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A Refined Bootstrap Method for Estimating the Zernike
Polynomial Model Order for Corneal Surfaces

D. Robert Iskander*, Mark R. Morelande, Michael J. Collins, and
Tobias Buehren

Abstract—Following our previous work on optimal modeling of corneal
surfaces with Zernike polynomials, we have developed a refined bootstrap-
based procedure which improves the accuracy of the previous method. We
show that for normal corneas, the optimal number of Zernike terms usually
corresponds to the fourth or fifth radial order expansion of Zernike polyno-
mials. On the other hand, for distorted corneas such as those encountered
in keratoconus or in surgically altered cases, the estimated model was found
to be up to three radial orders higher than for normal corneas.

Index Terms—Cornea, model order selection, resampling techniques.

I. INTRODUCTION

Modeling corneal surfaces with Zernike polynomials often leads to
the question of the number of Zernike terms that should be used [1].
Recently, we have developed a bootstrap-based method to perform this
task [2]. We have shown in simulations that the bootstrap method out-
performs the classical model order selection techniques under the as-
sumption that the measurement noise is independent and identically
distributed (i.i.d.) across the whole corneal surface. In a further study
[3], we have shown that this technique is appropriate in the context of
fitting Zernike polynomials to corneal elevation data of normal subjects
(i.e. subjects with healthy corneas), allowing judicious selection of the
optimal number of Zernike terms.

However, for corneas with significant topographical deformities
such as keratoconus, we have observed cases for which the residual
error between the height data and the optimal fit as suggested by the
bootstrap procedure is significantly larger than the one observed when
testing videokeratoscopes with artificial surfaces. This implies that the
model order is being underestimated. Other studies have also reported
that a larger number of Zernike terms is expected for such corneas [4].

The shortcomings of the previously proposed bootstrap method can
be attributed to the crucial assumption that the measurement noise is
i.i.d.. We have conducted a thorough empirical analysis, which suggests
that the measurement noise in corneal topography maps obtained from
videokeratoscopes does not satisfy this requirement. In this communi-
cation we use the results of this empirical study to establish a model for
the spatial distribution of the measurement noise and develop a boot-
strap model selection procedure appropriate to this noise model.
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II. MEASUREMENT NOISE IN A PLACIDO-DISK-BASED

VIDEOKERATOSCOPE

We used the Optikon 2000 Keratron videokeratoscope.1 To evaluate
the precision of the videokeratoscope and estimate the instrument’s
noise power, we have acquired a set of multiple measurements in-
volving several artificial surfaces in two different instrument settings.
The Keratron videokeratoscope has an embedded range finder for
accurate estimation of the corneal apex and for automatic acquisition
of corneal elevation.

In the first setting, the instrument was moved back and forth allowing
activation of the range finder for every acquisition. In the second set-
ting, the instrument was locked at a constant distance from the mea-
sured surface. The second setting was used in order to eliminate the
noise related to the range-finder and establish the internal instrument’s
noise.

The maximum level of noise power did not exceed 5 � 10�7 [rad2]
for slopes and 5 � 10�1 [�m2] for height data in the first setting and
5 � 10�8 [rad2] for slopes and 5 � 10�2 [�m2] for height data in the
second setting. We noted that the noise power seemed to accurately fit
a parabolic surface.

For real eyes, there are other factors that contribute to noise power
[5]. We noted that for real corneas the noise power could reach sev-
eral microns. However, the parabolic spatial distribution of noise is al-
ways evident. In the following section we develop a bootstrap algo-
rithm which takes into account the observed spatial variations in the
noise distribution. The assumption of independence is retained.

III. THE REFINED BOOTSTRAP ALGORITHM

We model the anterior surfaces of the cornea with a finite series of
Zernike polynomials as in [2]

C(�; �) =

P

p=1

apZp(�; �) + "(�; �)

where C(�; �) denotes the corneal surface, the index p is a polyno-
mial-ordering number,Zp(�; �), p = 1; . . . ; P , is the pth Zernike poly-
nomial, ap, p = 1; . . . ; P , is the coefficient associated with Zp(�; �),
P is the order, � is the normalized distance from the origin, � is the
angle, and "(�; �) represents the measurement noise with distribution
F ("; �) dependent on �. We assume that for a given �, "(�; �) is an
i.i.d. random variable with zero-mean and finite variance �2� .

The objective is to find the optimal model for the Zernike fit. Since
the number of Zernike terms used for ophthalmic surfaces is relatively
low, it is sufficient to find the optimal model order rather than a par-
ticular subset of the Zernike polynomials. Also, all rotationally asym-
metric Zernike polynomial terms are paired and it is often desired to
use both terms in a pair to determine the amplitude and axis of a par-
ticular aberration.

We have presented the bootstrap methodology and algorithm for
finding the optimal number of Zernike terms in a fit to the corneal ele-
vations in [2]. Herein, we provide only those details, which are related
to the modified algorithm.

Algorithm
Step 1) Select an arbitrary model order

�max > P, such that �max < D, where
P is the true but unknown model
order and D is the number of
elevation samples, and find

1The authors do not have any proprietary or financial interests in the device
mentioned.
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the estimates of the coefficients
fâ1; â2; . . . ; â� g of fa1; a2; . . . ; a� g
using the method of least-
squares.

Step 2) Compute the surface estimate
Ĉ(�d; �d) = �

p=1 âpZp(�d; �d).
Step 3) Calculate the residuals

r̂d = C(�d; �d)� Ĉ(�d; �d), d = 1; . . . ; D.
Step 4) Sort the radial data into in-

creasing order �(1) � �(2) � � � � � �(D)

and note the order index I�. De-
rive an inverse index J� of the
index order I� by sorting I� into
increasing order. The index J� is
used later to return to the orig-
inal order of the data.

Step 5) Since the measurement noise power
varies spatially, sort the
residuals r̂d, d = 1; . . . ; D, using
the order index I� from Step 4)
and form a vector
r̂rrI = [r̂I (1) r̂I (2) . . . r̂I (D)].
In this way, we can assume that
the residuals r̂rrI are locally
i.i.d.

Step 6) Select a block length M, and
form a matrix by dividing
r̂rrI into Nb = D=M n-overlapping
blocks

r̂rr =

r̂I (1) r̂I (M+1) � � � r̂I (D�M+1)

...
...

...
...

r̂I (M) r̂I (2M) � � � r̂I (D);

= [r̂kl]

k = 1; . . . ;M and l = 1; . . . ; Nb.

We choose a block length M
such that the variations in ra-
dial distance � in each of the
columns of r̂rr are sufficiently
small.
Again, this leads to the assump-
tion that the residuals in each
of the columns of r̂rr are i.i.d.

Step 7) For each column l in the matrix
r̂rr, l = 1; . . . ; Nb, rescale the resid-
uals ~rkl = M=LM(l)(r̂kl �M�1 M

k=1 r̂kl)
and form a matrix of scaled
residuals ~rrr = [~rkl], k = 1; . . . ;M and
l = 1; . . . ; Nb. Scaling of the resid-
uals is performed for the boot-
strap model order estimation to
be consistent [2]. In our pre-
vious work, we have empirically
estimated the global scaling pa
rameter LD for all the data [2].
However, to account for changes
in spatial distribution of the
noise, we will need to evaluate
the scaling LM(l) for each column
l in the matrix r̂rr, l = 1; . . . ; Nb

Steps 1)–7) can be considered as the pre-
liminary steps of our procedure.
In the following step, we perform
the bootstrap model order
selection.

Step 8) For all model orders
a) calculate and

as in steps 1 and 2.
b) For each column in the ma-

trix , , draw in-
dependent bootstrap residuals

with replacement, from the
empirical distribution of

and form a new matrix of
residuals ,
and . Thus, the
bootstrap resampling, which
assumes i.i.d. data, is per-
formed individually for each
column of .

c) Rearrange the matrix into
a long vector using the in-
verse order index

~rrr�J = ~r�J (1) ~r�J (2) . . . ~r�J (D) = [~r�1 ~r�2 . . . ~r�D] :

After this step, the boot-
strap version of the residual
error corresponds spatially
to the original measurement
error and can be used for
building new bootstrap
surfaces.

d) Define the bootstrap surface
.

e) Using as the
new surface, compute the
least-squares estimate of

, ,

and calculate
and

.
The mean square error

for a given model
order depends on the block
length selected in step 6.

f) Repeat steps (b)–(e) a large
number of times (usually more
than a hundred) to obtain a
total of bootstrap statis-
tics ,
and estimate the bootstrap
mean-square error

.
This is the main bootstrap

resampling loop in which we
obtain the bootstrap mean
square error as a
function of the model order
.

Step 9) In the last step, we choose that
model order for which

is a minimum.

To evaluate the performance of the proposed refined bootstrap proce-
dure we simulated the same two surface models C1(�; �) and C2(�; �)
as in [2]. The first surface represents Seidel’s regular astigmatism with
the model order PC = 5, while the second surface represents hor-
izontal coma with PC = 7. Unlike in [2], the measurement noise
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TABLE I
EMPIRICAL PROBABILITY (%) OF SELECTING THE MODEL ORDER FOR C (�; �)

TABLE II
EMPIRICAL PROBABILITY (%) OF SELECTING THE MODEL ORDER FOR C (�; �)

is modeled here as a zero-mean Gaussian noise process with spatially
varying variance �2� = �2. The performance of the bootstrap proce-
dure in terms of the probability of selecting the correct model order
was evaluated over 1000 independent realizations of the noise process
"(�; �).

The results of this simulation are given in Tables I and II for surface
modelC1(�; �) andC2(�; �), respectively. Two major conclusions can
be drawn from these results when compared to those of [2]. First, the
performances of the classical methods of model order selection quickly
deteriorate when the noise distribution spatially varies. Second, the re-
fined bootstrap procedure overcomes the shortcomings of its prede-
cessor and provides a very high probability of selecting the correct
model order.

IV. EXPERIMENTAL RESULTS

Before the refined bootstrap procedure can be applied to model un-
known corneal surfaces, the algorithm of Section III is calibrated. This
is achieved by appropriately selecting �max, M , and LM based on the
measurement of known artificial surfaces. In our work with the Kera-
tron videokeratoscope we chose, �max = 45 (corresponding to eighth
radial order expansion), M = 128, and LM = (1=60)�+ (1=30). B
was set to 200 in all our experiments.

We have selected five subjects, each with significantly different
corneas. Subject A had a healthy normal cornea with residual astigma-
tism of less than half of a diopter. Subject B had a healthy cornea with
about two diopters of corneal astigmatism. Subject C had been diag-
nosed with early keratoconus. Subject D had advanced keratoconus
while subject E had undergone a form of refractive surgery.

We have varied the corneal diameter from 2 mm to 8 mm for each
of the subject’s data to find the optimal model order of the Zernike
expansion for different corneal regions. The results of estimating the
model order for these subjects are shown in Fig. 1.

We note that the estimated optimal model order increases with the
corneal diameter. For normal corneas, the optimal model order ap-
pears to be rather constant across the measured corneal surface. On the

Fig. 1. Estimated model order selection as a function of corneal diameter.
Subject A—normal cornea, B—astigmatic cornea, C—early keratoconus,
D—advanced keratoconus, and E—post refractive surgery. The radial order
bands of the Zernike polynomial expansion are indicated by horizontal dotted
lines.

other hand, for keratoconics or surgically altered corneas, the optimal
model order significantly increases for larger corneal diameters. Unlike
the previous bootstrap method which underestimated the model order
for deformed corneas, the proposed refined bootstrap method selects
model orders in accordance with clinical expectations.

V. CONCLUSION

The results of fitting Zernike polynomials to corneal elevations with
the proposed refined bootstrap algorithm are in a close agreement with
our earlier experiences with artificial surfaces as well as with recently
reported studies [4]. The higher Zernike polynomial model order re-
quired for distorted corneas was anticipated, but has not been statisti-
cally proven. The bootstrap is a powerful statistical method that appears
suitable for this purpose. Also, the results indicate that fitting the same
set of Zernike polynomials (say of the 8th order) to different corneas
and different corneal radii will often result in overparameterization.

The proposed bootstrap method can be easily extended to other types
of videokeratoscopes after analysis of the instrument’s noise power is
conducted. In cases where the noise distribution varies both radially and
azimuthally, or when there is correlation between the noise samples, the
bootstrap technique known as “block of blocks” could be used [6].
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