−127140.0 ∗ exp (0.2444 ∗ V ) − 0.00003474 ∗ exp (−0.04391 ∗ V ))

∗ (V +37.78)
(1.0+exp(0.311∗(V +79.23))) ; if V < −40.0,

0.0 otherwise.
(A.12.10)
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The closing rate of the j gate.

beta j =







0.1212 ∗ exp(−0.01052∗V )
(1.0+exp(−0.1378∗(V +40.14))) ; if V < −40.0,

0.3 ∗ exp(−0.0000002535∗V )
(1.0+exp(−0.1∗(V +32.0))) otherwise.

(A.12.11)

The kinetics of the j gate.
d(j)

d(time)
= (alpha j ∗ (1.0 − j) − beta j ∗ j) (A.12.12)

“slow inward current” component

The slow inward (calcium) current is primarily responsible for the plateau pahse of the action potential.

Initial values defined in this component

g si = 9.0× 10−4 mS · mm−2

Equations defined in this component

The reversal potential for the slow inward current.

E si = (7.7 − 13.0287 ∗ ln (Cai)) (A.12.13)

Calculation of the slow inward current.

i si = g si ∗ d ∗ f ∗ (V − E si) (A.12.14)

“slow inward current d gate” component

The voltage-dependent activation gate for the slow inward current - the d gate.

Initial values defined in this component

d = 2.98× 10−3

Equations defined in this component

The opening rate of the d gate.

alpha d =
0.095 ∗ exp (−0.01 ∗ (V − 5.0))

(1.0 + exp (−0.072 ∗ (V − 5.0)))
(A.12.15)

The closing rate of the d gate.

beta d =
0.07 ∗ exp (−0.017 ∗ (V + 44.0))

(1.0 + exp (0.05 ∗ (V + 44.0)))
(A.12.16)

The kinetics of the d gate.
d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.12.17)
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“slow inward current f gate” component

The voltage-dependent inactivation gate of the slow inward channel - the f gate.

Initial values defined in this component

f = 1.0

Equations defined in this component

The opening rate of the f gate.

alpha f =
0.012 ∗ exp (−0.008 ∗ (V + 28.0))

(1.0 + exp (0.15 ∗ (V + 28.0)))
(A.12.18)

The closing rate of the f gate.

beta f =
0.0065 ∗ exp (−0.02 ∗ (V + 30.0))

(1.0 + exp (−0.2 ∗ (V + 30.0)))
(A.12.19)

The kinetics of the f gate.
d(f)

d(time)
= (alpha f ∗ (1.0 − f) − beta f ∗ f) (A.12.20)

“time dependent potassium current” component

The time dependent potassium current contains a time-dependent activation gate (X) and a time-independent inac-

tivation gate (Xi), neither of which are dependent on the extracellular concentration of potassium ions ([K]o).

Initial values defined in this component

g K = 2.82× 10−3 mS · mm−2 PR NaK = 0.01833

Equations defined in this component

The maximum conductance for the channel.

g K max = g K ∗
√

Ko

5.4
(A.12.21)

The reversal potential for the channel.

E K =
R ∗ T

F
∗ ln

(

(Ko + PR NaK ∗ Nao)

(Ki + PR NaK ∗ Nai)

)

(A.12.22)

Calculates the time-dependent potassium current in terms of the conductance, the membrane voltage and the gate

variables.

i K = g K max ∗ X ∗ Xi ∗ (V − E K) (A.12.23)

“time dependent potassium current X gate” component

Voltage- and time-dependent activation gate for the time-dependent potassium current - the X gate.
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Initial values defined in this component

X = 6.02× 10−3

Equations defined in this component

The opening rate for the X gate.

alpha X = 0.0005 ∗ exp (0.083 ∗ (V + 50.0))

(1.0 + exp (0.057 ∗ (V + 50.0)))
(A.12.24)

The closing rate for the X gate.

beta X = 0.0013 ∗ exp (−0.06 ∗ (V + 20.0))

(1.0 + exp (−0.04 ∗ (V + 20.0)))
(A.12.25)

The kinetics for the X gate.
d(X)

d(time)
= (alpha X ∗ (1.0− X) − beta X ∗ X) (A.12.26)

“time dependent potassium current Xi gate” component

The voltage-dependent and time-independent gate for the time-dependent potassium current - the Xi gate.

Equations defined in this component

The kinetics of the Xi gate.

Xi =







2.837∗(exp(0.04∗(V +77.0))−1.0)
(V +77.0)∗exp(0.04∗(V +35.0)) ; if V > −100.0,

1.0 otherwise.
(A.12.27)

“time independent potassium current” component

The time independent potassium current contains a single inactivation gate (K1) whose time constant is small

enough that it can be approximated by its steady-state value K1 infinity.

Initial values defined in this component

g K1 = 6.047× 10−3 mS · mm−2

Equations defined in this component

Calculation of the maximum conductance of the potassium channel.

g K1 max = g K1 ∗
√

Ko

5.4
(A.12.28)

Calculation of the reversal potential of the potassium channel.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.12.29)

Calculation of the time-independent potassium current.

i K1 = g K1 max ∗ K1 infinity ∗ (V − E K1) (A.12.30)
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“time independent potassium current K1 gate” component

The voltage-dependent and time-independent gating variable for the time independent potassium current.

Equations defined in this component

The opening rate of the K1 gating variable.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1)− 59.215)))
(A.12.31)

The closing rate of the K1 gating variable.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.12.32)

The steady-state approximation for the kinetics of the K1 gating variable.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.12.33)

“plateau potassium current” component

The plateau potassium current component contains the equations which describe the contribution of a time-independent

[K]o-insensitive channel at plateau potentials.

Initial values defined in this component

g Kp = 1.83× 10−4 mS · mm−2

Equations defined in this component

The reversal potential is the same as the K1 channel.

E Kp = E K1 (A.12.34)

The gating variable for the Kp channel.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.12.35)

Calculation of the plateau potassium current.

i Kp = g Kp ∗ Kp ∗ (V − E Kp) (A.12.36)

“background current” component

The background current describes an additional current which contributes at plateau potentials.

Initial values defined in this component

E b = −59.87 mV g b = 3.921× 10−4 mS · mm−2
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Equations defined in this component

Calculation of the background current.

i b = g b ∗ (V − E b) (A.12.37)

“ionic concentrations” component

In their 1991 model for most ions, Luo and Rudy do not include equations to calculate changes in their concen-

trations. Instead they fix the variables and specify their values, as shown in this component. The only exception

is for intracellular calcium concentrations which is defined by an equation. Extracellular calcium concentration is

defined here but is not included in any of the ionic flux calculations. Therefore it has no public interface.

Initial values defined in this component

Nao = 140.0 mM

Nai = 18.0 mM

Cao = 1.8 mM

Ki = 145.0 mM

Ko = 5.4 mM

“intracellular calcium concentration” component

The sole ionic concentration modelled is intracellular calcium, using the same equation as that used in the original

Beller Reuter (1977) model.

Initial values defined in this component

Cai = 0.0002 mM

Equations defined in this component

The differential equation governing the intracellular calcium ion concentration.
d(Cai)

d(time)
= (−0.01 ∗ i si + 0.07 ∗ (0.0001− Cai)) (A.12.38)

A.13 LR II model 1994

This is the CellML description of Luo and Rudy’s mathematical model of the mammalian cardiac ventricular action

potential. It is a significant development on their original 1991 model. While this version of the model qualitatively

compares well to the LR II paper for the action potential, the intracellular calcium dynamics have not been included

correctly - namely there is no calcium-induced calcium-release (CICR) process in this version of the model. The

original version of the model simulates CICR via a mechanism whereby CICR is induced if and only if the calcium

accumulated in the cell in the 2 ms following (dV/dt)max exceeds a given threshold. This sort of process is a bit

tricky to include in the CellML (or at least in a way that will work with the CellML abilitites of CMISS) so has

been left out for now.

Reference: Luo, C. & Rudy, Y. (1994), ‘A Dynamic Model of the Cardiac Ventricular Action Potential I. Simula-
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tions of Ionic Currents and Concentration Changes’, Circulation Research 74, 1071–1096.

“environment” component

“membrane” component

The main component for the model, contains all ionic currents and defines the transmembrane potential.

Initial values defined in this component

V = −84.624 mV

R = 8.3145× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 96845.0 nC · nmol−1

Cm = 0.01 µF · mm−2

Equations defined in this component

We need to use dV/dt in the calulation of calcium-induced calcium-release, so we make it accessible here.

dV dt =

[

I st −
(

i Na + i Ca L + i K + i K1 + i Kp + i NaCa

+ i p Ca + i Na b + i Ca b + i NaK + i ns Ca
)

]/

Cm (A.13.1)

Assign the rate of change of potential for the differential equation.
d(V )

d(time)
= dV dt (A.13.2)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I st (A.13.3)

“fast sodium current” component

The fast sodium current is primarily responsible for the upstroke of the action potential.

Initial values defined in this component

g Na = 0.16 mS · mm−2

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ j ∗ (V − E Na) (A.13.4)

Calculation of reversal potential for the fast sodium channel.

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.13.5)
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“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 0.0

Equations defined in this component

The opening rate for the m gate.

alpha m =
0.32 ∗ (V + 47.13)

(1.0− exp (−0.1 ∗ (V + 47.13)))
(A.13.6)

The closing rate for the m gate.

beta m = 0.08 ∗ exp

(−V

11.0

)

(A.13.7)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.13.8)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium channel - the h gate.

Initial values defined in this component

h = 1.0

Equations defined in this component

The opening rate for the h gate.

alpha h =







0.135 ∗ exp
(

(80.0+V )
−6.8

)

; if V < −40.0,

0.0 otherwise.
(A.13.9)

The closing rate for the h gate.

beta h =







(3.56 ∗ exp (0.079 ∗ V ) + 310000.0 ∗ exp (0.35 ∗ V )) ; if V < −40.0,

1.0

0.13∗(1.0+exp( (V +10.66)
−11.1 ))

otherwise.
(A.13.10)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.13.11)

“fast sodium current j gate” component

The voltage-dependent slow inactivation gate for the fast sodium channel - the j gate.
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Initial values defined in this component

j = 1.0

Equations defined in this component

The opening rate for the j gate.

alpha j =



















(−127140.0 ∗ exp (0.2444 ∗ V ) − 0.00003474 ∗ exp (−0.04391 ∗ V ))

∗ (V +37.78)
(1.0+exp(0.311∗(V +79.23))) ; if V < −40.0,

0.0 otherwise.
(A.13.12)

The closing rate for the j gate.

beta j =







0.1212∗exp(−0.01052∗V )
(1.0+exp(−0.1378∗(V +40.14))) ; if V < −40.0,

0.3∗exp(−0.0000002535∗V )
(1.0+exp(−0.1∗(V +32.0))) otherwise.

(A.13.13)

The kinetics of for the j gate.
d(j)

d(time)
= (alpha j ∗ (1.0− j) − beta j ∗ j) (A.13.14)

“L type Ca channel” component

The L-type calcium channel. Primarily a calcium specific channel, but with small potassium and sodium compo-

nents, activated at plateau potentials.

Initial values defined in this component

gamma Nai = 0.75

gamma Nao = 0.75

gamma Ki = 0.75

gamma Ko = 0.75

P Ca = 5.4 × 10−6 mm · ms−1

P Na = 6.75× 10−9 mm · ms−1

P K = 1.93× 10−9 mm · ms−1

gamma Cai = 1.0

gamma Cao = 0.34

Equations defined in this component

The calcium component of the total L-type channel current.

i CaCa = d ∗ f ∗ f Ca ∗ I CaCa (A.13.15)

The sodium component of the total L-type channel current.

i CaNa = d ∗ f ∗ f Ca ∗ I CaNa (A.13.16)

The potassium component of the total L-type channel current.

i CaK = d ∗ f ∗ f Ca ∗ I CaK (A.13.17)
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The maximum calcium component of the total L-type channel current.

I CaCa = P Ca ∗ (2.0)2.0 ∗ V ∗ (F )2.0

R ∗ T

∗
(

gamma Cai ∗ Cai ∗ exp
(

2.0∗V ∗F
R∗T

)

− gamma Cao ∗ Cao
)

(

exp
(

2.0∗V ∗F
R∗T

)

− 1.0
) (A.13.18)

The maximum sodium component of the total L-type channel current.

I CaNa = P Na ∗ (1.0)
2.0 ∗ V ∗ (F )2.0

R ∗ T

∗
(

gamma Nai ∗ Nai ∗ exp
(

1.0∗V ∗F
R∗T

)

− gamma Nao ∗ Nao
)

(

exp
(

1.0∗V ∗F
R∗T

)

− 1.0
) (A.13.19)

The maximum potassium component of the total L-type channel current.

I CaK = P K ∗ (1.0)
2.0 ∗ V ∗ (F )

2.0

R ∗ T

∗
(

gamma Ki ∗ Ki ∗ exp
(

1.0∗V ∗F
R∗T

)

− gamma Ko ∗ Ko
)

(

exp
(

1.0∗V ∗F
R∗T

)

− 1.0
) (A.13.20)

The total current of the L-type channel current.

i Ca L = (i CaCa + i CaK + i CaNa) (A.13.21)

“L type Ca channel d gate” component

The voltage-dependent activation gate for the L-type calcium channel - the d gate.

Initial values defined in this component

d = 0.0

Equations defined in this component

The opening rate of the d gate.

alpha d =
d infinity

tau d
(A.13.22)

d infinity =
1.0

(

1.0 + exp
(

− (V +10.0)
6.24

)) (A.13.23)

tau d = d infinity ∗

(

1.0 − exp
(

− (V +10.0)
6.24

))

0.035 ∗ (V + 10.0)
(A.13.24)

The closing rate of the d gate.

beta d =
(1.0 − d infinity)

tau d
(A.13.25)

The kinetics of the d gate.
d(d)

d(time)
= (alpha d ∗ (1.0− d) − beta d ∗ d) (A.13.26)
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“L type Ca channel f gate” component

The voltage-dependent inactivation gate for the L-type calcium channel - the f gate.

Initial values defined in this component

f = 1.0

Equations defined in this component

The opening rate of the f gate.

alpha f =
f infinity

tau f
(A.13.27)

f infinity =





1.0
(

1.0 + exp
(

(V +35.06)
8.6

)) +
0.6

(

1.0 + exp
(

(50.0−V )
20.0

))



 (A.13.28)

tau f =
1.0

(

0.0197 ∗ exp
(

− (0.0337 ∗ (V + 10.0))2.0
)

+ 0.02
) (A.13.29)

The closing rate of the f gate.

beta f =
(1.0 − f infinity)

tau f
(A.13.30)

The kinetics of the f gate.
d(f)

d(time)
= (alpha f ∗ (1.0 − f) − beta f ∗ f) (A.13.31)

“L type Ca channel f Ca gate” component

The calcium-dependent inactivation gate for the L-type calcium channel - the fCa gate.

Initial values defined in this component

Km Ca = 0.6× 10−3 mM

Equations defined in this component

The kinetics of the fCa gate.

f Ca =
1.0

(

1.0 +
(

Cai
Km Ca

)2.0
) (A.13.32)

“time dependent potassium current” component

The time-dependent potassium reploarisation current.

Initial values defined in this component

g K max = 2.82× 10−3 mS · mm−2 PR NaK = 0.01833
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Equations defined in this component

The conductance for the channel.

g K = g K max ∗
√

Ko

5.4
(A.13.33)

The reversal potential of the channel.

E K =
R ∗ T

F
∗ ln

(

(Ko + PR NaK ∗ Nao)

(Ki + PR NaK ∗ Nai)

)

(A.13.34)

Calculation of the current.

i K = g K ∗ (X)2.0 ∗ Xi ∗ (V − E K) (A.13.35)

“time dependent potassium current X gate” component

The time-dependent activation gate for the time-dependent potassium current - the X gate.

Initial values defined in this component

X = 0.0

Equations defined in this component

The opening rate for the X gate.

alpha X =
0.0000719 ∗ (V + 30.0)

(1.0 − exp (−0.148 ∗ (V + 30.0)))
(A.13.36)

The closing rate for the X gate.

beta X =
0.000131 ∗ (V + 30.0)

(−1.0 + exp (0.0687 ∗ (V + 30.0)))
(A.13.37)

The kinetics of the X gate.
d(X)

d(time)
= (alpha X ∗ (1.0− X) − beta X ∗ X) (A.13.38)

“time dependent potassium current Xi gate” component

The time-independent inactivation gate for the time-dependent potassium current - the Xi gate.

Equations defined in this component

The kinetics of the Xi gate.

Xi =
1.0

(

1.0 + exp
(

(V −56.26)
32.1

)) (A.13.39)

“time independent potassium current” component

The time-independent potassium repolarisation current.
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Initial values defined in this component

g K1 max = 7.5× 10−3 mS · mm−2

Equations defined in this component

Calculation of the channel conductance.

g K1 = g K1 max ∗
√

Ko

5.4
(A.13.40)

Calculation of the channel reversal potential.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.13.41)

Calculation of the channel current.

i K1 = g K1 ∗ K1 infinity ∗ (V − E K1) (A.13.42)

“time independent potassium current K1 gate” component

The gating variable for the time-independent potassium current - the K1 gate.

Equations defined in this component

The opening rate for the K1 gate.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1)− 59.215)))
(A.13.43)

The closing rate for the K1 gate.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.13.44)

The steady-state kinetics of the K1 gate.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.13.45)

“plateau potassium current” component

The potassium current active at plateau potentials.

Initial values defined in this component

g Kp = 1.83× 10−4 mS · mm−2

Equations defined in this component

The reversal potential for the channel.

E Kp = E K1 (A.13.46)
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The gating kinetics for the channel.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.13.47)

Calculation of the current.

i Kp = g Kp ∗Kp ∗ (V − E Kp) (A.13.48)

“sarcolemmal calcium pump” component

A calcium pump for removal of calcium from the cytosol to the extracellular space.

Initial values defined in this component

K mpCa = 0.5× 10−3 mM I pCa = 1.15× 10−2 µA · mm−2

Equations defined in this component

The calcium pump current.

i p Ca = I pCa ∗ Cai

(K mpCa + Cai)
(A.13.49)

“sodium background current” component

The background sodium current.

Initial values defined in this component

g Nab = 1.41× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the channel.

E NaN = E Na (A.13.50)

Calculation of the current.

i Na b = g Nab ∗ (V − E NaN) (A.13.51)

“calcium background current” component

The background calcium current.

Initial values defined in this component

g Cab = 3.016× 10−5 mS · mm−2
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Equations defined in this component

The reversal potential for the channel.

E CaN =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.13.52)

Calculation of the current.

i Ca b = g Cab ∗ (V − E CaN) (A.13.53)

“sodium potassium pump” component

The sodium/potassium exchanger current which extrudes three sodium ions from the cell in exchange for two

potassium ions entering the cell.

Initial values defined in this component

I NaK = 1.5 × 10−2 µA · mm−2

K mNai = 10.0 mM

K mKo = 1.5 mM

Equations defined in this component

f NaK =
1.0

((

1.0 + 0.1245 ∗ exp
(

−0.1 ∗ V ∗F
R∗T

))

+ 0.0365 ∗ sigma ∗ exp
(

−V ∗F
R∗T

)) (A.13.54)

sigma =
1.0

7.0
∗
(

exp

(

Nao

67.3

)

− 1.0

)

(A.13.55)

Calculation of the exchanger current.

i NaK = I NaK ∗ f NaK ∗ 1.0
(

1.0 +
(

K mNai
Nai

)1.5
) ∗ Ko

(Ko + K mKo)
(A.13.56)

“non specific calcium activated current” component

A non-specific calcium activated channel - assumed impermeable to calcium ions but permeable to sodium and

potassium ions.

Initial values defined in this component

P ns Ca = 1.75× 10−9 mm · ms−1 K m ns Ca = 1.2 × 10−3 mM

Equations defined in this component

The channel reversal potential.

EnsCa =
R ∗ T

F
∗ ln

(

(Ko + Nao)

(Ki + Nai)

)

(A.13.57)

V ns = (V − EnsCa) (A.13.58)
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The sodium component of the channel’s current.

i ns Na = I ns Na ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.13.59)

The potassium component of the channel’s current.

i ns K = I ns K ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.13.60)

The total current through the channel.

i ns Ca = (i ns Na + i ns K) (A.13.61)

The maximum sodium component of the channel’s current.

I ns Na = P ns Ca ∗ (1.0)
2.0 ∗ V ns ∗ (F )

2.0

R ∗ T

∗
(

gamma Nai ∗ Nai ∗ exp
(

1.0∗V ns∗F
R∗T

)

− gamma Nao ∗ Nao
)

(

exp
(

1.0∗V ns∗F
R∗T

)

− 1.0
) (A.13.62)

The maximum potassium component of the channel’s current.

I ns K = P ns Ca ∗ (1.0)
2.0 ∗ V ns ∗ (F )

2.0

R ∗ T

∗
(

gamma Ki ∗ Ki ∗ exp
(

1.0∗V ns∗F
R∗T

)

− gamma Ko ∗ Ko
)

(

exp
(

1.0∗V ns∗F
R∗T

)

− 1.0
) (A.13.63)

“Na Ca exchanger” component

The sodium-calcium exchanger current, exchanges three sodium ions for one calcium ion.

Initial values defined in this component

K NaCa = 20.0 µA · mm−2

K mNa = 87.5 mM

K mCa = 1.38 mM

K sat = 0.1

eta = 0.35

Equations defined in this component

Calculation of the exchanger current.

i NaCa = K NaCa ∗ 1.0
(

(K mNa)3.0 + (Nao)3.0
) ∗ 1.0

(K mCa + Cao)

∗ 1.0
(

1.0 + K sat ∗ exp
(

(eta − 1.0) ∗ V ∗ F
R∗T

))

∗
(

exp

(

eta ∗ V ∗ F

R ∗ T

)

∗ (Nai)
3.0 ∗ Cao − exp

(

(eta − 1.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
3.0 ∗ Cai

)

(A.13.64)
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“calcium fluxes in the SR” component

The various calcium fluxes into and from the sarcoplasmic reticulum.

Initial values defined in this component

G rel max = 60.0 ms−1

tau on = 2.0 ms

tau off = 2.0 ms

tau tr = 180.0 ms

K mrel = 0.8 × 10−3 mM

K mup = 0.92× 10−3 mM

I up = 0.005 mM · ms−1

Ca NSR max = 15.0 mM

delta Ca ith = 0.18× 10−3 mM

Equations defined in this component

The release flux from the junctional sarcoplasmic reticulum into the cytosol.

i rel = G rel ∗ (Ca JSR − Cai) (A.13.65)

Calculation of the release channel conductance. This is incorrect as there is no CICR induced via the accumulation

of calcium in the cytosol in the period following max(dV/dt)

G rel = G rel peak ∗ (delta Ca i2 − delta Ca ith)

((K mrel + delta Ca i2) − delta Ca ith)

∗
(

1.0 − exp

(

− t CICR

tau on

))

∗ exp

(

− t CICR

tau off

)

(A.13.66)

G rel peak =







0.0; if delta Ca i2 < delta Ca ith,

G rel max otherwise.
(A.13.67)

The uptake flux into the sarcoplasmic reticulum from the cytosol.

i up = I up ∗ Cai

(Cai + K mup)
(A.13.68)

Calcium leak flux from the network sarcoplasmic reticulum into the cytosol.

i leak = K leak ∗ Ca NSR (A.13.69)

K leak =
I up

Ca NSR max
(A.13.70)

Translocation flux from the network to the junctional sarcoplasmic reticulum.

i tr =
(Ca NSR − Ca JSR)

tau tr
(A.13.71)

“ionic concentrations” component

Component grouping together the differential equations for the various ionic concentrations that the model tracks.

Initial values defined in this component
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Nai = 10.0 mM

Nao = 140.0 mM

Cai = 0.12× 10−3 mM

Cao = 1.8 mM

Ki = 145.0 mM

Ko = 5.4 mM

Ca JSR = 1.8 mM

Ca NSR = 1.8 mM

Am = 200 mm−1

V myo = 0.68

V JSR = 0.0048

V NSR = 0.0552

Equations defined in this component

The change in intracellular sodium concentration.
d(Nai)

d(time)
= − (i Na + i CaNa + i Na b + i ns Na + i NaCa ∗ 3.0 + i NaK ∗ 3.0) ∗ Am

V myo ∗ F
(A.13.72)

The change in intracellular calcium concentration.
d(Cai)

d(time)
= − ((i CaCa + i p Ca + i Ca b) − i NaCa) ∗ Am

2.0 ∗ V myo ∗ F

+ i rel ∗ V JSR

V myo
+ (i leak − i up) ∗ V NSR

V myo
(A.13.73)

The change in intracellular potassium concentration.
d(Ki)

d(time)
= − (i CaK + i K + i K1 + i Kp + i ns K + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.13.74)

The change in calcium concentration in the junctional sarcoplasmic reticulum.
d(Ca JSR)

d(time)
= −

(

i rel − i tr ∗ V NSR

V JSR

)

(A.13.75)

The change in calcium concentration in the network sarcoplasmic reticulum.
d(Ca NSR)

d(time)
= − ((i leak + i tr) − i up) (A.13.76)

A.14 Rogers McCulloch 1994

This is a CellML version of the modified FitzHugh-Nagumo model, published by Rogers and McCulloch in 1994.

While the original two-variable model described a non-dimensional activation variable (u) and a non-dimensional

recovery variable (v), here we formulate the model in terms of the ‘real’ action potential given by the time course

of the transmembrane potential (Vm). In so doing, the time rate of change of the activation variable describes

the total ‘ionic current’ through the membrane with the original model parameters adjusted to give the correct

dimensionality.

Reference: Rogers, J. M. & McCulloch, A. D. (1994), ‘A collocation–Galerkin finite element model of cardiac

action potential propagation’, IEEE Transactions on Biomedical Engineering 41, 743–757.
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“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Vr = −85.0 mV

Vth = −75.0 mV

Vp = 15.0 mV

c1 = 0.26 µA · mm−2

c2 = 0.1 µA · mm−2

b = 0.013 ms−1

d = 0.8

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.14.1)

“membrane potential” component

The component which defines the kinetics of the transmembrane potential.

Initial values defined in this component

Vm = −85 mV

Equations defined in this component

This equation describes the kinetics of the transmembrane, potential - the action potential.
d(V m)

d(t)
=

(Istim − Iion)

Cm
(A.14.2)

The non-dimensional and scaled potential value.

u =
(V m − V r)

(V p − V r)
(A.14.3)

“ionic current” component

Here we define the total ionic current through the cellular membrane - equivalent to the temporal derivative of the

original activation variable. The modification of Rogers and McCulloch is in this equation, with the additional

multiplication of recovery variable with the normalised potential.

Initial values defined in this component

Iion = 0.0 µA · mm−2
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Equations defined in this component

The calcuation of the total ionic current.

Iion =

(

c1 ∗ u ∗
(

u − (V th − V r)

(V p − V r)

)

∗ (u − 1.0) + c2 ∗ u ∗ v

)

(A.14.4)

“recovery variable” component

Here we define the non-dimensional recovery variable, v.

Initial values defined in this component

v = 0.0

Equations defined in this component

The kinetics of the recovery variable.
d(v)

d(t)
= b ∗ (u − d ∗ v) (A.14.5)

A.15 Aliev Panfilov 1996

This is a CellML version of the modified FitzHugh-Nagumo model, published by Aliev and Panfilov in 1996.

While the original two-variable model described a non-dimensional activation variable (u) and a non-dimensional

recovery variable (v), here we formulate the model in terms of the ‘real’ action potential given by the time course

of the transmembrane potential (Vm). In so doing, the time rate of change of the activation variable describes

the total ‘ionic current’ through the membrane with the original model parameters adjusted to give the correct

dimensionality.

Reference: Aliev, R. R. & Panfilov, A. V. (1996), ‘A Simple Two-variable Model of Cardiac Excitation’, Chaos,

Solitons & Fractals 7, 293–301.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Vr = −85.0 mV

Vth = −75.0 mV

Vp = 15.0 mV

c1 = 8.0 µA · mm−2

b = 0.000155 ms−1

d = 0.0155 ms−1

mu2 = 0.3
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Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.15.1)

“membrane potential” component

The component which defines the kinetics of the transmembrane potential.

Initial values defined in this component

Vm = −85 mV

Equations defined in this component

This equation describes the kinetics of the transmembrane, potential - the action potential.
d(V m)

d(t)
=

(Istim − Iion)

Cm
(A.15.2)

The non-dimensional and scaled potential value.

u =
(V m − V r)

(V p − V r)
(A.15.3)

“ionic current” component

Here we define the total ionic current through the cellular membrane - equivalent to the temporal derivative of

the original activation variable. One modification of Aliev and Panfilov is in this equation, with the additional

multiplication of the recovery variable with the normalised potential and removal of the scalar multiplier.

Equations defined in this component

The calcuation of the total ionic current.

Iion =

(

c1 ∗ u ∗
(

u − (V th − V r)

(V p − V r)

)

∗ (u − 1.0) + u ∗ v

)

(A.15.4)

“recovery variable” component

Here we define the non-dimensional recovery variable, v. The kinetics of the recovery variable have been reworked

by Aliev and Panfilov to provide more realistic restitution properties.

Initial values defined in this component

v = 0.0
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Equations defined in this component

The kinetics of the recovery variable.
d(v)

d(t)
= eps ∗ (−v − rate ∗ vstar ∗ (V m − V r)) (A.15.5)

eps =

(

b +
d ∗ v

(u + mu2)

)

(A.15.6)

rate =
c1

((V p − V r))2.0 (A.15.7)

vstar = (V m + ((V r − V p) − V th)) (A.15.8)

A.16 fenton karma model 1998

This is the CellML description of the Fenton-Karma simplified ionic model with three membrane currents, 1998.

The default parameter values provided correspond to the modified-BR parameter set provided by Fenton and Karma

in their corrected Table I.

Reference: Fenton, F. & Karma, A. (1998), ‘Vortex dynamics in three-dimensional continuous myocardium with

fiber rotation: Filament instability and fibrillation’, Chaos 8, 20–47.

“environment” component

“membrane” component

The main component of the model, defining both the actual transmembrane potential and it’s non-dimensional

representation used in the model.

Initial values defined in this component

u = 0.0

Cm = 0.01 µF · mm−2

V o = −85.0 mV

V fi = 15.0 mV

Equations defined in this component

Convert the scaled currents to actual currents.

I fi = J fi ∗ Cm ∗ (V fi− V o) (A.16.1)

I si = J si ∗ Cm ∗ (V fi − V o) (A.16.2)

I so = J so ∗ Cm ∗ (V fi− V o) (A.16.3)
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Calculate the non-dimensional membrane potential variable.

u =
(V m − V o)

(V fi − V o)
(A.16.4)

The standard membrane action potential formulation.
d(V m)

d(time)
=

(I stim− (I fi + I si + I so))

Cm
(A.16.5)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.16.6)

“p” component

Equivalent to the Heaviside step function H(u-uc) from the original paper.

Initial values defined in this component

u c = 0.13

Equations defined in this component

p =







0.0; if u < u c,

1.0 otherwise.
(A.16.7)

“q” component

Equivalent to the Heaviside step function H(u-uv) from the original paper.

Initial values defined in this component

u v = 0.055

Equations defined in this component

q =







0.0; if u < u v,

1.0 otherwise.
(A.16.8)

“fast inward current” component

Component representing the scaled fast inward current.

Initial values defined in this component

g fi max = 0.04 mS · mm−2
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Equations defined in this component

Calculation of the current’s time constant.

tau d =
Cm

g fi max
(A.16.9)

Calculation of the current scaled fast inward current.

J fi = −v ∗ p ∗ (u− u c) ∗ (1.0− u)

tau d
(A.16.10)

“fast inward current v gate” component

The inactivation-reactivation gate for the fast inward current. Analogous in role to the product of the h and j gates

of the BR and LR models.

Initial values defined in this component

v = 1.0

tau v1 minus = 1000.0 ms

tau v2 minus = 19.2 ms

tau v plus = 3.33 ms

Equations defined in this component

The kinetics of the fast current’s inactivation-reactivation variable.
d(v)

d(time)
=

(

(1.0− p) ∗ (1.0 − v)

tau v minus
− p ∗ v

tau v plus

)

(A.16.11)

Fenton and Karma found it necessary to define the time constant that governs the reactivation of the fast inward

current separately over two voltage ranges (uv<u<uc and u<uv).

tau v minus = (q ∗ tau v1 minus + (1.0 − q) ∗ tau v2 minus) (A.16.12)

“slow outward current” component

The slow outward current, responsible for the repolarisation of the membrane.

Initial values defined in this component

tau 0 = 8.3 ms tau r = 50.0 ms

Equations defined in this component

Calculation of the scaled slow outward current.

J so =

(

u ∗ (1.0 − p)

tau 0
+

p

tau r

)

(A.16.13)

“slow inward current” component

The scaled slow inward current.

Initial values defined in this component
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tau si = 44.84 ms

u csi = 0.85

k = 10.0

Equations defined in this component

Calculation of the slow inward current.

J si =
−w ∗ (1.0 + tanh(k ∗ (u − u csi)))

2.0 ∗ tau si
(A.16.14)

“slow inward current w gate” component

The inactivation-reactivation gate variable for the slow outward current, analogous to the f gate in the BR and LR

models.

Initial values defined in this component

w = 1.0

tau w minus = 11.0 ms

tau w plus = 667.0 ms

Equations defined in this component

The kinetics of the inactivation-reactivation gate for the slow inward current.
d(w)

d(time)
=

(

(1.0 − p) ∗ (1.0− w)

tau w minus
− p ∗ w

tau w plus

)

(A.16.15)

A.17 1998 HMT

This is a CellML version of the 1998 HMT cardiac contraction model.

Reference: Hunter, P. J., McCulloch, A. D. & ter Keurs, H. E. (1998), ‘Modelling the mechanical properties of

cardiac muscle’, Progress in Biophysics & Molecular Biology 69, 289–331.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component. With this model, we expect the intracellular calcium transient to be controlled externally to the model

- i.e., the simulator needs to set the value of the Cai variable. Extension ratio should also be controlled externally

for non-isometric simulations. Muscle velocity should also be set if you want to include the dynamic contribution

of length changes.

Initial values defined in this component

t = 0.0 ms

Cai = 0.0 mM

lambda = 1.0

Cab max = 0.035 mM

rho0 = 100.0 ms−1 · mM−1

rho1 = 0.163 ms−1

gamma = 2.6

alpha0 = 2.0 × 10−3 ms−1
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n ref = 4.25

p50 ref = 5.33

T ref = 125.0 kPa

beta0 = 1.45

beta1 = 1.95

beta2 = 0.31

alpha1 = 0.033 ms−1

alpha2 = 2.85 ms−1

alpha3 = 2.85 ms−1

A1 = 50.0

A2 = 175.0

A3 = 175.0

a = 0.5

velocity = 0.0 ms−1

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

CaiC = Cai (A.17.1)

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

lambdaC = lambda (A.17.2)

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

velocityC = velocity (A.17.3)

“troponin kinetics” component

The component which defines the kinetics of calcium binding to troponin-C. The binding has been shown to be

tension dependent.

Initial values defined in this component

Cab = 0.0 mM

Equations defined in this component

The kinetics of the tension-dependent calcium binding to troponin-C.
d(Cab)

d(t)
= (rho0 ∗ Cai ∗ (Cab max − Cab) − rho1 ∗ Cab ∗ (1.0 − TTo)) (A.17.4)

Calculate the tension dependent factor for calcium binding.

TTo =







T
gamma∗To

; if To > 1.0 × 10−8,

0.0 otherwise.
(A.17.5)

“tropomyosin kinetics” component

This component defines the kinetics of the length-dependent actin availability.

Initial values defined in this component

z = 0.0
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Equations defined in this component

The kinetics of actin availability, z.
d(z)

d(t)
= alpha0 ∗

((

Cab

C50
∗ Cab norm

)n

∗ (1.0− z) − z

)

(A.17.6)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

n = n ref ∗ (1.0 + beta1 ∗ (lambda − 1.0)) (A.17.7)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

p50 = p50 ref ∗ (1.0 + beta2 ∗ (lambda − 1.0)) (A.17.8)

The value of Cab that is required to achieve 50% availability, i.e., z = 0.5.

C50 = (10.0)
(3.0−p50) (A.17.9)

Normalised value of bound calcium.

Cab norm =
Cab

Cab max
(A.17.10)

“isometric tension” component

The component which defines the isometric tension.

Equations defined in this component

Calculation of the isometric tension.

To = T ref ∗ (1.0 + beta0 ∗ (lambda − 1.0)) ∗ z (A.17.11)

“dynamic tension” component

We use the ODE equivalent to the fading memory hereditary (thanks Steve). The muscle velocity should be set

outside of here, and will be controlled by the simulation environment.

Initial values defined in this component

Q1 = 0.0 ms

Q2 = 0.0 ms

Q3 = 0.0 ms

Equations defined in this component

Calculation of the dynamic tension.

T = To ∗ (1.0 + a ∗ Q)

(1.0 − Q)
(A.17.12)
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Calculate the value of the hereditary integral, with three rate constants.

Q = (Q1 + Q2 + Q3) (A.17.13)

Calculation of the contribution of the first time constant to the hereditary integral, in the ODE form.
d(Q1)

d(t)
= (A1 ∗ velocity − alpha1 ∗ Q1) (A.17.14)

Calculation of the contribution of the second time constant to the hereditary integral, in the ODE form.
d(Q2)

d(t)
= (A2 ∗ velocity − alpha2 ∗ Q2) (A.17.15)

Calculation of the contribution of the third time constant to the hereditary integral, in the ODE form.
d(Q3)

d(t)
= (A3 ∗ velocity − alpha3 ∗ Q3) (A.17.16)

A.18 jafri rice winslow model 1998

This is the CellML description of Jafri, Rice and Winslow’s mathematical model for calcium regulation in the

ventricular myocyte. It is based on an accurate model of the membrane currents and adds a more sophisticated

model of calcium handling. The JRW model is based on the LR-II model for ventricular action potentials, with

several modifications.

Reference: Jafri, M. S., Rice, J. J. & Winslow, R. L. (1998), ‘Cardiac Ca2+ Dynamics: The Roles of Ryanodine

Receptor Adaptation and Sarcoplasmic Reticulum Load’, Biophysical Journal 74, 1149–1168.

“environment” component

“membrane” component

The main component of the model which defines the action potential.

Initial values defined in this component

V = −84.1638 mV

R = 8.3145× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 9.6845× 104 nC · nmol−1

Cm = 0.01 µF · mm−2

Equations defined in this component

The kinetics of the transmembrane potential, defined as the sum of all the sarcolemmal currents and an applied

stimulus current.
d(V )

d(time)
=

[

I stim −
(

i Na + i Ca L Ca + i Ca L K + i K + i NaCa + i K1+

i Kp + i p Ca + i Na b + i Ca b + i NaK + i ns Ca
)

]/

Cm (A.18.1)
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This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.18.2)

“fast sodium current” component

The fast sodium current component contains the differential equations governing the influx of sodium ions through

the cell surface membrane into the cell.

Initial values defined in this component

g Na = 0.128 mS · mm−2

Equations defined in this component

Calculation of the fast sodium current using the three Hodkin-Huxley type voltage-dependent gating variables m,

h, and j.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ j ∗ (V − E Na) (A.18.3)

The sodium reversal potential.

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.18.4)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium current - the m gate.

Initial values defined in this component

m = 0.0328302

Equations defined in this component

The opening rate of the m gate.

alpha m =
0.32 ∗ (V + 47.13)

(1.0− exp (−0.1 ∗ (V + 47.13)))
(A.18.5)

The closing rate of the m gate.

beta m = 0.08 ∗ exp

(−V

11.0

)

(A.18.6)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.18.7)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium current - the h gate.
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Initial values defined in this component

h = 0.988354

Equations defined in this component

The opening rate of the h gate.

alpha h =







0.135 ∗ exp
(

(80.0+V )
−6.8

)

; if V < −40.0,

0.0 otherwise.
(A.18.8)

The closing rate of the h gate.

beta h =







(3.56 ∗ exp (0.079 ∗ V ) + 310000.0 ∗ exp (0.35 ∗ V )) ; if V < −40.0,

1.0

0.13∗(1.0+exp( (V +10.66)
−11.1 ))

otherwise.
(A.18.9)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.18.10)

“fast sodium current j gate” component

The voltage-dependent slow inactivation gate for the fast sodium current - the j gate.

Initial values defined in this component

j = 0.992540

Equations defined in this component

The opening rate of the j gate.

alpha j =



















(−127140.0 ∗ exp (0.2444 ∗ V ) − 0.00003474 ∗ exp (−0.04391 ∗ V ))

∗ (V +37.78)
(1.0+exp(0.311∗(V +79.23))) ; if V < −40.0,

0.0 otherwise.
(A.18.11)

The closing rate of the j gate.

beta j =







0.1212 ∗ exp(−0.01052∗V )
(1.0+exp(−0.1378∗(V +40.14))) ; if V < −40.0,

0.3 ∗ exp(−0.0000002535∗V )
(1.0+exp(−0.1∗(V +32.0))) otherwise.

(A.18.12)

The kinetics of the j gate.
d(j)

d(time)
= (alpha j ∗ (1.0 − j) − beta j ∗ j) (A.18.13)

“L type Ca channel” component

The JWR model creates a new mathematical model to describe the L-type calcium channel that is based on the

experimentally observed mode-switching behaviour of the channel. Inactivation occurs as calcium ion binding
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induces the channel to switch (from mode normal) to a mode in which transitions to open states are extremely slow

(mode Ca). The channel has one voltage inactivation gate, y. As well as Ca, the channel is assumed permeable to

K ions also.

Initial values defined in this component

P Ca = 33.75× 10−6 mm · ms−1

P K = 1.0 × 10−9 mm · ms−1

i Ca L Ca half = −4.58× 10−3 µA · mm−2

O = 9.84546× 10−21

O Ca = 0.0

a = 2.0

b = 2.0

g = 2.0 ms−1

f = 0.3 ms−1

g = 0.0 ms−1

f = 0.0 ms−1

omega = 0.01 ms−1

C0 = 0.997208

C1 = 6.38897× 10−5

C2 = 1.535× 10−9

C3 = 1.63909× 10−14

C4 = 6.56337× 10−20

C Ca0 = 2.72826× 10−3

C Ca1 = 6.99215× 10−7

C Ca2 = 6.71989× 10−11

C Ca3 = 2.87031× 10−15

C Ca4 = 4.59752× 10−20

Equations defined in this component

Calculation of the calcium current component of the total channel current, given as the maximal current multiplied

by the voltage-dependent inactivation gate and the open probability of the channel based on the mode-switching

model.

i Ca L Ca = i Ca L Ca max ∗ y ∗ (O + O Ca) (A.18.14)

Calculation of the potassium current component of the total channel current.

i Ca L K = p k ∗ y ∗ (O + O Ca) ∗ V ∗ (F )
2.0

R ∗ T
∗
(

Ki ∗ exp
(

V ∗F
R∗T

)

− Ko
)

(

exp
(

V ∗F
R∗T

)

− 1.0
) (A.18.15)

The potassium permeability of the channel, which depends on the calcium current component.

p k =
P K

(

1.0 + i Ca L Ca max
i Ca L Ca half

) (A.18.16)

The maximal calcium current through the channel.

i Ca L Ca max = P Ca ∗ 4.0 ∗ V ∗ (F )
2.0

R ∗ T
∗
(

0.001 ∗ exp
(

2.0 ∗ V ∗ F
R∗T

)

− 0.341 ∗ Cao
)

(

exp
(

2.0 ∗ V ∗ F
R∗T

)

− 1.0
) (A.18.17)

Rate constants for state changes in mode normal.

alpha = 0.4 ∗ exp

(

(V + 12.0)

10.0

)

(A.18.18)

beta = 0.05 ∗ exp

(

(V + 12.0)

−13.0

)

(A.18.19)

Rate constants for state changes in mode Ca (corresponding to alpha-prime and beta-prime in the JRW paper).

alpha a = alpha ∗ a (A.18.20)
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beta b =
beta

b
(A.18.21)

Rate constant for switching between mode normal and mode Ca.

gamma = 0.1875 ∗ Ca SS (A.18.22)

The kinetics of the state transitions in mode normal. In the normal mode, the calcium channel is able to make the

transition to the open, conducting state (O) from the closed state (C) at a normal rate.
d(C0)

d(time)
= ((beta ∗ C1 + omega ∗ C Ca0) − (4.0 ∗ alpha + gamma) ∗ C0) (A.18.23)

d(C1)

d(time)
=
(

4.0 ∗ alpha ∗ C0 + 2.0 ∗ beta ∗ C2 +
omega

b
∗ C Ca1

)

− (beta + 3.0 ∗ alpha + gamma ∗ a) ∗ C1 (A.18.24)

d(C2)

d(time)
=

(

3.0 ∗ alpha ∗ C1 + 3.0 ∗ beta ∗ C3 +
omega

(b)2.0 ∗ C Ca2

)

−
(

beta ∗ 2.0 + 2.0 ∗ alpha + gamma ∗ (a)
2.0
)

∗ C2 (A.18.25)

d(C3)

d(time)
=

(

2.0 ∗ alpha ∗ C2 + 4.0 ∗ beta ∗ C4 +
omega

(b)3.0 ∗ C Ca3

)

−
(

beta ∗ 3.0 + alpha + gamma ∗ (a)
3.0
)

∗ C3 (A.18.26)

d(C4)

d(time)
=

(

alpha ∗ C3 + g ∗ O +
omega

(b)4.0 ∗ C Ca4

)

−
(

beta ∗ 4.0 + f + gamma ∗ (a)
4.0
)

∗ C4 (A.18.27)

d(O)

d(time)
= (f ∗ C4 − g ∗ O) (A.18.28)

The kinetics of the state transitions in mode Ca. Calcium binding to the Ca channel induces a conformational

change from normal mode to mode Ca. This effectively inhibits the conduction of calcium ions because in mode

Ca, the calcium channel makes the transition to the open, conducting state (O) extremely slowly.
d(C Ca0)

d(time)
= ((beta b ∗ C Ca1 + gamma ∗ C Ca0) − (4.0 ∗ alpha a + omega) ∗ C Ca0) (A.18.29)

d(C Ca1)

d(time)
= (4.0 ∗ alpha a ∗ C Ca0 + 2.0 ∗ beta b ∗ C Ca2 + gamma ∗ a ∗ C1)

−
(

beta b + 3.0 ∗ alpha a +
omega

b

)

∗ C Ca1 (A.18.30)

d(C Ca2)

d(time)
=
(

3.0 ∗ alpha a ∗ C Ca1 + 3.0 ∗ beta b ∗ C Ca3 + gamma ∗ (a)
2.0 ∗ C2

)

−
(

beta b ∗ 2.0 + 2.0 ∗ alpha a +
omega

(b)
2.0

)

∗ C Ca2 (A.18.31)
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d(C Ca3)

d(time)
=
(

2.0 ∗ alpha a ∗ C Ca2 + 4.0 ∗ beta b ∗ C Ca4 + gamma ∗ (a)
3.0 ∗ C3

)

−
(

beta b ∗ 3.0 + alpha a +
omega

(b)
3.0

)

∗ C Ca3 (A.18.32)

d(C Ca4)

d(time)
=
(

alpha a ∗ C Ca3 + g ∗ O Ca + gamma ∗ (a)4.0 ∗ C4
)

−
(

beta b ∗ 4.0 + f +
omega

(b)
4.0

)

∗ C Ca4 (A.18.33)

d(O Ca)

d(time)
= (f ∗ C Ca4 − g ∗ O Ca) (A.18.34)

“L type Ca channel y gate” component

The voltage-dependent inactivation gate for the L-type calcium channel - the y gate.

Initial values defined in this component

y = 0.998983

Equations defined in this component

The kinetics of the y gate.
d(y)

d(time)
=

(y infinity − y)

tau y
(A.18.35)

y infinity =





1.0
(

1.0 + exp
(

(V +55.0)
7.5

)) +
0.1

(

1.0 + exp
(

(−V +21.0)
6.0

))



 (A.18.36)

tau y =



20.0 +
600.0

(

1.0 + exp
(

(V +30.0)
9.5

))



 (A.18.37)

“time dependent potassium current” component

The time-dependent potassium current has an Xˆ2 dependence on it’s activation gate, and an Xi inactivation gate.

This channel is also assumed permeable to sodium ions.

Initial values defined in this component

g K max = 0.001128 mS · mm−2 P NaK = 0.01833

Equations defined in this component

Calculation of the maximal channel conductance, dependent on extracellular potassium concentration.

g K = g K max ∗
√

Ko

5.4
(A.18.38)
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The reversal potential of the channel.

E K =
R ∗ T

F
∗ ln

(

(Ko + P NaK ∗ Nao)

(Ki + P NaK ∗ Nai)

)

(A.18.39)

Calculation of the time-dependent potassium current.

i K = g K ∗ Xi ∗ (X)2.0 ∗ (V − E K) (A.18.40)

“time dependent potassium current X gate” component

The voltage- and time-dependent activation gate for the time-dependent potassium current - the X gate.

Initial values defined in this component

X = 0.000928836

Equations defined in this component

The opening rate of the X gate.

alpha X = 0.0000719 ∗ (V + 30.0)

(1.0 − exp (−0.148 ∗ (V + 30.0)))
(A.18.41)

The closing rate of the X gate.

beta X = 0.000131 ∗ (V + 30.0)

(−1.0 + exp (0.0687 ∗ (V + 30.0)))
(A.18.42)

The kinetics of the X gate.
d(X)

d(time)
= (alpha X ∗ (1.0− X) − beta X ∗ X) (A.18.43)

“time dependent potassium current Xi gate” component

The time-independent inactivation gate for the time-dependent potassium channel.

Equations defined in this component

Xi is the inward rectification parameter and is given by the following equation.

Xi =
1.0

(

1.0 + exp
(

(V −56.26)
32.1

)) (A.18.44)

“time independent potassium current” component

The time-independent potassium current.

Initial values defined in this component

g K1 max = 7.5× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the maximal channel conductance, dependent on extracellular potassium concentration.

g K1 = g K1 max ∗
√

Ko

5.4
(A.18.45)

The following equation calculates the reversal potential of the time-independent potassium current.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.18.46)

Calculate the current.

i K1 = g K1 ∗ K1 infinity ∗ (V − E K1) (A.18.47)

“time independent potassium current K1 gate” component

The time constants for the K1 gate are small enough that the gating variable can be approximated with it’s steady-

state value.

Equations defined in this component

The opening rate of the K1 gate.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1)− 59.215)))
(A.18.48)

The closing rate of the K1 gate.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.18.49)

The steady-state approximation for the K1 gating kinetics.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.18.50)

“plateau potassium current” component

The plateau potassium current component contains the equations which describe the contribution of a time inde-

pendent [K]o-insensitive channel at plateau potentials.

Initial values defined in this component

g Kp = 8.28× 10−5 mS · mm−2

Equations defined in this component

The channel’s reversal potential.

E Kp = E K1 (A.18.51)
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The activation variable.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.18.52)

Calculation of the plateau potassium current.

i Kp = g Kp ∗Kp ∗ (V − E Kp) (A.18.53)

“Na Ca exchanger” component

The Na/Ca exchanger component describes how a protein molecule in the cell surface membrane transports Na

ions into the cytosol and exports Ca ions into the extracellular volume, in a ratio of 3:1 respectively.

Initial values defined in this component

k NaCa = 50.0 µA · mm−2

K mNa = 87.5 mM

K mCa = 1.38 mM

k sat = 0.1

eta = 0.35

Equations defined in this component

Calculation of the Na/Ca exchanger current.

i NaCa = k NaCa ∗ 1.0
(

(K mNa)
3.0

+ (Nao)
3.0
) ∗ 1.0

(K mCa + Cao)

∗ 1.0
(

1.0 + k sat ∗ exp
(

(eta − 1.0) ∗ V ∗ F
R∗T

))

∗
(

exp

(

eta ∗ V ∗ F

R ∗ T

)

∗ (Nai)
3.0 ∗ Cao − exp

(

(eta − 1.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
3.0 ∗ Cai

)

(A.18.54)

“sarcolemmal calcium pump” component

The sarcolemmal calcium pump is an additional mechanism for removing Ca ions from the myoplasm to help

maintain a low intracellular calcium concentration when at rest.

Initial values defined in this component

K mpCa = 0.5× 10−3 mM I pCa = 1.15× 10−2 µA · mm−2

Equations defined in this component

The calcium pump current.

i p Ca = I pCa ∗ Cai

(K mpCa + Cai)
(A.18.55)
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“sodium background current” component

The sodium background current is a time-independent diffusion of Na ions down their electrochemical gradient,

through the cell surface membrane into the cytosol.

Initial values defined in this component

g Nab = 1.41× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background sodium channel.

E NaN = E Na (A.18.56)

Calculation of the background sodium current.

i Na b = g Nab ∗ (V − E NaN) (A.18.57)

“calcium background current” component

The calcium background current describes a time-independent diffusion of Ca ions down their electrochemical

gradient through the cell surface membrane into the cytosol. However, calcium is not allowed to accumulate to

high intracellular concentrations. This influx is balanced by the Ca ion extrusion through the Na-Ca exchanger and

the sarcolemmal Ca pump.

Initial values defined in this component

g Cab = 6.032× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background calcium current.

E CaN =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.18.58)

Calculation of the background calcium current.

i Ca b = g Cab ∗ (V − E CaN) (A.18.59)

“sodium potassium pump” component

The sodium potassium pump is an active protein in the cell membrane which couples the free energy released by

the hydrolysis of ATP to the movement of Na and K ions against their electrochemical gradients through the cell

membrane.

Initial values defined in this component

I NaK = 0.013 µA · mm−2

K mNai = 10.0 mM

K mKo = 1.5 mM
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Equations defined in this component

Calculation of the Na/K pump current.

f NaK =
1.0

((

1.0 + 0.1245 ∗ exp
(

−0.1∗V ∗F
R∗T

))

+ 0.0365 ∗ sigma ∗ exp
(

−V ∗F
R∗T

)) (A.18.60)

sigma =
1.0

7.0
∗
(

exp

(

Nao

67.3

)

− 1.0

)

(A.18.61)

i NaK = I NaK ∗ f NaK ∗ 1.0
(

1.0 +
(

K mNai
Nai

)1.5
) ∗ Ko

(Ko + K mKo)
(A.18.62)

“non specific calcium activated current” component

The nonspecific calcium activated current describes a channel which is activated by calcium ions, but is permeable

to only sodium and potassium ions.

Initial values defined in this component

K m ns Ca = 1.2× 10−3 mM P ns Ca = 1.75× 10−9 mm · ms−1

Equations defined in this component

The reversal potential of the channel.

EnsCa =
R ∗ T

F
∗ ln

(

(Ko + Nao)

(Ki + Nai)

)

(A.18.63)

The potential offset for the channel.

V nsCa = (V − EnsCa) (A.18.64)

The sodium component of the channel’s current.

i ns Na = I ns Na ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.18.65)

The potassium component of the channel’s current.

i ns K = I ns K ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.18.66)

The total nonspecific calcium activated current.

i ns Ca = (i ns Na + i ns K) (A.18.67)

The maximal sodium component current.

I ns Na = P ns Ca ∗ (1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Nai ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Nao
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.18.68)

The maximal potassium component current.

I ns K = P ns Ca ∗ (1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Ki ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Ko
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.18.69)
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“calcium subsystem” component

In the JRW model, subcellular calcium regulatory mechanisms are described in detail. There are six calcium fluxes

to consider; J rel, J leak, J up, J tr, J xfer and J trpn. In addition, three membrane current fluxes are also necessary

for the formulation of calcium regulation; i p Ca, i Ca L Ca and i NaCa.

Initial values defined in this component

Cai = 9.94893× 10−11 mM

Ca SS = 1.36058× 10−4 mM

Am = 546.69 mm−1

V myo = 0.92

P O1 = 1.19168× 10−3

P O2 = 6.30613× 10−9

P C1 = 0.762527

P C2 = 0.236283

v1 = 1.8 ms−1

v2 = 0.58× 10−4 ms−1

v3 = 1.8 × 10−3 mM · ms−1

nCa = 4.0

mCa = 3.0

k a plus = 1.215× 1010 mM−4 · ms−1

k a minus = 0.1425 ms−1

k b plus = 4.05× 107 mM−3 · ms−1

k b minus = 1.930 ms−1

k c plus = 0.018 ms−1

k c minus = 0.0008 ms−1

k htrpn plus = 20.0 mM−1 · ms−1

k htrpn minus = 0.066× 10−3 ms−1

k ltrpn plus = 40.0 mM−1 · ms−1

k ltrpn minus = 0.04 ms−1

tau tr = 34.48 ms

Ca JSR = 1.17504 mM

Ca NSR = 1.243891 mM

K mup = 0.5× 10−3 mM

K mCMDN = 2.38× 10−3 mM

K mCSQN = 0.8 mM

tau xfer = 3.125 ms

HTRPN tot = 0.14 mM

LTRPN tot = 0.07 mM

HTRPNCa = 0.13598 mM

LTRPNCa = 0.00635 mM

CSQN tot = 15.0 mM

CMDN tot = 0.05 mM

Equations defined in this component

Calculate some volume fractions as proportions of the total myoplasmic volume.

V SS = 5.828× 10−5 ∗ V myo (A.18.70)

V NSR = 0.081 ∗ V myo (A.18.71)

V JSR = 0.00464 ∗ V myo (A.18.72)

The calcium release flux from the JSR into the restricted subspace is governed by the fraction of RyR channels in

an open state.

J rel = v1 ∗ RyR open ∗ (Ca JSR − Ca SS) (A.18.73)

The ”open” RyR’s are those P O1 and P O2 states.

RyR open = (P O1 + P O2) (A.18.74)
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The kinetic equations governing the transitions between the four states used to model the RyR’s.
d(P C1)

d(time)
=
(

−k a plus ∗ (Ca SS)
nCa ∗ P C1 + k a minus ∗ P O1

)

(A.18.75)

d(P O1)

d(time)
=

[

k a plus ∗ (Ca SS)
nCa ∗ P C1

−
(

k a minus ∗ P O1 + k b plus ∗ (Ca SS)mCa ∗ P O1 + k c plus ∗ P O1
)

]

+ k b minus ∗ P O2 + k c minus ∗ P C2 (A.18.76)
d(P O2)

d(time)
=
(

k b plus ∗ (Ca SS)
mCa ∗ P O1 − k b minus ∗ P O2

)

(A.18.77)

d(P C2)

d(time)
= (k c plus ∗ P O1 − k c minus ∗ P C2) (A.18.78)

Calculate the leakage flux from the NSR into the myoplasm.

J leak = v2 ∗ (Ca NSR − Cai) (A.18.79)

Calculate the uptake flux into the NSR from the myoplasm.

J up = v3 ∗ (Cai)
2.0

(

(K mup)
2.0

+ (Cai)
2.0
) (A.18.80)

Calculate the translocation flux between the uptake (NSR) and release (JSR) stores.

J tr =
(Ca NSR − Ca JSR)

tau tr
(A.18.81)

Calculate the calcium flux from the diffusion of calcium out of the restricted subspace into the myoplasm.

J xfer =
(Ca SS − Cai)

tau xfer
(A.18.82)

The kinetics of calcium binding to the myoplasm buffer troponin - both high and low affinity binding sites.

J htrpn = (k htrpn plus ∗ Cai ∗ (HTRPN tot − HTRPNCa)− k htrpn minus ∗ HTRPNCa)

(A.18.83)

J ltrpn = (k ltrpn plus ∗ Cai ∗ (LTRPN tot − LTRPNCa)− k ltrpn minus ∗ LTRPNCa) (A.18.84)

J trpn = (J htrpn + J ltrpn) (A.18.85)

Keep track of the concentration of calcium ions bound to high and low affinity troponin binding sites.
d(HTRPNCa)

d(time)
= J htrpn (A.18.86)

d(LTRPNCa)

d(time)
= J ltrpn (A.18.87)

Calcium is buffered by calmodulin (CMDN) in the subspace and myoplasm, and by calsequestrin (CSQN) in the

JSR. These are fast buffers and their effect is modelled using the rapid buffering approximation.

Bi =
1.0

(

1.0 + CMDN tot∗K mCMDN

((K mCMDN+Cai))2.0

) (A.18.88)
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B SS =
1.0

(

1.0 + CMDN tot∗K mCMDN

((K mCMDN+Ca SS))2.0

) (A.18.89)

B JSR =
1.0

(

1.0 + CSQN tot∗K mCSQN

((K mCSQN+Ca JSR))2.0

) (A.18.90)

The kinetics of the calcium ion concentration changes in the various compartments of the model.

d(Cai)

d(time)
= Bi ∗

[

(J leak + J xfer)

−
(

J up + J trpn + ((i Ca b − 2.0 ∗ i NaCa) + i p Ca) ∗ Am

2.0 ∗ V myo ∗ F

)]

(A.18.91)

d(Ca SS)

d(time)
= B SS ∗

((

J rel ∗ V JSR

V SS
− J xfer ∗ V myo

V SS

)

− i Ca L Ca ∗ Am

2.0 ∗ V SS ∗ F

)

(A.18.92)
d(Ca JSR)

d(time)
= B JSR ∗ (J tr − J rel) (A.18.93)

d(Ca NSR)

d(time)
=

(

(J up − J leak) ∗ V myo

V NSR
− J tr ∗ V JSR

V NSR

)

(A.18.94)

“ionic concentrations” component

The descriptions of the rate of change of [Na]i and [K]i are the same as the LR-II model.

Initial values defined in this component

Nai = 10.2042 mM

Nao = 140.0 mM

Ki = 143.727 mM

Ko = 5.4 mM

Cao = 1.8 mM

Equations defined in this component

The rate of change of intracellular sodium ion concentration.
d(Nai)

d(time)
= − (i Na + i Na b + i ns Na + i NaCa ∗ 3.0 + i NaK ∗ 3.0) ∗ Am

V myo ∗ F
(A.18.95)

The rate of change of intracellular potassium ion concentration.
d(Ki)

d(time)
= − (i Ca L K + i K + i K1 + i Kp + i ns K + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.18.96)

The rate of change of extracellular potassium ion concentration.
d(Ko)

d(time)
= (i Ca L K + i K + i K1 + i Kp + i ns K + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.18.97)
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A.19 nash 1998

This is a CellML version of the steady-state length-tension-calcium relationship described by Martyn Nash in his

thesis.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in

this component. With this model, we expect the extension ratio to be controlled externally for non-isometric

simulations.

Initial values defined in this component

time = 0.0 ms

lambda = 1.0

Ca max = 1.0 mM

beta = 1.45

c50 = 0.5 mM

h = 3.0

T ref = 100.0 kPa

Equations defined in this component

A dummy equation that we simply use to make grabbing the value in CMISS much easier.

lambdaC = lambda (A.19.1)

We need a dummy ODE to establish time as the bound variable to get things to work properly with CMISS.
d(V m)

d(time)
= 0.0 (A.19.2)

“active contraction” component

Initial values defined in this component

T = 0.0 kPa Ca actn = 0.0 mM

Equations defined in this component

The kinetics of the active tension development using the steady-state description from the Nash model.

T =
Ca max ∗ (Ca actn)

h

(

(Ca actn)
h

+ (c50)
h
) ∗ T ref ∗ (1.0 + beta ∗ (lambda− 1.0)) (A.19.3)

Here we define the calcium activation transient which simply goes from 0 to 1 and back to 0 over a period of 2ms.

Ca actn =



















time ∗Ca max; if time ≤ 5.0,

(2.0 − time) ∗ Ca max; if time ≤ 2.0,

0.0 otherwise.

(A.19.4)
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A.20 noble model 1998

This is the CellML description of Noble’s 1998 improved guinea-pig ventricular cell model. It incorporates a

diadic space, rapid and slow potassium currents and length- and tension-dependent processes.

Reference: Noble, D., Varghese, A., Kohl, P. & Noble, P. (1998), ‘Improved guinea-pig ventricular cell model

incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes’, Canadian Journal of

Cardiology 14, 123–134.

“environment” component

This component is used to declare variables that are used by all or most of the other components, in this case just

‘time’.

“membrane” component

This component is the ‘root’ node of our model. It defines the action potential variable ‘V’.

Initial values defined in this component

V = −92.499 mV

R = 8314.472 pJ · nmol−1 · K−1

T = 310.0 K

F = 96485.0 nC · nmol−1

Cm = 0.014651 µF · mm−2

Equations defined in this component

A dummy equation used to get the total stimulus current into CMISS.

IStimC = IStim (A.20.1)

The ODE governing the membrane potential – given by the summation of the ionic currents and an applied stimu-

lus.
d(V )

d(time)
=

[

IStim−
(

i K1 + i to + i K + i K ATP + i b K + i NaK + i Na + i b Na

+ i p Na + i NaCa + i NaCa ds + i Ca L Ca + i Ca L Ca ds + i Ca L K + i Ca L K ds

+ i Ca L Na + i Ca L Na ds + i b Ca + i Na stretch + i K stretch + i Ca stretch

+ i Ns stretch + i An stretch + i K ACh

)]/

Cm (A.20.2)

“reversal potentials” component

A component that conveniently keeps the reversal potential calculations together.

Initial values defined in this component

P kna = 0.03 P nak = 0.12
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Equations defined in this component

Calculation of the sodium reversal potential from the current intra- and extracellular concentration of sodium ions.

E Na =
R ∗ T

F
∗ ln

(

Na o

Na i

)

(A.20.3)

Calculation of the potassium reversal potential from the current intra- and extracellular concentration of potassium

ions.

E K =
R ∗ T

F
∗ ln

(

K o

K i

)

(A.20.4)

Calculation of the potassium reversal potential for the slow component of the delayed rectifier.

E Ks =
R ∗ T

F
∗ ln

(

(K o + P kna ∗ Na o)

(K i + P kna ∗ Na i)

)

(A.20.5)

Calculation of the calcium reversal potential.

E Ca = 0.5 ∗ R ∗ T

F
∗ ln

(

Ca o

Ca i

)

(A.20.6)

Calculation of the reversal potential for the fast sodium channel.

E mh =
R ∗ T

F
∗ ln

(

(Na o + P nak ∗ K o)

(Na i + P nak ∗ K i)

)

(A.20.7)

“time independent potassium current” component

Description of the time independent inward potassium current.

Initial values defined in this component

K mk1 = 10.0 mM g K1 = 77.11× 10−3 mS · mm−2

Equations defined in this component

Calculation of the time independent potassium current.

i K1 = g K1 ∗ K o

(K o + K mk1)
∗ (V − E K)
(

1.0 + exp
(

1.25∗(V −(E K+10.0))
R∗T

F

)) (A.20.8)

“total potassium current” component

A component to group the potassium currents.

Equations defined in this component

Simple summation of the individual potassium currents into a single current.

i K = (i Kr + i Ks + i KNa) (A.20.9)
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“rapid time dependent potassium current” component

The rapid component of the delayed rectifier current.

Initial values defined in this component

g Kr1 = 0.32386× 10−3 mS · mm−2 g Kr2 = 0.20049× 10−3 mS · mm−2

Equations defined in this component

Calculation of the rapid component of the delayed rectifier current.

i Kr = (g Kr1 ∗ Xr1 + g Kr2 ∗ Xr2) ∗ 1.0
(

1.0 + exp
(

(V +9.0)
22.4

)) ∗ (V − E K) (A.20.10)

“rapid time dependent potassium current Xr1 gate” component

The fast activation gate for the rapid component of the delayed rectifier.

Initial values defined in this component

Xr1 = 0.01428

Equations defined in this component

The gating kinetics for the fast gate of the rapid component of the delayed rectifier.

d(Xr1)

d(time)
=





0.05
(

1.0 + exp
(

−(V −5.0)
9.0

)) ∗ (1.0− Xr1) − 0.00005 ∗ exp

(

− (V − 20.0)

15.0

)

∗ Xr1



 (A.20.11)

“rapid time dependent potassium current Xr2 gate” component

The slow gate of the rapid component of the delayed rectifier.

Initial values defined in this component

Xr2 = 0.5

Equations defined in this component

Gating kinetics for the slow gate of the rapid component of the delayed rectifier.

d(Xr2)

d(time)
=





0.05
(

1.0 + exp
(

−(V −5.0)
9.0

)) ∗ (1.0 − Xr2) − 0.0004 ∗ exp

(

−
(

(V + 30.0)

30.0

)3.0
)

∗ Xr2





(A.20.12)

“slow time dependent potassium current” component

The slow component of the delayed rectifier current.
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Initial values defined in this component

g Ks = 0.40097× 10−3 mS · mm−2

Equations defined in this component

Calculation of the slow component current of the delayed rectifier.

i Ks = g Ks ∗ (Xs)2.0 ∗ (V − E Ks) (A.20.13)

“slow time dependent potassium current Xs gate” component

The gate for the slow component of the delayed rectifier current.

Initial values defined in this component

Xs = 0.5

Equations defined in this component

The gating kinetics for the slow component of the delayed rectifier current.

d(Xs)

d(time)
=





0.014
(

1.0 + exp
(

−(V −40.0)
9.0

)) ∗ (1.0 − Xs) − Xs ∗ 0.001 ∗ exp

(−V

45.0

)



 (A.20.14)

“potassium background current” component

Background potassium current.

Initial values defined in this component

g bk = 0.0 mS · mm−2

Equations defined in this component

Calculation of the background potassium current.

i b K = g bk ∗ (V − E K) (A.20.15)

“ATP dependent potassium current” component

An ATP dependent potassium current. Included here for completeness, but this current is only used when modelling

ischaemia - and this version of the model has not been tested for this.

Initial values defined in this component

g K ATP = 0.0 mS · mm−2

K ATP = 0.1 mM

ATP = 5.0 mM
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Equations defined in this component

Calculation of the ATP dependent potassium current.

i K ATP =
g K ATP ∗ (V + 80.0)
(

1.0 +
(

ATP
K ATP

)2.0
) (A.20.16)

“sodium activated potassium current” component

A sodium activated potassium current. Again, included for completeness but generally not used and untested.

Initial values defined in this component

g K Na = 0.0 mS · mm−2 K kna = 20.0 mM

Equations defined in this component

Calculation of the sodium activated potassium current.

i KNa = g K Na ∗ Na i

(Na i + K kna)
∗ (V − E K) (A.20.17)

“fast sodium current” component

The fast sodium current - the driving force of the upstroke of the cardiac action potential.

Initial values defined in this component

g Na = 385.5× 10−3 mS · mm−2

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)3.0 ∗ h ∗ (V − E mh) (A.20.18)

“fast sodium current m gate” component

The activation gate for the fast sodium current.

Initial values defined in this component

m = 0.0017

Equations defined in this component

The gating kinetics for the activation gate of the fast sodium current.
d(m)

d(time)
= (alpha ∗ (1.0 − m) − beta ∗ m) (A.20.19)
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Calculation of the opening rate of the activation gate for the fast sodium current.

alpha =







2.0; if | (V + 41.0) | < 0.1 × 10−4,

0.2∗(V +41.0)
(1.0−exp(−0.1∗(V +41.0))) otherwise.

(A.20.20)

Calculation of the closing rate of the activation gate for the fast sodium current.

beta = 8.0 ∗ exp (−0.055556 ∗ (V + 66.0)) (A.20.21)

“fast sodium current h gate” component

The inactivation gate for the fast sodium current.

Initial values defined in this component

h = 0.9939474

Equations defined in this component

The gating kinetics for the inactivation gate of the fast sodium current.
d(h)

d(time)
= 0.02 ∗ exp (−0.125 ∗ (V + 75.0)) ∗ (1.0− h)

− h ∗ 2.0

(1.0 + 320.0 ∗ exp (−0.1 ∗ (V + 75.0)))
(A.20.22)

“persistent sodium current” component

The persistent sodium current.

Initial values defined in this component

g pna = 0.61688× 10−3 mS · mm−2

Equations defined in this component

Calculation of the persistent sodium current.

i p Na = g pna ∗ 1.0
(

1.0 + exp
(

− (V +52.0)
8.0

)) ∗ (V − E Na) (A.20.23)

“sodium background current” component

The background sodium current.

Initial values defined in this component

g bna = 0.092532× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the sodium background current.

i b Na = g bna ∗ (V − E Na) (A.20.24)

“L type Ca channel” component

This component describes an inward ionic current which is the sum of calcium, sodium and potassium ions through

the membrane channel. The channel has one activation gate (d) and two inactivation gates (f and f2 (or f2ds in the

diadic space)). A fraction of these channels (ICaLfract) open into the diadic subspace, with the remainder being

evenly distributed throughout the membrane area.

Initial values defined in this component

P ca = 15.422× 10−3 µA · mm−2 · mM−1

P caK = 0.002

P caNa = 0.01

ICaLfract = 1.0

K cachoff = 0.001 mM

K AChICaL = 0.2 × 10−6 mM

Equations defined in this component

The calcium ion component of the total current through the channel into the bulk myoplasm.

i Ca L Ca = (1.0− ICaLfract) ∗ 4.0 ∗ P ca ∗ d ∗ f ∗ f2 ∗
(V −50.0)

R∗T

F
(

1.0− exp
(

−(V −50.0)
R∗T

2.0∗F

))

∗
(

Ca i ∗ exp

(

50.0
R∗T
2.0∗F

)

− Ca o ∗ exp

(

− (V − 50.0)
R∗T
2.0∗F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.25)

The potassium ion component of the total current through the channel into the bulk myoplasm.

i Ca L K = (1.0− ICaLfract) ∗ P caK ∗ P ca ∗ d ∗ f ∗ f2

∗
(

K i ∗ exp

(

50.0
R∗T

F

)

− K o ∗ exp

(

− (V − 50.0)
R∗T

F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.26)

The sodium ion component of the total current through the channel into the bulk myoplasm.

i Ca L Na = (1.0 − ICaLfract) ∗ P caNa ∗ P ca ∗ d ∗ f ∗ f2

∗
(

Na i ∗ exp

(

50.0
R∗T

F

)

− Na o ∗ exp

(

− (V − 50.0)
R∗T

F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.27)

The calcium ion component of the total current through the channel into the diadic subspace.

i Ca L Ca ds = ICaLfract ∗ 4.0 ∗ P ca ∗ d ∗ f ∗ f2ds ∗
(V −50.0)

R∗T

F
(

1.0− exp
(

−(V −50.0)
R∗T

2.0∗F

))

∗
(

Ca ds ∗ exp

(

50.0
R∗T
2.0∗F

)

− Ca o ∗ exp

(

− (V − 50.0)
R∗T
2.0∗F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.28)
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The potassium ion component of the total current through the channel into the diadic subspace.

i Ca L K ds = ICaLfract ∗ P caK ∗ P ca ∗ d ∗ f ∗ f2ds

∗
(

K i ∗ exp

(

50.0
R∗T

F

)

− K o ∗ exp

(

− (V − 50.0)
R∗T

F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.29)

The sodium ion component of the total current through the channel into the diadic subspace.

i Ca L Na ds = ICaLfract ∗ P caNa ∗ P ca ∗ d ∗ f ∗ f2ds

∗
(

Na i ∗ exp

(

50.0
R∗T

F

)

− Na o ∗ exp

(

− (V − 50.0)
R∗T

F

))

∗
(

1.0 − ACh

(ACh + K AChICaL)

)

(A.20.30)

“L type Ca channel d gate” component

The activation gate of the L-type calcium channel.

Initial values defined in this component

d = 0.0

Equations defined in this component

The gating kinetics for the activation gate.
d(d)

d(time)
= (alpha ∗ (1.0− d) − beta ∗ d) (A.20.31)

The opening rate for the activation gate.

alpha =







0.36; if | (V + 19.0) | < 1.0× 10−3,

0.09∗(V +19.0)

(1.0−exp(−(V +19.0)
4.0 ))

otherwise.
(A.20.32)

The closing rate for the activation gate.

beta =







0.36; if | (V + 19.0) | < 1.0 × 10−3,

−0.036∗(V +19.0)

(1.0−exp( (V +19.0)
10.0 ))

otherwise.
(A.20.33)

“L type Ca channel f gate” component

The first inactivation gate for the L-type calcium channel.

Initial values defined in this component

f = 1.0

Equations defined in this component

The gating kinetics for the first inactivation gate.
d(f)

d(time)
= (alpha ∗ (1.0− f) − beta ∗ f) (A.20.34)
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The opening rate for the inactivation gate.

alpha =







0.0075; if | (V + 34.0) | < 1.0× 10−3,

−0.001875 ∗ (V +34.0)

(1.0−exp( (V +34.0)
4.0 ))

otherwise.
(A.20.35)

The closing rate for the inactivation gate.

beta =
0.0036

(

1.0 + exp
(

− (V +34.0)
4.0

)) (A.20.36)

“L type Ca channel f2 gate” component

The second inactivation gate for L-type calcium channels in the membrane outside the diadic subspace.

Initial values defined in this component

f2 = 1.0 CaInact = 0.02 ms−1

Equations defined in this component

The gating kinetics for the inactivation gate.
d(f2)

d(time)
= CaInact ∗

(

1.0 −
(

Ca i

(K cachoff + Ca i)
+ f2

))

(A.20.37)

“L type Ca channel f2ds gate” component

The second inactivation gate for L-type calcium channels in the membrane when open into the diadic subspace.

Initial values defined in this component

f2ds = 1.0

K dsoff = 0.001 mM

CaInactDS = 0.02 ms−1

Equations defined in this component

The gating kinetics for the inactivation gate.
d(f2ds)

d(time)
= CaInactDS ∗

(

1.0−
(

Ca ds

(K dsoff + Ca ds)
+ f2ds

))

(A.20.38)

“calcium background current” component

The background calcium current.

Initial values defined in this component

g bca = 0.038555× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the background calcium current.

i b Ca = g bca ∗ (V − E Ca) (A.20.39)

“transient outward current” component

The doubly gated transient outward current.

Initial values defined in this component

g to = 0.77100× 10−3 mS · mm−2 g tos = 0.0

Equations defined in this component

Evaluation of the transient outward current.

i to = g to ∗ (g tos + s ∗ (1.0 − g tos)) ∗ r ∗ (V − E K) (A.20.40)

“transient outward current s gate” component

The first gate of the transient outward current.

Initial values defined in this component

s = 0.9950485

Equations defined in this component

The gating kinetics.

d(s)

d(time)
=



0.000033 ∗ exp

(−V

17.0

)

∗ (1.0 − s) − 0.033
(

1.0 + exp
(

−(V +10.0)
8.0

)) ∗ s



 (A.20.41)

“transient outward current r gate” component

The second of the two gates for the transient outward current.

Initial values defined in this component

r = 0.0

Equations defined in this component

The gating kinetics for the r gate.
d(r)

d(time)
= 0.333 ∗ (r ss − r) (A.20.42)
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Calculation of the steady-state component of the gating kinetics for the r gate.

r ss =
1.0

(1.0 + exp (−0.2 ∗ (V + 4.0)))
(A.20.43)

“ACh dependent potassium current” component

Acetylcholine (ACh) dependent potassium current. Once more, this current has been included for completeness

with respect to the original publication but is usually left out of simulations. It is useful for simulating specific

cellular conditions, but this formulation has not been tested.

Initial values defined in this component

g KACh = 0.0 mS · mm−2

ACh = 0.0 mM

K ACh = 0.2795× 10−6 mM

K KACh = 10.0 mM

Equations defined in this component

Evaluation of the ACh dependent potassium current.

i K ACh = g KACh ∗ K o

(K o + K KACh)
∗ x ACh1 ∗ x ACh2

∗ (ACh)
1.4969

(

(ACh)
1.4969

+ (K ACh)
1.4969

) ∗ (V − E K)
(

1.0 + exp
(

0.4∗(V −(E K+140.0))
R∗T

F

)) (A.20.44)

“ACh dependent potassium current xACh1 gate” component

The first of two gates for the ACh dependent potassium current.

Initial values defined in this component

x ACh1 = 0.5 alpha ACh = 0.003684211 ms−1

Equations defined in this component

Gating kinetics for the first gate.

d(x ACh1)

d(time)
=



alpha ACh ∗ (1.0− x ACh1) − 0.00582
(

1.0 + exp
(

− (V +50.0)
15.0

)) ∗ x ACh1



 (A.20.45)

“ACh dependent potassium current xACh2 gate” component

The second of the two gates for the ACh dependent potassium current.

Initial values defined in this component

x ACh2 = 0.5 alpha ACh = 0.07309924 ms−1
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Equations defined in this component

Gating kinetics for the second gate.

d(x ACh2)

d(time)
=



alpha ACh ∗ (1.0 − x ACh2) − 0.12
(

1.0 + exp
(

− (V +50.0)
15.0

)) ∗ x ACh2



 (A.20.46)

“sodium potassium pump” component

The sodium potassium pump.

Initial values defined in this component

i NaK max = 107.95× 10−3 µA · mm−2

K mk = 1.0 mM

K mNa = 40.0 mM

Equations defined in this component

Calculation of the sodium potassium pump current.

i NaK = i NaK max ∗ K o

(K o + K mk)
∗ Na i

(Na i + K mNa)
(A.20.47)

“sodium calcium pump” component

The sodium calcium exchanger. A fraction of the Na-Ca exchangers (INaCaFract) are assumed to emmpty into the

diadic subspace, while the remainder of the channels open into the bulk cytosol.

Initial values defined in this component

K NaCa = 0.07711× 10−3 µA · mm−2 · mM−4

d NaCa = 0.0 mM−4

gamma = 0.5

INaCaFract = 0.001

Equations defined in this component

Calculation of the sodium calcium exchanger current for the channels exposed to the bulk myoplasm.

i NaCa = (1.0− INaCaFract) ∗K NaCa

∗

(

exp
(

gamma ∗ V
R∗T

F

)

∗ (Na i)
3.0 ∗ Ca o − exp

(

(gamma− 1.0) ∗ V
R∗T

F

)

∗ (Na o)
3.0 ∗ Ca i

)

(

1.0 + d NaCa ∗
(

Ca i ∗ (Na o)
3.0

+ Ca o ∗ (Na i)
3.0
))

∗ 1.0
(

1.0 + Ca i
0.0069

) (A.20.48)
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Calculation of the sodium calcium exchanger current for the channels opening into the diadic subspace.

i NaCa ds = INaCaFract ∗ K NaCa

∗

(

exp
(

gamma ∗ V
R∗T

F

)

∗ (Na i)
3.0 ∗ Ca o − exp

(

(gamma− 1.0) ∗ V
R∗T

F

)

∗ (Na o)
3.0 ∗ Ca ds

)

(

1.0 + d NaCa ∗
(

Ca ds ∗ (Na o)
3.0

+ Ca o ∗ (Na i)
3.0
))

∗ 1.0
(

1.0 + Ca ds
0.0069

) (A.20.49)

“calcium uptake from myoplasm to NSR” component

The sarcoplasmic reticulum calcium pump which transports calcium from the bulk myoplasm into the network SR.

Initial values defined in this component

K cyca = 0.0003 mM

K xcs = 0.4

K srca = 0.5 mM

Equations defined in this component

Calculation of the calcium uptake flux.

i up =

(

0.0004 ∗ Ca i − 0.00003 ∗ Ca up ∗ K cyca∗K xcs
K srca

)

(

Ca i + Ca up ∗ K cyca∗K xcs
K srca

+ K cyca ∗ K xcs + K cyca
) (A.20.50)

“calcium transfer from NSR to JSR” component

Diffusion down the concentration gradient to transfer calcium from the uptake stores in the network SR to the

release stores in the junctional SR.

Equations defined in this component

Calculation of the transfer flux between the uptake and release calcium stores.

i tr = 0.05 ∗ (Ca up− Ca rel) (A.20.51)

“length dependence” component

This component describes the addition of length dependence to the Noble models. However, in this implementation

of the model, it is unused - sarcomere length (SL) is a constant 0, resulting in the removal of length dependence

from the model.

Initial values defined in this component

SL = 0.0 mm

SLRef = 2.0 × 10−3 mm

gamma SR SL = 1.5 × 10+3 mm−1

gamma SAC SL = 2.5× 10+3 mm−1
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Equations defined in this component

Calculation of the scaling factor for the stretch activated currents based on the change in length from the reference

state.

f stretch =
1.0

(1.0 + exp (−2.0 ∗ gamma SAC SL ∗ (SL − SLRef)))
(A.20.52)

“calcium leak from SR” component

The length dependent leakage of calcium from the junctional SR into the cytolsol.

Initial values defined in this component

alpha SRleak = 0.00005 ms−1

Equations defined in this component

i leak = exp (gamma SR SL ∗ SL) ∗ alpha SRleak ∗ Ca rel (A.20.53)

“ds decay flux” component

Description of the diffusion of calcium out of the diadic subspace into the bulk cytosol.

Initial values defined in this component

alpha ca ds decay = 0.01 ms−1

Equations defined in this component

Calculation of the flux of calcium out of the diadic subspace.

i decay = alpha ca ds decay ∗ Ca ds (A.20.54)

“calcium release from SR” component

The calcium induced calcium release from the junctional SR into the bulk myoplasm. Assumed that activation of

calcium release sites by the diadic subspace calcium triggers calcium release in the whole cytosol.

Initial values defined in this component

ActivatorFract = 0.00191

ProductFract = 0.28546

K mca = 0.0005 mM

K mca ds = 0.01 mM

alpha rel = 0.25 ms−1
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Equations defined in this component

The fraction of release sites in the open state.

OpenReleaseChannelFract =

(

ActivatorFract

(ActivatorFract + 0.25)

)2.0

(A.20.55)

Calculation of the calcium release flux from the JSR into the cytosol.

i rel = alpha rel ∗ OpenReleaseChannelFract ∗ Ca rel (A.20.56)

Regulatory binding sites.

RegulatoryBindingSite =
((

Ca i

(Ca i + K mca)
+

(

1.0 − Ca i

(Ca i + K mca)

)

∗ Ca ds

(Ca ds + K mca ds)

))2.0

(A.20.57)

Fraction of release channels in the precursor state.

PrecursorFract = (1.0 − (ActivatorFract + ProductFract)) (A.20.58)

alpha act = 0.5 ∗ RegulatoryBindingSite (A.20.59)

alpha inact = (0.06 + 0.5 ∗ RegulatoryBindingSite) (A.20.60)

SR speed factor =







5.0; if V < −50.0,

1.0 otherwise.
(A.20.61)

d(ActivatorFract)

d(time)
= SR speed factor ∗ (alpha act ∗ PrecursorFract − alpha inact ∗ ActivatorFract)

(A.20.62)
d(ProductFract)

d(time)
= SR speed factor ∗ (alpha inact ∗ ActivatorFract − 0.001 ∗ ProductFract)

(A.20.63)

“stretch dependent Ca current” component

A stretch activated calcium current. Unused and untested in this implementation, but included for completeness.

Initial values defined in this component

g Ca stretch = 154.22× 10−3 mS · mm−2

Equations defined in this component

Calculation of the current.

i Ca stretch = g Ca stretch ∗ f stretch ∗ (V − E Ca) (A.20.64)

“stretch dependent K current” component

Stretch activated potassium current - unused and untested, but included for completeness.
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Initial values defined in this component

g K stretch = 154.22× 10−3 mS · mm−2

Equations defined in this component

Calculation of the current.

i K stretch = g K stretch ∗ f stretch ∗ (V − E K) (A.20.65)

“stretch dependent Na current” component

A stretch activated sodium current - unused and untested, but included for completeness.

Initial values defined in this component

g Na stretch = 154.22× 10−3 mS · mm−2

Equations defined in this component

Calculation of the current.

i Na stretch = g Na stretch ∗ f stretch ∗ (V − E Na) (A.20.66)

“stretch dependent Ns current” component

A non-specific stretch activated current. Not used and untested, but included for completeness.

Initial values defined in this component

g Ns stretch = 154.22× 10−3 mS · mm−2 E Ns stretch = −30.0 mV

Equations defined in this component

Calculation of the current.

i Ns stretch = g Ns stretch ∗ f stretch ∗ (V − E Ns stretch) (A.20.67)

“stretch dependent An current” component

A anion specific stretch ativated current - unused and untested, but included for completeness.

Initial values defined in this component

g An stretch = 154.22× 10−3 mS · mm−2 E An stretch = −20.0 mV

Equations defined in this component

Calculation of the current.

i An stretch = g An stretch ∗ f stretch ∗ (V − E An stretch) (A.20.68)
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“ionic concentrations” component

A convenient grouping of all the ionic concentration differential equations.

Initial values defined in this component

Na i = 5.5997 mM

Na o = 140.0 mM

K i = 139.3050 mM

K o = 4.0 mM

Ca i = 0.0000082 mM

Ca o = 2.0 mM

Ca ds = 0.0000171 mM

Ca up = 0.2872393 mM

Ca rel = 0.2846761 mM

Ca calmod = 0.0003258 mM

Ca troponin = 0.0002060 mM

CALM = 0.02 mM

TROP = 0.05 mM

alpha trop = 100.0 mM−1 · ms−1

beta trop = 0.2 ms−1

gamma trop SL = 2.5 × 10+3 mm−1

V i = 0.49

V rel = 0.1

V ds = 0.1

V up = 0.01

V ecs = 0.3

Am = 193.69 mm−1

Equations defined in this component

The rate of change of intracellular sodium concentration.

d(Na i)

d(time)
= − Am

V i ∗ F
∗
(

i Na + i p Na + i b Na ∗ Na o

140.0
+ i NaK ∗ 3.0 + i NaCa ∗ 3.0

+ i NaCa ds ∗ 3.0 + i Ca L Na + i Ca L Na ds + i Na stretch

)

(A.20.69)

The rate of change of intracellular potassium concentration.

d(K i)

d(time)
= − Am

V i ∗ F
∗
(

i K1 + i to + i b K + i K + i K stretch + i Ca L K

+ i Ca L K ds + i K ACh + i K ATP − i NaK ∗ 2.0

)

(A.20.70)

The rate of change of intracellular calcium concentration.
d(Ca i)

d(time)
=

[

− Am

2.0 ∗ V i ∗ F
∗ ((i Ca L Ca + i b Ca + i Ca stretch) − i NaCa ∗ 2.0)

+ i rel ∗ V rel

V i
+ i leak ∗ V rel

V i
+ i decay ∗ V ds

V i

]

− (i up + dy Ca calmod + dy Ca troponin)

(A.20.71)

The rate of change of calcium concentration in the diadic subspace.
d(Ca ds)

d(time)
=

(

− Am

2.0 ∗ V ds ∗ F
∗ (i Ca L Ca ds − i NaCa ds ∗ 2.0) − i decay

)

(A.20.72)

The rate of change of calcium concentration in the network SR uptake store.
d(Ca up)

d(time)
=

(

V i

V up
∗ i up− i tr

)

(A.20.73)
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The rate of change of calcium concentration in the junctional SR release store.
d(Ca rel)

d(time)
=

(

V up

V rel
∗ i tr − (i rel + i leak)

)

(A.20.74)

The rate of change of calcium bound to calmodulin.

dy Ca calmod = (100.0 ∗ Ca i ∗ (CALM − Ca calmod) − 0.05 ∗ Ca calmod) (A.20.75)

d(Ca calmod)

d(time)
= dy Ca calmod (A.20.76)

The rate of change of calcium bound to troponin.

dy Ca troponin = (alpha trop ∗ Ca i ∗ (TROP − Ca troponin) − beta trop ∗ Ca troponin) (A.20.77)

d(Ca troponin)

d(time)
= dy Ca troponin (A.20.78)

A.21 defibrillation model 1999

This is the CellML description of the defibrillation Beeler-Reuter model. The original Beeler-Reuter model was

modified by Drouhard and Roberge (1987) to improve the fast sodium kinetics. This model was then further

modified by Skouibine et al (1999) to handle potentials outside the range of normal physiological activity, allowing

the model to be used in defibrillation studies.

Reference: Skouibine, K. B., Trayanova, N. A. & Moore, P. K. (1999), ‘Anode/cathode make and break phenom-

ena in a model of defibrillation’, IEEE Trans Biomed Eng. 46, 769–777.

“environment” component

“membrane” component

The main component for the model, defining the transmembrane potential.

Initial values defined in this component

V = −86.9 mV C = 1.0 × 10−2 µF · mm−2

Equations defined in this component

The main differential equation for the model, specifing membrane potential as the summation of all ionic currents

and an applied stimulus current.
d(V )

d(time)
=

(I stim − (i Na + i s + i x1 + i K1))

C
(A.21.1)



308 CELLML MODELS

“fast sodium current” component

The fast sodium current, primarily responsible for the upstroke of the action potential.

Initial values defined in this component

g Na = 0.15 mS · mm−2 E Na = 40.0 mV

Equations defined in this component

Calculation of the fast sodium current.

i Na = g Na ∗ (m)
3.0 ∗ h ∗ (V − E Na) (A.21.2)

“fast sodium current m gate” component

The voltage-dependent activation gate for the fast sodium channel - the m gate.

Initial values defined in this component

m = 0.0

Equations defined in this component

The opening rate for the m gate.

alpha m =







890.9437890 ∗ exp((0.0486479∗V −4.8647916))
(1.0+5.93962526∗exp((0.0486479∗V −4.8647916))) ; if V > 100.0,

0.9 ∗ (V +42.65)
(1.0−exp((−0.22∗V −9.3830))) otherwise.

(A.21.3)

The closing rate for the m gate.

beta m =







1.437 ∗ exp ((−0.085 ∗ V − 3.37875)) ; if V > −85.0,

100.0
(1.0+0.486479∗exp((0.2597504∗V +22.0787804))) otherwise.

(A.21.4)

The kinetics of the m gate.
d(m)

d(time)
= (alpha m ∗ (1.0 − m) − beta m ∗ m) (A.21.5)

“fast sodium current h gate” component

The voltage-dependent inactivation gate for the fast sodium channel - the h gate.

Initial values defined in this component

h = 0.99
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Equations defined in this component

The opening rate for the h gate.

alpha h =







0.1 ∗ exp ((−0.193 ∗ V − 15.37245)) ; if V > −90.0,

(−12.0662845− 0.1422598 ∗ V ) otherwise.
(A.21.6)

The closing rate for the h gate.

beta h =
1.7

(1.0 + exp ((−0.095 ∗ V − 1.9475)))
(A.21.7)

The kinetics of the h gate.
d(h)

d(time)
= (alpha h ∗ (1.0 − h) − beta h ∗ h) (A.21.8)

“time independent outward current” component

The formula for the time independent outward potassium current of the defibrillation Beeler-Reuter model is the

same as for the original Beeler-Reuter (1977) model.

Equations defined in this component

i K1 = 0.35× 10−2

∗
(

4.0 ∗ (exp (0.04 ∗ (V + 85.0)) − 1.0)

(exp (0.08 ∗ (V + 53)) + exp (0.04 ∗ (V + 53.0)))
+ 0.2 ∗ (V + 23.0)

(1.0 − exp (−0.04 ∗ (V + 23.0)))

)

(A.21.9)

“time dependent outward current” component

While the governing equations for the time dependent outward potassium current are unchanged, the gating vari-

ables (alpha x1 and beta x1) are modified.

Equations defined in this component

i x1 = x1 ∗ 0.8× 10−2 ∗ (exp (0.04 ∗ (V + 77.0)) − 1.0)

exp (0.04 ∗ (V + 35.0))
(A.21.10)

“time dependent outward current x1 gate” component

The gating variable for the time-dependent outward potassium current - the x1 gate.

Initial values defined in this component

x1 = 0.0
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Equations defined in this component

The opening rate of the x1 gate.

alpha x1 =







151.7994692 ∗ exp((0.0654679∗V −26.1871448))
(1.0+1.5179947∗exp((0.0654679∗V −26.1871448))) ; if V > 400.0,

0.0005 ∗ exp((V ∗0.083+4.150))
(1.0+exp((0.057∗V +2.850))) otherwise.

(A.21.11)

The closing rate of the x1 gate.

beta x1 = 0.0013 ∗ exp ((V ∗ −0.06− 1.2))

(1.0 + exp ((−0.04 ∗ V − 0.8)))
(A.21.12)

The kinetics of the x1 gate.
d(x1)

d(time)
= (alpha x1 ∗ (1.0− x1) − beta x1 ∗ x1) (A.21.13)

“slow inward current” component

A minor change is made to the intracellular calcium ion tracking to limit the movement of calcium ions at large

potentials. In addition to these changes, a scale factor can be added to the time dependent d and f gates to allow the

scaling of the action potential duration. This enables a better representation of an action potential from ischemic

tissue.

Initial values defined in this component

g s = 9.0 × 10−4 mS · mm−2 Cai = 1.0× 10−4 mM

Equations defined in this component

Calculation of the reversal potential for the slow inward current.

E s = (−82.3− 13.0287 ∗ ln (Cai ∗ 0.001)) (A.21.14)

Calculation of the slow inward current.

i s = g s ∗ d ∗ f ∗ (V − E s) (A.21.15)

The time rate of change of intracellular calcium concentration.

d(Cai)

d(time)
=







0.0; if V > 200.0,

(i s ∗ −0.01 + 0.07 ∗ (0.0001− Cai)) otherwise.
(A.21.16)

“slow inward current d gate” component

The voltage-dependent activation gate for the slow inward current - the d gate.

Initial values defined in this component

d = 0.0 R d = 1.0
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Equations defined in this component

The opening rate of the d gate.

alpha d =
0.095 ∗ exp

(

− (V −5.0)
100.0

)

(

1.0 + exp
(

− (V −5.0)
13.89

)) (A.21.17)

The closing rate of the d gate.

beta d =
0.07 ∗ exp

(

− (V +44.0)
59.0

)

(

1.0 + exp
(

(V +44.0)
20.0

)) (A.21.18)

The kinetics of the d gate.
d(d)

d(time)
=

(

alpha d

R d
∗ (1.0− d) − beta d ∗ d

)

(A.21.19)

“slow inward current f gate” component

The voltage-dependent inactivation gate for the slow inward current - the f gate.

Initial values defined in this component

f = 1.0 R f = 1.0

Equations defined in this component

The opening rate of the f gate.

alpha f =
0.012 ∗ exp

(

− (V +28.0)
125.0

)

(

1.0 + exp
(

(V +28.0)
6.67

)) (A.21.20)

The closing rate of the f gate.

beta f =
0.0065 ∗ exp

(

− (V +30.0)
50.0

)

(

1.0 + exp
(

− (V +30.0)
5.0

)) (A.21.21)

The kinetics of the f gate.
d(f)

d(time)
=

(

alpha f

R f
∗ (1.0 − f) − beta f ∗ f

)

(A.21.22)

A.22 2004 FK HMT

A model which couples the Fenton-Karma activation model to the HMT mechanics model via a calcium transient

which depends on the slow inward current. The calcium transient definition is taken from the original Beeler-Reuter

(1977) model. The default parameter values provided correspond to the modified-LR I parameter set provided by

Fenton and Karma in their corrected Table I.
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Reference: Fenton, F. & Karma, A. (1998), ‘Vortex dynamics in three-dimensional continuous myocardium with

fiber rotation: Filament instability and fibrillation’, Chaos 8, 20–47.

Reference: Beeler, G. W. & Reuter, H. (1977), ‘Reconstruction of the action potential of ventricular myocardial

fibres’, Journal of Physiology 268, 177–210.

Reference: Hunter, P. J., McCulloch, A. D. & ter Keurs, H. E. (1998), ‘Modelling the mechanical properties of

cardiac muscle’, Progress in Biophysics & Molecular Biology 69, 289–331.

“environment” component

“membrane” component

The main component of the activation model, defining both the actual transmembrane potential and it’s non-

dimensional representation used in the model.

Initial values defined in this component

u = 0.0

Cm = 0.01 µF · mm−2

Vm = −85.0 mV

V o = −85.0 mV

V fi = 15.0 mV

Equations defined in this component

Convert the scaled currents to actual currents.

I fi = J fi ∗ Cm ∗ (V fi − V o) (A.22.1)

I si = J si ∗ Cm ∗ (V fi− V o) (A.22.2)

I so = J so ∗ Cm ∗ (V fi − V o) (A.22.3)

Calculate the non-dimensional membrane potential variable.

u =
(V m − V o)

(V fi − V o)
(A.22.4)

The standard membrane action potential formulation.
d(V m)

d(time)
=

(I stim− (I fi + I si + I so))

Cm
(A.22.5)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.22.6)

“p” component

Equivalent to the Heaviside step function H(u-uc) from the original paper.

Initial values defined in this component
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u c = 0.13

Equations defined in this component

p =







0.0; if u < u c,

1.0 otherwise.
(A.22.7)

“q” component

Equivalent to the Heaviside step function H(u-uv) from the original paper.

Initial values defined in this component

u v = 0.0

Equations defined in this component

q =







0.0; if u < u v,

1.0 otherwise.
(A.22.8)

“fast inward current” component

Component representing the scaled fast inward current.

Initial values defined in this component

g fi max = 0.058 mS · mm−2

Equations defined in this component

Calculation of the current’s time constant.

tau d =
Cm

g fi max
(A.22.9)

Calculation of the current scaled fast inward current.

J fi = −v ∗ p ∗ (u− u c) ∗ (1.0− u)

tau d
(A.22.10)

“fast inward current v gate” component

The inactivation-reactivation gate for the fast inward current. Analogous in role to the product of the h and j gates

of the BR and LR models.

Initial values defined in this component

v = 1.0 tau v1 minus = 18.2 ms
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tau v2 minus = 18.2 ms tau v plus = 10.0 ms

Equations defined in this component

The kinetics of the fast current’s inactivation-reactivation variable.
d(v)

d(time)
=

(

(1.0 − p) ∗ (1.0 − v)

tau v minus
− p ∗ v

tau v plus

)

(A.22.11)

Fenton and Karma found it necessary to define the time constant that governs the reactivation of the fast inward

current separately over two voltage ranges (uv<u<uc and u<uv).

tau v minus = (q ∗ tau v1 minus + (1.0 − q) ∗ tau v2 minus) (A.22.12)

“slow outward current” component

The slow outward current, responsible for the repolarisation of the membrane.

Initial values defined in this component

tau 0 = 12.5 ms tau r = 130.0 ms

Equations defined in this component

Calculation of the scaled slow outward current.

J so =

(

u ∗ (1.0− p)

tau 0
+

p

tau r

)

(A.22.13)

“slow inward current” component

The scaled slow inward current.

Initial values defined in this component

tau si = 127.0 ms

u csi = 0.85

k = 10.0

Equations defined in this component

Calculation of the slow inward current.

J si =
−w ∗ (1.0 + tanh(k ∗ (u − u csi)))

2.0 ∗ tau si
(A.22.14)

“slow inward current w gate” component

The inactivation-reactivation gate variable for the slow outward current, analogous to the f gate in the BR and LR

models.

Initial values defined in this component

w = 1.0

tau w minus = 80.0 ms

tau w plus = 1020.0 ms
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Equations defined in this component

The kinetics of the inactivation-reactivation gate for the slow inward current.
d(w)

d(time)
=

(

(1.0 − p) ∗ (1.0− w)

tau w minus
− p ∗ w

tau w plus

)

(A.22.15)

“calcium dynamics” component

Here we define the calcium dynamics given by Beeler & Reuter (1977). We are assuming that the slow inward

current component is the sole carrier of calcium ions. The BR model also included a calcium dependence in the

reversal potential of the slow inward current - should we add this somehow to the FK model ? We have also scaled

down the transient to lie within the 0.1 -> 1.0 uM range.

Initial values defined in this component

Cai = 1.0× 10−4 mM I si multiplier = −0.0085

Equations defined in this component

The intracellular calcium dynamics.
d(Cai)

d(time)
= (I si multiplier ∗ I si + 0.07 ∗ (0.0001− Cai)) (A.22.16)

“mechanics interface” component

Initial values defined in this component

lambda = 1.0

Cab max = 0.035 mM

rho0 = 100.0 ms−1 · mM−1

rho1 = 0.163 ms−1

gamma = 2.6

alpha0 = 7.0× 10−3 ms−1

n ref = 4.25

p50 ref = 5.33

T ref = 125.0 kPa

beta0 = 1.45

beta1 = 1.95

beta2 = 0.31

alpha1 = 0.033 ms−1

alpha2 = 2.85 ms−1

alpha3 = 2.85 ms−1

A1 = 50.0

A2 = 175.0

A3 = 175.0

a = 0.5

velocity = 0.0 ms−1

Equations defined in this component

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

lambdaC = lambda (A.22.17)

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

velocityC = velocity (A.22.18)
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“troponin kinetics” component

The component which defines the kinetics of calcium binding to troponin-C. The binding has been shown to be

tension dependent.

Initial values defined in this component

Cab = 0.0 mM

Equations defined in this component

The kinetics of the tension-dependent calcium binding to troponin-C.
d(Cab)

d(t)
= (rho0 ∗ Cai ∗ (Cab max − Cab) − rho1 ∗ Cab ∗ (1.0− TTo)) (A.22.19)

Calculate the tension dependent factor for calcium binding.

TTo =







T
gamma∗To

; if To > 1.0× 10−8,

0.0 otherwise.
(A.22.20)

“tropomyosin kinetics” component

This component defines the kinetics of the length-dependent actin availability.

Initial values defined in this component

z = 0.0

Equations defined in this component

The kinetics of actin availability, z.
d(z)

d(t)
= alpha0 ∗

((

Cab

C50
∗ Cab norm

)n

∗ (1.0− z) − z

)

(A.22.21)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

n = n ref ∗ (1.0 + beta1 ∗ (lambda − 1.0)) (A.22.22)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

p50 = p50 ref ∗ (1.0 + beta2 ∗ (lambda − 1.0)) (A.22.23)

The value of Cab that is required to achieve 50% availability, i.e., z = 0.5.

C50 = (10.0)(3.0−p50) (A.22.24)

Normalised value of bound calcium.

Cab norm =
Cab

Cab max
(A.22.25)
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“isometric tension” component

The component which defines the isometric tension.

Equations defined in this component

Calculation of the isometric tension.

To = T ref ∗ (1.0 + beta0 ∗ (lambda − 1.0)) ∗ z (A.22.26)

“dynamic tension” component

We use the ODE equivalent to the fading memory hereditary (thanks Steve). The muscle velocity should be set

outside of here, and will be controlled by the simulation environment.

Initial values defined in this component

Q1 = 0.0 ms

Q2 = 0.0 ms

Q3 = 0.0 ms

Equations defined in this component

Calculation of the dynamic tension.

T = To ∗ (1.0 + a ∗ Q)

(1.0 − Q)
(A.22.27)

Calculate the value of the hereditary integral, with three rate constants.

Q = (Q1 + Q2 + Q3) (A.22.28)

Calculation of the contribution of the first time constant to the hereditary integral, in the ODE form.
d(Q1)

d(t)
= (A1 ∗ velocity − alpha1 ∗ Q1) (A.22.29)

Calculation of the contribution of the second time constant to the hereditary integral, in the ODE form.
d(Q2)

d(t)
= (A2 ∗ velocity − alpha2 ∗ Q2) (A.22.30)

Calculation of the contribution of the third time constant to the hereditary integral, in the ODE form.
d(Q3)

d(t)
= (A3 ∗ velocity − alpha3 ∗ Q3) (A.22.31)

A.23 Nash Panfilov 2004

This is a CellML version of the modified FitzHugh-Nagumo model, published by Aliev and Panfilov in 1996.

While the original two-variable model described a non-dimensional activation variable (u) and a non-dimensional

recovery variable (v), here we formulate the model in terms of the ‘real’ action potential given by the time course

of the transmembrane potential (Vm). In so doing, the time rate of change of the activation variable describes the
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total ‘ionic current’ through the membrane with the original model parameters adjusted to give the correct dimen-

sionality. This model has been further modified by Nash and Panfilov 2004 to include active tension development.

Reference: Nash, M. P. & Panfilov, A. V. (2004), ‘Electromechanical model of excitable tissue to study reentrant

cardiac arrhythmias’, Prog. Biophys. Molec. Biol. 85, 501–522.

“interface” component

We’ll use this component as the ”interface” to the model, all other components are hidden via encapsulation in this

component.

Initial values defined in this component

Cm = 0.01 µF · mm−2

Vr = −85.0 mV

Vth = −75.0 mV

Vp = 15.0 mV

c1 = 8.0 µA · mm−2

b = 0.000155 ms−1

d = 0.0155 ms−1

mu2 = 0.3

e0 = 1.0

kTa = 47.9 kPa

Equations defined in this component

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = Istim (A.23.1)

“membrane potential” component

The component which defines the kinetics of the transmembrane potential.

Initial values defined in this component

Vm = −85 mV

Equations defined in this component

This equation describes the kinetics of the transmembrane, potential - the action potential.
d(V m)

d(t)
=

(Istim − Iion)

Cm
(A.23.2)

The non-dimensional and scaled potential value.

u =
(V m − V r)

(V p − V r)
(A.23.3)

“ionic current” component

Here we define the total ionic current through the cellular membrane - equivalent to the temporal derivative of

the original activation variable. One modification of Aliev and Panfilov is in this equation, with the additional

multiplication of the recovery variable with the normalised potential and removal of the scalar multiplier.
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Equations defined in this component

The calcuation of the total ionic current.

Iion =

(

c1 ∗ u ∗
(

u − (V th − V r)

(V p − V r)

)

∗ (u − 1.0) + u ∗ v

)

(A.23.4)

“recovery variable” component

Here we define the non-dimensional recovery variable, v. The kinetics of the recovery variable have been reworked

by Aliev and Panfilov to provide more realistic restitution properties.

Initial values defined in this component

v = 0.0

Equations defined in this component

The kinetics of the recovery variable.
d(v)

d(t)
= eps ∗ (−v − rate ∗ vstar ∗ (V m − V r)) (A.23.5)

eps =

(

b +
d ∗ v

(u + mu2)

)

(A.23.6)

rate =
c1

((V p − V r))
2.0 (A.23.7)

vstar = (V m + ((V r − V p) − V th)) (A.23.8)

“active tension” component

This is the active tension relation from the Nash and Panfilov article.

Initial values defined in this component

Ta = 0.0 kPa

Equations defined in this component

The kinetics of the active tension.
d(Ta)

d(t)
= e ∗ (kTa ∗ u − Ta) (A.23.9)

e =







100.0 ∗ e0; if u < 0.05,

10.0 ∗ e0 otherwise.
(A.23.10)
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A.24 N LRd

This is the CellML description of a cellular electrophysiology and calcium dynamics model based on the Luo &

Rudy model given in Clancy & Rudy (2001), with the Markov state model for IKr. This model also uses the wild-

type INa Markov state model of Clancy & Rudy (2002) and the calcium subsystem of Jafri et. al. (1998). The

default intitial values included in this CellML model description are for the wild-type epicardial cell type.

Reference: Clancy, C. E. & Rudy, Y. (2002), ‘Na+ Channel Mutation That Causes Both Brugada and Long-QT

Syndrome Phenotypes: A Simulation Study of Mechanism’, Circulation 105, 1208–1213.

Reference: Clancy, C. E. & Rudy, Y. (2001), ‘Cellular consequences of HERG mutations in the long QT syndrome:

precursors to sudden cardiac death’, Cardiovascular Research 50, 301–313.

Reference: Jafri, M. S., Rice, J. J. & Winslow, R. L. (1998), ‘Cardiac Ca2+ Dynamics: The Roles of Ryanodine

Receptor Adaptation and Sarcoplasmic Reticulum Load’, Biophysical Journal 74, 1149–1168.

“environment” component

“membrane” component

The main component of the model which defines the action potential.

Initial values defined in this component

V = −84.1638 mV

R = 8.3145× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 9.6845× 104 nC · nmol−1

Cm = 0.01 µF · mm−2

Equations defined in this component

The kinetics of the transmembrane potential, defined as the sum of all the sarcolemmal currents and an applied

stimulus current.
d(V )

d(time)
=

[

I stim−
(

i Na + i Ca L Ca + i Ca L K + i Ca T + i Kr + i Ks + i NaCa

+ i K1 + i Kp + i p Ca + i Na b + i Ca b + i NaK + i ns Ca + i to
)

]/

Cm (A.24.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.24.2)

i K = (i Kr + i Ks) (A.24.3)

i Ca L = (i Ca L Ca + i Ca L K) (A.24.4)



A.24 N LRD 321

“transient outward potassium current” component

The transient outward current. The g to given here is for epicardial cells. Use g to=0.005 mS.mmˆ-2 for M cells

and 0.0005 mS.mmˆ-2 for endocardial cells.

Initial values defined in this component

g to = 0.011 mS · mm−2

Equations defined in this component

i to = g to ∗ (z)3.0 ∗ y ∗ R to ∗ (V − E K) (A.24.5)

R to = exp

(

V

100.0

)

(A.24.6)

E K =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.24.7)

“transient outward potassium current z gate” component

Initial values defined in this component

z = 0.0120892

Equations defined in this component

d(z)

d(time)
= (alpha z ∗ (1.0− z) − beta z ∗ z) (A.24.8)

alpha z =
10.0 ∗ exp

(

(V −40.0)
25.0

)

(

1.0 + exp
(

(V −40.0)
25.0

)) (A.24.9)

beta z =
10.0 ∗ exp

(

− (V +90.0)
25.0

)

(

1.0 + exp
(

− (V +90.0)
25.0

)) (A.24.10)

“transient outward potassium current y gate” component

Initial values defined in this component

y = 0.999978

Equations defined in this component

d(y)

d(time)
= (alpha y ∗ (1.0 − y) − beta y ∗ y) (A.24.11)

alpha y =
0.015

(

1.0 + exp
(

(V +60.0)
5.0

)) (A.24.12)
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beta y =
0.1 ∗ exp

(

(V +25.0)
5.0

)

(

1.0 + exp
(

(V +25.0)
5.0

)) (A.24.13)

“fast sodium current” component

Initial values defined in this component

g Na = 0.235 mS · mm−2

Equations defined in this component

i Na = g Na ∗ P O Na ∗ (V − E Na) (A.24.14)

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.24.15)

“Na channel states” component

Initial values defined in this component

P O Na = 2.67× 10−7

P C1 Na = 0.000159

P C2 Na = 0.0169

P C3 Na = 0.713

P IF Na = 5.82× 10−5

P IC3 Na = 0.261

P IC2 Na = 0.0062

P IM1 Na = 8.05× 10−5

P IM2 Na = 0.00245

Equations defined in this component

d(P C3 Na)

d(time)
= (− (beta 3 + alpha 11) ∗ P C3 Na + alpha 3 ∗ P IC3 Na + beta 11 ∗ P C2 Na)

(A.24.16)
d(P C2 Na)

d(time)
= − (beta 11 + beta 3 + alpha 12) ∗ P C2 Na + alpha 11 ∗ P C3 Na

+ beta 12 ∗ P C1 Na + alpha 3 ∗ P IC2 Na (A.24.17)

d(P C1 Na)

d(time)
= − (beta 12 + alpha 13 + beta 3) ∗ P C1 Na + alpha 12 ∗ P C2 Na

+ beta 13 ∗ P O Na + alpha 3 ∗ P IF Na (A.24.18)
d(P O Na)

d(time)
= (− (alpha 2 + beta 13) ∗ P O Na + beta 2 ∗ P IF Na + alpha 13 ∗ P C1 Na)

(A.24.19)
d(P IF Na)

d(time)
= − (beta 2 + alpha 3 + alpha 4 + beta 12) ∗ P IF Na + beta 3 ∗ P C1 Na

+ beta 4 ∗ P IM1 Na + alpha 2 ∗ P O Na + alpha 12 ∗ P IC2 Na (A.24.20)
d(P IC3 Na)

d(time)
= (− (alpha 3 + alpha 11) ∗ P IC3 Na + beta 3 ∗ P C3 Na + beta 11 ∗ P IC2 Na)

(A.24.21)
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d(P IC2 Na)

d(time)
= − (alpha 3 + alpha 12 + beta 11) ∗ P IC2 Na + beta 3 ∗ P C2 Na

+ beta 12 ∗ P IF Na + alpha 11 ∗ P IC3 Na (A.24.22)
d(P IM1 Na)

d(time)
= (− (alpha 5 + beta 4) ∗ P IM1 Na + beta 5 ∗ P IM2 Na + alpha 4 ∗ P IF Na)

(A.24.23)
d(P IM2 Na)

d(time)
= (alpha 5 ∗ P IM1 Na − beta 5 ∗ P IM2 Na) (A.24.24)

alpha 11 =
3.802

(

0.1027 ∗ exp
(

−V
17.0

)

+ 0.20 ∗ exp
(

−V
150.0

)) (A.24.25)

alpha 12 =
3.802

(

0.1027 ∗ exp
(

−V
15.0

)

+ 0.23 ∗ exp
(

−V
150.0

)) (A.24.26)

alpha 13 =
3.802

(

0.1027 ∗ exp
(

−V
12.0

)

+ 0.25 ∗ exp
(

−V
150.0

)) (A.24.27)

beta 11 = 0.1917 ∗ exp

(−V

20.3

)

(A.24.28)

beta 12 = 0.20 ∗ exp

(− (V − 5.0)

20.3

)

(A.24.29)

beta 13 = 0.22 ∗ exp

(− (V − 10.0)

20.3

)

(A.24.30)

alpha 2 = 9.178 ∗ exp

(

V

29.68

)

(A.24.31)

beta 2 =
alpha 13 ∗ alpha 2 ∗ alpha 3

beta 13 ∗ beta 3
(A.24.32)

alpha 3 = 3.7933E − 7 ∗ exp

(−V

7.7

)

(A.24.33)

beta 3 = (0.0084 + 0.00002 ∗ V ) (A.24.34)

alpha 4 =
alpha 2

100.0
(A.24.35)

beta 4 = alpha 3 (A.24.36)

alpha 5 =
alpha 2

9.5E5
(A.24.37)

beta 5 =
alpha 3

50
(A.24.38)

“L type Ca channel” component

The JWR model creates a new mathematical model to describe the L-type calcium channel that is based on the

experimentally observed mode-switching behaviour of the channel. Inactivation occurs as calcium ion binding

induces the channel to switch (from mode normal) to a mode in which transitions to open states are extremely slow

(mode Ca). The channel has one voltage inactivation gate, y. As well as Ca, the channel is assumed permeable to

K ions also. The value of P Ca varies depending on the cell type being modelled. The default value is 33.75e-6

mm.msˆ-1from the JRW model, but this needs to be reduced by 50 percent for RV epicardial cells and 20 percent

for LV epicardial cells (following Dumaine et. al. 1999), to allow for the i to current. From Clancy and Rudy

2002, P Ca should also be reduced for M-cells and endocardial cells. Since the default in this model is epicardial

cells, we used the 50 percent reduced value to match the defualt value of g to.

Initial values defined in this component

P Ca = 1.6875× 10−5 mm · ms−1

P K = 1.0× 10−9 mm · ms−1

i Ca L Ca half = −4.58× 10−3 µA · mm−2

O = 9.84546× 10−21

O Ca = 0.0

a = 2.0
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b = 2.0

g = 2.0 ms−1

f = 0.3 ms−1

g = 0.0 ms−1

f = 0.0 ms−1

omega = 0.01 ms−1

C0 = 0.997208

C1 = 6.38897× 10−5

C2 = 1.535× 10−9

C3 = 1.63909× 10−14

C4 = 6.56337× 10−20

C Ca0 = 2.72826× 10−3

C Ca1 = 6.99215× 10−7

C Ca2 = 6.71989× 10−11

C Ca3 = 2.87031× 10−15

C Ca4 = 4.59752× 10−20

Equations defined in this component

Calculation of the calcium current component of the total channel current, given as the maximal current multiplied

by the voltage-dependent inactivation gate and the open probability of the channel based on the mode-switching

model.

i Ca L Ca = i Ca L Ca max ∗ y ∗ (O + O Ca) (A.24.39)

Calculation of the potassium current component of the total channel current.

i Ca L K = p k ∗ y ∗ (O + O Ca) ∗ V ∗ (F )2.0

R ∗ T
∗
(

Ki ∗ exp
(

V ∗F
R∗T

)

− Ko
)

(

exp
(

V ∗F
R∗T

)

− 1.0
) (A.24.40)

The potassium permeability of the channel, which depends on the calcium current component.

p k =
P K

(

1.0 + i Ca L Ca max
i Ca L Ca half

) (A.24.41)

The maximal calcium current through the channel.

i Ca L Ca max = P Ca ∗ 4.0 ∗ V ∗ (F )2.0

R ∗ T
∗
(

0.001 ∗ exp
(

2.0 ∗ V ∗ F
R∗T

)

− 0.341 ∗ Cao
)

(

exp
(

2.0 ∗ V ∗ F
R∗T

)

− 1.0
) (A.24.42)

Rate constants for state changes in mode normal.

alpha = 0.4 ∗ exp

(

(V + 12.0)

10.0

)

(A.24.43)

beta = 0.05 ∗ exp

(

(V + 12.0)

−13.0

)

(A.24.44)

Rate constants for state changes in mode Ca (corresponding to alpha-prime and beta-prime in the JRW paper).

alpha a = alpha ∗ a (A.24.45)

beta b =
beta

b
(A.24.46)

Rate constant for switching between mode normal and mode Ca.

gamma = 0.1875 ∗ Ca SS (A.24.47)

The kinetics of the state transitions in mode normal. In the normal mode, the calcium channel is able to make the
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transition to the open, conducting state (O) from the closed state (C) at a normal rate.
d(C0)

d(time)
= ((beta ∗ C1 + omega ∗ C Ca0) − (4.0 ∗ alpha + gamma) ∗ C0) (A.24.48)

d(C1)

d(time)
=
(

4.0 ∗ alpha ∗ C0 + 2.0 ∗ beta ∗ C2 +
omega

b
∗ C Ca1

)

− (beta + 3.0 ∗ alpha + gamma ∗ a) ∗ C1 (A.24.49)

d(C2)

d(time)
=

(

3.0 ∗ alpha ∗ C1 + 3.0 ∗ beta ∗ C3 +
omega

(b)
2.0 ∗ C Ca2

)

−
(

beta ∗ 2.0 + 2.0 ∗ alpha + gamma ∗ (a)2.0
)

∗ C2 (A.24.50)

d(C3)

d(time)
=

(

2.0 ∗ alpha ∗ C2 + 4.0 ∗ beta ∗ C4 +
omega

(b)
3.0 ∗ C Ca3

)

−
(

beta ∗ 3.0 + alpha + gamma ∗ (a)3.0
)

∗ C3 (A.24.51)

d(C4)

d(time)
=

((

alpha ∗C3 + g ∗ O +
omega

(b)
4.0 ∗ C Ca4

)

−
(

beta ∗ 4.0 + f + gamma ∗ (a)
4.0
)

∗ C4

)

(A.24.52)
d(O)

d(time)
= (f ∗ C4 − g ∗ O) (A.24.53)

The kinetics of the state transitions in mode Ca. Calcium binding to the Ca channel induces a conformational

change from normal mode to mode Ca. This effectively inhibits the conduction of calcium ions because in mode

Ca, the calcium channel makes the transition to the open, conducting state (O) extremely slowly.
d(C Ca0)

d(time)
= ((beta b ∗ C Ca1 + gamma ∗ C Ca0) − (4.0 ∗ alpha a + omega) ∗ C Ca0) (A.24.54)

d(C Ca1)

d(time)
= (4.0 ∗ alpha a ∗ C Ca0 + 2.0 ∗ beta b ∗ C Ca2 + gamma ∗ a ∗ C1)

−
(

beta b + 3.0 ∗ alpha a +
omega

b

)

∗ C Ca1 (A.24.55)

d(C Ca2)

d(time)
=
(

3.0 ∗ alpha a ∗ C Ca1 + 3.0 ∗ beta b ∗ C Ca3 + gamma ∗ (a)
2.0 ∗ C2

)

−
(

beta b ∗ 2.0 + 2.0 ∗ alpha a +
omega

(b)2.0

)

∗ C Ca2 (A.24.56)

d(C Ca3)

d(time)
=
(

2.0 ∗ alpha a ∗ C Ca2 + 4.0 ∗ beta b ∗ C Ca4 + gamma ∗ (a)
3.0 ∗ C3

)

−
(

beta b ∗ 3.0 + alpha a +
omega

(b)
3.0

)

∗ C Ca3 (A.24.57)

d(C Ca4)

d(time)
=
(

alpha a ∗ C Ca3 + g ∗ O Ca + gamma ∗ (a)4.0 ∗ C4
)

−
(

beta b ∗ 4.0 + f +
omega

(b)
4.0

)

∗ C Ca4 (A.24.58)

d(O Ca)

d(time)
= (f ∗ C Ca4 − g ∗ O Ca) (A.24.59)



326 CELLML MODELS

“L type Ca channel y gate” component

The voltage-dependent inactivation gate for the L-type calcium channel - the y gate.

Initial values defined in this component

y = 0.998983

Equations defined in this component

The kinetics of the y gate.
d(y)

d(time)
=

(y infinity − y)

tau y
(A.24.60)

y infinity =





1.0
(

1.0 + exp
(

(V +55.0)
7.5

)) +
0.1

(

1.0 + exp
(

(−V +21.0)
6.0

))



 (A.24.61)

tau y =



20.0 +
600.0

(

1.0 + exp
(

(V +30.0)
9.5

))



 (A.24.62)

“T type Ca channel” component

Initial values defined in this component

g Ca T = 1.25 × 10−5 mS · mm−2

Equations defined in this component

i Ca T = g Ca T ∗ (b)
2.0 ∗ g ∗ (V − E Ca) (A.24.63)

E Ca =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.24.64)

“T type Ca channel b gate” component

Initial values defined in this component

b = 0.000970231

Equations defined in this component

d(b)

d(time)
=

(b infinity − b)

tau b
(A.24.65)

b infinity =
1.0

(

1.0 + exp
(

− (V +14.0)
10.8

)) (A.24.66)

tau b =
(3.7 + 6.1)

(

1.0 + exp
(

(25.0+V )
4.5

)) (A.24.67)



A.24 N LRD 327

“T type Ca channel g gate” component

Initial values defined in this component

g = 0.994305

Equations defined in this component

d(g)

d(time)
=

(g infinity − g)

tau g
(A.24.68)

g infinity =
1.0

(

1.0 + exp
(

(V +60.0)
5.6

)) (A.24.69)

tau g =







12.0; if V > 0.0,

(−0.875 ∗ V + 12.0) otherwise.
(A.24.70)

“rapid time dependent potassium current” component

The P NaK Kr factor is zero for the default wild-type IKr channel, but is non-zero for some genetic mutations.

Initial values defined in this component

g Kr max = 0.000135 mS · mm−2 P NaK Kr = 0.0

Equations defined in this component

i Kr = g Kr ∗ P O Kr ∗ (V − E Kr) (A.24.71)

g Kr = g Kr max ∗ (Ko)
0.59 (A.24.72)

E Kr =
R ∗ T

F
∗ ln

(

(Ko + P NaK Kr ∗ Nao)

(Ki + P NaK Kr ∗ Nai)

)

(A.24.73)

“Kr channel states” component

The model for cardiac i Kr includes three closed states (C3, C2, C1) an open state (O) and an inactivation state (I).

P i is the probability of a channel occupying a particular state (i), which is determined by a system of linear first

oder differential equations. The default initial values below are for the wild-type channel.

Initial values defined in this component

P O Kr = 6.11× 10−7

P C1 Kr = 0.00116

P C2 Kr = 0.000574

P C3 Kr = 0.938

P I Kr = 2.55× 10−7

alpha in = 2.172 ms−1

beta in = 1.077 ms−1

alpha V shift = −12.0 mV

alpha alpha V shift = −36.0 mV

beta scale = 1.0

beta beta scale = 1.0

beta i scale = 1.0
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Equations defined in this component

d(P C3 Kr)

d(time)
= (beta ∗ P C2 Kr − alpha ∗ P C3 Kr) (A.24.74)

d(P C2 Kr)

d(time)
= (− (beta + alpha in) ∗ P C2 Kr + alpha ∗ P C3 Kr + beta in ∗ P C1 Kr) (A.24.75)

d(P C1 Kr)

d(time)
= − (beta in + alpha alpha + alpha alpha) ∗ P C1 Kr + alpha in ∗ P C2 Kr

+ beta beta ∗ P O Kr + mu ∗ P I Kr (A.24.76)
d(P O Kr)

d(time)
= (− (beta beta + beta i) ∗ P O Kr + alpha alpha ∗ P C1 Kr + alpha i ∗ P I Kr)

(A.24.77)
d(P I Kr)

d(time)
= (− (mu + alpha i) ∗ P I Kr + alpha alpha ∗ P C1 Kr + beta i ∗ P O Kr) (A.24.78)

alpha = 55.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha V shift)) (A.24.79)

beta = 0.002357 ∗ exp (−0.036588 ∗ V ) ∗ beta scale (A.24.80)

alpha alpha = 65.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha alpha V shift)) (A.24.81)

beta beta = 0.0029357 ∗ exp (−0.02158 ∗ V ) ∗ beta beta scale (A.24.82)

alpha i = 0.439 ∗ exp (−0.02352 ∗ (V + 25.0)) ∗ 4.5

Ko
(A.24.83)

beta i = 0.656 ∗ exp (0.000942 ∗ V ) ∗ (4.5)0.3

(Ko)
0.3 ∗ beta i scale (A.24.84)

mu =







alpha i∗beta beta∗alpha alpha
alpha alpha∗beta i

; if |beta i| > 0.0,

alpha i∗beta beta∗alpha alpha
alpha alpha

otherwise.
(A.24.85)

“slow time dependent potassium current” component

The slowly activating component of the time dependent potassium current. g Ks max can be varied to give repre-

sentations of the different cell types described in the various LR models. The default value here is for epicardial

cells from the Clancy and Rudy (2002) model - corresponding to a ratio GKs/GKr = 23. From this model, ratios

of 17 and 19 should be used for M-cells and endocardial cells, respectively.

Initial values defined in this component

gKs gKr ratio = 23.0 P NaK = 0.01833

Equations defined in this component

g Ks = g Ks max ∗









1.0 +
0.6

(

1.0 +
(

0.38×10−4

Cai

)1.4
)









(A.24.86)

g Ks max = g Kr max ∗ gKs gKr ratio (A.24.87)

E Ks =
R ∗ T

F
∗ ln

(

(Ko + P NaK ∗ Nao)

(Ki + P NaK ∗ Nai)

)

(A.24.88)

i Ks = g Ks ∗ Xs1 ∗ Xs2 ∗ (V − E Ks) (A.24.89)

Xs = Xs1 ∗ Xs2 (A.24.90)
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“slow time dependent potassium current Xs1 gate” component

Initial values defined in this component

Xs1 = 0.00445683

Equations defined in this component

d(Xs1)

d(time)
=

(Xs infinity − Xs1)

tau Xs1
(A.24.91)

Xs infinity =
1.0

(

1.0 + exp
(

− (V −1.5)
16.7

)) (A.24.92)

tau Xs1 =
1.0

(

0.0000719∗(V +30.0)
(1.0−exp(−0.148∗(V +30.0))) + 0.000131∗(V +30.0)

(exp(0.0687∗(V +30.0))−1.0)

) (A.24.93)

“slow time dependent potassium current Xs2 gate” component

Initial values defined in this component

Xs2 = 0.00445683

Equations defined in this component

d(Xs2)

d(time)
=

(Xs infinity − Xs2)

tau Xs2
(A.24.94)

tau Xs2 = 4.0 ∗ tau Xs1 (A.24.95)

“time independent potassium current” component

The time-independent potassium current.

Initial values defined in this component

g K1 max = 7.5× 10−3 mS · mm−2

Equations defined in this component

Calculation of the maximal channel conductance, dependent on extracellular potassium concentration.

g K1 = g K1 max ∗
√

Ko

5.4
(A.24.96)

The following equation calculates the reversal potential of the time-independent potassium current.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.24.97)

Calculate the current.

i K1 = g K1 ∗ K1 infinity ∗ (V − E K1) (A.24.98)
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“time independent potassium current K1 gate” component

The time constants for the K1 gate are small enough that the gating variable can be approximated with it’s steady-

state value.

Equations defined in this component

The opening rate of the K1 gate.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1)− 59.215)))
(A.24.99)

The closing rate of the K1 gate.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.24.100)

The steady-state approximation for the K1 gating kinetics.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.24.101)

“plateau potassium current” component

The plateau potassium current component contains the equations which describe the contribution of a time inde-

pendent [K]o-insensitive channel at plateau potentials.

Initial values defined in this component

g Kp = 8.28× 10−5 mS · mm−2

Equations defined in this component

The channel’s reversal potential.

E Kp = E K1 (A.24.102)

The activation variable.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.24.103)

Calculation of the plateau potassium current.

i Kp = g Kp ∗ Kp ∗ (V − E Kp) (A.24.104)

“Na Ca exchanger” component

The Na/Ca exchanger component describes how a protein molecule in the cell surface membrane transports Na

ions into the cytosol and exports Ca ions into the extracellular volume, in a ratio of 3:1 respectively.

Initial values defined in this component
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k NaCa = 50.0 µA · mm−2

K mNa = 87.5 mM

K mCa = 1.38 mM

k sat = 0.1

eta = 0.35

Equations defined in this component

Calculation of the Na/Ca exchanger current.

i NaCa = k NaCa ∗ 1.0
(

(K mNa)3.0 + (Nao)3.0
) ∗ 1.0

(K mCa + Cao)

∗ 1.0
(

1.0 + k sat ∗ exp
(

(eta − 1.0) ∗ V ∗ F
R∗T

))

∗
(

exp

(

eta ∗ V ∗ F

R ∗ T

)

∗ (Nai)
3.0 ∗ Cao − exp

(

(eta − 1.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
3.0 ∗ Cai

)

(A.24.105)

“sarcolemmal calcium pump” component

The sarcolemmal calcium pump is an additional mechanism for removing Ca ions from the myoplasm to help

maintain a low intracellular calcium concentration when at rest.

Initial values defined in this component

K mpCa = 0.5× 10−3 mM I pCa = 1.15× 10−2 µA · mm−2

Equations defined in this component

The calcium pump current.

i p Ca = I pCa ∗ Cai

(K mpCa + Cai)
(A.24.106)

“sodium background current” component

The sodium background current is a time-independent diffusion of Na ions down their electrochemical gradient,

through the cell surface membrane into the cytosol.

Initial values defined in this component

g Nab = 1.41× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background sodium channel.

E NaN = E Na (A.24.107)

Calculation of the background sodium current.

i Na b = g Nab ∗ (V − E NaN) (A.24.108)
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“calcium background current” component

The calcium background current describes a time-independent diffusion of Ca ions down their electrochemical

gradient through the cell surface membrane into the cytosol. However, calcium is not allowed to accumulate to

high intracellular concentrations. This influx is balanced by the Ca ion extrusion through the Na-Ca exchanger and

the sarcolemmal Ca pump.

Initial values defined in this component

g Cab = 6.032× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background calcium current.

E CaN =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.24.109)

Calculation of the background calcium current.

i Ca b = g Cab ∗ (V − E CaN) (A.24.110)

“sodium potassium pump” component

The sodium potassium pump is an active protein in the cell membrane which couples the free energy released by

the hydrolysis of ATP to the movement of Na and K ions against their electrochemical gradients through the cell

membrane.

Initial values defined in this component

I NaK = 0.013 µA · mm−2

K mNai = 10.0 mM

K mKo = 1.5 mM

Equations defined in this component

Calculation of the Na/K pump current.

f NaK =
1.0

((

1.0 + 0.1245 ∗ exp
(

−0.1∗V ∗F
R∗T

))

+ 0.0365 ∗ sigma ∗ exp
(

−V ∗F
R∗T

)) (A.24.111)

sigma =
1.0

7.0
∗
(

exp

(

Nao

67.3

)

− 1.0

)

(A.24.112)

i NaK = I NaK ∗ f NaK ∗ 1.0
(

1.0 +
(

K mNai
Nai

)1.5
) ∗ Ko

(Ko + K mKo)
(A.24.113)

“non specific calcium activated current” component

The nonspecific calcium activated current describes a channel which is activated by calcium ions, but is permeable

to only sodium and potassium ions.
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Initial values defined in this component

K m ns Ca = 1.2× 10−3 mM P ns Ca = 1.75× 10−9 mm · ms−1

Equations defined in this component

The reversal potential of the channel.

EnsCa =
R ∗ T

F
∗ ln

(

(Ko + Nao)

(Ki + Nai)

)

(A.24.114)

The potential offset for the channel.

V nsCa = (V − EnsCa) (A.24.115)

The sodium component of the channel’s current.

i ns Na = I ns Na ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.24.116)

The potassium component of the channel’s current.

i ns K = I ns K ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.24.117)

The total nonspecific calcium activated current.

i ns Ca = (i ns Na + i ns K) (A.24.118)

The maximal sodium component current.

I ns Na = P ns Ca∗(1.0)2.0 ∗ V nsCa ∗ (F )2.0

R ∗ T
∗
(

0.75 ∗ Nai ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Nao
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.24.119)

The maximal potassium component current.

I ns K = P ns Ca ∗ (1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Ki ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Ko
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.24.120)

“calcium subsystem” component

In the JRW model, subcellular calcium regulatory mechanisms are described in detail. There are six calcium fluxes

to consider; J rel, J leak, J up, J tr, J xfer and J trpn. In addition, three membrane current fluxes are also necessary

for the formulation of calcium regulation; i p Ca, i Ca L Ca and i NaCa.

Initial values defined in this component

Cai = 9.94893× 10−11 mM

Ca SS = 1.36058× 10−4 mM

Am = 546.69 mm−1

V myo = 0.92

P O1 = 1.19168× 10−3

P O2 = 6.30613× 10−9

P C1 = 0.762527

P C2 = 0.236283

v1 = 1.8 ms−1

v2 = 0.58× 10−4 ms−1

v3 = 1.8 × 10−3 mM · ms−1

nCa = 4.0

mCa = 3.0

k a plus = 1.215× 1010 mM−4 · ms−1

k a minus = 0.1425 ms−1

k b plus = 4.05 × 107 mM−3 · ms−1
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k b minus = 1.930 ms−1

k c plus = 0.018 ms−1

k c minus = 0.0008 ms−1

k htrpn plus = 20.0 mM−1 · ms−1

k htrpn minus = 0.066× 10−3 ms−1

k ltrpn plus = 40.0 mM−1 · ms−1

k ltrpn minus = 0.04 ms−1

tau tr = 34.48 ms

Ca JSR = 1.17504 mM

Ca NSR = 1.243891 mM

K mup = 0.5× 10−3 mM

K mCMDN = 2.38× 10−3 mM

K mCSQN = 0.8 mM

tau xfer = 3.125 ms

HTRPN tot = 0.14 mM

LTRPN tot = 0.07 mM

HTRPNCa = 0.13598 mM

LTRPNCa = 0.00635 mM

CSQN tot = 15.0 mM

CMDN tot = 0.05 mM

Equations defined in this component

Calculate some volume fractions as proportions of the total myoplasmic volume.

V SS = 5.828× 10−5 ∗ V myo (A.24.121)

V NSR = 0.081 ∗ V myo (A.24.122)

V JSR = 0.00464 ∗ V myo (A.24.123)

The calcium release flux from the JSR into the restricted subspace is governed by the fraction of RyR channels in

an open state.

J rel = v1 ∗ RyR open ∗ (Ca JSR − Ca SS) (A.24.124)

The ”open” RyR’s are those P O1 and P O2 states.

RyR open = (P O1 + P O2) (A.24.125)

The kinetic equations governing the transitions between the four states used to model the RyR’s.
d(P C1)

d(time)
=
(

−k a plus ∗ (Ca SS)nCa ∗ P C1 + k a minus ∗ P O1
)

(A.24.126)

d(P O1)

d(time)
=

[

k a plus ∗ (Ca SS)
nCa ∗ P C1

−
(

k a minus ∗ P O1 + k b plus ∗ (Ca SS)mCa ∗ P O1 + k c plus ∗ P O1
)

]

+ k b minus ∗ P O2 + k c minus ∗ P C2 (A.24.127)
d(P O2)

d(time)
=
(

k b plus ∗ (Ca SS)
mCa ∗ P O1 − k b minus ∗ P O2

)

(A.24.128)

d(P C2)

d(time)
= (k c plus ∗ P O1 − k c minus ∗ P C2) (A.24.129)

Calculate the leakage flux from the NSR into the myoplasm.

J leak = v2 ∗ (Ca NSR − Cai) (A.24.130)
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Calculate the uptake flux into the NSR from the myoplasm.

J up = v3 ∗ (Cai)2.0

(

(K mup)
2.0

+ (Cai)
2.0
) (A.24.131)

Calculate the translocation flux between the uptake (NSR) and release (JSR) stores.

J tr =
(Ca NSR − Ca JSR)

tau tr
(A.24.132)

Calculate the calcium flux from the diffusion of calcium out of the restricted subspace into the myoplasm.

J xfer =
(Ca SS − Cai)

tau xfer
(A.24.133)

The kinetics of calcium binding to the myoplasm buffer troponin - both high and low affinity binding sites.

J htrpn = (k htrpn plus ∗ Cai ∗ (HTRPN tot − HTRPNCa)− k htrpn minus ∗ HTRPNCa)

(A.24.134)

J ltrpn = (k ltrpn plus ∗ Cai ∗ (LTRPN tot − LTRPNCa)− k ltrpn minus ∗ LTRPNCa)

(A.24.135)

J trpn = (J htrpn + J ltrpn) (A.24.136)

Keep track of the concentration of calcium ions bound to high and low affinity troponin binding sites.
d(HTRPNCa)

d(time)
= J htrpn (A.24.137)

d(LTRPNCa)

d(time)
= J ltrpn (A.24.138)

Calcium is buffered by calmodulin (CMDN) in the subspace and myoplasm, and by calsequestrin (CSQN) in the

JSR. These are fast buffers and their effect is modelled using the rapid buffering approximation.

Bi =
1.0

(

1.0 + CMDN tot∗K mCMDN
((K mCMDN+Cai))2.0

) (A.24.139)

B SS =
1.0

(

1.0 + CMDN tot∗K mCMDN

((K mCMDN+Ca SS))2.0

) (A.24.140)

B JSR =
1.0

(

1.0 + CSQN tot∗K mCSQN

((K mCSQN+Ca JSR))2.0

) (A.24.141)

The kinetics of the calcium ion concentration changes in the various compartments of the model.
d(Cai)

d(time)
= Bi ∗

[

(J leak + J xfer)

−
(

J up + J trpn + ((i Ca b − 2.0 ∗ i NaCa) + i Ca T + i p Ca) ∗ Am

2.0 ∗ V myo ∗ F

)]

(A.24.142)

d(Ca SS)

d(time)
= B SS ∗

((

J rel ∗ V JSR

V SS
− J xfer ∗ V myo

V SS

)

− i Ca L Ca ∗ Am

2.0 ∗ V SS ∗ F

)

(A.24.143)
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d(Ca JSR)

d(time)
= B JSR ∗ (J tr − J rel) (A.24.144)

d(Ca NSR)

d(time)
=

(

(J up − J leak) ∗ V myo

V NSR
− J tr ∗ V JSR

V NSR

)

(A.24.145)

“ionic concentrations” component

The descriptions of the rate of change of [Na]i and [K]i are the same as the LR-II model.

Initial values defined in this component

Nai = 10.2042 mM

Nao = 140.0 mM

Ki = 143.727 mM

Ko = 4.5 mM

Cao = 1.8 mM

Equations defined in this component

The rate of change of intracellular sodium ion concentration.
d(Nai)

d(time)
= − (i Na + i Na b + i ns Na + i NaCa ∗ 3.0 + i NaK ∗ 3.0) ∗ Am

V myo ∗ F
(A.24.146)

The rate of change of intracellular potassium ion concentration.
d(Ki)

d(time)
= − (i Ca L K + i Kr + i Ks + i K1 + i Kp + i ns K + i to + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.24.147)

A.25 N LRd 1795insD mutant

This is the CellML description of a cellular electrophysiology and calcium dynamics model based on the Luo &

Rudy model given in Clancy & Rudy (2001), with the Markov state model for IKr. This model also uses the

1795insD muntant INa Markov state model of Clancy & Rudy (2002) and the calcium subsystem of Jafri et. al.

(1998). The default intitial values included in this CellML model description are for the wild-type epicardial cell

type, except for the mutant INa channel model.

Reference: Clancy, C. E. & Rudy, Y. (2002), ‘Na+ Channel Mutation That Causes Both Brugada and Long-QT

Syndrome Phenotypes: A Simulation Study of Mechanism’, Circulation 105, 1208–1213.

Reference: Clancy, C. E. & Rudy, Y. (2001), ‘Cellular consequences of HERG mutations in the long QT syndrome:

precursors to sudden cardiac death’, Cardiovascular Research 50, 301–313.

Reference: Jafri, M. S., Rice, J. J. & Winslow, R. L. (1998), ‘Cardiac Ca2+ Dynamics: The Roles of Ryanodine

Receptor Adaptation and Sarcoplasmic Reticulum Load’, Biophysical Journal 74, 1149–1168.
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“environment” component

“membrane” component

The main component of the model which defines the action potential.

Initial values defined in this component

V = −84.1638 mV

R = 8.3145× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 9.6845× 104 nC · nmol−1

Cm = 0.01 µF · mm−2

Equations defined in this component

The kinetics of the transmembrane potential, defined as the sum of all the sarcolemmal currents and an applied

stimulus current.
d(V )

d(time)
=

[

I stim −
(

i Na + i Ca L Ca + i Ca L K + i Ca T + i Kr + i Ks + i NaCa

+ i K1 + i Kp + i p Ca + i Na b + i Ca b + i NaK + i ns Ca + i to
)

]/

Cm (A.25.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.25.2)

i K = (i Kr + i Ks) (A.25.3)

i Ca L = (i Ca L Ca + i Ca L K) (A.25.4)

“transient outward potassium current” component

The transient outward current. The g to given here is for epicardial cells. Use g to=0.005 mS.mmˆ-2 for M cells

and 0.0005 mS.mmˆ-2 for endocardial cells.

Initial values defined in this component

g to = 0.011 mS · mm−2

Equations defined in this component

i to = g to ∗ (z)3.0 ∗ y ∗ R to ∗ (V − E K) (A.25.5)

R to = exp

(

V

100.0

)

(A.25.6)

E K =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.25.7)
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“transient outward potassium current z gate” component

Initial values defined in this component

z = 0.0120892

Equations defined in this component

d(z)

d(time)
= (alpha z ∗ (1.0− z) − beta z ∗ z) (A.25.8)

alpha z =
10.0 ∗ exp

(

(V −40.0)
25.0

)

(

1.0 + exp
(

(V −40.0)
25.0

)) (A.25.9)

beta z =
10.0 ∗ exp

(

− (V +90.0)
25.0

)

(

1.0 + exp
(

− (V +90.0)
25.0

)) (A.25.10)

“transient outward potassium current y gate” component

Initial values defined in this component

y = 0.999978

Equations defined in this component

d(y)

d(time)
= (alpha y ∗ (1.0 − y) − beta y ∗ y) (A.25.11)

alpha y =
0.015

(

1.0 + exp
(

(V +60.0)
5.0

)) (A.25.12)

beta y =
0.1 ∗ exp

(

(V +25.0)
5.0

)

(

1.0 + exp
(

(V +25.0)
5.0

)) (A.25.13)

“fast sodium current” component

Initial values defined in this component

g Na = 0.235 mS · mm−2

Equations defined in this component

i Na = g Na ∗ P O Na ∗ (V − E Na) (A.25.14)

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.25.15)
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“Na channel states” component

Initial values defined in this component

P LO Na = 1.19 × 10−11

P UO Na = 1.87× 10−7

P LC1 Na = 6.95× 10−9

P LC2 Na = 7.31× 10−7

P LC3 Na = 3.04× 10−5

P UIF Na = 0.000103

P UC1 Na = 1.09× 10−4

P UC2 Na = 0.0115

P UC3 Na = 0.477

P UIC3 Na = 0.445

P UIC2 Na = 0.0107

P UIM1 Na = 0.00297

P UIM2 Na = 0.0525

alpha UL = 1.0 × 10−7 ms−1

beta LU = 9.5 × 10−4 ms−1

Equations defined in this component

P O Na = (P LO Na + P UO Na) (A.25.16)

d(P LC3 Na)

d(time)
= − (beta LU + alpha 11) ∗ P LC3 Na + alpha UL ∗ P UC3 Na

+ beta 11 ∗ P LC2 Na (A.25.17)

d(P LC2 Na)

d(time)
= − (beta 11 + beta LU + alpha 12) ∗ P LC2 Na + alpha 11 ∗ P LC3 Na

+ beta 12 ∗ P LC1 Na + alpha UL ∗ P UC2 Na (A.25.18)

d(P LC1 Na)

d(time)
= − (beta 12 + alpha 13 + beta LU) ∗ P LC1 Na + alpha 12 ∗ P LC2 Na

+ beta 13 ∗ P LO Na + alpha UL ∗ P UC1 Na (A.25.19)
d(P LO Na)

d(time)
= (− (beta LU + beta 13) ∗ P LO Na + alpha UL ∗ P UO Na + alpha 13 ∗ P LC1 Na)

(A.25.20)
d(P UIF Na)

d(time)
= − (beta 2 + alpha 3 + alpha 4 + beta 12) ∗ P UIF Na + beta 3 ∗ P UC1 Na

+ beta 4 ∗ P UIM1 Na + alpha 2 ∗ P UO Na + alpha 12 ∗ P UIC2 Na (A.25.21)

d(P UIC3 Na)

d(time)
= − (alpha 3 + alpha 11) ∗ P UIC3 Na + beta 3 ∗ P UC3 Na

+ beta 11 ∗ P UIC2 Na (A.25.22)

d(P UIC2 Na)

d(time)
= − (alpha 3 + alpha 12 + beta 11) ∗ P UIC2 Na + beta 3 ∗ P UC2 Na

+ beta 12 ∗ P UIF Na + alpha 11 ∗ P UIC3 Na (A.25.23)

d(P UIM1 Na)

d(time)
= − (alpha 5 + beta 4) ∗ P UIM1 Na + beta 5 ∗ P UIM2 Na

+ alpha 4 ∗ P UIF Na (A.25.24)
d(P UIM2 Na)

d(time)
= (alpha 5 ∗ P UIM1 Na − beta 5 ∗ P UIM2 Na) (A.25.25)
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d(P UC3 Na)

d(time)
= − (beta 3 + alpha 11 + alpha UL) ∗ P UC3 Na + alpha 3 ∗ P UIC3 Na

+ beta 11 ∗ P UC2 Na + beta LU ∗ P LC3 Na (A.25.26)

d(P UC2 Na)

d(time)
= − (beta 11 + beta 3 + alpha 12 + alpha UL) ∗ P UC2 Na

+ alpha 11 ∗ P UC3 Na + beta 12 ∗ P UC1 Na + alpha 3 ∗ P UIC2 Na + beta LU ∗ P LC2 Na

(A.25.27)

d(P UC1 Na)

d(time)
= − (beta 12 + alpha 13 + beta 3 + alpha UL) ∗ P UC1 Na

+ alpha 12 ∗ P UC2 Na + beta 13 ∗ P UO Na + alpha 3 ∗ P UIF Na + beta LU ∗ P LC1 Na

(A.25.28)

d(P UO Na)

d(time)
= − (alpha 2 + beta 13 + alpha UL) ∗ P UO Na + beta 2 ∗ P UIF Na

+ alpha 13 ∗ P UC1 Na + beta LU ∗ P LO Na (A.25.29)

alpha 11 =
3.802

(

0.1027 ∗ exp
(

−V
17.0

)

+ 0.20 ∗ exp
(

−V
150.0

)) (A.25.30)

alpha 12 =
3.802

(

0.1027 ∗ exp
(

−V
15.0

)

+ 0.23 ∗ exp
(

−V
150.0

)) (A.25.31)

alpha 13 =
3.802

(

0.1027 ∗ exp
(

−V
12.0

)

+ 0.25 ∗ exp
(

−V
150.0

)) (A.25.32)

beta 11 = 0.1917 ∗ exp

(−V

20.3

)

(A.25.33)

beta 12 = 0.20 ∗ exp

(− (V − 5.0)

20.3

)

(A.25.34)

beta 13 = 0.22 ∗ exp

(− (V − 10.0)

20.3

)

(A.25.35)

alpha 2 = 9.178 ∗ exp

(

V

29.68

)

(A.25.36)

beta 2 =
alpha 13 ∗ alpha 2 ∗ alpha 3

beta 13 ∗ beta 3
(A.25.37)

alpha 3 =
3.7933E − 7 ∗ exp

(

−V
7.7

)

2.5
(A.25.38)

beta 3 = (0.0084 + 0.00002 ∗ V ) (A.25.39)

alpha 4 =
alpha 2

100.0
(A.25.40)

beta 4 = alpha 3 (A.25.41)

alpha 5 =
alpha 2

3.5E4
(A.25.42)

beta 5 =
alpha 3

20
(A.25.43)

“L type Ca channel” component

The JWR model creates a new mathematical model to describe the L-type calcium channel that is based on the

experimentally observed mode-switching behaviour of the channel. Inactivation occurs as calcium ion binding

induces the channel to switch (from mode normal) to a mode in which transitions to open states are extremely slow

(mode Ca). The channel has one voltage inactivation gate, y. As well as Ca, the channel is assumed permeable to

K ions also. The value of P Ca varies depending on the cell type being modelled. The default value is 33.75e-6

mm.msˆ-1from the JRW model, but this needs to be reduced by 50 percent for RV epicardial cells and 20 percent
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for LV epicardial cells (following Dumaine et. al. 1999), to allow for the i to current. From Clancy and Rudy

2002, P Ca should also be reduced for M-cells and endocardial cells. Since the default in this model is epicardial

cells, we used the 50 percent reduced value to match the defualt value of g to.

Initial values defined in this component

P Ca = 1.6875× 10−5 mm · ms−1

P K = 1.0× 10−9 mm · ms−1

i Ca L Ca half = −4.58× 10−3 µA · mm−2

O = 9.84546× 10−21

O Ca = 0.0

a = 2.0

b = 2.0

g = 2.0 ms−1

f = 0.3 ms−1

g = 0.0 ms−1

f = 0.0 ms−1

omega = 0.01 ms−1

C0 = 0.997208

C1 = 6.38897× 10−5

C2 = 1.535× 10−9

C3 = 1.63909× 10−14

C4 = 6.56337× 10−20

C Ca0 = 2.72826× 10−3

C Ca1 = 6.99215× 10−7

C Ca2 = 6.71989× 10−11

C Ca3 = 2.87031× 10−15

C Ca4 = 4.59752× 10−20

Equations defined in this component

Calculation of the calcium current component of the total channel current, given as the maximal current multiplied

by the voltage-dependent inactivation gate and the open probability of the channel based on the mode-switching

model.

i Ca L Ca = i Ca L Ca max ∗ y ∗ (O + O Ca) (A.25.44)

Calculation of the potassium current component of the total channel current.

i Ca L K = p k ∗ y ∗ (O + O Ca) ∗ V ∗ (F )
2.0

R ∗ T
∗
(

Ki ∗ exp
(

V ∗F
R∗T

)

− Ko
)

(

exp
(

V ∗F
R∗T

)

− 1.0
) (A.25.45)

The potassium permeability of the channel, which depends on the calcium current component.

p k =
P K

(

1.0 + i Ca L Ca max
i Ca L Ca half

) (A.25.46)

The maximal calcium current through the channel.

i Ca L Ca max = P Ca ∗ 4.0 ∗ V ∗ (F )
2.0

R ∗ T
∗
(

0.001 ∗ exp
(

2.0 ∗ V ∗ F
R∗T

)

− 0.341 ∗ Cao
)

(

exp
(

2.0 ∗ V ∗ F
R∗T

)

− 1.0
) (A.25.47)

Rate constants for state changes in mode normal.

alpha = 0.4 ∗ exp

(

(V + 12.0)

10.0

)

(A.25.48)

beta = 0.05 ∗ exp

(

(V + 12.0)

−13.0

)

(A.25.49)

Rate constants for state changes in mode Ca (corresponding to alpha-prime and beta-prime in the JRW paper).

alpha a = alpha ∗ a (A.25.50)
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beta b =
beta

b
(A.25.51)

Rate constant for switching between mode normal and mode Ca.

gamma = 0.1875 ∗ Ca SS (A.25.52)

The kinetics of the state transitions in mode normal. In the normal mode, the calcium channel is able to make the

transition to the open, conducting state (O) from the closed state (C) at a normal rate.
d(C0)

d(time)
= ((beta ∗ C1 + omega ∗ C Ca0) − (4.0 ∗ alpha + gamma) ∗ C0) (A.25.53)

d(C1)

d(time)
=
(

4.0 ∗ alpha ∗ C0 + 2.0 ∗ beta ∗C2 +
omega

b
∗ C Ca1

)

− (beta + 3.0 ∗ alpha + gamma ∗ a) ∗ C1 (A.25.54)

d(C2)

d(time)
=

(

3.0 ∗ alpha ∗ C1 + 3.0 ∗ beta ∗ C3 +
omega

(b)2.0 ∗C Ca2

)

−
(

beta ∗ 2.0 + 2.0 ∗ alpha + gamma ∗ (a)
2.0
)

∗ C2 (A.25.55)

d(C3)

d(time)
=

(

2.0 ∗ alpha ∗ C2 + 4.0 ∗ beta ∗ C4 +
omega

(b)3.0 ∗C Ca3

)

−
(

beta ∗ 3.0 + alpha + gamma ∗ (a)
3.0
)

∗ C3 (A.25.56)

d(C4)

d(time)
=

((

alpha ∗ C3 + g ∗ O +
omega

(b)4.0 ∗ C Ca4

)

−
(

beta ∗ 4.0 + f + gamma ∗ (a)4.0
)

∗ C4

)

(A.25.57)
d(O)

d(time)
= (f ∗ C4 − g ∗ O) (A.25.58)

The kinetics of the state transitions in mode Ca. Calcium binding to the Ca channel induces a conformational

change from normal mode to mode Ca. This effectively inhibits the conduction of calcium ions because in mode

Ca, the calcium channel makes the transition to the open, conducting state (O) extremely slowly.
d(C Ca0)

d(time)
= ((beta b ∗ C Ca1 + gamma ∗ C Ca0) − (4.0 ∗ alpha a + omega) ∗ C Ca0) (A.25.59)

d(C Ca1)

d(time)
= (4.0 ∗ alpha a ∗ C Ca0 + 2.0 ∗ beta b ∗ C Ca2 + gamma ∗ a ∗ C1)

−
(

beta b + 3.0 ∗ alpha a +
omega

b

)

∗ C Ca1 (A.25.60)

d(C Ca2)

d(time)
=
(

3.0 ∗ alpha a ∗ C Ca1 + 3.0 ∗ beta b ∗ C Ca3 + gamma ∗ (a)
2.0 ∗ C2

)

−
(

beta b ∗ 2.0 + 2.0 ∗ alpha a +
omega

(b)
2.0

)

∗ C Ca2 (A.25.61)

d(C Ca3)

d(time)
=
(

2.0 ∗ alpha a ∗ C Ca2 + 4.0 ∗ beta b ∗ C Ca4 + gamma ∗ (a)3.0 ∗ C3
)

−
(

beta b ∗ 3.0 + alpha a +
omega

(b)
3.0

)

∗ C Ca3 (A.25.62)
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d(C Ca4)

d(time)
=
(

alpha a ∗ C Ca3 + g ∗ O Ca + gamma ∗ (a)
4.0 ∗ C4

)

−
(

beta b ∗ 4.0 + f +
omega

(b)
4.0

)

∗ C Ca4 (A.25.63)

d(O Ca)

d(time)
= (f ∗ C Ca4 − g ∗ O Ca) (A.25.64)

“L type Ca channel y gate” component

The voltage-dependent inactivation gate for the L-type calcium channel - the y gate.

Initial values defined in this component

y = 0.998983

Equations defined in this component

The kinetics of the y gate.
d(y)

d(time)
=

(y infinity − y)

tau y
(A.25.65)

y infinity =





1.0
(

1.0 + exp
(

(V +55.0)
7.5

)) +
0.1

(

1.0 + exp
(

(−V +21.0)
6.0

))



 (A.25.66)

tau y =



20.0 +
600.0

(

1.0 + exp
(

(V +30.0)
9.5

))



 (A.25.67)

“T type Ca channel” component

Initial values defined in this component

g Ca T = 1.25× 10−5 mS · mm−2

Equations defined in this component

i Ca T = g Ca T ∗ (b)2.0 ∗ g ∗ (V − E Ca) (A.25.68)

E Ca =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.25.69)

“T type Ca channel b gate” component

Initial values defined in this component

b = 0.000970231
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Equations defined in this component

d(b)

d(time)
=

(b infinity − b)

tau b
(A.25.70)

b infinity =
1.0

(

1.0 + exp
(

− (V +14.0)
10.8

)) (A.25.71)

tau b =
(3.7 + 6.1)

(

1.0 + exp
(

(25.0+V )
4.5

)) (A.25.72)

“T type Ca channel g gate” component

Initial values defined in this component

g = 0.994305

Equations defined in this component

d(g)

d(time)
=

(g infinity − g)

tau g
(A.25.73)

g infinity =
1.0

(

1.0 + exp
(

(V +60.0)
5.6

)) (A.25.74)

tau g =







12.0; if V > 0.0,

(−0.875 ∗ V + 12.0) otherwise.
(A.25.75)

“rapid time dependent potassium current” component

The P NaK Kr factor is zero for the default wild-type IKr channel, but is non-zero for some genetic mutations.

Initial values defined in this component

g Kr max = 0.000135 mS · mm−2 P NaK Kr = 0.0

Equations defined in this component

i Kr = g Kr ∗ P O Kr ∗ (V − E Kr) (A.25.76)

g Kr = g Kr max ∗ (Ko)
0.59 (A.25.77)

E Kr =
R ∗ T

F
∗ ln

(

(Ko + P NaK Kr ∗ Nao)

(Ki + P NaK Kr ∗ Nai)

)

(A.25.78)

“Kr channel states” component

The model for cardiac i Kr includes three closed states (C3, C2, C1) an open state (O) and an inactivation state (I).

P i is the probability of a channel occupying a particular state (i), which is determined by a system of linear first

oder differential equations. The default initial values below are for the wild-type channel.
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Initial values defined in this component

P O Kr = 6.11× 10−7

P C1 Kr = 0.00116

P C2 Kr = 0.000574

P C3 Kr = 0.938

P I Kr = 2.55× 10−7

alpha in = 2.172 ms−1

beta in = 1.077 ms−1

alpha V shift = −12.0 mV

alpha alpha V shift = −36.0 mV

beta scale = 1.0

beta beta scale = 1.0

beta i scale = 1.0

Equations defined in this component

d(P C3 Kr)

d(time)
= (beta ∗ P C2 Kr − alpha ∗ P C3 Kr) (A.25.79)

d(P C2 Kr)

d(time)
= (− (beta + alpha in) ∗ P C2 Kr + alpha ∗ P C3 Kr + beta in ∗ P C1 Kr) (A.25.80)

d(P C1 Kr)

d(time)
= − (beta in + alpha alpha + alpha alpha) ∗ P C1 Kr

+ alpha in ∗ P C2 Kr + beta beta ∗ P O Kr + mu ∗ P I Kr (A.25.81)
d(P O Kr)

d(time)
= (− (beta beta + beta i) ∗ P O Kr + alpha alpha ∗ P C1 Kr + alpha i ∗ P I Kr)

(A.25.82)
d(P I Kr)

d(time)
= (− (mu + alpha i) ∗ P I Kr + alpha alpha ∗ P C1 Kr + beta i ∗ P O Kr) (A.25.83)

alpha = 55.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha V shift)) (A.25.84)

beta = 0.002357 ∗ exp (−0.036588 ∗ V ) ∗ beta scale (A.25.85)

alpha alpha = 65.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha alpha V shift)) (A.25.86)

beta beta = 0.0029357 ∗ exp (−0.02158 ∗ V ) ∗ beta beta scale (A.25.87)

alpha i = 0.439 ∗ exp (−0.02352 ∗ (V + 25.0)) ∗ 4.5

Ko
(A.25.88)

beta i = 0.656 ∗ exp (0.000942 ∗ V ) ∗ (4.5)0.3

(Ko)
0.3 ∗ beta i scale (A.25.89)

mu =







alpha i∗beta beta∗alpha alpha
alpha alpha∗beta i

; if |beta i| > 0.0,

alpha i∗beta beta∗alpha alpha
alpha alpha

otherwise.
(A.25.90)

“slow time dependent potassium current” component

The slowly activating component of the time dependent potassium current. g Ks max can be varied to give repre-

sentations of the different cell types described in the various LR models. The default value here is for epicardial

cells from the Clancy and Rudy (2002) model - corresponding to a ratio GKs/GKr = 23. From this model, ratios

of 17 and 19 should be used for M-cells and endocardial cells, respectively.

Initial values defined in this component

gKs gKr ratio = 23.0 P NaK = 0.01833
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Equations defined in this component

g Ks = g Ks max ∗









1.0 +
0.6

(

1.0 +
(

0.38×10−4

Cai

)1.4
)









(A.25.91)

g Ks max = g Kr max ∗ gKs gKr ratio (A.25.92)

E Ks =
R ∗ T

F
∗ ln

(

(Ko + P NaK ∗ Nao)

(Ki + P NaK ∗ Nai)

)

(A.25.93)

i Ks = g Ks ∗ Xs1 ∗ Xs2 ∗ (V − E Ks) (A.25.94)

Xs = Xs1 ∗ Xs2 (A.25.95)

“slow time dependent potassium current Xs1 gate” component

Initial values defined in this component

Xs1 = 0.00445683

Equations defined in this component

d(Xs1)

d(time)
=

(Xs infinity − Xs1)

tau Xs1
(A.25.96)

Xs infinity =
1.0

(

1.0 + exp
(

− (V −1.5)
16.7

)) (A.25.97)

tau Xs1 =
1.0

(

0.0000719∗(V +30.0)
(1.0−exp(−0.148∗(V +30.0))) + 0.000131∗(V +30.0)

(exp(0.0687∗(V +30.0))−1.0)

) (A.25.98)

“slow time dependent potassium current Xs2 gate” component

Initial values defined in this component

Xs2 = 0.00445683

Equations defined in this component

d(Xs2)

d(time)
=

(Xs infinity − Xs2)

tau Xs2
(A.25.99)

tau Xs2 = 4.0 ∗ tau Xs1 (A.25.100)

“time independent potassium current” component

The time-independent potassium current.

Initial values defined in this component

g K1 max = 7.5× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the maximal channel conductance, dependent on extracellular potassium concentration.

g K1 = g K1 max ∗
√

Ko

5.4
(A.25.101)

The following equation calculates the reversal potential of the time-independent potassium current.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.25.102)

Calculate the current.

i K1 = g K1 ∗ K1 infinity ∗ (V − E K1) (A.25.103)

“time independent potassium current K1 gate” component

The time constants for the K1 gate are small enough that the gating variable can be approximated with it’s steady-

state value.

Equations defined in this component

The opening rate of the K1 gate.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1) − 59.215)))
(A.25.104)

The closing rate of the K1 gate.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.25.105)

The steady-state approximation for the K1 gating kinetics.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.25.106)

“plateau potassium current” component

The plateau potassium current component contains the equations which describe the contribution of a time inde-

pendent [K]o-insensitive channel at plateau potentials.

Initial values defined in this component

g Kp = 8.28× 10−5 mS · mm−2

Equations defined in this component

The channel’s reversal potential.

E Kp = E K1 (A.25.107)
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The activation variable.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.25.108)

Calculation of the plateau potassium current.

i Kp = g Kp ∗ Kp ∗ (V − E Kp) (A.25.109)

“Na Ca exchanger” component

The Na/Ca exchanger component describes how a protein molecule in the cell surface membrane transports Na

ions into the cytosol and exports Ca ions into the extracellular volume, in a ratio of 3:1 respectively.

Initial values defined in this component

k NaCa = 50.0 µA · mm−2

K mNa = 87.5 mM

K mCa = 1.38 mM

k sat = 0.1

eta = 0.35

Equations defined in this component

Calculation of the Na/Ca exchanger current.

i NaCa = k NaCa ∗ 1.0
(

(K mNa)
3.0

+ (Nao)
3.0
) ∗ 1.0

(K mCa + Cao)

∗ 1.0
(

1.0 + k sat ∗ exp
(

(eta − 1.0) ∗ V ∗ F
R∗T

))

∗
(

exp

(

eta ∗ V ∗ F

R ∗ T

)

∗ (Nai)
3.0 ∗ Cao − exp

(

(eta − 1.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
3.0 ∗ Cai

)

(A.25.110)

“sarcolemmal calcium pump” component

The sarcolemmal calcium pump is an additional mechanism for removing Ca ions from the myoplasm to help

maintain a low intracellular calcium concentration when at rest.

Initial values defined in this component

K mpCa = 0.5 × 10−3 mM I pCa = 1.15× 10−2 µA · mm−2

Equations defined in this component

The calcium pump current.

i p Ca = I pCa ∗ Cai

(K mpCa + Cai)
(A.25.111)
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“sodium background current” component

The sodium background current is a time-independent diffusion of Na ions down their electrochemical gradient,

through the cell surface membrane into the cytosol.

Initial values defined in this component

g Nab = 1.41× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background sodium channel.

E NaN = E Na (A.25.112)

Calculation of the background sodium current.

i Na b = g Nab ∗ (V − E NaN) (A.25.113)

“calcium background current” component

The calcium background current describes a time-independent diffusion of Ca ions down their electrochemical

gradient through the cell surface membrane into the cytosol. However, calcium is not allowed to accumulate to

high intracellular concentrations. This influx is balanced by the Ca ion extrusion through the Na-Ca exchanger and

the sarcolemmal Ca pump.

Initial values defined in this component

g Cab = 6.032× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background calcium current.

E CaN =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.25.114)

Calculation of the background calcium current.

i Ca b = g Cab ∗ (V − E CaN) (A.25.115)

“sodium potassium pump” component

The sodium potassium pump is an active protein in the cell membrane which couples the free energy released by

the hydrolysis of ATP to the movement of Na and K ions against their electrochemical gradients through the cell

membrane.

Initial values defined in this component

I NaK = 0.013 µA · mm−2

K mNai = 10.0 mM

K mKo = 1.5 mM
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Equations defined in this component

Calculation of the Na/K pump current.

f NaK =
1.0

((

1.0 + 0.1245 ∗ exp
(

−0.1∗V ∗F
R∗T

))

+ 0.0365 ∗ sigma ∗ exp
(

−V ∗F
R∗T

)) (A.25.116)

sigma =
1.0

7.0
∗
(

exp

(

Nao

67.3

)

− 1.0

)

(A.25.117)

i NaK = I NaK ∗ f NaK ∗ 1.0
(

1.0 +
(

K mNai
Nai

)1.5
) ∗ Ko

(Ko + K mKo)
(A.25.118)

“non specific calcium activated current” component

The nonspecific calcium activated current describes a channel which is activated by calcium ions, but is permeable

to only sodium and potassium ions.

Initial values defined in this component

K m ns Ca = 1.2 × 10−3 mM P ns Ca = 1.75× 10−9 mm · ms−1

Equations defined in this component

The reversal potential of the channel.

EnsCa =
R ∗ T

F
∗ ln

(

(Ko + Nao)

(Ki + Nai)

)

(A.25.119)

The potential offset for the channel.

V nsCa = (V − EnsCa) (A.25.120)

The sodium component of the channel’s current.

i ns Na = I ns Na ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.25.121)

The potassium component of the channel’s current.

i ns K = I ns K ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.25.122)

The total nonspecific calcium activated current.

i ns Ca = (i ns Na + i ns K) (A.25.123)

The maximal sodium component current.

I ns Na = P ns Ca∗(1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Nai ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Nao
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.25.124)

The maximal potassium component current.

I ns K = P ns Ca ∗ (1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Ki ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Ko
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.25.125)
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“calcium subsystem” component

In the JRW model, subcellular calcium regulatory mechanisms are described in detail. There are six calcium fluxes

to consider; J rel, J leak, J up, J tr, J xfer and J trpn. In addition, three membrane current fluxes are also necessary

for the formulation of calcium regulation; i p Ca, i Ca L Ca and i NaCa.

Initial values defined in this component

Cai = 9.94893× 10−11 mM

Ca SS = 1.36058× 10−4 mM

Am = 546.69 mm−1

V myo = 0.92

P O1 = 1.19168× 10−3

P O2 = 6.30613× 10−9

P C1 = 0.762527

P C2 = 0.236283

v1 = 1.8 ms−1

v2 = 0.58× 10−4 ms−1

v3 = 1.8 × 10−3 mM · ms−1

nCa = 4.0

mCa = 3.0

k a plus = 1.215× 1010 mM−4 · ms−1

k a minus = 0.1425 ms−1

k b plus = 4.05× 107 mM−3 · ms−1

k b minus = 1.930 ms−1

k c plus = 0.018 ms−1

k c minus = 0.0008 ms−1

k htrpn plus = 20.0 mM−1 · ms−1

k htrpn minus = 0.066× 10−3 ms−1

k ltrpn plus = 40.0 mM−1 · ms−1

k ltrpn minus = 0.04 ms−1

tau tr = 34.48 ms

Ca JSR = 1.17504 mM

Ca NSR = 1.243891 mM

K mup = 0.5 × 10−3 mM

K mCMDN = 2.38× 10−3 mM

K mCSQN = 0.8 mM

tau xfer = 3.125 ms

HTRPN tot = 0.14 mM

LTRPN tot = 0.07 mM

HTRPNCa = 0.13598 mM

LTRPNCa = 0.00635 mM

CSQN tot = 15.0 mM

CMDN tot = 0.05 mM

Equations defined in this component

Calculate some volume fractions as proportions of the total myoplasmic volume.

V SS = 5.828× 10−5 ∗ V myo (A.25.126)

V NSR = 0.081 ∗ V myo (A.25.127)

V JSR = 0.00464 ∗ V myo (A.25.128)

The calcium release flux from the JSR into the restricted subspace is governed by the fraction of RyR channels in

an open state.

J rel = v1 ∗ RyR open ∗ (Ca JSR − Ca SS) (A.25.129)

The ”open” RyR’s are those P O1 and P O2 states.

RyR open = (P O1 + P O2) (A.25.130)
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The kinetic equations governing the transitions between the four states used to model the RyR’s.
d(P C1)

d(time)
=
(

−k a plus ∗ (Ca SS)
nCa ∗ P C1 + k a minus ∗ P O1

)

(A.25.131)

d(P O1)

d(time)
=

[

k a plus ∗ (Ca SS)
nCa ∗ P C1

−
(

k a minus ∗ P O1 + k b plus ∗ (Ca SS)mCa ∗ P O1 + k c plus ∗ P O1
)

]

+ k b minus ∗ P O2 + k c minus ∗ P C2 (A.25.132)
d(P O2)

d(time)
=
(

k b plus ∗ (Ca SS)
mCa ∗ P O1 − k b minus ∗ P O2

)

(A.25.133)

d(P C2)

d(time)
= (k c plus ∗ P O1 − k c minus ∗ P C2) (A.25.134)

Calculate the leakage flux from the NSR into the myoplasm.

J leak = v2 ∗ (Ca NSR − Cai) (A.25.135)

Calculate the uptake flux into the NSR from the myoplasm.

J up = v3 ∗ (Cai)
2.0

(

(K mup)
2.0

+ (Cai)
2.0
) (A.25.136)

Calculate the translocation flux between the uptake (NSR) and release (JSR) stores.

J tr =
(Ca NSR − Ca JSR)

tau tr
(A.25.137)

Calculate the calcium flux from the diffusion of calcium out of the restricted subspace into the myoplasm.

J xfer =
(Ca SS − Cai)

tau xfer
(A.25.138)

The kinetics of calcium binding to the myoplasm buffer troponin - both high and low affinity binding sites.

J htrpn = (k htrpn plus ∗ Cai ∗ (HTRPN tot − HTRPNCa)− k htrpn minus ∗ HTRPNCa)

(A.25.139)

J ltrpn = (k ltrpn plus ∗ Cai ∗ (LTRPN tot − LTRPNCa)− k ltrpn minus ∗ LTRPNCa)

(A.25.140)

J trpn = (J htrpn + J ltrpn) (A.25.141)

Keep track of the concentration of calcium ions bound to high and low affinity troponin binding sites.
d(HTRPNCa)

d(time)
= J htrpn (A.25.142)

d(LTRPNCa)

d(time)
= J ltrpn (A.25.143)

Calcium is buffered by calmodulin (CMDN) in the subspace and myoplasm, and by calsequestrin (CSQN) in the
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JSR. These are fast buffers and their effect is modelled using the rapid buffering approximation.

Bi =
1.0

(

1.0 + CMDN tot∗K mCMDN
((K mCMDN+Cai))2.0

) (A.25.144)

B SS =
1.0

(

1.0 + CMDN tot∗K mCMDN

((K mCMDN+Ca SS))2.0

) (A.25.145)

B JSR =
1.0

(

1.0 + CSQN tot∗K mCSQN

((K mCSQN+Ca JSR))2.0

) (A.25.146)

The kinetics of the calcium ion concentration changes in the various compartments of the model.

d(Cai)

d(time)
= Bi ∗

[

(J leak + J xfer)

−
(

J up + J trpn + ((i Ca b − 2.0 ∗ i NaCa) + i Ca T + i p Ca) ∗ Am

2.0 ∗ V myo ∗ F

)]

(A.25.147)

d(Ca SS)

d(time)
= B SS ∗

((

J rel ∗ V JSR

V SS
− J xfer ∗ V myo

V SS

)

− i Ca L Ca ∗ Am

2.0 ∗ V SS ∗ F

)

(A.25.148)
d(Ca JSR)

d(time)
= B JSR ∗ (J tr − J rel) (A.25.149)

d(Ca NSR)

d(time)
=

(

(J up − J leak) ∗ V myo

V NSR
− J tr ∗ V JSR

V NSR

)

(A.25.150)

“ionic concentrations” component

The descriptions of the rate of change of [Na]i and [K]i are the same as the LR-II model.

Initial values defined in this component

Nai = 10.2042 mM

Nao = 140.0 mM

Ki = 143.727 mM

Ko = 4.5 mM

Cao = 1.8 mM

Equations defined in this component

The rate of change of intracellular sodium ion concentration.
d(Nai)

d(time)
= − (i Na + i Na b + i ns Na + i NaCa ∗ 3.0 + i NaK ∗ 3.0) ∗ Am

V myo ∗ F
(A.25.151)

The rate of change of intracellular potassium ion concentration.
d(Ki)

d(time)
= − (i Ca L K + i Kr + i Ks + i K1 + i Kp + i ns K + i to + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.25.152)
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A.26 N LRd HMT

This is the CellML description of a cellular electrophysiology and calcium dynamics model based on the Luo &

Rudy model given in Clancy & Rudy (2001), with the Markov state model for IKr. This model also uses the

wild-type INa Markov state model of Clancy & Rudy (2002) and the calcium subsystem of Jafri et. al. (1998).

The default intitial values included in this CellML model description are for the wild-type epicardial cell type. The

electrophysiological model is coupled to the HMT cardiac mechanics model via the JRW calcium binding to low

affinity troponin-C, which has been modified to include the tension dependent release of Ca from TnC.

Reference: Clancy, C. E. & Rudy, Y. (2002), ‘Na+ Channel Mutation That Causes Both Brugada and Long-QT

Syndrome Phenotypes: A Simulation Study of Mechanism’, Circulation 105, 1208–1213.

Reference: Clancy, C. E. & Rudy, Y. (2001), ‘Cellular consequences of HERG mutations in the long QT syndrome:

precursors to sudden cardiac death’, Cardiovascular Research 50, 301–313.

Reference: Jafri, M. S., Rice, J. J. & Winslow, R. L. (1998), ‘Cardiac Ca2+ Dynamics: The Roles of Ryanodine

Receptor Adaptation and Sarcoplasmic Reticulum Load’, Biophysical Journal 74, 1149–1168.

Reference: Hunter, P. J., McCulloch, A. D. & ter Keurs, H. E. (1998), ‘Modelling the mechanical properties of

cardiac muscle’, Progress in Biophysics & Molecular Biology 69, 289–331.

“environment” component

“membrane” component

The main component of the model which defines the action potential.

Initial values defined in this component

V = −84.1638 mV

R = 8.3145× 103 pJ · nmol−1 · K−1

T = 310.0 K

F = 9.6845× 104 nC · nmol−1

Cm = 0.01 µF · mm−2

Equations defined in this component

The kinetics of the transmembrane potential, defined as the sum of all the sarcolemmal currents and an applied

stimulus current.
d(V )

d(time)
=

[

I stim−
(

i Na + i Ca L Ca + i Ca L K + i Ca T + i Kr + i Ks + i NaCa

+ i K1 + i Kp + i p Ca + i Na b + i Ca b + i NaK + i ns Ca + i to
)

]/

Cm (A.26.1)

This is a dummy equation that we simply use to make grabbing the value in CMISS much easier.

IStimC = I stim (A.26.2)
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i K = (i Kr + i Ks) (A.26.3)

i Ca L = (i Ca L Ca + i Ca L K) (A.26.4)

“transient outward potassium current” component

The transient outward current. The g to given here is for epicardial cells. Use g to=0.005 mS.mmˆ-2 for M cells

and 0.0005 mS.mmˆ-2 for endocardial cells.

Initial values defined in this component

g to = 0.011 mS · mm−2

Equations defined in this component

i to = g to ∗ (z)
3.0 ∗ y ∗ R to ∗ (V − E K) (A.26.5)

R to = exp

(

V

100.0

)

(A.26.6)

E K =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.26.7)

“transient outward potassium current z gate” component

Initial values defined in this component

z = 0.0120892

Equations defined in this component

d(z)

d(time)
= (alpha z ∗ (1.0− z) − beta z ∗ z) (A.26.8)

alpha z =
10.0 ∗ exp

(

(V −40.0)
25.0

)

(

1.0 + exp
(

(V −40.0)
25.0

)) (A.26.9)

beta z =
10.0 ∗ exp

(

− (V +90.0)
25.0

)

(

1.0 + exp
(

− (V +90.0)
25.0

)) (A.26.10)

“transient outward potassium current y gate” component

Initial values defined in this component

y = 0.999978
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Equations defined in this component

d(y)

d(time)
= (alpha y ∗ (1.0 − y) − beta y ∗ y) (A.26.11)

alpha y =
0.015

(

1.0 + exp
(

(V +60.0)
5.0

)) (A.26.12)

beta y =
0.1 ∗ exp

(

(V +25.0)
5.0

)

(

1.0 + exp
(

(V +25.0)
5.0

)) (A.26.13)

“fast sodium current” component

Initial values defined in this component

g Na = 0.235 mS · mm−2

Equations defined in this component

i Na = g Na ∗ P O Na ∗ (V − E Na) (A.26.14)

E Na =
R ∗ T

F
∗ ln

(

Nao

Nai

)

(A.26.15)

“Na channel states” component

Initial values defined in this component

P O Na = 2.67× 10−7

P C1 Na = 0.000159

P C2 Na = 0.0169

P C3 Na = 0.713

P IF Na = 5.82× 10−5

P IC3 Na = 0.261

P IC2 Na = 0.0062

P IM1 Na = 8.05× 10−5

P IM2 Na = 0.00245

Equations defined in this component

d(P C3 Na)

d(time)
= (− (beta 3 + alpha 11) ∗ P C3 Na + alpha 3 ∗ P IC3 Na + beta 11 ∗ P C2 Na)

(A.26.16)
d(P C2 Na)

d(time)
= − (beta 11 + beta 3 + alpha 12) ∗ P C2 Na + alpha 11 ∗ P C3 Na

+ beta 12 ∗ P C1 Na + alpha 3 ∗ P IC2 Na (A.26.17)

d(P C1 Na)

d(time)
= − (beta 12 + alpha 13 + beta 3) ∗ P C1 Na + alpha 12 ∗ P C2 Na

+ beta 13 ∗ P O Na + alpha 3 ∗ P IF Na (A.26.18)
d(P O Na)

d(time)
= (− (alpha 2 + beta 13) ∗ P O Na + beta 2 ∗ P IF Na + alpha 13 ∗ P C1 Na)

(A.26.19)
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d(P IF Na)

d(time)
= − (beta 2 + alpha 3 + alpha 4 + beta 12) ∗ P IF Na + beta 3 ∗ P C1 Na

+ beta 4 ∗ P IM1 Na + alpha 2 ∗ P O Na + alpha 12 ∗ P IC2 Na (A.26.20)
d(P IC3 Na)

d(time)
= (− (alpha 3 + alpha 11) ∗ P IC3 Na + beta 3 ∗ P C3 Na + beta 11 ∗ P IC2 Na)

(A.26.21)
d(P IC2 Na)

d(time)
= − (alpha 3 + alpha 12 + beta 11) ∗ P IC2 Na + beta 3 ∗ P C2 Na

+ beta 12 ∗ P IF Na + alpha 11 ∗ P IC3 Na (A.26.22)
d(P IM1 Na)

d(time)
= (− (alpha 5 + beta 4) ∗ P IM1 Na + beta 5 ∗ P IM2 Na + alpha 4 ∗ P IF Na)

(A.26.23)
d(P IM2 Na)

d(time)
= (alpha 5 ∗ P IM1 Na − beta 5 ∗ P IM2 Na) (A.26.24)

alpha 11 =
3.802

(

0.1027 ∗ exp
(

−V
17.0

)

+ 0.20 ∗ exp
(

−V
150.0

)) (A.26.25)

alpha 12 =
3.802

(

0.1027 ∗ exp
(

−V
15.0

)

+ 0.23 ∗ exp
(

−V
150.0

)) (A.26.26)

alpha 13 =
3.802

(

0.1027 ∗ exp
(

−V
12.0

)

+ 0.25 ∗ exp
(

−V
150.0

)) (A.26.27)

beta 11 = 0.1917 ∗ exp

(−V

20.3

)

(A.26.28)

beta 12 = 0.20 ∗ exp

(− (V − 5.0)

20.3

)

(A.26.29)

beta 13 = 0.22 ∗ exp

(− (V − 10.0)

20.3

)

(A.26.30)

alpha 2 = 9.178 ∗ exp

(

V

29.68

)

(A.26.31)

beta 2 =
alpha 13 ∗ alpha 2 ∗ alpha 3

beta 13 ∗ beta 3
(A.26.32)

alpha 3 = 3.7933E − 7 ∗ exp

(−V

7.7

)

(A.26.33)

beta 3 = (0.0084 + 0.00002 ∗ V ) (A.26.34)

alpha 4 =
alpha 2

100.0
(A.26.35)

beta 4 = alpha 3 (A.26.36)

alpha 5 =
alpha 2

9.5E5
(A.26.37)

beta 5 =
alpha 3

50
(A.26.38)

“L type Ca channel” component

The JWR model creates a new mathematical model to describe the L-type calcium channel that is based on the

experimentally observed mode-switching behaviour of the channel. Inactivation occurs as calcium ion binding

induces the channel to switch (from mode normal) to a mode in which transitions to open states are extremely slow

(mode Ca). The channel has one voltage inactivation gate, y. As well as Ca, the channel is assumed permeable to

K ions also. The value of P Ca varies depending on the cell type being modelled. The default value is 33.75e-6

mm.msˆ-1from the JRW model, but this needs to be reduced by 50 percent for RV epicardial cells and 20 percent

for LV epicardial cells (following Dumaine et. al. 1999), to allow for the i to current. From Clancy and Rudy

2002, P Ca should also be reduced for M-cells and endocardial cells. Since the default in this model is epicardial
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cells, we used the 50 percent reduced value to match the defualt value of g to.

Initial values defined in this component

P Ca = 1.6875× 10−5 mm · ms−1

P K = 1.0 × 10−9 mm · ms−1

i Ca L Ca half = −4.58× 10−3 µA · mm−2

O = 9.84546× 10−21

O Ca = 0.0

a = 2.0

b = 2.0

g = 2.0 ms−1

f = 0.3 ms−1

g = 0.0 ms−1

f = 0.0 ms−1

omega = 0.01 ms−1

C0 = 0.997208

C1 = 6.38897× 10−5

C2 = 1.535× 10−9

C3 = 1.63909× 10−14

C4 = 6.56337× 10−20

C Ca0 = 2.72826× 10−3

C Ca1 = 6.99215× 10−7

C Ca2 = 6.71989× 10−11

C Ca3 = 2.87031× 10−15

C Ca4 = 4.59752× 10−20

Equations defined in this component

Calculation of the calcium current component of the total channel current, given as the maximal current multiplied

by the voltage-dependent inactivation gate and the open probability of the channel based on the mode-switching

model.

i Ca L Ca = i Ca L Ca max ∗ y ∗ (O + O Ca) (A.26.39)

Calculation of the potassium current component of the total channel current.

i Ca L K = p k ∗ y ∗ (O + O Ca) ∗ V ∗ (F )
2.0

R ∗ T
∗
(

Ki ∗ exp
(

V ∗F
R∗T

)

− Ko
)

(

exp
(

V ∗F
R∗T

)

− 1.0
) (A.26.40)

The potassium permeability of the channel, which depends on the calcium current component.

p k =
P K

(

1.0 + i Ca L Ca max
i Ca L Ca half

) (A.26.41)

The maximal calcium current through the channel.

i Ca L Ca max = P Ca ∗ 4.0 ∗ V ∗ (F )
2.0

R ∗ T
∗
(

0.001 ∗ exp
(

2.0 ∗ V ∗ F
R∗T

)

− 0.341 ∗ Cao
)

(

exp
(

2.0 ∗ V ∗ F
R∗T

)

− 1.0
) (A.26.42)

Rate constants for state changes in mode normal.

alpha = 0.4 ∗ exp

(

(V + 12.0)

10.0

)

(A.26.43)

beta = 0.05 ∗ exp

(

(V + 12.0)

−13.0

)

(A.26.44)

Rate constants for state changes in mode Ca (corresponding to alpha-prime and beta-prime in the JRW paper).

alpha a = alpha ∗ a (A.26.45)

beta b =
beta

b
(A.26.46)
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Rate constant for switching between mode normal and mode Ca.

gamma = 0.1875 ∗ Ca SS (A.26.47)

The kinetics of the state transitions in mode normal. In the normal mode, the calcium channel is able to make the

transition to the open, conducting state (O) from the closed state (C) at a normal rate.
d(C0)

d(time)
= ((beta ∗ C1 + omega ∗ C Ca0) − (4.0 ∗ alpha + gamma) ∗ C0) (A.26.48)

d(C1)

d(time)
=
(

4.0 ∗ alpha ∗ C0 + 2.0 ∗ beta ∗ C2 +
omega

b
∗ C Ca1

)

− (beta + 3.0 ∗ alpha + gamma ∗ a) ∗ C1 (A.26.49)

d(C2)

d(time)
=

(

3.0 ∗ alpha ∗ C1 + 3.0 ∗ beta ∗ C3 +
omega

(b)
2.0 ∗ C Ca2

)

−
(

beta ∗ 2.0 + 2.0 ∗ alpha + gamma ∗ (a)2.0
)

∗ C2 (A.26.50)

d(C3)

d(time)
=

(

2.0 ∗ alpha ∗ C2 + 4.0 ∗ beta ∗ C4 +
omega

(b)
3.0 ∗ C Ca3

)

−
(

beta ∗ 3.0 + alpha + gamma ∗ (a)3.0
)

∗ C3 (A.26.51)

d(C4)

d(time)
=

((

alpha ∗C3 + g ∗ O +
omega

(b)
4.0 ∗ C Ca4

)

−
(

beta ∗ 4.0 + f + gamma ∗ (a)
4.0
)

∗ C4

)

(A.26.52)
d(O)

d(time)
= (f ∗ C4 − g ∗ O) (A.26.53)

The kinetics of the state transitions in mode Ca. Calcium binding to the Ca channel induces a conformational

change from normal mode to mode Ca. This effectively inhibits the conduction of calcium ions because in mode

Ca, the calcium channel makes the transition to the open, conducting state (O) extremely slowly.
d(C Ca0)

d(time)
= ((beta b ∗ C Ca1 + gamma ∗ C Ca0) − (4.0 ∗ alpha a + omega) ∗ C Ca0) (A.26.54)

d(C Ca1)

d(time)
= (4.0 ∗ alpha a ∗ C Ca0 + 2.0 ∗ beta b ∗ C Ca2 + gamma ∗ a ∗ C1)

−
(

beta b + 3.0 ∗ alpha a +
omega

b

)

∗ C Ca1 (A.26.55)

d(C Ca2)

d(time)
=
(

3.0 ∗ alpha a ∗ C Ca1 + 3.0 ∗ beta b ∗ C Ca3 + gamma ∗ (a)
2.0 ∗ C2

)

−
(

beta b ∗ 2.0 + 2.0 ∗ alpha a +
omega

(b)2.0

)

∗ C Ca2 (A.26.56)

d(C Ca3)

d(time)
=
(

2.0 ∗ alpha a ∗ C Ca2 + 4.0 ∗ beta b ∗ C Ca4 + gamma ∗ (a)
3.0 ∗ C3

)

−
(

beta b ∗ 3.0 + alpha a +
omega

(b)
3.0

)

∗ C Ca3 (A.26.57)
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d(C Ca4)

d(time)
=
(

alpha a ∗ C Ca3 + g ∗ O Ca + gamma ∗ (a)
4.0 ∗ C4

)

−
(

beta b ∗ 4.0 + f +
omega

(b)
4.0

)

∗ C Ca4 (A.26.58)

d(O Ca)

d(time)
= (f ∗ C Ca4 − g ∗ O Ca) (A.26.59)

“L type Ca channel y gate” component

The voltage-dependent inactivation gate for the L-type calcium channel - the y gate.

Initial values defined in this component

y = 0.998983

Equations defined in this component

The kinetics of the y gate.
d(y)

d(time)
=

(y infinity − y)

tau y
(A.26.60)

y infinity =





1.0
(

1.0 + exp
(

(V +55.0)
7.5

)) +
0.1

(

1.0 + exp
(

(−V +21.0)
6.0

))



 (A.26.61)

tau y =



20.0 +
600.0

(

1.0 + exp
(

(V +30.0)
9.5

))



 (A.26.62)

“T type Ca channel” component

Initial values defined in this component

g Ca T = 1.25 × 10−5 mS · mm−2

Equations defined in this component

i Ca T = g Ca T ∗ (b)2.0 ∗ g ∗ (V − E Ca) (A.26.63)

E Ca =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.26.64)

“T type Ca channel b gate” component

Initial values defined in this component

b = 0.000970231
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Equations defined in this component

d(b)

d(time)
=

(b infinity − b)

tau b
(A.26.65)

b infinity =
1.0

(

1.0 + exp
(

− (V +14.0)
10.8

)) (A.26.66)

tau b =
(3.7 + 6.1)

(

1.0 + exp
(

(25.0+V )
4.5

)) (A.26.67)

“T type Ca channel g gate” component

Initial values defined in this component

g = 0.994305

Equations defined in this component

d(g)

d(time)
=

(g infinity − g)

tau g
(A.26.68)

g infinity =
1.0

(

1.0 + exp
(

(V +60.0)
5.6

)) (A.26.69)

tau g =







12.0; if V > 0.0,

(−0.875 ∗ V + 12.0) otherwise.
(A.26.70)

“rapid time dependent potassium current” component

The P NaK Kr factor is zero for the default wild-type IKr channel, but is non-zero for some genetic mutations.

Initial values defined in this component

g Kr max = 0.000135 mS · mm−2 P NaK Kr = 0.0

Equations defined in this component

i Kr = g Kr ∗ P O Kr ∗ (V − E Kr) (A.26.71)

g Kr = g Kr max ∗ (Ko)
0.59 (A.26.72)

E Kr =
R ∗ T

F
∗ ln

(

(Ko + P NaK Kr ∗ Nao)

(Ki + P NaK Kr ∗ Nai)

)

(A.26.73)

“Kr channel states” component

The model for cardiac i Kr includes three closed states (C3, C2, C1) an open state (O) and an inactivation state (I).

P i is the probability of a channel occupying a particular state (i), which is determined by a system of linear first

oder differential equations. The default initial values below are for the wild-type channel.
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Initial values defined in this component

P O Kr = 6.11× 10−7

P C1 Kr = 0.00116

P C2 Kr = 0.000574

P C3 Kr = 0.938

P I Kr = 2.55× 10−7

alpha in = 2.172 ms−1

beta in = 1.077 ms−1

alpha V shift = −12.0 mV

alpha alpha V shift = −36.0 mV

beta scale = 1.0

beta beta scale = 1.0

beta i scale = 1.0

Equations defined in this component

d(P C3 Kr)

d(time)
= (beta ∗ P C2 Kr − alpha ∗ P C3 Kr) (A.26.74)

d(P C2 Kr)

d(time)
= (− (beta + alpha in) ∗ P C2 Kr + alpha ∗ P C3 Kr + beta in ∗ P C1 Kr) (A.26.75)

d(P C1 Kr)

d(time)
= − (beta in + alpha alpha + alpha alpha) ∗ P C1 Kr

+ alpha in ∗ P C2 Kr + beta beta ∗ P O Kr + mu ∗ P I Kr (A.26.76)
d(P O Kr)

d(time)
= (− (beta beta + beta i) ∗ P O Kr + alpha alpha ∗ P C1 Kr + alpha i ∗ P I Kr)

(A.26.77)
d(P I Kr)

d(time)
= (− (mu + alpha i) ∗ P I Kr + alpha alpha ∗ P C1 Kr + beta i ∗ P O Kr) (A.26.78)

alpha = 55.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha V shift)) (A.26.79)

beta = 0.002357 ∗ exp (−0.036588 ∗ V ) ∗ beta scale (A.26.80)

alpha alpha = 65.5× 10−3 ∗ exp (0.05547153 ∗ (V + alpha alpha V shift)) (A.26.81)

beta beta = 0.0029357 ∗ exp (−0.02158 ∗ V ) ∗ beta beta scale (A.26.82)

alpha i = 0.439 ∗ exp (−0.02352 ∗ (V + 25.0)) ∗ 4.5

Ko
(A.26.83)

beta i = 0.656 ∗ exp (0.000942 ∗ V ) ∗ (4.5)0.3

(Ko)
0.3 ∗ beta i scale (A.26.84)

mu =







alpha i∗beta beta∗alpha alpha
alpha alpha∗beta i

; if |beta i| > 0.0,

alpha i∗beta beta∗alpha alpha
alpha alpha

otherwise.
(A.26.85)

“slow time dependent potassium current” component

The slowly activating component of the time dependent potassium current. g Ks max can be varied to give repre-

sentations of the different cell types described in the various LR models. The default value here is for epicardial

cells from the Clancy and Rudy (2002) model - corresponding to a ratio GKs/GKr = 23. From this model, ratios

of 17 and 19 should be used for M-cells and endocardial cells, respectively.

Initial values defined in this component

gKs gKr ratio = 23.0 P NaK = 0.01833
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Equations defined in this component

g Ks = g Ks max ∗









1.0 +
0.6

(

1.0 +
(

0.38×10−4

Cai

)1.4
)









(A.26.86)

g Ks max = g Kr max ∗ gKs gKr ratio (A.26.87)

E Ks =
R ∗ T

F
∗ ln

(

(Ko + P NaK ∗ Nao)

(Ki + P NaK ∗ Nai)

)

(A.26.88)

i Ks = g Ks ∗ Xs1 ∗ Xs2 ∗ (V − E Ks) (A.26.89)

Xs = Xs1 ∗ Xs2 (A.26.90)

“slow time dependent potassium current Xs1 gate” component

Initial values defined in this component

Xs1 = 0.00445683

Equations defined in this component

d(Xs1)

d(time)
=

(Xs infinity − Xs1)

tau Xs1
(A.26.91)

Xs infinity =
1.0

(

1.0 + exp
(

− (V −1.5)
16.7

)) (A.26.92)

tau Xs1 =
1.0

(

0.0000719∗(V +30.0)
(1.0−exp(−0.148∗(V +30.0))) + 0.000131∗(V +30.0)

(exp(0.0687∗(V +30.0))−1.0)

) (A.26.93)

“slow time dependent potassium current Xs2 gate” component

Initial values defined in this component

Xs2 = 0.00445683

Equations defined in this component

d(Xs2)

d(time)
=

(Xs infinity − Xs2)

tau Xs2
(A.26.94)

tau Xs2 = 4.0 ∗ tau Xs1 (A.26.95)

“time independent potassium current” component

The time-independent potassium current.

Initial values defined in this component

g K1 max = 7.5× 10−3 mS · mm−2
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Equations defined in this component

Calculation of the maximal channel conductance, dependent on extracellular potassium concentration.

g K1 = g K1 max ∗
√

Ko

5.4
(A.26.96)

The following equation calculates the reversal potential of the time-independent potassium current.

E K1 =
R ∗ T

F
∗ ln

(

Ko

Ki

)

(A.26.97)

Calculate the current.

i K1 = g K1 ∗ K1 infinity ∗ (V − E K1) (A.26.98)

“time independent potassium current K1 gate” component

The time constants for the K1 gate are small enough that the gating variable can be approximated with it’s steady-

state value.

Equations defined in this component

The opening rate of the K1 gate.

alpha K1 =
1.02

(1.0 + exp (0.2385 ∗ ((V − E K1)− 59.215)))
(A.26.99)

The closing rate of the K1 gate.

beta K1 =
(0.49124 ∗ exp (0.08032 ∗ ((V + 5.476)− E K1)) + exp (0.06175 ∗ (V − (E K1 + 594.31))))

(1.0 + exp (−0.5143 ∗ ((V − E K1) + 4.753)))
(A.26.100)

The steady-state approximation for the K1 gating kinetics.

K1 infinity =
alpha K1

(alpha K1 + beta K1)
(A.26.101)

“plateau potassium current” component

The plateau potassium current component contains the equations which describe the contribution of a time inde-

pendent [K]o-insensitive channel at plateau potentials.

Initial values defined in this component

g Kp = 8.28× 10−5 mS · mm−2

Equations defined in this component

The channel’s reversal potential.

E Kp = E K1 (A.26.102)
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The activation variable.

Kp =
1.0

(

1.0 + exp
(

(7.488−V )
5.98

)) (A.26.103)

Calculation of the plateau potassium current.

i Kp = g Kp ∗Kp ∗ (V − E Kp) (A.26.104)

“Na Ca exchanger” component

The Na/Ca exchanger component describes how a protein molecule in the cell surface membrane transports Na

ions into the cytosol and exports Ca ions into the extracellular volume, in a ratio of 3:1 respectively.

Initial values defined in this component

k NaCa = 50.0 µA · mm−2

K mNa = 87.5 mM

K mCa = 1.38 mM

k sat = 0.1

eta = 0.35

Equations defined in this component

Calculation of the Na/Ca exchanger current.

i NaCa = k NaCa ∗ 1.0
(

(K mNa)
3.0

+ (Nao)
3.0
) ∗ 1.0

(K mCa + Cao)

∗ 1.0
(

1.0 + k sat ∗ exp
(

(eta − 1.0) ∗ V ∗ F
R∗T

))

∗
(

exp

(

eta ∗ V ∗ F

R ∗ T

)

∗ (Nai)
3.0 ∗ Cao − exp

(

(eta − 1.0) ∗ V ∗ F

R ∗ T

)

∗ (Nao)
3.0 ∗ Cai

)

(A.26.105)

“sarcolemmal calcium pump” component

The sarcolemmal calcium pump is an additional mechanism for removing Ca ions from the myoplasm to help

maintain a low intracellular calcium concentration when at rest.

Initial values defined in this component

K mpCa = 0.5× 10−3 mM I pCa = 1.15× 10−2 µA · mm−2

Equations defined in this component

The calcium pump current.

i p Ca = I pCa ∗ Cai

(K mpCa + Cai)
(A.26.106)



366 CELLML MODELS

“sodium background current” component

The sodium background current is a time-independent diffusion of Na ions down their electrochemical gradient,

through the cell surface membrane into the cytosol.

Initial values defined in this component

g Nab = 1.41× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background sodium channel.

E NaN = E Na (A.26.107)

Calculation of the background sodium current.

i Na b = g Nab ∗ (V − E NaN) (A.26.108)

“calcium background current” component

The calcium background current describes a time-independent diffusion of Ca ions down their electrochemical

gradient through the cell surface membrane into the cytosol. However, calcium is not allowed to accumulate to

high intracellular concentrations. This influx is balanced by the Ca ion extrusion through the Na-Ca exchanger and

the sarcolemmal Ca pump.

Initial values defined in this component

g Cab = 6.032× 10−5 mS · mm−2

Equations defined in this component

The reversal potential for the background calcium current.

E CaN =
R ∗ T

2.0 ∗ F
∗ ln

(

Cao

Cai

)

(A.26.109)

Calculation of the background calcium current.

i Ca b = g Cab ∗ (V − E CaN) (A.26.110)

“sodium potassium pump” component

The sodium potassium pump is an active protein in the cell membrane which couples the free energy released by

the hydrolysis of ATP to the movement of Na and K ions against their electrochemical gradients through the cell

membrane.

Initial values defined in this component

I NaK = 0.013 µA · mm−2

K mNai = 10.0 mM

K mKo = 1.5 mM
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Equations defined in this component

Calculation of the Na/K pump current.

f NaK =
1.0

((

1.0 + 0.1245 ∗ exp
(

−0.1∗V ∗F
R∗T

))

+ 0.0365 ∗ sigma ∗ exp
(

−V ∗F
R∗T

)) (A.26.111)

sigma =
1.0

7.0
∗
(

exp

(

Nao

67.3

)

− 1.0

)

(A.26.112)

i NaK = I NaK ∗ f NaK ∗ 1.0
(

1.0 +
(

K mNai
Nai

)1.5
) ∗ Ko

(Ko + K mKo)
(A.26.113)

“non specific calcium activated current” component

The nonspecific calcium activated current describes a channel which is activated by calcium ions, but is permeable

to only sodium and potassium ions.

Initial values defined in this component

K m ns Ca = 1.2× 10−3 mM P ns Ca = 1.75× 10−9 mm · ms−1

Equations defined in this component

The reversal potential of the channel.

EnsCa =
R ∗ T

F
∗ ln

(

(Ko + Nao)

(Ki + Nai)

)

(A.26.114)

The potential offset for the channel.

V nsCa = (V − EnsCa) (A.26.115)

The sodium component of the channel’s current.

i ns Na = I ns Na ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.26.116)

The potassium component of the channel’s current.

i ns K = I ns K ∗ 1.0
(

1.0 +
(

K m ns Ca
Cai

)3.0
) (A.26.117)

The total nonspecific calcium activated current.

i ns Ca = (i ns Na + i ns K) (A.26.118)

The maximal sodium component current.

I ns Na = P ns Ca∗(1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Nai ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Nao
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.26.119)

The maximal potassium component current.

I ns K = P ns Ca ∗ (1.0)
2.0 ∗ V nsCa ∗ (F )

2.0

R ∗ T
∗
(

0.75 ∗ Ki ∗ exp
(

V nsCa∗F
R∗T

)

− 0.75 ∗ Ko
)

(

exp
(

V nsCa∗F
R∗T

)

− 1.0
) (A.26.120)
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“calcium subsystem” component

In the JRW model, subcellular calcium regulatory mechanisms are described in detail. There are six calcium fluxes

to consider; J rel, J leak, J up, J tr, J xfer and J trpn. In addition, three membrane current fluxes are also necessary

for the formulation of calcium regulation; i p Ca, i Ca L Ca and i NaCa. We have added the tension dependent

release of Ca from TnC as part of the coupling to HMT mechanics.

Initial values defined in this component

Cai = 9.94893× 10−11 mM

Ca SS = 1.36058× 10−4 mM

Am = 546.69 mm−1

V myo = 0.92

HTRPN tot = 0.14 mM

LTRPN tot = 0.07 mM

HTRPNCa = 0.13598 mM

LTRPNCa = 0.00635 mM

P O1 = 1.19168× 10−3

P O2 = 6.30613× 10−9

P C1 = 0.762527

P C2 = 0.236283

v1 = 1.8 ms−1

v2 = 0.58× 10−4 ms−1

v3 = 1.8 × 10−3 mM · ms−1

nCa = 4.0

mCa = 3.0

k a plus = 1.215× 1010 mM−4 · ms−1

k a minus = 0.1425 ms−1

k b plus = 4.05× 107 mM−3 · ms−1

k b minus = 1.930 ms−1

k c plus = 0.018 ms−1

k c minus = 0.0008 ms−1

k htrpn plus = 20.0 mM−1 · ms−1

k htrpn minus = 0.066× 10−3 ms−1

k ltrpn plus = 40.0 mM−1 · ms−1

k ltrpn minus = 0.04 ms−1

tau tr = 34.48 ms

Ca JSR = 1.17504 mM

Ca NSR = 1.243891 mM

K mup = 0.5× 10−3 mM

K mCMDN = 2.38× 10−3 mM

K mCSQN = 0.8 mM

tau xfer = 3.125 ms

CSQN tot = 15.0 mM

CMDN tot = 0.05 mM

Equations defined in this component

Calculate some volume fractions as proportions of the total myoplasmic volume.

V SS = 5.828× 10−5 ∗ V myo (A.26.121)

V NSR = 0.081 ∗ V myo (A.26.122)

V JSR = 0.00464 ∗ V myo (A.26.123)

The calcium release flux from the JSR into the restricted subspace is governed by the fraction of RyR channels in

an open state.

J rel = v1 ∗ RyR open ∗ (Ca JSR − Ca SS) (A.26.124)

The ”open” RyR’s are those P O1 and P O2 states.

RyR open = (P O1 + P O2) (A.26.125)
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The kinetic equations governing the transitions between the four states used to model the RyR’s.
d(P C1)

d(time)
=
(

−k a plus ∗ (Ca SS)
nCa ∗ P C1 + k a minus ∗ P O1

)

(A.26.126)

d(P O1)

d(time)
=

[

k a plus ∗ (Ca SS)
nCa ∗ P C1

−
(

k a minus ∗ P O1 + k b plus ∗ (Ca SS)mCa ∗ P O1 + k c plus ∗ P O1
)

]

+ k b minus ∗ P O2 + k c minus ∗ P C2 (A.26.127)
d(P O2)

d(time)
=
(

k b plus ∗ (Ca SS)
mCa ∗ P O1 − k b minus ∗ P O2

)

(A.26.128)

d(P C2)

d(time)
= (k c plus ∗ P O1 − k c minus ∗ P C2) (A.26.129)

Calculate the leakage flux from the NSR into the myoplasm.

J leak = v2 ∗ (Ca NSR − Cai) (A.26.130)

Calculate the uptake flux into the NSR from the myoplasm.

J up = v3 ∗ (Cai)
2.0

(

(K mup)
2.0

+ (Cai)
2.0
) (A.26.131)

Calculate the translocation flux between the uptake (NSR) and release (JSR) stores.

J tr =
(Ca NSR − Ca JSR)

tau tr
(A.26.132)

Calculate the calcium flux from the diffusion of calcium out of the restricted subspace into the myoplasm.

J xfer =
(Ca SS − Cai)

tau xfer
(A.26.133)

Calculate the tension dependent factor for calcium binding.

TTo =







T
gamma∗To

; if To > 1.0 × 10−8,

0.0 otherwise.
(A.26.134)

The kinetics of calcium binding to the myoplasm buffer troponin - both high and low affinity binding sites.

J htrpn = (k htrpn plus ∗ Cai ∗ (HTRPN tot − HTRPNCa)− k htrpn minus ∗ HTRPNCa)

(A.26.135)

J ltrpn = k ltrpn plus ∗ Cai ∗ (LTRPN tot − LTRPNCa)

− k ltrpn minus ∗ (1.0− TTo) ∗ LTRPNCa (A.26.136)

J trpn = (J htrpn + J ltrpn) (A.26.137)

Keep track of the concentration of calcium ions bound to high and low affinity troponin binding sites.
d(HTRPNCa)

d(time)
= J htrpn (A.26.138)
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d(LTRPNCa)

d(time)
= J ltrpn (A.26.139)

Calcium is buffered by calmodulin (CMDN) in the subspace and myoplasm, and by calsequestrin (CSQN) in the

JSR. These are fast buffers and their effect is modelled using the rapid buffering approximation.

Bi =
1.0

(

1.0 + CMDN tot∗K mCMDN
((K mCMDN+Cai))2.0

) (A.26.140)

B SS =
1.0

(

1.0 + CMDN tot∗K mCMDN

((K mCMDN+Ca SS))2.0

) (A.26.141)

B JSR =
1.0

(

1.0 + CSQN tot∗K mCSQN

((K mCSQN+Ca JSR))2.0

) (A.26.142)

The kinetics of the calcium ion concentration changes in the various compartments of the model.

d(Cai)

d(time)
= Bi ∗

[

(J leak + J xfer)

−
(

J up + J trpn + ((i Ca b − 2.0 ∗ i NaCa) + i Ca T + i p Ca) ∗ Am

2.0 ∗ V myo ∗ F

)]

(A.26.143)

d(Ca SS)

d(time)
= B SS ∗

((

J rel ∗ V JSR

V SS
− J xfer ∗ V myo

V SS

)

− i Ca L Ca ∗ Am

2.0 ∗ V SS ∗ F

)

(A.26.144)
d(Ca JSR)

d(time)
= B JSR ∗ (J tr − J rel) (A.26.145)

d(Ca NSR)

d(time)
=

(

(J up − J leak) ∗ V myo

V NSR
− J tr ∗ V JSR

V NSR

)

(A.26.146)

“ionic concentrations” component

The descriptions of the rate of change of [Na]i and [K]i are the same as the LR-II model.

Initial values defined in this component

Nai = 10.2042 mM

Nao = 140.0 mM

Ki = 143.727 mM

Ko = 4.5 mM

Cao = 1.8 mM

Equations defined in this component

The rate of change of intracellular sodium ion concentration.
d(Nai)

d(time)
= − (i Na + i Na b + i ns Na + i NaCa ∗ 3.0 + i NaK ∗ 3.0) ∗ Am

V myo ∗ F
(A.26.147)

The rate of change of intracellular potassium ion concentration.
d(Ki)

d(time)
= − (i Ca L K + i Kr + i Ks + i K1 + i Kp + i ns K + i to + −i NaK ∗ 2.0) ∗ Am

V myo ∗ F
(A.26.148)
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“mechanics interface” component

Initial values defined in this component

lambda = 1.0

alpha0 = 7.0× 10−3 ms−1

n ref = 4.25

p50 ref = 5.33

T ref = 125.0 kPa

beta0 = 1.45

beta1 = 1.95

beta2 = 0.31

alpha1 = 0.033 ms−1

alpha2 = 2.85 ms−1

alpha3 = 2.85 ms−1

A1 = 50.0

A2 = 175.0

A3 = 175.0

a = 0.5

velocity = 0.0 ms−1

gamma = 2.6

Equations defined in this component

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

lambdaC = lambda (A.26.149)

Another a dummy equation that we simply use to make grabbing the value in CMISS much easier.

velocityC = velocity (A.26.150)

“tropomyosin kinetics” component

This component defines the kinetics of the length-dependent actin availability.

Initial values defined in this component

z = 0.0

Equations defined in this component

The kinetics of actin availability, z.
d(z)

d(t)
= alpha0 ∗

((

Cab

C50
∗Cab norm

)n

∗ (1.0− z) − z

)

(A.26.151)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

n = n ref ∗ (1.0 + beta1 ∗ (lambda − 1.0)) (A.26.152)

One of the Hill parameters used to fit the relationship between z and Cab at given sarcomere lengths, and defines

part of the length dependence of the model.

p50 = p50 ref ∗ (1.0 + beta2 ∗ (lambda − 1.0)) (A.26.153)

The value of Cab that is required to achieve 50% availability, i.e., z = 0.5.

C50 = (10.0)
(3.0−p50) (A.26.154)
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Normalised value of bound calcium.

Cab norm =
Cab

Cab max
(A.26.155)

“isometric tension” component

The component which defines the isometric tension.

Equations defined in this component

Calculation of the isometric tension.

To = T ref ∗ (1.0 + beta0 ∗ (lambda − 1.0)) ∗ z (A.26.156)

“dynamic tension” component

We use the ODE equivalent to the fading memory hereditary (thanks Steve). The muscle velocity should be set

outside of here, and will be controlled by the simulation environment.

Initial values defined in this component

Q1 = 0.0 ms

Q2 = 0.0 ms

Q3 = 0.0 ms

Equations defined in this component

Calculation of the dynamic tension.

T = To ∗ (1.0 + a ∗ Q)

(1.0 − Q)
(A.26.157)

Calculate the value of the hereditary integral, with three rate constants.

Q = (Q1 + Q2 + Q3) (A.26.158)

Calculation of the contribution of the first time constant to the hereditary integral, in the ODE form.
d(Q1)

d(t)
= (A1 ∗ velocity − alpha1 ∗ Q1) (A.26.159)

Calculation of the contribution of the second time constant to the hereditary integral, in the ODE form.
d(Q2)

d(t)
= (A2 ∗ velocity − alpha2 ∗ Q2) (A.26.160)

Calculation of the contribution of the third time constant to the hereditary integral, in the ODE form.
d(Q3)

d(t)
= (A3 ∗ velocity − alpha3 ∗ Q3) (A.26.161)



Appendix B

Finite Deformation Elasticity

Understanding and predicting the deformation of tissue under varying distributions of applied

stresses and strains is fundamental to understanding its function. To deal with the nonlinear

constitutive mechanical behaviour requires a framework based on finite deformation elasticity.

B.1 Kinematics

We begin by introducing the kinematic relations required to track material based properties

through large deformations. Let x = (x1, x2, x3) give the present position in rectangular Carte-

sian coordinates of a material particle that occupied the position X = (X1, X2, X3) in the refer-

ence state.

In standard finite deformation theory (x1, x2, x3) are considered as material coordinates and

a deformation gradient tensor F is defined, which carries the undeformed line segment, dX, to

the corresponding deformed line segment dx = FdX, or in component form:

dxi = F i
MdX

M (B.1.1)

where

F i
M =

∂xi

∂XM

(B.1.2)

Polar decomposition, F = RU, splits F into the product of an orthogonal rotation tensor, R,

and a symmetric positive definite stretch tensor, U, which contains a complete description of

the material strain, independent of any rigid body motion (Atkin & Fox 1980).
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For inhomogeneous, anisotropic materials the orientation of the material axes may vary with

location, for example fibre direction changes spatially throughout the myocardium. Thus it is

no longer practical to identify the material axes in the undeformed body with the reference

coordinates (X1, X2, X3). Instead, a new material coordinate system (ν1, ν2, ν3) is introduced

which is aligned with the microstructural features of the material, as described in Figure 1.3.

For myocardium, a natural set of material axes are formed by identifying ν1 with the muscle

fibre direction, ν2 with the sheet direction, and ν3 with the normal direction.

It is useful to choose the base vectors for the να-coordinate system to be orthogonal in the

reference state. This is convenient in myocardium, for example, where the να-coordinates are

chosen to line up with the fibre, sheet and normal directions, which are defined to be orthogonal

in the undeformed state. However, the ensuing deformation means that they are not, in general,

orthogonal in the deformed configuration.

A
(ν)
α , Aα

(ν) and a
(ν)
α , aα

(ν) denote the covariant and contravariant base vectors in the unde-

formed and deformed configurations, respectively. The corresponding metric tensors are de-

noted by A(ν)
αβ , Aαβ

(ν) and a(ν)
αβ , aαβ

(ν). The undeformed covariant base vectors, A
(ν)
α , are defined

to be unit vectors by choosing the να-coordinates to be a measure of physical arclength in the

undeformed state. The base vectors and metric tensors for the να-coordinate system are:

A(ν)
α =

∂Xk

∂να

g
(x)
k a(ν)

α =
∂xk

∂να

g
(x)
k

A
(ν)
αβ = A(ν)

α · A(ν)
β a

(ν)
αβ = a(ν)

α · a(ν)
β

(B.1.3)

where g
(x)
k are the base vectors of the rectangular Cartesian reference axes. The Green strain

tensor, defining the kinematics of large deformation for an inhomogeneous anisotropic material,

is then

Eαβ =
1

2

(

a
(ν)
αβ − A

(ν)
αβ

)

. (B.1.4)

B.2 Stress Equilibrium and the Principle of Virtual Work

The governing equations for elastostatics can be derived from a physically appealing argument.

For equilibrium, the work done by the external surface forces in moving through a virtual dis-

placement is equal to the work done by the stress vector in moving through a compatible set of

virtual displacements. Using this principle (known as the principle of virtual work) the stress
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equilibrium can be expressed via the following equation (Nash & Hunter 2000):

∫

V0

T αβF j
β δvj|α dV0 =

∫

V0

ρ0

(

bj − f j
)

δvj dV0 +

∫

S2

p(appl)

g3M
(ξ)

√

g33
(ξ)

∂xj

∂ξM
δvj dS (B.2.1)

where T αβ are second Piola-Kirchhoff stresses expressed relative to the fibre-sheet material

coordinates; |α is a covariant derivative; δv = δvjij are virtual displacements expressed

relative to the reference coordinate system (Malvern 1969); bj and f j are the components of the

body force and acceleration vectors, respectively; p(appl) is the pressure applied to the surface

S2 with normal direction ξ3; ρ0 is the tissue density; and gMN
(ξ) are contravariant metric tensors

for the ξi-coordinate system. Covariant base vectors and metric tensors for the ξM -coordinate

system are defined for the undeformed and deformed states as follows:

G
(ξ)
M =

∂Xk

∂ξM
g

(x)
k g

(ξ)
M =

∂xk

∂ξM
g

(x)
k

G
(ξ)
MN = G

(ξ)
M · G(ξ)

N =
∂Xk

∂ξM

∂Xk

∂ξN
g

(ξ)
MN = g

(ξ)
M · g(ξ)

N =
∂xk

∂ξM

∂xk

∂ξN

(B.2.2)

Equation (B.2.1) is the starting point for the analysis of a body undergoing large elastic

deformations. For further detail see, for example, Costa, Hunter, Rogers, Guccione, Waldman

& McCulloch (1996) and Costa, Hunter, Wayne, Waldman, Guccione & McCulloch (1996).

B.3 Finite Element Solution Techniques

Using the interpolation functions ψn from Section 1.2 we can define virtual displacement fields

δvj as

δvj = ψn (ξ1, ξ2, ξ3) δv
n
j (B.3.1)

where δvn
j are arbitrary virtual nodal displacements. Substituting Equation (B.3.1) into the

equilibrium equations (Equation (B.2.1)) and setting the coefficient of each component δvn
j to

zero, gives

∫

V0

T αβF j
β ψn|α dV0 =

∫

V0

ρ0

(

bj − f j
)

ψn dV0 +

∫

S2

p(appl)

g3M
(ξ)

√

g33
(ξ)

∂xj

∂ξM
ψn dS (B.3.2)

To evaluate the integrals in Equation (B.3.2), they must first be transformed from the refer-

ence coordinate space to the element ξM -coordinate space using the appropriate Jacobian. The
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transformed integrals are written in Equation (B.3.3).

∫∫∫

V0

T αβF j
β ψn|α

√
G(ξ) dξ3dξ2dξ1 =

∫∫∫

V0

ρ0

(

bj − f j
)

ψn

√
G(ξ) dξ3dξ2dξ1

+

∫∫

S2

p(appl) g
3M
(ξ)

∂θj

∂ξM
ψn

√

g(ξ) dξ2dξ1 (B.3.3)

where
√
G(ξ) =

√

det{G(ξ)
ij } and

√

g(ξ) =
√

det{g(ξ)
ij } are the Jacobians of the three-

dimensional coordinate transformation with respect to the undeformed and deformed config-

urations, respectively. Note that the surface integral is transformed by substituting J2Ddξ2dξ1

for dS, where the two-dimensional Jacobian with respect to deformed coordinates is given by

J2D =
√
g(ξ)g33

(ξ) (Oden 1972).

The three-dimensional integrals in Equation (B.3.3) are evaluated over the undeformed vol-

ume and the two-dimensional integral is computed over the portion of the deformed surface

(denoted S2) for which external pressure loads are applied. These integrals are replaced by

a sum of integrals over the collection of element domains which constitute the finite element

model. Element integrals are evaluated numerically using Gaussian quadrature. Components of

the second Piola-Kirchhoff stress tensor, T αβ, are evaluated at each Gauss point using (Malvern

1969)

T αβ =
1

2

(

∂W

∂Eαβ

+
∂W

∂Eβα

)

− paαβ

(ν) (B.3.4)

where p is hydrostatic pressure and the derivatives of the strain energy function W with respect

to the components of E are determined using a constitutive relation.

The strain energy functions of cardiac tissue have been characterised and applied by a

number of authors (Guccione, McCulloch & Waldman 1991, Emery, Omens & McCulloch

1997, Usyk et al. 2002) using a generic exponential relation of the form:

W =
1

2
C(eQ − 1) (B.3.5)

Where C is the right Cauchy-Green strain tensor and Q is a function in which the strain compo-

nents of E are referred to the local structure-based coordinates. Guccione et al. (1991) defined

the form of Q such that myocardium was assumed to be transversely isotropic and incompress-

ible. More recently Usyk et al. (2000) have developed and applied (Usyk et al. 2002) a fully

orthotropic model in the form of Equation (B.3.5) within a three-dimensional model of cardiac

mechanics. Difficulties lie in assigning unique parameter values in the complex forms of Q

required to fully represent the orthotropic behaviour of myocardium via Equation (B.3.5).
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The passive myocardial characteristics have also been encapsulated via an alternative pole-

zero strain energy function for the myocardium (Hunter, Smaill & Hunter 1995) given by:

W = k11
E2

11

|a11 − E11|b11
+ k22

E2
22

|a22 − E22|b22
+ k33

E2
33

|a33 − E33|b33

+ k12
E2

12

|a12 − E12|b12
+ k13

E2
13

|a13 − E13|b13
+ k23

E2
23

|a23 − E23|b23

(B.3.6)

where the constitutive parameters (a’s, b’s and k’s) are fitted from biaxial testing of tissue slices

cut parallel with the fibre axis at several transmural sites throughout the myocardium (Novak,

Yin & Humphrey 1994). Within Equation (B.3.6) aαβ denote limiting strain or poles, bαβ relate

the curvature of the uni-axial stress-strain relationships and kαβ weight the contribution of the

corresponding mode of deformation to the total strain energy of the material.

For incompressible materials, an additional scalar hydrostatic pressure field is introduced

into the constitutive equations. The extra constraint necessary to determine the parameters of

the hydrostatic pressure field arise from the requirement that the third strain invariant (I3) equals

one for incompressible materials.

For a Galerkin formulation, the form of the incompressibility constraints is given in Equa-

tion (B.3.7).
∫∫∫

Ve

(

√

I3 − 1
)

ψp
√
G(ξ) dξ3dξ2dξ1 = 0 (B.3.7)

where Ve denotes the domain of the element and ψp are the basis functions used to approximate

the three-dimensional hydrostatic pressure field. Note that the undeformed three-dimensional

Jacobian,
√
G(ξ), is introduced since the integrals are evaluated with respect to the undeformed

configuration.

B.3.1 Explicit Pressure Boundary Conditions

In this formulation, the hydrostatic pressure field is quadratically interpolated across each

element in the ξ3-direction. This is described as

pe (ξ3) =
2
∑

i=0

pe
iψ

p
i (ξ3) (B.3.8)

where

ψp
0 (ξ3) = 1 ψp

1 (ξ3) = ξ3 ψp
1 (ξ3) = 2ξ3 (ξ3 − 1) (B.3.9)

With the application of external pressure boundary loads, the constant hydrostatic pressure

element variables, pe
0, remain unchanged and are determined using an element constraint of the
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form in Equation (B.3.7). pe
1 and pe

2 are determined by introducing the following explicit surface

traction constraints into the global system.

σ33
wall

∣

∣

ξ3=0
+ pin = 0

σ33
wall

∣

∣

ξ3=1
+ pout = 0

(B.3.10)

pin and pout are the applied pressure loads at the centre of the ξ3 = 0 and ξ3 = 1 element faces,

respectively, and σ33
wall|ξ3=0 is the physical component of the Cauchy stress normal to the centre

of the deformed element (ξ1, ξ2) face (Nash 1998, Stevens 2002).

B.3.2 Model Solution

Simulation using the FE method for finite elasticity requires the solution of a system of

nonlinear equations over the domain of interest. This system of equations comes from the com-

bination of Equations (B.3.3) and (B.3.7), with additional equations from Equation (B.3.10) if

pressure boundary conditions are specified. It is convenient to rearrange the complete nonlinear

system of equations into a set of residuals which must be minimised with respect to the set of

solution variables. The solution to this system of equations is now a set of solution variables

which give a zero residual. Such a set of solution variables can be found using a nonlinear,

multi-dimensional, root finding technique. The Newton method has been found to work well

with these models (Nash 1998, Stevens 2002).

Coupling the dynamic active tension from the cellular model(s) into the mechanics is integral

to the solution of this nonlinear system of equations, so a brief overview of Newton’s method is

presented here (Section 3.2.2).

Consider the system of n nonlinear equations of the form fi (x) = 0, (i = 1, . . . , n), where

x are the solution variables. Given an initial estimate of the solution, {xi} = {ai}, each function

can be expanded about a using a Taylor’s series approximation. Retaining only the linear terms

in this expansion yields

f1 (a) +
∂f1

∂x1
(a) δ1 +

∂f1

∂x2
(a) δ2 + . . . +

∂f1

∂xn

(a) δn = 0

f2 (a) +
∂f2

∂x1
(a) δ1 +

∂f2

∂x2
(a) δ2 + . . . +

∂f2

∂xn

(a) δn = 0

...
...

fn (a) +
∂fn

∂x1

(a) δ1 +
∂fn

∂x2

(a) δ2 + . . . +
∂fn

∂xn

(a) δn = 0

(B.3.11)
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where {δi} represents the deviations from a. Equation (B.3.11) may be rewritten

J (a) δ = −f (a) (B.3.12)

where J is the Jacobian of derivatives evaluated at a, and is defined in terms of the solution

variables x as

J (x) =























∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . .

∂f2

∂xn
...

...
∂fn

∂x1

∂fn

∂x2

. . .
∂fn

∂xn























(B.3.13)

Equation (B.3.12) is a system of linear equations that can be solved using standard linear

methods to give the set of deviations, {δi}. The deviations are used to update the approximation

of the solution variables to the nonlinear system of equations from the initial solutions, {ai},

xi = ai + δi. (B.3.14)

The initial solution for the FE equations for finite elasticity is chosen to be the unloaded

geometry. For small loads, which produce small displacements, Newton’s method will converge

quadratically to the solution. Newton’s method, however, is not guaranteed to converge for

larger loads which give larger displacements. Thus, such loadings may be split into several

incremental load steps which are applied sequentially. Newton’s method can then be applied

with greater confidence of a converged solution being obtained for a load step which can then

be used as the initial solution for the subsequent load each step. In this formulation of the finite

elasticity equations, the solution variables are the nodal displacements and hydrostatic pressure

variables for each node in the solution domain plus any derivatives of these quantities depending

on the element interpolation functions.

B.4 Numerical and Computational Issues

There are a number of numerical and computational challenges which must be overcome for

the effective and efficient application of the finite element method to the finite deformation

elasticity equations described above. The first of these is in the implementation of numerical

techniques to find the roots of the system of nonlinear equations obtained by evaluating the
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integrals in Equations (B.3.3) and (B.3.7) for each element in the mesh. The Newton-Raphson

method can be used for this root-finding process. The calculation of the Newton step vector at

each iteration requires the solution of a sparse set of linear equations, for which the SuperLU

method (Demmel, Eisenstat, Gilbert, Li & Liu 1999, Demmel, Gilbert & Li 1999) has been

found to perform well.

Oden (1972) suggests that the interpolation scheme chosen to describe the deformed ge-

ometric coordinates (ψn in Equation (B.3.3)) should be of higher order than those chosen to

approximate the hydrostatic pressure field (ψp in Equation (B.3.7)). The strain energy contribu-

tion to stress components is related to the first derivatives of the geometric displacement fields,

whereas the hydrostatic pressure directly contributes to the stress components. For consistency,

and to avoid numerical ill-conditioning when calculating components of the stress tensor, the

two contributions should vary in a similar manner.

The computational issues associated with modelling finite deformation mechanics centre

around the exploitation of parallel architectures. In particular, the determination of groups of

element stiffness matrices can be allocated across multiple processors while incurring only a

small computational overhead. Furthermore, the SuperLU algorithm provides close to linear

scalability for the Newton step calculations. The scalability of two such major components of

the method means that with increased processor count close to linear speed-up is exhibited for

the whole algorithm. The ease of implementation and code maintenance for shared memory

architectures is well suited to finite deformation mechanics simulations, and indeed this has

been the preferred platform. However, recent improvements in availability and the ongoing

optimisation of specific algorithms (Li & Demmel 2003) has meant that distributed memory

systems now provide an increasingly attractive alternative computational platform.



Appendix C

Modelling Electrical Activation and

Propagation

Cardiac tissue consists of countless numbers of discrete cells which electrically interact to vary-

ing degrees. While we are not yet capable of modelling the complexity of such a huge interact-

ing system, we can average the electrical properties of the individual cells over a length scale

greater than that of single cells. The use of such averaging techniques leads to a continuum

model of cardiac tissue. If we then assume that the tissue has three orthogonal directions of

conductivity (Figure 1.3) we can incorporate the electrical connectivity and preferential con-

duction between cells (Section 1.1) through the use of an orthogonal conductivity tensor. The

components of this tensor can be varied spatially throughout a geometric model and represent

the underlying tissue microstructure.

Provided below is a brief overview of the full bidomain activation model and the simplified

monodomain approximation. This is followed by a description of the numerical formulation

used in simulations of electrical activation and propagation in cardiac tissue and whole heart

models.

C.1 The Bidomain Model of Electrical Activation

One continuum approach is to use the bidomain model of multicellular volume conductors,

which has been used extensively in models of the spread of electrical activity in excitable tissues
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(Fischer, Tilg, Modre, Huiskamp, Fetzer, Rucker & Wach 2000, Henriquez 1993, Muzikant &

Henriquez 1998, Plonsey & Barr 1984, Roth & Wikswo 1986, Roth 1997, Skouibine et al.

2000, Trayanova 1994). The bidomain model of cardiac tissue consists of two interpenetrating

domains representing cells and the space surrounding them. The intracellular domain represents

the region inside the cells and is given the subscript i, and the extracellular domain represents the

space between cells and is given the subscript e. The key to the model is that these two domains

are assumed to both exist at all points in the physical solution domain. Detailed derivation of the

bidomain model can be found elsewhere (Schmitt 1969, Tung 1978, Krassowska & Neu 1994).

Here we state the equations and show how they are transformed to finite element coordinates in

order to study electrical propagation on a deforming finite element mesh.

We let φi and φe be the electric potentials in the intracellular and extracellular domains,

respectively, and Vm = φi − φe is the transmembrane potential. Associated with these domains

are the macroscopic tensor quantities σi and σe, representing the local volume averaged conduc-

tivities in the intra- and extracellular spaces respectively. Tensors σi and σe are each separately

anisotropic and are assumed to be diagonal in the material coordinates based on the fibrous

structure of muscle tissue (Figure 1.3).

The bidomain model consists of two equations. The first describes the conservation of

current:

∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) + Is1, (C.1.1)

that given a transmembrane potential distribution is used to solve for the extracellular potential.

The second equation describes the current flow across the cellular membrane composed of ionic

and capacitive currents (the cell membrane acts as a parallel capacitance):

∇ · (σi∇Vm) + ∇ · (σi∇φe) = Am

(

Cm

∂Vm

∂t
+ Iion

)

− Is2, (C.1.2)

and is used to calculate the transmembrane potential distribution. Am is the surface to volume

ratio of the cell membrane, Cm is the membrane capacitance per unit area, and Iion is a nonlin-

ear function representing the sum of all the transmembrane ionic currents. Externally applied

volume stimulus currents can be imposed in both the extracellular (Is1) and intracellular (Is2)

domains.

It is assumed that there is no current flow between the intracellular domain and the external

region so the boundary condition applied to Vm on the solution domain boundary is

(σi∇Vm) · n = − (σi∇φe) · n, (C.1.3)
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where n is a unit vector outwardly normal to the domain boundary. For the extracellular domain

the current must balance between the extracellular domain and the surrounding external regions

(σe∇φe) · n = − (σo∇φo) · n. (C.1.4)

where σo signifies the conductivity of the surrounding region. The negative sign accounts for

the direction of current flow as both sides of the equations use outward normal vectors. The

boundary extracellular potential must also match the potential of the boundary of the external

regions,

φe = φo. (C.1.5)

In the absence of an external region any combination of current and potential boundary condi-

tions can be used to specify the required physical problem, with the restriction that at least one

extracellular boundary point has a potential boundary condition to provide a reference potential

(and hence a unique solution to the bidomain equations).

C.2 The Monodomain Model of Electrical Activation

In an effort to further reduce the computational cost of the activation modelling, the extracel-

lular domain is sometimes assumed to be highly conducting or, alternatively, both domains are

assumed equally anisotropic. With either of these assumptions the transmembrane potential is

equal to the intracellular potential, and the bidomain equations simplify to

∇ · (σ∇Vm) = Am

(

Cm

∂Vm

∂t
+ Iion

)

− Istim, (C.2.1)

as the gradient of the extracellular potential field is effectively zero in either of these approxi-

mations. This monodomain model is suitable for situations such as computations on an isolated

heart. When the extracellular electrical state is important the full bidomain model needs to

be used, for example electrical current propagating from the heart to the torso in body surface

potential forward simulations or the application of defibrillation type extracellular stimuli.

For the monodomain model, there is no connection between the intracellular domain and

any surrounding media. Therefore, no current can flow out of the solution domain giving rise to

the boundary condition

(σ∇Vm) · n = 0. (C.2.2)
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C.3 Grid-Based Finite Element Method

Numerous techniques have been developed and applied to the numerical simulation of the

bidomain and monodomain electrical activation models. Previously, detailed cardiac models

have been constructed using a FE derived finite difference (FD) method (Sands 1997, Buist

2001, Buist, Sands, Hunter & Pullan 2003). This method involves embedding a high resolution

FD grid in a FE geometric model. Finite difference approximations of the partial derivatives in

the activation equations can then be solved over this computational grid. An advantage of this

method over traditional FD methods, is that the FD grid is tied to the FE geometrical model

allowing the FD grid to deform with any deformation of the geometrical model – such as that

which occurs when the heart contracts.

A new method has recently been developed and implemented in CMISS which is based on a

FE formulation of the bidomain or monodomain models (Hooks et al. 2002, Hooks 2002). This

method, named here as the GBFE method, uses the same technique of embedding a high resolu-

tion computational grid in a FE geometric model. Rather than a FD approximation of the partial

derivatives in the activation equations this method uses a FE formulation of the activation equa-

tions to integrate the equations over linear FEs defined by the high resolution grid. A significant

advantage of the GBFE method over the FE derived FD method is its ability to exactly represent

the Neumann condition (zero flux normal to boundary surfaces) at all boundaries. This is an

important factor in models containing detailed microstructual information, such as the internal

cleavage planes between sheets of cardiac myocytes (Hooks et al. 2002).

Illustration of the specification of a GBFE model is provided in Figure C.1. A typically high

order FE geometry is first defined. Grid points are defined such that they are regularly spaced in

element ξ-space (Figure 1.6). These grid points are the nodes for the linear FEs constructed for

solution of the activation equations. The FE formulation of the activation equations can then be

integrated over these linear elements.

Derivation of the FE formulation of the full bidomain equations can be found in Hooks

(2002). Given the work in this thesis uses only the monodomain model, we present here a brief

derivation of the FE formulation of the monodomain equation.

We begin with the FE weighted residual of the monodomain equation, Equation (C.2.1):

∫

Ω

(

∇ · (σ∇Vm) − AmCm

∂Vm

∂t
− AmIion − Istim

)

ω dΩ = 0, (C.3.1)
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(a) Geometric FE model (b) Generated grid points

(c) Grid-based finite elements

FIGURE C.1: An illustration of the specification of a GBFE model. The tricubic Hermite ge-

ometry is shown in (a) and the high resolution grid embedded in the geometric model is added

in (b) (in this example a coarse grid has been used to enhance the presentation). In (c) we have

given a close-up view of two of the geometric FEs and marked some of the trilinear grid-based

elements defined for the solution of the activation model over this geometric domain (the blue

lines represent elements embedded in the rear geometric element and the green those in the front

element).
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where ω is a weighting function and Ω is the solution domain. The order of the potential spatial

derivative can be reduced through the use of the Green-Gauss theorem:
∫

Ω

∇ · (σ∇Vm)ω dΩ = −
∫

Ω

(σ∇Vm) · ∇ω dΩ +

∫

Γ

∇Vm · σnω dΓ, (C.3.2)

where n is the outward pointing normal to the domain boundary Γ. Substituting back into

Equation (C.3.1) and expanding gives

−
∫

Ω

(σ∇Vm) · ∇ω dΩ −
∫

Ω

AmCm

∂Vm

∂t
ω dΩ =

−
∫

Γ

∇Vm · σnω dΓ +

∫

Ω

AmIionω dΩ +

∫

Ω

Istimω dΩ. (C.3.3)

Using the finite element method we can numerically evaluate these integrals by dividing the

solution domain Ω, bounded by Γ, into a number of elements (Section 1.2). The membrane

potential field, Vm (x) , is represented through the nodal values at the N nodes in the solution

domain (Vm
n, n = 1..N ). The potential field is interpolated over element ξ-space using trilinear

Lagrange basis functions, such that

Vm (x (ξ)) = Vm
nψn (ξ) . (C.3.4)

where n is now a local node number for the given element and the eight trilinear basis functions

are:
ψ1 (ξ) = (1 − ξ1) (1 − ξ2) (1 − ξ3) ψ2 (ξ) = ξ1 (1 − ξ2) (1 − ξ3)

ψ3 (ξ) = (1 − ξ1) ξ2 (1 − ξ3) ψ4 (ξ) = ξ1ξ2 (1 − ξ3)

ψ5 (ξ) = (1 − ξ1) (1 − ξ2) ξ3 ψ6 (ξ) = ξ1 (1 − ξ2) ξ3

ψ7 (ξ) = (1 − ξ1) ξ2ξ3 ψ8 (ξ) = ξ1ξ2ξ3

(C.3.5)

The Galerkin FE method puts ω = ψm, which can be substituted into the left hand side of

Equation (C.3.3),

LHS = −
∫

Ω

σij

∂ (Vm
nψn)

∂xj

∂ψm

∂xi

dΩ −
∫

Ω

AmCm

∂ (Vm
nψn)

∂t
ψm dΩ, (C.3.6)

and transformed to element ξ-space

LHS = −Vm

∑

e





∫

Ωe

σij

∂ψn

∂ξk

∂ξk
∂xj

∂ψm

∂ξd

∂ξd
∂xi

J dξ



−
∑

e





(

∂Vm

∂t

)n ∫

Ωe

AmCmψ
nψm dξ



 ,

(C.3.7)
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where J is the Jacobian of transformation from global x-space to element ξ-space and e is

summed over all elements Ωe in the solution domain Ω. Equation (C.3.7) can be written

LHS = Kv + M
dv

dt
, (C.3.8)

where K and M are the global stiffness and mass matrices, respectively, and v is a vector of

global nodal unknown membrane potentials (Vm
n). The time domain is discretized to approxi-

mate the membrane potential time derivative

LHS = K
(

θvi+1 + (1 − θ)vi
)

+ M

(

vi+1 − vi

∆t

)

, (C.3.9)

where θ is a weighting factor satisfying 0 < θ < 1, and i denotes the ith time step of size ∆t.

For θ = 0.5 the method is known as the Crank-Nicholson-Galerkin method and errors arising

from the time discretization are O (∆t).

Similar transformations can be performed for terms two and three in the right hand side of

Equation (C.3.3), giving

∫

Ω

AmIionω dΩ = Iion
n
∑

e

∫

Ωe

Amψ
nψm dξ = LIion, (C.3.10)

and
∫

Ω

Istimω dΩ = Istim
n
∑

e

∫

Ωe

ψnψm dξ = QIstim. (C.3.11)

Substituting Equations (C.3.9)–(C.3.11) into Equation (C.3.3) and approximating Iion and Istim

by their values at the ith time step, we can write

(M + θ∆tK)vi+1 = (M − (1 − θ) ∆tK) vi + LIion
i + QIstim

i −
∫

Γ

∇Vm · σnω dΓ,

(C.3.12)

where the boundary integral term is equal to zero in the case of Neumann boundary conditions.

Standard linear algebra solution techniques can be used to solve this system of equations for

vi+1 to give the membrane potential nodal values for the next time step.

Iion is given at each node by the cellular electrophysiological model given at that node. The

work in this thesis allows for any CellML based model to be defined at any node, thus providing

for a very general specification of underlying cellular models.
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C.4 Numerical and Computational Issues

The wave of electrical activation propagates through cardiac tissue with a very steep wavefront

due to the fast response of ventricular cells to electrical stimulation. This leads to high spatial

gradients of electrical potential in the region around the wavefront, requiring the use of a very

high density grid to accurately resolve the wavefront. Various sources recommend a spatial res-

olution of between 10–200 µm for the grid (Sands 1997, Buist 2001, Pollard 2003, Hunter et al.

2003). Ahead of the wavefront and behind the activation wave, however, tissue is inactive and

recovering, respectively, and a lower density grid is sufficient to resolve the slower electrical ac-

tivity. Therefore the use of a uniformly high resolution FE grid results in a large computational

overhead for the inactive and recovering regions of tissue. Adaptive grid techniques are well

suited to this type of problem, where only the region of tissue about the activation wavefront is

solved using the high resolution grid, while inactive regions use lower resolution meshes and

recovering regions use a medium density mesh. Currently, testing is underway of an imple-

mentation of a multi-grid technique (McCormick 1989) which allows for the specification of

multiple grid ‘levels’, with stepping between these levels during model simulation.

Numerical solution of the electrical activation model requires two steps: integration of a

system of ordinary differential equations for the cellular processes at each point to calculate

Iion and solution of the monodomain model (C.2.1) for Vm. Using anything other than the

simplest cellular models, the first of these steps will have significantly greater computational

demands than the solution of the advection-diffusion equation (Pollard (2003) recommends that

the action potential upstroke is broken into several time steps, requiring ∆t to be on the order

of 1–10 µs, also needed to be able to resolve the fast sodium current). This is a prime target

for parallelisation. The cellular ODEs at each grid point can be integrated independently for

a given time step, suggesting that this integration is an ideal candidate for multiprocessing.

Given no communication between grid points during a time step the integration of the cell

model should scale linearly with the number of processors in a shared memory system, while

the communication between the cellular and continuum models represents a fixed cost which

may restrict the scalability on distributed memory systems. Work is beginning examining the

ability of these models to scale across distributed memory systems as well as large scale grid

computing as part of the Integrative Biology Grid – http://www.integrativebiology.ox.ac.uk/.



Appendix D

Description of Attached Compact Disc

Attached to this thesis is a compact disc containing additional data relevant to this thesis. Here

we provide a brief description of the contents of the disc as an aid to finding the data as refer-

enced in the preceding chapters.

The disc is divided into three top level directories (or folders) relating to: the CellML API

code we have developed and implemented; the repository of cellular models we have developed,

tested, and used in this work; and a collection of movies providing animations of some of the

simulations performed in this thesis. In the following description, we denote the compact disc

drive (MS Windows) or Unix mount point as X and indicate paths from this root.

D.1 CellML API

Documentation of the CellML Application Program Interface (API) we developed as part of the

process of enabling the use of CellML in CMISS is provided in X/cellml-api/. We provide a

browsable version in X/cellml-api/html/, just point your favourite web-browser at: X/cellml-api/

html/index.html. A print version is also provided in the Adobe portable document format at

X/cellml-api/api.pdf. The LATEX source generated directly from the API code and used to create

the PDF is given in X/cellml-api/latex/.

The latest API code and sample applications is always available from http://cellml.sourceforge.

net. Of particular note is the ODE integration application which is capable of generating code
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from the CellML models used in this thesis and integrating these models.

D.2 CellML Models

All cellular models used in this thesis are made available encoded in CellML. They can be found

at X/cellml-models/ with file names that are self explanatory. These versions of the models are

exactly what are used in all simulations in this work, with the code generated directly from

the CellML. Boundary and initial conditions and parameter changes for specific simulations are

given with the simulation results in the preceding chapters.

D.3 Simulation Animations

In the preceding chapters we have attempted to describe all simulation results for the models we

have developed in this thesis using static images. When discussing large scale tissue and organ

level models, a static image sometimes fails to convey the full impact of the simulation. By

providing animations of the simulation results, therefore, we hope to be able to impart a more

understandable summary of the various simulations.

All movies are provided in the MPEG 2 format and we have tried to create movies that play

on most major platforms.

We provide an animation of the FK-HMT based cube model at X/movies/cube-FK-HMT.

mpg. This animation shows the cube undergoing three consecutive stimuli, as shown in Fig-

ure 3.18. In addition to the animation of the cube, in this movie we show cellular potential,

tension, and extension ratio transients for several points in the cube. The electrical wave can be

seen propagating through the tissue with a spectrum ranging from −15 mV (blue) to +5 mV

(red).

Animations are provided for all the LV simulations described in Sections 5.3 and 5.4. These

movies show animations of the LV model contracting and the cellular transmembrane activa-

tion and repolarisation waves travelling through the tissue (same spectrum as the cube animation

above). Shown in conjunction with the LV are cellular potential, tension, and extension ratio

transients and the cavity pressure and volume transients. A key to the movies is given in Fig-
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ure D.1, where the vertical scales indicated are constant for all movies but the horizontal time

scale is variable. The electrical activation only models display only the cellular membrane

potential transients as the other transients have no effect on these models.

30 mV

−85 mV

60 kPa

0 kPa

1.2

0.850 kPa

15 kPa

25 ml

52 ml

FIGURE D.1: The key to describe the LV simulation animations. The vertical scales for each of

the graphs gives an indication of the scale for each of the plots which is consistent for all movies.

Shown in the top left corner of each of the movies is the time for each of the movie frames. The

transients on the right are all from the cellular level and those on the left are for the ventricular

cavity. The colour of the cellular transients match the sphere in the ventricular wall placed at the

spatial location of the cell from which the transient originated. The sphere plot markers indicate

the values for the current time as the movie progresses.

The movies are all given in X/movies/ and the file names correspond to the simulations as

given below.

• cube-FK-HMT.mpg: the FK-HMT based cube model.

• lv-activation-purkinje.mpg: electrical activation in the LV from the Purkinje-like sinus

rhythm stimulus.

• lv-activation-purkinje-heterogeneous.mpg: electrical activation in the LV from the Purkinje-

like sinus rhythm stimulus with the heterogeneous cellular model specification.

• lv-activation-BiV.mpg: electrical activation in the LV from the BiV pacing protocol.

• lv-activation-LVb.mpg: electrical activation in the LV from the LVb pacing protocol.

• lv-activation-RVa.mpg: electrical activation in the LV from the RVa pacing protocol.

• lv-electromechanics-purkinje.mpg: electro-mechanics in the LV from the Purkinje-like

sinus rhythm stimulus.

• lv-electromechanics-purkinje-heterogeneous.mpg: electro-mechanics in the LV from the

Purkinje-like sinus rhythm stimulus with the heterogeneous cellular model specification.
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• lv-electromechanics-BiV-noEjection.mpg: electro-mechanics in the LV from the BiV pac-

ing protocol and no ejection.

• lv-electromechanics-BiV.mpg: electro-mechanics in the LV from the BiV pacing protocol

with ejection.

• lv-electromechanics-LVb.mpg: electro-mechanics in the LV from the LVb pacing proto-

col.

• lv-electromechanics-RVa.mpg: electro-mechanics in the LV from the RVa pacing proto-

col.
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