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Videokeratoscopic data are generally displayed as a color-coded map of corneal refractive power, corneal
curvature, or surface height. Although the merits of the refractive power and curvature methods have
been extensively debated, the display of corneal surface height demands further investigation. A significant
drawback to viewing corneal surface height is that the spherical and cylindrical components of the cornea
obscure small variations in the surface. To overcome this drawback, a methodology for decomposing corneal
height data into a unique set of Zernike polynomials is presented. Repeatedly removing the low-order Zernike
terms reveals the hidden height variations. Examples of the decomposition-and-display technique are shown
for cases of astigmatism, keratoconus, and radial keratotomy.  1995 Optical Society of America
1. INTRODUCTION

Use of commercially available videokeratoscopes by eye-
care providers and vision scientists has become wide-
spread. The majority of these devices are based upon
Placido-disk technology, in which a series of concentric
illuminated rings (mires) reflect off the cornea of an ob-
server and are imaged, along with the cornea, by a video
camera. From knowledge of the geometry of the kerato-
scope and the variations in ring spacing in the image,
the slope of the corneal surface can be determined in
the meridional direction. For display and analysis of the
data obtained from videokeratoscopes, the corneal slope
data are usually converted to a more intuitive form. The
derivative of the acquired slope data gives corneal curva-
ture and is related to the optical power of the surface.
There are some ambiguities associated with this tech-
nique that stem mainly from alternative definitions of
curvature and power. The accuracy and validity of these
definitions have been extensively debated, and a thorough
analysis is given by Roberts.1 The corneal slope data can
also be integrated for determining the height or sag of
the corneal surface. This method has the advantage that
the true topography of the cornea is given. However,
higher-order height variations tend to be concealed by the
lower-order components of the cornea. Examples of in-
terpreting videokeratographic height data are given by
several authors.2 – 6

The most common method for displaying videokerato-
scopic data is a color-coded map that gives some mea-
sure of the dioptric power distribution of the cornea. For
these displays, the corneal slope data are used to calcu-
late the axial or instantaneous curvature at a given point
on the cornea. By assuming an effective index of the
cornea, one can calculate a local dioptric power from the
curvature data. These maps use a color scale on which
each color corresponds to a range of power, so that the
0740-3232/95/102105-09$06.00 
power map is a contour plot of corneal dioptric power.
Recently, however, cases for using curvature maps and
height maps as alternatives or complements to power
maps have been made. Eye-care providers and vision
scientists use videokeratographic data for a variety of ap-
plications, and a given display method may prove more
beneficial depending on the application. The corneal cur-
vature map may be advantageous to the optometrist fit-
ting contacts or spectacles. The refractive surgeon may
wish to examine changes in dioptric power resulting from
surgery. The optical engineer may prefer a height map
of the cornea in order to determine the optical quality of
the surface and model the effects of various corneal condi-
tions. Regardless of the application, a thorough under-
standing of the benefits and drawbacks of each method is
necessary to enable one to choose the appropriate analysis
and display method for the appropriate application.

In this paper a methodology for analyzing videoker-
atographic height data is presented. The technique in-
volves decomposing the corneal height data in terms of
the orthonormal set of Zernike polynomials. The use of
Zernike polynomials to represent the corneal surface has
been suggested by several authors.2 – 6 This is a direct
analogy to the widespread use of Zernike polynomials
in the optical fabrication and testing area.7 – 9 We have
also been told that this feature is an unpublished ca-
pability of a prototype corneal topographer.10 Once the
Zernike polynomial decomposition is complete, the fun-
damental components of the corneal surface are related
to more-familiar quantities such as spherical and cylin-
drical curvature and power. A drawback to viewing the
videokeratographic height data is that the fine varia-
tions in corneal height are obscured by the spherical and
cylindrical components of the cornea. In order to visu-
alize these residual higher-order height variations of the
cornea, we subtract the lower-order components from the
original height data. In this paper this decomposition-
1995 Optical Society of America
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and-display technique is applied to topographies of an
eye with regular corneal astigmatism, an eye diagnosed
with advanced keratoconus, and two eyes that under-
went radial keratotomy. Advantages of this technique
over previous efforts and its accuracy and limitations are
discussed.

2. DECOMPOSITION OF SURFACES
The shape of a surface is represented mathematically as a
function of two variables. In a Cartesian coordinate sys-
tem this function has the form z ­ f sx, yd, where z is the
height or sag of the surface at a given point sx, yd. When
the functional form of f sx, yd is complicated, analysis
of the surface is sometimes simplified by representation
of the surface as a linear combination of simpler surfaces.
These simpler surfaces are described mathematically by
the set of functions hgj sx, ydj and are combined such that

f sx, yd >
P̀

j­1
aj gj sx, yd , (1)

where aj is a constant describing the weighting on each
function gj sx, yd.11,12

The set of functions hgj sx, ydj is said to be complete if
any arbitrary square-integrable function f sx, yd is exactly
represented by the linear combination in relation (1).
The most commonly used set of complete functions is
hxmynj, where m and n are positive integers. Relation (1)
in this case becomes

f sx, yd ­ a1 1 a2x 1 a3y 1 a4x2 1 a5y2 1 a6xy 1 . . . ,

(2)

or the Taylor series expansion of f sx, yd in two dimen-
sions. The set of coefficients haj j in relation (1) is usually
found by the method of least squares. This technique
minimizes the square of the difference between f sx, yd
and the series expansion, and this difference approaches
zero as the number of terms in the series approaches
infinity.

A set of complete functions hgj sx, ydj is said to be or-
thonormal over a region A if they satisfyZ

A
gj sx, ydgksx, yddxdy ­

(
0 for j fi k
1 for j ­ k

. (3)

The Fourier series, a commonly used expansion for peri-
odic functions, uses the complete orthonormal set of si-
nusoidal functions. The polynomials in the Taylor series
expansion of Eq. (2), however, do not satisfy the orthogo-
nality conditions of Eq. (3).

A simple method for determining the set of expansion
coefficients haj j exists when the functions hgj sx, ydj are
orthonormal over a region A. If both sides of relation (1)
are multiplied by gksx, yd and integrated over the region
A, then utilizing Eq. (3) yields

aj ­
Z

A
gj sx, ydf sx, yddxdy . (4)

Equation (4) illustrates a significant advantage of or-
thonormal decomposition of surfaces over the least-
squares method with use of nonorthonormal functions.
Each of the coefficients aj in Eq. (4) depends only on its
corresponding function gj sx, yd and the original function.
This relationship indicates that the set of coefficients haj j
are independent of one another and independent of the
number of terms taken in the series expansion. In other
words, the coefficients do not need to be recalculated when
a more exact fit of f sx, yd is desired. If, however, the set
of functions hgj sx, ydj are not orthonormal, then the set
of coefficients haj j are interrelated. Each coefficient aj

depends on the entire set hgj sx, ydj and changes every
time terms are added to the series expansion.

3. ZERNIKE POLYNOMIALS
The Zernike polynomials are a set of functions hZn

6m

sr, udj that are orthonormal over the continuous unit
circle.6 – 9 They have been used extensively for phase-
contrast microscopy, optical aberration theory, and inter-
ferometric testing to fit wave-front data. These functions
are characterized by a polynomial variation in the radial
direction r (for 0 # r # 1) and a sinusoidal variation in
the azimuthal direction u. The polynomials are defined
mathematically by

Zn
6m ­

8>><>>:
p

2sn 1 1d Rn
msrdcos mu for 1 mp

2sn 1 1d Rn
msrdsin mu for 2 mp

sn 1 1d Rn
msrd for m ­ 0

,

(5)

where

Rn
msrd ­

sn2md/2X
s­0

s21dssn 2 sd!

s!
∑

sn1md
2 2 s

∏
!
∑

sn2md
2 2 s

∏
!

rn22s,

(6)

n is the order of the polynomial in the radial direction
r, and m is the frequency in the azimuthal direction
u. Several numbering systems are used for the Zernike
terms; we have chosen the numbering system that is in
the proposed ISO standards for optical components (ISO-
10110).13 The first six Zernike polynomials are given by

Z0
0sr, ud ­ 1 , (7)

Z1
1sr, ud ­ 2r cos u , (8)

Z1
21sr, ud ­ 2r sin u , (9)

Z2
0sr, ud ­

p
3 s2r2 2 1d , (10)

Z2
2sr, ud ­

p
6 r2 cos 2u , (11)

Z2
22sr, ud ­

p
6 r2 sin 2u . (12)

Figure 1 shows several of these functions. The func-
tion Z0

0 in Fig. 1(a) describes a surface of constant height.
When a function is decomposed into Zernike polynomi-
als, the coefficient of Z0

0 is the mean height of the sur-
face. When higher-order polynomials are added to the
expansion, each term must have zero mean in order to
satisfy the orthonormality condition of Eq. (3) and to
leave the mean height of the fitted surface unchanged.
Figures 1(b)–(d) show several of the zero-mean higher-
order terms.

Another interesting property of the Zernike expansion
is the redundant nature of the nonrotationally symmetric
functions such as Z1

1 and Z1
21 or Z2

2 and Z2
22. For



Schwiegerling et al. Vol. 12, No. 10 /October 1995 /J. Opt. Soc. Am. A 2107
Fig. 1. Zernike polynomials: (a) Z0
0, (b) Z1

1 (Z1
21 is the same as Z1

1 but rotated 90±), (c) Z2
0, (d) Z2

22 (Z2
2 is the same as

Z2
22 but rotated 45±).
instance, the function Z1
1 describes a plane tilted about

the y axis, and Z1
21 similarly describes a plane tilted

about the x axis (or Z1
1 rotated 90±). If a plane tilted

about an axis making an angle u0 relative to the y axis
is expanded into Zernike polynomials, the coefficients Z1

1

and Z1
21 are appropriately weighted such that the ratio of

their coefficients equals tan u0. This relationship, where
one Zernike polynomial describes a surface and another
describes a rotated version of the same surface, recurs
throughout the set of Zernike polynomials. This feature
allows the Zernike expansion to match a surface oriented
at any angle.

Several of the low-order Zernike terms represent famil-
iar corneal shapes. The Z2

0 term in Fig. 1(c) is a parabo-
loid and represents an average curvature of the cornea.
The functions Z2

2 and Z2
22 in Fig. 1(d), which describe

corneal astigmatism, are two saddle-shaped surfaces ro-
tated 45± with respect to each other. When the saddle
shape of the Z2

2 and Z2
22 terms is added to the paraboloid

described by Z2
0, the radius of curvature of the paraboloid

is shortened along one axis and lengthened along a per-
pendicular axis. The longer radius of curvature defines
the base sphere of the cornea, and the difference between
the radii of curvature defines the cylindrical component of
the cornea (in plus-cylinder form). The astigmatic axis is
given by the orientation of the saddle surface formed by
the sum of the Z2

2 and Z2
22 terms.

Since the Zernike polynomials are orthogonal over the
continuous unit circle and the lower-order terms repre-
sent familiar corneal shapes such as sphere and cylin-
der, the Zernike polynomials appear to be an ideal set
of functions for decomposing and analyzing corneal sur-
face height. Videokeratoscopes, however, measure the
corneal height only at a discrete number of points, and
unfortunately the Zernike polynomials are not orthogo-
nal over a discrete set of points. A technique known
as Gram–Schmidt orthogonalization, however, allows the
discrete set of corneal height data to be expanded in terms
of the Zernike polynomials and still keep the advantages
of an orthogonal expansion.

The procedure for Gram–Schmidt orthogonalization is
outlined by Wang and Silva9 (with one minor correction
noted after the Ref. 9 entry in the References) and is not
repeated here. The basic premise of the orthogonaliza-
tion routine is that the Zernike polynomials are not or-
thogonal over a discrete set of points, orP

i
Zn

6msri, uidZn0
6m0

sri, uid fi dnn0dmm0 , (13)

for all discrete points sri, uid. By taking various linear
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combinations of the Zernike functions, however, one can
construct a new set of functions Un

6msri, uid such that

Un
6msri, uid ­

n,6mP
n0,6m0

bn,6m,n0,6m0 Zn0
6m0

sri, uid . (14)

Through the appropriate choice of the coefficients
bn,6m,n0,6m0 , the functions Un

6msri, uid can be made or-
thogonal, orP

i
Un

6msri, uidUn0
6m0

sri, uid ­ dnn0dmm0 . (15)

The corneal height data are decomposed into a linear com-
bination of the functions Un

6msri, uid. The expansion co-
efficients for these new functions are given by Eq. (4);
however, the integral collapses to a sum because of the
discrete number of points. Once the expansion is com-
plete, the orthogonal functions are converted back into
terms of the Zernike polynomials. The result is a unique
set of Zernike coefficients.

4. DECOMPOSITION AND DISPLAY
OF REAL TOPOGRAPHY DATA
The decomposition techniques outlined above were used to
analyze real corneal height data taken from a Computed
Anatomy TMS-1 videokeratoscope (New York, N.Y.).
The corneal height data f sri, uid and a set of radial co-
ordinates ri are provided as direct output of the TMS-1.
Since the TMS-1 uses continuous mires, no information
about azimuthal coordinates is obtained. The azimuthal
coordinates ui are therefore assumed to be 256 uniformly
spaced sectors on a polar grid. The effects of this ap-
proximation are discussed in more detail in Section 5.
Since the Zernike polynomials are orthonormal only over
the unit circle, the radial coordinates ri need to be nor-
malized by the maximum radial extent of the data rmax

such that ri ­ riyrmax.
The discrete set of data points are expanded into

Zernike polynomials by use of the Gram–Schmidt or-
thogonalization procedure outlined above, such that

f sri, uid ­
P

n,6m
an,6mZn

6msri, uid , (16)

for all points sri, uid. From the set of coefficients han,6mj,
values for the base and the astigmatic radii of curva-
ture and power, as well as for the cylinder axis, can be
calculated.

For determining the spherical and cylindrical compo-
nents of the series expansion, the cylindrical axis needs to
be found. This axis is defined by the lowest-order astig-
matic terms of the expansion. These astigmatic terms
are given by

p
6 a2,22r2 sins2ud 1

p
6 a2,2r2 coss2ud . (17)

By taking the derivative of this expression with respect
to u and finding the extremum,
a2,22 coss2ud 2 a2,2 sins2ud ­ 0 . (18)
If the axis u0 is defined as

u0 ­
1
2

tan21

√
a2,22

a2,2

!
, (19)

then two relevant solutions exist for Eq. (18). These so-
lutions are u ­ u0 and u ­ u0 1 90±. The astigmatic axis
is given by

ua ­

(
u0 for a2,22 sin 2u0 1 a2,2 cos 2u0 , 0
u0 1 90± for a2,22 sin 2u0 1 a2,2 cos 2u0 . 0

.

(20)
If ua is negative then add 180±, so that ua always lies
in the range 0 # ua , 180±. For the base spherical and
cylindrical powers to be determined, the radii of curva-
ture along u0 and the axis perpendicular to it need to be
determined.

The parabolic terms of the expansion oriented along
u0 can be used as an approximation to the spherical and
cylindrical components of f sri, uid. The Zernike polyno-
mials with even radial order n $ 2 and azimuthal fre-
quencies m ­ 0 or m ­ 62 all contain a parabolic term.
The first six of these polynomials are

Z2
0sr, ud ­

p
3 s2r2 2 1d , (21)

Z2
2sr, ud ­

p
6 r2 cos 2u , (22)

Z2
22sr, ud ­

p
6 r2 sin 2u , (23)

Z4
0sr, ud ­

p
5 s6r4 2 6r2 1 1d , (24)

Z4
2sr, ud ­

p
10 s4r2 2 3dr2 cos 2u , (25)

Z4
22sr, ud ­

p
10 s4r2 2 3dr2 sin 2u . (26)

For obtaining the spherical and cylindrical components of
the corneal height data, the parabolic terms of the Zernike
expansion are compared with a paraboloid of the form

sag ­
r2

2R0
­

r2rmax
2

2R0

, (27)

where r is the radial coordinate and R0 is the radius of
curvature of the paraboloid. This value R0 is used as an
approximation of the radius of curvature of the corneal
surface. The radius of curvature in general will differ
along the axes of the cornea as a result of astigmatism.
Therefore define R0 ­ R' for u ­ u0, and define R0 ­ R
for u ­ u0 1 90±. Equating the Zernike expansion terms
containing r2 oriented along u0 with Eq. (27) yields

r2rmax
2

2R'

­ 2
p

3 a2,0r2 1
p

6 a2,2r2 cos 2u0

1
p

6 a2,22r2 sin 2u0 2 6
p

5 a4,0r2

2 3
p

10 a4,2r2 cos 2u0

2 3
p

10 a4,22r2 sin 2u0 1 . . . . (28)

Solving for R' and truncating higher-order terms, we
obtain
R' ­
rmax

2

2f2
p

3 a2,0 2 6
p

5 a4,0 1
p

6 sa2,2 cos 2u0 1 a2,22 sin 2u0d 2 3
p

10sa4,2 cos 2u0 1 a4,22 sin 2u0dg
. s29d
If R' is in millimeters, the power F' along u ­ u0 in
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diopters is given by

F' ­ 1000
n 2 1

R'

, (30)

where n is usually 1.3375.
Similarly, for u ­ u0 1 90±,
R ­
rmax

2

2f2
p

3 a2,0 2 6
p

5 a4,0 2
p

6 sa2,2 cos 2u0 1 a2,22 sin 2u0d 1 3
p

10sa4,2 cos 2u0 1 a4,22 sin 2u0dg
, s31d
and the power F along u ­ u0 1 90± in diopters is given by

F ­ 1000
n 2 1

R
, (32)

where n is usually 1.3375.
The cylindrical power Fa is diopters is therefore given

by

Fa ­ F' 2 F . (33)

These results can be expressed in the familiar plus-
cylinder form sF 1 Fa 3 uad.

Equations (29)–(33) display one of the drawbacks to
using Zernike polynomials. For determining the radii
of curvature along the principal meridians, an infinite
number of Zernike coefficients are needed. The radii-of-
curvature equations above have been truncated so that
they contain only the first six Zernike terms with para-
bolic dependence. However, the values for the radii of
curvature converge quickly, so that the truncation error
becomes small. The accuracy of these equations is dis-
cussed in greater detail in Section 5. A second drawback
is that the value of rmax can change from data set to data
set. The values of the expansion coefficients cannot be
directly compared between two decompositions unless the
values of rmax are equal.

When one is viewing corneal height data, fine height
variations in the corneal surface are obscured by the base
spherical and cylindrical components. The decomposi-
tion technique allows a simple method for displaying some
of these higher-order variations. Repeatedly removing
lower-order expansion terms causes the higher-order vari-
ations to become increasingly apparent. For example, to
permit astigmatism to be seen more clearly, the parabolic
term is subtracted from the original height data. For
higher-order height variations to be seen, the astigmatic
component of the corneal surface is subtracted. In some
cases, as will be seen below, removing additional terms
will reveal additional interesting corneal height artifacts.

The corneal height maps take on characteristics differ-
ent from those of the more-familiar power map distribu-
tions. These differences may initially prove confusing to
the viewer who is used to seeing corneal power displays.
The novice viewer must remember that the height map
displays the sag of the corneal surface as opposed to sur-
face curvature or power. The uniform power map dis-
tribution associated with spherical surfaces (under one
definition of power) is seen as a central peak falling off
evenly in all radial directions in a height map. The fa-
miliar “bow-tie” pattern seen in an astigmatic power map
is seen as a saddle shape in the height map. Interpret-
ing height maps requires only a modest amount of reedu-
cation on the part of the new viewer. The technique of
removing low-order terms from the original corneal height
data can be thought of as a generalization of fluores-
cein maps. For fluorescein maps, a spherical term is re-
moved from the corneal height data by means of a contact
lens, resulting in a display of the residual height vari-
ation. For the Zernike decomposition technique, more-
complex shapes are removed to reveal the residual corneal
height data.

Figures 2 through 5 show several examples of the
decomposition-and-display technique. Each of the fig-
ures displays a gray-scale height map of the cornea and
notes the range of heights. The patient whose data are
displayed in Fig. 2 has corneal astigmatism. Figure 2(a)
shows the raw height data obtained from the TMS-1.
In Fig. 2(b) the parabolic component Z2

0 of the original
height data has been removed. The astigmatism (saddle
shape) in the resultant display is apparent. In Fig. 2(c)
the cylindrical terms Z2

22 and Z2
2 have been removed to

reveal the residual higher-order variations in the cornea.
The prescription for spherical power and astigmatism
predicted by Eqs. (16)–(22) is 46.9 D 1 2.1 D 3 1± com-
pared with a Sim K value of 48.9 D 3 86±y46.9 D 3 176±

and a Min K value of 46.8 D 3 1± determined by the
TMS-1. The Sim K value finds the maximum power
along a meridian in the paraxial region of the cornea
and gives this power, its orientation, and the corneal
power in a perpendicular meridian. The Min K simi-
larly finds the minimum power along a meridian in the
paraxial region and gives its magnitude and orientation.
The data displayed in Fig. 3 are for the patient who has
been diagnosed with advanced keratoconus. Figure 3(a)
once again shows the raw topography height data. In
Fig. 3(b) the base curvature has been subtracted. In
Fig. 3(c) the cylindrical terms Z2

22 and Z2
2 have been

removed to reveal the cone.
The patients whose data are displayed in Figs. 4 and

5 have undergone six- and eight-incision radial kera-
totomy, respectively. Figures 4(a) and 5(a) once again
show the raw topography height data. In Figs. 4(b) and
5(b) the base curvature has been subtracted. In Fig. 4(c)
terms of the Zernike expansion with radial order n # 6
and azimuthal frequency m , 6 have been subtracted
from the original height data, revealing the height vari-
ations resulting from the six RK incisions. Only these
Zernike terms are removed from the six-incision RK, be-
cause some of the higher terms contain a sixfold symmetry
that matches the cuts. Similarly, in Fig. 5(c) terms of the
Zernike expansion with radial order n # 8 and azimuthal
frequency m , 8 have been subtracted from the origi-
nal height data, revealing the height variations resulting
from the eight RK incisions. Higher-order Zernike terms
contain an eightfold symmetry that matches the cuts.
The terms below the anticipated symmetry of the RK are
associated with the refractive power, residual astigma-
tism, and spherical aberration of the postoperative cornea.
Once these terms have been removed, only the artifact
resulting from the refractive surgery remains. The six-
incision RK artifact shows a peak-to-valley height vari-
ation of , 18 mm. The eight-incision RK artifact shows
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Fig. 2. Height maps of corneal astigmatism: (a) raw height
data, (b) raw height data minus the parabolic term, (c) height
data of (b) minus the cylindrical term. White represents a high
point on the cornea, and black represents a low point. Diameter
7.0 mm.

a peak-to-valley height variation of ,20 mm. Expansion
terms of higher order than the anticipated symmetry of
the artifacts can be used to fit these RK artifacts.

5. NUMERICAL ACCURACY
Videokeratoscopes measure corneal surface slope in the
meridional direction. Some inaccuracies will result in
converting this slope data to height data. Greivenkamp
et al.14 have measured the surface height of a vari-
ety of toric surfaces on several commercially available
videokeratoscopes. The calculated surface heights were
compared with the actual heights of the surfaces to de-
termine the accuracy of the videokeratoscope. The error
in calculated surface height results from several sources:
the lack of azimuthal information about the corneal slope

Fig. 3. Height maps of advanced keratoconus: (a) raw height
data, (b) raw height data minus the parabolic term, (c) height
data of (b) minus the cylindrical term. White represents a high
point on the cornea, and black represents a low point. Diameter
5.5 mm.
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Fig. 4. Height maps of six-incision radial keratotomy: (a) raw
height data, (b) raw height data minus the parabolic term,
(c) height data of (b) minus the Zernike terms, with n # 6 and
m , 6. White represents a high point on the cornea, and black
represents a low point. Diameter 8.0 mm.

data, tilt between the optical axis of the cornea and
the optical axis of the keratoscope head, and defocus of
the corneal image. Under ideal circumstances the rms
surface-height errors ranged from 0.7 mm for a 0 D toric
up to 4.2 mm for a 7 D toric. In order to determine the
accuracy of the Gram–Schmidt orthogonalization routine,
we fitted simulated perfect keratographic data sets of 0,
1, 3, 5, and 7 D torics, using the Zernike expansion, and
calculated the rms error of the fit. The rms fit error for
these five ideal surfaces is less than 0.02 mm for an expan-
sion with radial orders n # 8 and azimuthal frequencies
m , 8. This rms fit error is well below the measure-
ment accuracy of the videokeratoscope. In other words,
the numerical accuracy of the decomposition methodology
outlined here is limited by the measurement device and
not by the orthogonalization routine.

Fig. 5. Height maps of eight-incision radial keratotomy:
(a) raw height data, (b) raw height data minus the parabolic
term, (c) height data of (b) minus the Zernike terms, with n # 8
and m , 8. White represents a high point on the cornea, and
black represents a low point. Diameter 7.6 mm.
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Table 1. Actual and Calculated Radii of Curvature in Terms of R 3 R'R 3 R'R 3 R' for Several Toric Surfaces

Astigmatism of Toric Surface
(D) Actual Calculated

0 7.80 mm 3 7.80 mm 7.84 mm 3 7.81 mm
1 7.80 mm 3 7.62 mm 7.89 mm 3 7.69 mm
3 7.80 mm 3 7.29 mm 7.80 mm 3 7.30 mm
5 7.80 mm 3 6.99 mm 7.85 mm 3 7.03 mm
7 7.80 mm 3 6.71 mm 7.85 mm 3 6.76 mm
The accuracy of Eqs. (29)–(33) depends on both the
accuracy of the videokeratoscope height data and the
Zernike expansion coefficients. We have truncated
the expressions for spherical and cylindrical radii of cur-
vature and power to keep the equations simple. In deriv-
ing these formulas, we find expansion terms containing
r2 ­ sryrmaxd2 oriented along and perpendicular to u0

(i.e., spherical or cylindrical terms) and compare them
with Eq. (27). Equations (29)–(33) contain only the first
two spherical terms (a2,0 and a4,0) and the first two sets
of astigmatic terms (a2,2, a2,22 and a4,2, a4,22). As the
order of the expansion is increased, additional terms con-
taining a r2 dependence arise (the next logical terms are
a6,0 and a6,2, a6,22 for the spherical and the cylindrical
components, respectively). The accuracy of the radii-of-
curvature and the power calculations can be increased
by inclusion of these and additional higher-order terms;
however, the expressions become cumbersome.

For most corneas the lower-order Zernike polynomial
terms carry most of the significant information. The
higher-order terms therefore tend to become less reliable
as the measurement noise approaches the amount of sur-
face variation represented by these terms. However, for
surfaces with significant variations that can be described
only by higher-order terms, such as the incision pattern
due to an RK procedure, the coefficients for these high-
order terms are found to be stable and reliable. As a test,
we measured the cornea of an RK patient four times, de-
composed the results, and compared the coefficients. All
of the corneal height data have the same rmax. For all of
the coefficients examined (45 terms), the ratio of the mean
value to the standard deviation of the coefficient measure-
ments exceeds unity. For polynomial terms representing
significant surface variations (such as the eightfold sym-
metry described above), this signal-to-noise measure of
the coefficient quality is on the order of 10:1.

The toric surfaces mentioned above were used to de-
termine the accuracy of the spherical and the astig-
matic radii-of-curvature and power calculations. The
keratographs of the torics obtained with the TMS-1 were
decomposed into a set of Zernike polynomials and val-
ues for the radii of curvature calculated with Eqs. (29)
and (31). Table 1 shows the actual and the calculated
prescriptions of the five toric surfaces in terms of the
radius of curvature R along one principal meridian of the
toric and the radius of curvature R' along the perpen-
dicular axis. The rms radius error is , 50 mm for the
five surfaces, which corresponds to a rms power error of
less than 0.3 D. The errors produced by Eqs. (29)–(33)
are therefore approaching the accuracy level claimed by
videokeratoscope manufacturers. If additional accuracy
is needed, higher-order terms can be included.
6. CONCLUSION

A technique for analyzing and displaying corneal height
data was presented. The height data were decomposed
into an orthonormal set of polynomials and related to
the Zernike polynomials. The Zernike polynomials pro-
vide a numerically stable expansion of corneal height data
and contain terms representative of fundamental corneal
shapes such as sphere and cylinder. Some previous ef-
forts at decomposing corneal height data use a nonorthog-
onal expansion such as the Taylor series. The Zernike
polynomials have an advantage over the nonorthogonal
expansions when high-order fits such as those found in
the radial keratotomy examples above are performed.
Whereas the Zernike polynomials remain numerically
stable, the Taylor series expansion quickly becomes ill-
conditioned.9

A significant drawback to viewing corneal height data
concerns the display of pertinent height data. Small,
high-order variations in corneal height are hidden by the
spherical and cylindrical components of the cornea. To
eliminate this drawback, one can display the height data
in stages in order to examine the different components
that make up the shape of the cornea. The spherical,
cylindrical, and higher-order terms can be individually
removed. This decomposition technique has several ob-
vious applications. One application is as a complement
to corneal power maps. Surface height provides an easy
method of determining contact lens fitting, since the spac-
ing between the base curve of the lens and the cornea can
be calculated directly. This process is a generalization of
the fluorescein maps routinely used in contact lens evalu-
ation. The height maps also provide information about
cone location in keratoconus. Finally, the height maps
can be used to evaluate irregularities and asymmetries
in radial keratotomy incisions. Height maps can also be
applied to optical modeling. The height variations mea-
sured on the cornea can be applied to a schematic eye
model and the optical effects determined with use of op-
tical ray traces. The height variation in the cornea in
the RK examples is ,20 mm peak to valley and may have
significant optical effects. The RK artifacts generated by
this technique also demonstrate that the post-RK cornea
has high spots or bumps corresponding to the location of
the incisions.

We examined the numerical accuracy of the decompo-
sition and analysis techniques in order to validate the
methodology. Commercially available videokeratoscopes
have intrinsic error in measuring the surface height of
the cornea. These errors arise from necessary assump-
tions about the alignment of the keratoscope and about
the azimuthal slope of the cornea. The fit errors result-
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ing from the orthogonalization routine are significantly
smaller than the errors produced by the videokeratoscope.
Therefore, as future generations of videokeratoscopes im-
prove their height-measuring abilities and as new corneal
measurement technologies arise, the methodology out-
lined here will still be a viable technique for analyzing
corneal height data.

We presented several examples of the decomposition-
and-display technique in order to introduce and educate
the reader to residual height maps. These maps appear
vastly different from more-familiar power map displays.
With a fundamental understanding of the residual height
map displays and a little practice, analyzing these
residual height maps will become second nature. The
examples of the technique included artifacts such as
astigmatism, keratoconus, and radial keratotomy. These
analysis techniques can obviously be extended to other
procedures such as penetrating keratoplasty and photore-
fractive keratectomy. With the popularity of refractive
surgery ever increasing, eye-care providers and vision
scientists need additional tools in order to provide high-
quality care for these patients. The Zernike decomposi-
tion technique and display methods presented here pro-
vide a sophisticated analysis tool to complement current
techniques of evaluating the corneal surface.
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