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Corneal surface reconstruction algorithm using
Zernike polynomial representation:

improvements
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Recently Sicam et al. [J. Opt. Soc. Am. A 21, 1300 (2004)] presented a new corneal reconstruction algorithm for
estimating corneal sag by Zernike polynomials. An equivalent but simpler derivation of the model equations is
presented. The algorithm is tested on a sphere, a conic, and a toric. These tests reveal significant height errors
that accrue with distance from the corneal apex. Additional postprocessing steps are introduced to circumvent
these errors. A consistent and significant reduction in height errors is observed across the test surfaces. Fi-
nally, Sicam et al. used the conic p-value p as a measure of algorithm efficacy. Further investigation shows that
the finite Zernike representation affected the reported results. The p-value should therefore be used with cau-
tion as an efficacy measure. © 2007 Optical Society of America

OCIS codes: 170.4460, 170.3890.
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. INTRODUCTION
orneal topography has had significant impact on the
creening and planning of refractive surgical procedures.1

t is a standard modality in the preoperative examination
or refractive surgery, and the postoperative assessment
f surgical complications.1 The state of the art in corneal
opography is Placido-disk videokeratography.2 That ap-
roach projects a source consisting of illuminated concen-
ric rings to a CCD camera after reflection in the anterior
ornea. The correspondence between measured CCD
oints and points on the Placido disk leads to a recon-
truction of corneal shape.

Actually, a given measured CCD point cannot be asso-
iated with a unique point on a continuous Placido ring.2,3

hile it may be possible to identify the ring of the mea-
ured CCD point with the corresponding ring on the
lacido cone, the angular distance between a given CCD
oint and source point cannot be determined from an im-
ge of Placido rings alone. The standard work around in
esigning reconstruction algorithms has been to assume
hat corneal tilt (slope in the azimuthal direction) is neg-
igible. Then rays are assumed to lie in the meridional
lane, and a unique correspondence between a point on
he CCD plane and the Placido cone can be made. At the
ame time that assumption introduces the skew-ray
rror,3,4 which leads to height reconstruction errors due to
he presence of corneal tilt in real corneas. Even so,
lein4 showed that it was possible to estimate corneal tilt
ithout additional cues. This estimate of corneal tilt was
sed to account for skew rays and produced height errors
ell below micrometer level. In addition, Halstead et al.
escribed a Placido-based method using a nonlinear opti-
ization that appeared to work well for nonsymmetric

orneas.5

Methods that avoid the skew-ray error by using non-
lacido source patterns such as checkerboards have been
1084-7529/07/061551-11/$15.00 © 2
eported.6,7 Recently, Sicam et al. (2004) described a
ethod suitable for use with discrete source points, com-

ined with an iterative least-squares method based on
ernike polynomials.8 In fact, the iterative least-squares
pproach had been described previously for a Placido-
isk-based method using tensor product B-spline
urfaces.9 A clear departure of the Sicam et al. (2004) ap-
roach (to be referred to as the Ref. 8 approach), was that
odel equations were derived that produced (Zernike) co-

fficients corresponding directly to corneal sagittal depth
r corneal sag.

The idea that discrete points might address skew-ray
rror problems has intuitive appeal. Nevertheless, the
onditions under which discrete sources may provide a
etter solution than ring sources say, are not entirely
lear. The literature has not yet provided (to the knowl-
dge of the author) a direct comparison of these ap-
roaches. Indeed, the concern of Ref. 8 was to present the
etails of a method suitable for use with discrete sources,
ather than to compare alternate approaches. Moreover,
he efficacy of any particular method depends on a num-
er of issues such as: the order and type of basis functions
sed, sampling, and noise response, as well as the ability
o localize source points in images. These are issues that
hould be analyzed in detail if the relative merits of alter-
ative approaches are to be fully appreciated.
This paper does not address the issue of the relative
erits of discrete points versus Placido rings, but it does

eek to make some progress toward an answer. Instead,
he present paper provides an analysis of the Ref. 8 algo-
ithm, and seeks to show that room for further improve-
ent exists. First, an alternate but entirely equivalent

erivation of the key relationship between the corneal
urface and the rays used to probe that surface is pre-
ented. While the final recasted equations are the same as
hose presented in the original paper, the rederivation
007 Optical Society of America
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rovides additional insight into the sources of potential
econstruction error. An improvement step is then sug-
ested. It is proposed that an additional Zernike fitting
tep be added in postprocessing (to surface intersection
ata), in order to produce a more accurate estimate of cor-
eal sag. The use of the additional step is supported by
ubsequent tests applied to a sphere, a conic surface, and
toric surface. These results suggest that Zernike poly-

omials combined with a discrete source array are able to
ecover these surfaces with good accuracy. Further tests
n a model of radial keratotomy (RK) agree with results
resented in the original Ref. 8 analysis. However, there
s no significant improvement upon those results. The
ossible reasons for that observation are outlined.
In Ref. 8 the conic p-value p and the central radius R

ere determined from the reconstructed Zernike coeffi-
ients (for a spherical and conic surface). A reconstructed
-value that was close to the true p-value (i.e., of the ex-
ctly known surface) was used to indicate good height re-
onstruction. However, a more detailed analysis reveals
hat errors in both R and p were due mainly to the order
f the Zernike representation rather than height errors.
hat finding suggests that p-value should be used with
aution if it is used as a measure of efficacy.

. THEORY
. Recasting the Sicam et al. Algorithm
his section reviews the least-squares approach to cor-
eal topography implemented in Ref. 8. It is noted that
his algorithm was developed assuming discrete source
oints, but steps9 have been used previously, that were
sed to account for continuous ring sources. These addi-
ional steps (as they apply to this algorithm) will be de-
cribed briefly in Section 5. Therefore, this method can be
egarded as suitable for use in general corneal topogra-
hy (i.e., regardless of source continuity).
The current derivation differs from that in Ref. 8, in

hat the corneal intersection depth �zp� is derived in a new
ay. An additional postprocessing step is also suggested

n the next section, which it is proposed, will produce an
mproved estimate of corneal sag. Otherwise, the deriva-
ion is similar to an approach originally used by Halstead
t al.9 Explicit equations will be derived here for conve-
ience. To be consistent with the Ref. 8 derivation, Figs. 1
nd 2 show adaptations of Figs. 3 and 4 of the Ref. 8 pa-
er. The same labeling has been used, but the figures dif-
er to emphasize the features of the new derivation. To
urther emphasize the correspondence between the two
erivations, it will be pointed out when equations that ap-
eared in the Ref. 8 exposition are identical.
Consider then Fig. 1, showing a measured CCD point

�u ,v ,−2OA� [i.e., with CCD coordinates �u ,v�] sitting an
xial distance OA to the left of the nodal point. (It is as-
umed here that OA=OB.) The corneal sag is z (the
ength DF in Fig. 2), which sits at the surface point
�−u ,−v ,z�. The point where the incident ray strikes

he corneal surface is denoted P�xp ,yp ,zp�. The points
�−u ,−v ,z� and P�xp ,yp ,zp� are related by the intersection
quations [Eqs. (8)–(10) of Ref. 8]:

xp = − u − � u

OA�zp, �1�
yp = − v − � v

OA�zp, �2�

zp = z�− u,− v��1 +
u2 + v2

�OA��AR�� , �3�

here the corneal sag z�−u ,−v� is given by the Zernike
um

z�− u,− v� = � cn
m�Zn

m�− u,− v� − Zn
m�0,0��, �4�

nd the set of coefficients cn
m thereby represent the cor-

eal sag. The symbol Zn
m represents the Zernike terms

ig. 1. Overall setup used to recover corneal shape. A ray from
source point S reflects at the corneal surface P, passes through

he nodal point O to the CCD plane. The correspondence between
measured point C on the CCD plane and a source point S al-

ows a reconstruction of corneal shape.

ig. 2. Closer view of the region where the ray strikes the cor-
eal surface. The distance z=DF is the corneal sag. This point is
o be determined from the nearby ray that passes through D and
trikes the surface at intersection point P.
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here the Zn
m�0,0� term sets corneal sag to 0 at the cor-

eal apex. In this paper, the naming conventions of Ref.
0 have been adopted.
Now Eqs. (1) and (2) result from using the fact that

EP and OBC are similar. On the other hand, Eq. (3) is
n approximate equation to be determined whereupon the
eaning of the constant AR will be clarified. To that end,

enote the radial distance AD by �, the distance GP by
��, and length FH by ��. Approximate the point zp by

he first-order Taylor expansion of z about �,

zp � z + z�������. �5�

conic cornea can be represented by the equation

�2 − 2Rz + pz2 = 0, �6�

here R is the central radius of curvature, and p is the
onic p-value.11 Expanding the corneal sag z to first order
ives

z =
�2

2R
, �7�

here R is the radius of the central cornea. This becomes

ig. 3. Reconstruction results for the Sicam (RC) method ap-
lied to (a) a sphere �R=7 mm� and (b) a conic (R=7.87, p=0.82).
he discrete points show error profiles at each pupil setting

7 to 11 mm�. The continuous lines show predicted deviation,
hat is, the predicted error incurred by the Sicam (RC) method.
z���� =
�

R
�8�

pon differentiation. From Figs. 1 and 2, triangles OAD
nd DFH are similar, so

�� =
z�

OA
. �9�

ssume now that

��� � ��. �10�

e substitute Eq. (8) for z���� in Eq. (5) and eliminate ���
n Eq. (5) by Eq. (9) [under the assumption of Eq. (10)].
eplacing the resulting �2 term with �2=u2+v2 gives Eq.

3) as required.
This derivation of Eqs. (1)–(3) is an alternate route to

hat taken from Ref. 8, and appears to be a more straight-
orward approach than originally presented. A useful fea-
ure of this new derivation is that it is simple to identify
he sources of approximation errors in Eq. (3), namely, the
rst-order approximation of Eq. (5), the assumption that
�����, and the assumption that the cornea is parabolic

to first order). Height errors will arise if the corneal sur-

ig. 4. Reconstruction results for the Sicam �RC+M� method
pplied to (a) a sphere �R=7 mm� and (b) a conic (R=7.87, p
0.82). The discrete points show error profiles at each pupil set-

ing �7 to 11 mm�. Note the large reductions in error after the
mproved method has been applied.
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ace departs from these assumptions. While the use of as-
umptions is potentially undesirable, the resulting ap-
roximations yield multiple equations that are linear in

n
m, and therefore are amenable to a simple linear least-
quares estimation as will be seen.

Note also at this point, that this derivation sets AR
R (i.e., the central radius of curvature). Equation (13) of
ef. 8 sets AR=R /a (i.e., the central corneal radius nor-
alized by the Zernike aperture radius a). This choice re-

uires that all coordinates be scaled by 1/a, otherwise Eq.
3) of the present paper [Eq. (8) of Ref. 8] would be dimen-
ionally inconsistent. The present work has used unnor-
alized coordinates, and therefore normalization factors

o not appear.
The formulation of the remaining equations follows in a
anner similar to that described by Halstead et al.

reviously.9 The approach is not new, but the steps have
een included to complete the derivation of the original
ef. 8 method. The law of reflection states that the cor-
eal normal n will bisect the incident and reflected rays.
hoose then, the particular bisecting vector

n = −
î + r̂

�î + r̂�z

, �11�

here the denominator normalizes the z component of the
ormal vector to −1. (This is the same as Eq. (19) of Ref. 8,
xcept the normalization used here differs.) The unit in-
ident ray î is given by

î =
S − P

�S − P�
, �12�

nd r̂ is the unit reflected ray

r̂ =
C − O

�C − O�
, �13�

hich follows from geometry using S= �xs ,ys ,zs�, P
�xp ,yp ,zp�, and O= �0,0,−OA�. The reflected ray depends
n constants C and O, and consequently will be constant
tself. The incident ray depends on P and therefore will
epend on the variable Zernike coefficients. At the same
ime, the tangent vectors �P /�u and �P /�v to the corneal
urface P define the normal n= �nx ,ny ,−1� by

n ·
�P

�u
= 0, �14�

n ·
�P

�v
= 0. �15�

he law of reflection is satisfied (and hence the solution is
etermined) when cn

m are found such that n [determined
y Eq. (11)] and the corresponding tangent vectors (�P /�u,
P /�v) satisfy Eqs. (14) and (15). To solve these equations,
n iterative solution was proposed.8,9 Starting with an es-
imate of P determine the n that bisects the incident and
eflected rays [Eqs. (11)–(13)]. Then fit a new surface to
hese required n. To do that fitting, enter these n values in
qs. (14) and (15), yielding two equations in the new and
nknown cm. From multiple measurements, form a sys-
n
em of linear equations and solve for cn
m by linear least

quares. To be precise, Appendix A shows that Eqs. (14)
nd (15) become

nx = �
m,n

cn
mUn

m, �16�

ny = �
m,n

cn
mVn

m, �17�

here

Un
m = − �1 +

nyv + nxu

OA � ��n
m

�u
−

nx

OA
�n

m, �18�

Vn
m = − �1 +

nyv + nxu

OA � ��n
m

�v
−

ny

OA
�n

m, �19�

�n
m = �Zn

m�− u,− v� − Zn
m�0,0���1 +

u2 + v2

�OA��AR�� . �20�

he �n
m terms are the weight functions found by combin-

ng Eqs. (3) and (4) to give

zp = �
n,m

cn
m�Zn

m�− u,− v� − Zn
m�0,0���1 +

u2 + v2

�OA��AR��
= �

n,m
cn

m�n
m. �21�

he derivatives of �n
m required for Eqs. (18) and (19) are

iven by Eqs. (A10) and (A13) in Appendix A. If N image
oints are measured (indexed from e.g., i=1, . . . ,N), then
qs. (16) and (17) yield 2N equations that reduce to ma-

rix form y=MC, where

y =�
nx�u1,v1�

ny�u1,v1�

]

nx�uN,vN�

ny�uN,vN�
	 ,

M = 

U0�u1,v1� U1�u1,v1� ¯ UJ−1�u1,v1�

V0�u1,v1� V1�u1,v1� ¯ VJ−1�u1,v1�

] ] � ]

U0�uN,vN� U1�uN,vN� ¯ UJ−1�uN,vN�

V0�uN,vN� V1�uN,vN� ¯ VJ−1�uN,vN�
� ,

C = �
c0

c1

]

cJ−1

	 . �22�

ach pair of rows in y and M corresponds to a single mea-
ured CCD point, while each column (of M) corresponds to

Zernike term indexed j=0, . . . ,J−1. The single index
orm10 of the Zernike coefficients has been introduced for
he sake of simplicity. These matrices are the same as
hose obtained in Eq. (30) of Ref. 8. The approach de-
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cribed here is practically the same as that in Ref. 8, ex-
ept those matrices were found by minimizing the re-
idual of the error e=y−MC. In any case, the least-
quares solution is given by [Eq. (31) of Ref. 8]

C = �MTM−1�MTy, �23�

here it will be assumed that the system contains many
ore rows than columns, and is therefore overdeter-
ined. To summarize: (1) start with an initial cn

m to give
ultiple estimates of P= �xp ,yp ,zp� for each measured

oint �u ,v�; (2) find (multiple) required normals n by Eqs.
11)–(13); (3) form Un

m and Vn
m, given by Eqs. (18) and (19)

or each point, and enter these into Eqs. (22) (along with
); and (4) solve for the new cn

m using Eq. (23). Repeat
rom step (2) with the new cn

m coefficients, until the
ethod converges to a final solution. The convergence of

his method has been demonstrated previously.8,9 This
tandard method will be referred to as the recasted Sicam
r the Sicam (RC) method.

. Additional Step: Improving the Estimate of Corneal
ag
quations (1)–(3) relate the corneal sag F�−u ,−v ,z� to the

ntersection point P�xp ,yp ,zp� of a nearby ray. Figure 2
hows that these two points lie on the same (corneal) sur-
ace. In other words, the surface F defined by corneal sag
oefficients cn

m coincides (in theory) with the surface P de-
cribed by the corneal intersection points �xp ,yp ,zp�. In
ractice, Eq. (3) involves several approximations, so that
urfaces F and P will (in general) deviate from each other.

In fact, this predicted deviation has been plotted as the
ontinuous lines (labeled “theory”) shown in Figs. 3(a) and
(b). These curves were determined by taking the corneal
epth at the intersection point P, i.e., zp�xp ,yp� as either
pherical �R=7 mm� [Fig. 3(a)] or conical (R=7.87 mm,
=0.82) [Fig. 3(b)]. The deviation was calculated by using

xp ,yp ,zp� in Eqs. (1) and (2) to give �u ,v�, from which
�−u ,−v� was obtained by Eq. (3). The difference �z−zp�
as been plotted as a function of the common radial dis-
ance �.

The continuous deviation curves shown in Figs. 3(a)
nd 3(b) would be negligible if surfaces P and F coincided.
nstead, these curves demonstrate an increasing error
ith radial distance. Because the Sicam (RC) method is
ased upon Eqs. (1)–(3), it is reasonable to ask whether
his observation has implications for the reconstruction of
he corneal sag. In fact, it will now be argued that the pre-
icted deviations demonstrated in Figs. 3(a) and 3(b) will
ropagate to the coefficients generated by the Sicam (RC)
lgorithm. More specifically, it will be argued that these
articular deviation curves model errors incurred by the
icam (RC) algorithm, an observation that will be tested
resently.
The Sicam (RC) algorithm finds a set of Zernike coeffi-

ients for the corneal sag F, that solve Eqs. (14) and (15).
ut these equations state that a normal to the surface P

rather than F) should bisect the incident and reflected
ay [which is Eq. (11)] at a point �xp ,yp ,zp�. These condi-
ions on P are the law of reflection, and characterize the
orneal surface by hypothesis. It can be expected there-
ore [if Eqs. (14) and (15) are solved accurately] that sur-
ace P will more accurately represent the true corneal
urface. Then the corneal sag surface F�−u ,−v ,z� and
ence the corneal sag z [described by Eq. (4)] is a second-
ry surface related only approximately to P by Eq. (3).
his is, in fact, precisely the situation shown by the two

heory curves in Fig. 3. These errors are calculated, as-
uming that zp�xp ,yp� represents the true corneal surface
the sphere or conic surfaces tested in Fig. 3).

In summary, the algorithm as it has been described
ere will find coefficients cn

m that determine the best in-
ersection surface P (albeit indirectly), but the coefficients
hemselves correspond to F, which is an (error containing)
stimate of the corneal sag. Fortunately, it is possible to
ircumvent these predicted errors. The corneal sag coeffi-
ients can be determined from the intersection �xp ,yp ,zp�
i.e., surface P) directly. To demonstrate the point, addi-
ional steps are proposed, which enable a new and im-
roved estimate of corneal sag to be made. These steps
an be applied as an addition to the standard Sicam (RC)
lgorithm. Take the final cn

m computed from the Sicam
RC) algorithm. Use these coefficients to calculate z�−u ,
v� by Eq. (4). Then use Eq. (3) to determine zp, and Eqs.

1) and (2) to determine �xp ,yp� for each of the N mea-
ured points. Compute a new estimate of corneal sag, re-
lizing that zp values are sags relative to points �xp ,yp�. In
articular, form a least-squares system by using Eq. (23)
ith

y = �
zp�u1,v1�

]

zp�uN,vN�
	,

M = 

Z0�xp,1,yp,1� ¯ ZJ−1�xp,1,yp,1�

] � ]

Z0�xp,N,yp,N� ¯ ZJ−1�xp,N + yp,N�
�, C = �

ĉ0

ĉ1

]

ĉJ−1

	 ,

�24�

hereby yielding new coefficients ĉj� ĉn
m corresponding to

he improved corneal sag representation. As sag coeffi-
ients, they can be used in place of the original Sicam
RC) coefficients defined in Eq. (4) without further modi-
cation. The Sicam (RC) method with these additional
teps will be referred to as the recasted and modified Si-
am method, or the Sicam �RC+M� method, for the sake
f brevity.

. METHOD
. Testing the Sicam (RC) and Sicam „RC+M… Methods
imulations were conducted to contrast the Sicam (RC)
nd Sicam �RC+M� methods. Following the original Ref.
paper, a sphere (R=7, p=1) and a conic (R=7.87, p

0.82) were chosen for testing. A Zernike representation
p to radial order 10 was selected and pupil diameter �2a�
anged from 7 up to 11 mm (taken in 1 mm steps). A toric
urface tested the two methods in the nonsymmetric case.
he toric had a central base radius of R=7.8 mm and
odeled a large 7 D astigmatism along the vertical me-



r
[

a
S
a
b
t
c
a
F
f
o
i
p
r
O

p
p
p
t
t
m
+
s
p
t
c
o

B
T
t
m
o
s
t
u
s
m
e
m
e

d
r
c
i

w
l
t
d
r

s
i
a
t
i
f
m
s
f
d
M

a

4
A
F
e
(
a
a
a
t
d
a
a
H
a
e
a
d
d
c

r
m
c
t
m
(
t
f

c
m
c
a
w
f
w
t
s

1556 J. Opt. Soc. Am. A/Vol. 24, No. 6 /June 2007 Jason Turuwhenua
idian (R�=6.71 mm using a refractive index of 1.3375)
see Schwiegerling et al.12 (1995) for calculation details].

The simulations required the positions of source points
nd their images as input to the reconstruction algorithm.
ource points were determined as points corresponding to
circular grid �32�32� at the CCD plane, and were found
y casting rays from the CCD grid points back through
he (pinhole) camera to object space. The radius of the cir-
ular grid was chosen so the rays would fill the Zernike
perture of diameter 2a completely at the corneal surface.
or the larger pupil sizes (e.g., 10 and 11 mm), it was

ound that peripheral rays were reflected in the direction
f the positive z axis (i.e., to the right rather than reflect-
ng in the direction of the camera). Therefore, source
oints were allowed to sit along the positive z axis (to the
ight of the cornea) if required. The nodal point was set to
A=300 mm.
The Sicam (RC) and Sicam �RC+M� methods were ap-

lied using image and source points calculated at each
articular pupil diameter. The methods started with a
lanar corneal shape, which was found to be a satisfac-
ory starting point in all cases. The parameter AR was set
o 7 mm for the sphere, 7.87 mm for the conic, and the
ean of the principal radii of curvatures AR= �7.8
6.71� /2=7.26 mm for the toric. Testing of the toric
howed the value of AR used did not affect the results ap-
reciably. The absolute height errors were recorded along
he corneal profiles for the three surfaces tested. In the
ase of the toric, results were recorded along the meridian
f largest error (the vertical meridian).

. Estimating Radius of Curvature R and p-Value p
he original Ref. 8 analysis used the sag coefficients to es-
imate central R and the conic p-value p for radially sym-
etric surfaces. Moreover, p was used to indicate efficacy

f the reconstructed surface at the periphery. That is to
ay, a reconstruction of p close to the true value was used
o indicate a good reconstruction. A large error in p was
sed to infer a breakdown in the algorithm.8 The relation-
hip between a given reconstruction method and esti-
ates of R and p was investigated in more detail. The co-

fficients for the sphere and conic (obtained by the two
ethods used in Subsection 3.A) were entered into the

quations

R =
a2

2�2�3c2
0 − 6�5c4

0 + 12�7c6
0 − 60c8

0 + 30�11c10
0 �

,

�25�

p = �8R3

a4 ��6�5c4
0 − 30�7c6

0 + 270c8
0 − 210�11c10

0 �,

�26�

erived for radial order 10 [errors in Eqs. (6) and (7) for
adial order 6 in Ref. 8 are noted]. The exact least-squares
oefficients were estimated up to radial order 10 and used
n Eqs. (25) and (26) also. The formula
cn
m =

1

�
�

0

2��
0

1

za�a�,��Zn
m��,���d�d� �27�

as used, substituting za for the appropriate analytic so-
ution (i.e., a sphere or conic). Adaptive Simpson quadra-
ure was used with a 10−9 absolute tolerance. That pro-
uced very low absolute rms error, consistently less than
esiduals found using Sicam (RC) or Sicam �RC+M�.

These coefficients estimated exact (in the least-squares
ense and with low numerical error) coefficients bypass-
ng the reconstruction process. Any deviation from true R
nd p estimated errors due to the finite Zernike represen-
ation (i.e., up to radial order 10). The R and p values var-
ed depending on the method used, also indicating the dif-
erences between the Sicam (RC) and Sicam �RC+M�

ethods. An additional run was conducted for the sphere
etting radial order to 14, thereby demonstrating the ef-
ect of increased radial order. All simulations were con-
ucted using MATLAB (Mathworks, Natick, Virginia) and a
ATLAB ray-tracing toolbox (RAYTRAK) developed by the
uthor for simple ophthalmic applications.

. RESULTS
. Testing the Sicam (RC) and Sicam „RC+M… Methods
igures 3(a) and 3(b) show log graphs of absolute height
rrors for spherical and conic corneas using the Sicam
RC) method. The distance from the corneal apex is shown
long the horizontal axes, while absolute height errors
re plotted on the vertical axes. The discrete data points
re errors plotted for each pupil diameter setting, while
he continuous curves show the theoretically predicted
eviations (described in Subsection 2.B). In both figures,
ll reconstructed points were consistently submicrometer
t distances less than �3.5 mm from the corneal apex.
owever, as radial distance increased into the periphery,
significant error was observed. For example, data point

rrors at maximum radial distance ��=5.5 mm� were 25.3
nd 8.8 �m for the sphere and conic, respectively. The
ata points appeared to track the continuous theoretical
eviation curves (as radial distance increased) in both
ases.

Figure 4(a) and 4(b) show log error graphs of height er-
ors for the sphere and conic using the Sicam �RC+M�
ethod at each pupil diameter tested. These errors were

onsistently submicrometer, regardless of distance from
he corneal apex. In fact, a significant (2 to 3 order of
agnitude) drop [Fig. 4(a)] was observed for the sphere

errors ranged from �10−5 to �10−1 �m). In the case of
he conic [Fig. 4(b)], a 3 to 4 order of magnitude drop was
ound (errors ranged from �10−6 to �10−2 �m).

Figures 5(a) and 5(b) show log error graphs for the Si-
am (RC) and Sicam �RC+M� methods along the vertical
eridian of the toric. This meridian was chosen because it

ontained the greatest reconstruction errors. For ex-
mple, the maximum error in the vertical meridian error
as 37 �m at the edge of the 11 mm pupil, against 11 �m

or the horizontal meridian. The predicted deviations
ere included in Fig. 5(a) and again, the data points

racked along this theoretical curve as found for the
phere and conic. The maximum errors reduced to
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0.4 �m using the Sicam �RC+M� algorithm [Fig. 5(b)].
he toric error dropped 2 to 3 orders of magnitude along
he vertical meridian, and the resultant error ranged
rom �10−5 to �10−1 �m.

In fact, this improvement is shown across the entire
oric surface in Figs. 6(a) and 6(b). Figure 6(a) shows the
omplete error surface (at maximum pupil) using the Si-
am (RC) algorithm. Figure 6(b) shows the improvement
fter the Sicam �RC+M� algorithm was applied. The
arked improvement over the original method can be

een for all meridians. Interestingly, error lobes of height
.4 �m caused a jump in error at the edge of the pupil.
he errors just inside the pupil (away from the edge)
ropped to 0.15 �m. This jump also appears in Fig. 5(b),
hich summarizes errors along the vertical meridian.
The improvements in adding the fitting step to the Si-

am (RC) method were much larger than any errors in-
urred by the additional fitting to the raw �xp ,yp ,zp� data.
he mean absolute height errors due to the fitting were
.2�10−3 �m, with a standard deviation of 6.5
10−3 �m across the three surfaces and multiple pupil

iameters tested. The absolute height error in fitting was
argest for the 11 mm pupil diameter, and did not exceed
.1�10−2 �m.

ig. 5. Reconstruction results for a toric surface along the ver-
ical meridian applied (a) using the Sicam (RC) method and (b)
he Sicam �RC+M� method. The predicted deviation has been de-
ermined for the vertical meridian and is plotted as the continu-
us line in (a). Note the large reductions in error after the im-
roved method has been applied.
. Estimating Radius of Curvature R and
onic p-Value p
ables 1 and 2 show R and p results for the sphere and
he conic surfaces (using radial order 10). The data was
ormatted to be consistent with Tables 1 and 2 of Ref. 8.
he columns summarize results found using the Sicam

RC), Sicam �RC+M�, and exact methods. The estimates
or R and p improved across columns (to the right), as
ight be expected. Similarly, and as observed in Ref. 8,

rrors increased as pupil diameter increased. The propor-
ions of error incurred by a particular approach [relative
o the total errors due to Sicam (RC)] were found to be
elatively constant for any given pupil diameter (i.e., row
f the table). For example, for Sicam (RC), the sphere
with maximum pupil diameter) produced errors of
7.0 �m and 0.145 (for R and p, respectively). The error
n R was reduced by 14±1% using Sicam �RC+M�, and
8±1% for the best method. For p, the error was reduced
y 16±1% using Sicam �RC+M�, and 44±0% using the
est method. A much smaller reduction, but similar pat-
ern of reductions was observed for the conic. At maxi-
um pupil diameter the errors were 1 �m and 0.01 (for R

nd p, respectively). The reductions in the error of R were
8±1% using Sicam �RC+M� and 53±1% using the best
ethod. The error in p was reduced by 20±1% [using Si-

am �RC+M�] and 48±0% (the best method).
Table 3 shows results for the sphere at radial order 14,

hough only results for aperture diameters of 10 and

ig. 6. Reconstruction results over the entire toric surface (a)
sing the Sicam (RC) method and (b) the Sicam �RC+M� method.
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1 mm are shown. Errors vanished (were negligible) for
ll lower aperture sizes. The errors that were observed
ere much smaller than the errors found for radial order
0. The conic information was not included for radial or-
er of 14, because measured errors completely vanished
ver all R and p values tested.

. DISCUSSION
. Comparing the Sicam (RC) and Sicam „RC+M…

ethods
he Sicam (RC) reconstruction results revealed errors
hat increased with radial distance. These errors were
ound to be significant (greater than submicrometer),
articularly as distance extended into the periphery
�3.5 mm�. These errors were suggested to arise as

result of the assumptions used to derive Eq. (3). The
heory curves shown in Figs. 3(a), 3(b), and 5(a)
redicted the expected deviation based on this idea. The
econstructed data was consistent with these error
urves, and hence this idea. Additional steps were
uggested to circumvent the radially increasing error in-
urred by Sicam (RC). The modified Sicam �RC+M�

Table 1. Estimates of R and p

Pupil
diameter

(mm)
R (RC)
(mm)

R �RC+M�
(mm)

R

7 7.0000 7.0000
8 6.9998 6.9998
9 6.9990 6.9991
10 6.9958 6.9964
11 6.9830 6.9856

aThe Sicam �RC� columns estimate the original results presented in Ref. 8. The
eviations in corneal shape due to reconstruction method. The exact columns deviate

Table 2. Estimates of R and p

Pupil
diameter

(mm)
R (RC)
(mm)

R �RC+M�
(mm)

R

7 7.8700 7.8700
8 7.8700 7.8700
9 7.8699 7.8699

10 7.8697 7.8697
11 7.8690 7.8692

aThe Sicam �RC� columns estimate the original results presented in Ref. 8. The
eviations in corneal shape due to reconstruction method. The exact columns devia
esentation.

Table 3. Estimates of R and p

Pupil
diameter

(mm)
R (RC)
(mm)

R �RC+M�
(mm)

R

10 6.9998 6.9999
11 6.9988 6.9990

aThe table includes only the rows for 10 mm and 11 mm because errors were neg
egligible for all parameter values used.
lgorithm produced better estimates of corneal sag than
he unmodified Sicam (RC) method across the surfaces
nd pupil diameters tested. The Sicam �RC+M� method
educed this height error by 2 to 4 orders of magnitude,
o well below micrometer error in all cases. The results
or the toric surface (with high 7 D astigmatism) indicated
hat skew rays could be dealt with by discrete points.
hese results are encouraging, and support further inves-

igation of the discrete source approach to corneal recon-
truction.

The errors for the Sicam (RC) algorithm appeared to
nter through Eq. (3). An advantage of the new derivation
as that sources of algorithm error were readily identifi-
ble. These assumptions were: (i) the expansion to first
rder, (ii) the parabolic assumption, and (iii) the approxi-
ation ������. It is possible to estimate the errors in Si-

am (RC) that arise through these assumptions. For the
ake of concreteness, consider a point on a spherical cor-
ea pupil sitting at �=5.5 mm. Consider first a first-order
xpansion of this sphere about the point �=5.5 mm. The
stimate of zp [Eq. (5)] being of first order, will contain an
rror on the order of �����2. The magnitude of that error
an be determined by tracing a ray back from the nodal
oint through the point D (�=5.5 mm, z=0 mm) to the in-

he Sphere (Radial Order 10)a

t)
p (RC) p �RC+M� p (exact)

0.999 0.999 0.999
0.996 0.997 0.998
0.987 0.989 0.993
0.957 0.964 0.976
0.855 0.880 0.918

ces between the Sicam �RC� and Sicam �RC+M� columns estimate the impact of
e R=7 mm and p=1, as a result of the truncation of the finite Zernike representation.

he Conic (Radial Order 10)a

t)
p (RC) p �RC+M� p (exact)

0.820 0.820 0.820
0.820 0.820 0.820
0.819 0.819 0.819
0.816 0.817 0.818
0.810 0.812 0.815

ces between the Sicam �RC� and Sicam �RC+M� columns estimate the impact of
rue R=7.87 mm and p=0.82, as a result of the truncation of the finite Zernite rep-

he Sphere (Radial Order 14)a

t)
p (RC) p �RC+M� p (exact)

0.997 0.997 0.998
0.981 0.985 0.990

therwise. The results for the conic were not included because errors were completely
for t

(exac
(mm)

7.0000
6.9999
6.9995
6.9978
6.9909

differen
from tru
for t

(exac
(mm)

7.8700
7.8700
7.8700
7.8699
7.8695

differen
te from t
for t

(exac
(mm)

6.9999
6.9994

ligible o
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ersection point P (�=5.55 mm, zp=2.7343 mm). The dif-
erence in the radial positions of D and P gives an error
stimate of �����2= �0.05�2�2.5 �m. The ������ as-
umption will introduce a similarly small error in esti-
ated zp, because the difference between the two is only
�m. In fact, setting the nodal point of the camera far

rom the corneal apex ensures that this remains low (e.g.,
A=300 mm was here).
The introduction of the second assumption (parabolic

lope) is the source of the largest error. Replace the
pherical slope in the first-order expansion [Eq. (5)]
ith the parabolic slope given by Eq. (8). The final abso-

ute height error in zp [with a new estimated depth
f 2.7083 mm found by Eq. (5)] is then 26.0 �m, which is
uch larger than the order of errors introduced by the

ther two assumptions. In fact, that absolute error can be
elated to the error measured using the Sicam (RC)
lgorithm. From Eq. (3) it can easily be shown that 	z
	p�1+�2 / �OA��AR��−1, where 	z is the error in sag, as-
uming zp is known exactly [i.e., essentially the error in-
urred by Sicam (RC)], and 	p is the absolute error in zp,
ssuming z is known exactly. Using 	p=26.0 �m (calcu-
ated above) gives 	z=25.6 �m. This is exactly the theo-
etical error observed at �=5.5 mm [and shown in Fig.
(a)], though it is probably more useful to assume that
p�	z for OA large. In any case, this analysis shows that
he parabolic assumption introduces a large error into the
icam (RC) algorithm. If the cornea deviates from being
arabolic, a significant error can be expected. Conversely,
f the cornea is close to parabolic, there will be a close

atch between the Sicam (RC) and Sicam �RC+M� meth-
ds.

It is worthwhile emphasizing that the errors that arise
rom the Sicam (RC) algorithm are inherent to the

ethod, and will not be reduced significantly by increas-
ng radial order or sampling. Indeed, the low errors ob-
ained for Sicam �RC+M� showed that radial order and
ampling were more than adequate for good estimates of
orneal sag. However, it would be useful to investigate the
ptimal relationship between sampling and radial order
n reconstruction, and would be an avenue for further re-
earch. In addition, it is noted that there was little error
ncurred by implementing the additional fitting steps of
he Sicam �RC+M� algorithm (mean absolute height error
f 3.2�10−3 �m and a standard deviation of 6.5
10−3 �m).
The algorithm described here assumed that a mea-

ured image point could be associated with a source point.
hat correspondence cannot be made using continuous
ings (e.g., Placido-disk-based topography), and so it may
eem that it is unsuitable in that situation. Nonetheless,
hat particular problem can be dealt with by making rela-
ively minor adjustments to the current method. Halstead
t al. traced rays back to the Placido cone at each iteration
for the current corneal estimate), and then moved these
ays to the nearest valid ring by adjusting the corneal
ormals.9 Thus correspondences were enforced. This step
ould easily be implemented in the current algorithm,
nd would involve computing updated values for S
�xs ,ys ,zs� at each iteration by the method just described

i.e., locating the nearest ring). Then the algorithm would
ontinue from the point of the algorithm where Eqs.
11)–(13) are applied to estimate the required n without
dditional modifications.

. Skew Rays and the Sicam „RC+M… Algorithm: Radial
eratotomy
eference 8 presented results for RK example, consisting
f a band of corrugations added to a parabolic base (origi-
ally used by Rand et al.13 using a spherical base). That
odel was given by

z =
�2

2R
+ g��,��,

here

g��,�� = �
	 sin�8��, � 
 2 mm

2�� − 1.5�	 sin�8��, 1.5 � � � 2 mm

0, � � 1.5 mm
� �28�

epresented a ring of corrugations with amplitude 	. The
ndulations produced a rapid variation in corneal tilt,
esting the potential limitations of the algorithm to skew
ays. Figure 7 shows results using Sicam �RC+M�, adopt-
ng methods already described (see Subsection 3.A), and a

mm pupil aperture. The graph shows errors (at the
uter edge of corneal corrugations) plotted against a me-
idional angle. The complete error profile (taken around
he cornea) exhibited a fourfold symmetry, so only angles
p to 90° needed to be plotted.
These graphs show an undulating error, with a peak er-

or that drops as order is increased. In fact, for a twelfth-
rder Zernike, the peak error is of the order of 1 �m,
hile for order 16, the errors are consistently submi-

rometer. As order increases further, so do the error
urves. However, the reduction is only within the same or-
er of magnitude. In fact, the results obtained appear to
gree with the original Ref. 8 paper, where a 0.2 �m dis-

ig. 7. Reconstruction results for the RK example showing er-
ors as a function of meridian. Errors are shown at the outer
dge �2 mm� of the band of corrugations for angles up to 90°. The
esulting curves are consistently submicrometer for Zernike or-
ers greater than or equal to 16. However, increasing the order
eyond that limit gives relatively small reductions, within the or-
er of magnitude �0.1 �m�. For order 20, the results are similar
o those presented in Ref. 8.
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repancy was observed at order 20. In turn, these results
ere consistent with results presented by Klein.4,8

The fact that error diminishes to below submicrometer
rror indicates that the algorithm can restore the corneal
hape successfully. In other words, the information re-
uired for a good estimation is encoded (by discrete
oints) in the data. However, the order must be set high
n order to extract that height from that data. That find-
ng suggests a limitation of the present algorithm, par-
icularly given that good estimations of a similar model
ere obtained previously using only low-order
olynomials.4,14 Indeed, it may be that there are repre-
entations (other than Zernike polynomials) that could
apture the shape of abnormal corneas more efficiently. It
ay be that further improvements are possible, and
ould be an area for further research.
As mentioned, the results observed here are consistent

ith the results presented in Ref. 8, and hence the Sicam
RC+M� method produced similar results. That result is
ot entirely surprising. The base surface of the RK ex-
mple tested (in Ref. 8) was a parabola. In that case, the
ssumption of a parabolic cornea [Eq. (6)] is satisfied. In
ubsection 5.A, it was determined that as the cornea de-
arts from being parabolic, a large error will be intro-
uced into Eq. (3). With this assumption accounted for by
he corneal model, the Sicam (RC) and Sicam �RC+M�
ethods will be very similar. The results shown here are

herefore consistent with what might be expected.

. Estimates of Radial Curvature R and p-Value p
he Sicam (RC) columns of Tables 1 and 2 are similar to
hose presented in Ref. 8 (see Tables 1 and 2 of that pa-
er). This similarity suggests that the Sicam (RC) algo-
ithm correctly synthesized the original Sicam et al. algo-
ithm. In the Ref. 8 paper, the increasing errors in p
found as pupil diameter increased) were attributed to
eight errors incurred at the periphery of the cornea: in
ther words, a breakdown of the algorithm. In fact, the re-
ults suggest that the observed errors [in the Sicam (RC)
olumn] were strongly influenced by the finite Zernike
epresentation used (i.e., truncation of the Zernike sum).
ndeed, increasing Zernike order (Table 3) virtually elimi-
ated all of the observed errors in Table 1, showing that
adial order rather than corneal height errors was the
ajor cause of the observed errors. In fact, though it is

ot shown here, increasing radial error further would
ave reduced errors further still. The results for the conic
t radial error 14 were not included because they were
egligible over the entire set of parameters tested.
For radial order 10, the exact columns (Tables 1 and 2)

howed that even a best estimate of the corneal profile
ould not match true p. These estimates showed that 56%
sphere) and 52% (conic) of the total error in p remained,
ven when using the exact reconstruction. The Zernike or-
er prevented a further reduction in the error. The Sicam
RC) coefficients were found after the application of Eq.
3). The Sicam �RC+M� method gave coefficients found (in
ffect) prior to the application of Eq. (3). This difference
stimates errors (in R and p) corresponding to the alter-
ate height reconstructions [i.e., due to Eq. (3)]. Then,
nly a relatively modest proportion [i.e., roughly 16%
sphere) and 20% (conic)] of the total error actually corre-
ponds to changes related to significant corneal shape dif-
erences. The remaining unaccounted 28% (sphere) and
8% (conic) of total error is the difference between the Si-
am �RC+M� and the exact estimate. That is an estimate
f the error incurred by the Sicam �RC+M� algorithm
ver and above the truncation error.

In any case, the points raised here indicate that conic
-value should be used cautiously. The values for both R
nd p depend critically on order (rather than height er-
ors), and it is likely that only a modest proportion of ob-
erved error will correspond to differences due to corneal
eight errors. In light of the uncertainties alluded to
bove, it is perhaps an erudite decision to use more stan-
ard measures such as maximum and absolute height er-
or or rms error, say as single-valued measures of algo-
ithm efficacy.

. FURTHER WORK
he improvements are encouraging, and show that dis-
rete points can be used to recover symmetric–
onsymmetric surfaces accurately (at least in simula-
ion). It would be useful to test the Sicam �RC+M� on
ore complicated corneal models (such as keratoconus),

s well as real corneas. It would also be useful to investi-
ate the effects of radial order, sampling, and alternative
urface representations on recovery. The latter point
aises the question as to whether there may be more effi-
ient corneal representations that better describe abnor-
al corneas. Note that replacing the Zernike basis func-

ions with some alternative in the Sicam (RC) step would
ot prevent coefficients from being obtained for clinical
se. The Zernike polynomials could still be used at the fit-
ing step implemented by Sicam �RC+M�. Work is con-
inuing on optimizing the Sicam �RC+M� algorithm.

PPENDIX A
ere we derive the equations that comprise the entries of
q. (22). For simplicity consider only the equations with
espect to the u parameter. The required equations for v
ollow by identical arguments. Consider then Eq. (14) and
he tangent vector,

�P

�u
=

�

�u
�xp,yp,zp�,

ith respect to u. Evaluating the dot product in Eq. (14)
ives

nx

�xp

�u
+ ny

�yp

�u
−

�zp

�u
= 0, �A1�

here n= �nx ,ny ,−1�. Now, Eqs. (1) and (2) differentiate to
ive

�xp

�u
= − 1 − � zp

OA� − � u

OA� �zp

�u
, �A2�
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�yp

�u
= − � v

OA� �zp

�u
. �A3�

ubstituting Eqs. (A2) and (A3) into (A1) yields

nx�1 +
zp

OA� + �1 +
nyv + nxu

OA � �zp

�u
= 0, �A4�

fter straightforward algebra. The zp terms can be elimi-
ated by using Eq. (21),

zp = �
n,m

cn
m�n

m, �A5�

here the identification

�n
m = �Zn

m�− u,− v� − Zn
m�0,0���1 +

u2 + v2

�OA��AR�� �A6�

as introduced. Taking the first derivative of zp with re-
pect to u gives

�zp

�u
= � cn

m
��n

m

�u
. �A7�

ubstituting Eqs. (A7) and (A5) into (A4) gives

nx = �
n,m

cn
mUn

m, �A8�

here

Un
m = − �1 +

nyv + nxu

OA � ��n
m

�u
−

nx

OA
�n

m, �A9�

nd

��n
m

�u
= � �Zn

m�− u,− v�

�u ��1 +
u2 + v2

�OA��AR��
+ �Zn

m�− u,− v� − Zn
m�0,0��� 2u

�OA��AR�� .

�A10�

he first bracketed term of Eq. (A10) is the derivative of
he 180° rotated Zernike polynomials with respect to u.
ote also that Eq. (A6) and its derivative in Eq. (A10) can
e precomputed since they have no dependence on n. Now
he coefficients cn

m in Eq. (A8) are the only unknowns.
hen Eq. (A8) can be rearranged into matrix form, and in

act form the rows (in u) of entries in Eq. (22). Repeating
dentical arguments for the tangent vector,

�P

�v
=

�

�v
�xp,yp,zp�

ives

ny = � cn
mVn

m, �A11�

here
Vn
m = − �1 +

nyv + nxu

OA � ��n
m

�v
−

ny

OA
�n

m, �A12�

nd �n
m is again given by Eq. (A6). For completeness, the

erivative with respect to v is

��n
m

�v
= � �Zn

m�− u,− v�

�v ��1 +
u2 + v2

�OA��AR��
+ �Zn

m�− u,− v� − Zn
m�0,0��� 2v

�OA��AR�� .

�A13�

s with Eq. (A8) the equivalent equation in v [i.e., Eq.
A11)] can be rewritten in matrix form, which yields rows
in v) of the linear system of Eq. (22).
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