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Optimal Modeling of Corneal Surfaces with Zernike
Polynomials

D. Robert Iskander*, Member, IEEE, Michael J. Collins, and Brett Davis

Abstract—Zernike polynomials are often used as an expansion
of corneal height data and for analysis of optical wavefronts.
Accurate modeling of corneal surfaces with Zernike polynomials
involves selecting the order of the polynomial expansion based on
the measured data. We have compared the efficacy of various clas-
sical model order selection techniques that can be utilized for this
purpose, and propose an approach based on the bootstrap. First,
it is shown in simulations that the bootstrap method outperforms
the classical model order selection techniques. Then, it is proved
that the bootstrap technique is the most appropriate method in the
context of fitting Zernike polynomials to corneal elevation data,
allowing objective selection of the optimal number of Zernike
terms. The process of optimal fitting of Zernike polynomials
to corneal elevation data is discussed and examples are given
for normal corneas and for abnormal corneas with significant
distortion. The optimal model order varies as a function of the
diameter of the cornea.

Index Terms—Bootstrap, cornea, model order selection, Zernike
polynomials.

I. INTRODUCTION

T HE cornea is the major refracting component of the human
eye, contributing approximately two thirds of the eye’s op-

tical power. The ideal optical shape of the anterior surface of the
cornea is a prolate ellipsoid. However, there are wide variations
in shape producing common aberrations such as astigmatism.
Corneal conditions such as keratoconus, in which the cornea
thins and distorts, produce significant amounts of asymmetric
aberrations that cannot be corrected with traditional spectacles.

Accurate measurement and modeling of the corneal surface
is important from a number of perspectives. Corneal refractive
surgery requires accurate modeling of corneal shape prior to
surgery to ensure good optical and visual outcomes. Contact
lens design and fitting can also be based upon corneal topog-
raphy characterization.

To establish the contribution that the cornea makes to vision,
one can take the measurement of the anterior surface of the
cornea using noninvasive instruments such as the videokerato-
scope [1], and then apply geometrical and wave optics to deter-
mine the wavefront aberration error [2]. For this purpose, the
corneal data from the videokeratoscope is often given a func-

Manuscript received March 16, 2000; revised September 13, 2000.Asterisk
indicates corresponding author.

*D. R. Iskander is with the Centre for Eye Research, Queensland Univer-
sity of Technology, Victoria Park Rd, Kelvin Grove Q4059, Australia (e-mail:
d.iskander@qut.edu.au).

M. J. Collins and B. Davis are with the Centre for Eye Research, Queensland
University of Technology, Kelvin Grove Q4059, Australia.

Publisher Item Identifier S 0018-9294(01)00138-0.

tional representation in terms of a Zernike polynomial expan-
sion [3].

The anterior surface of the cornea can be modeled by a finite
series of Zernike polynomials [4]

(1)

where
corneal surface;

the index polynomial-ordering number;

,

th Zernike polynomial;

,
coefficient associated with ;

order;
normalized distance from the origin;
angle;
measurement and modeling error (noise).

It is assumed that this noise is an independent and identically
distributed random variable with zero-mean and finite variance.
We shall consider the general case where the distribution of the
additive noise is unknown.

In such modeling, a fundamental problem arises of how many
Zernike terms one should use. Traditionally, vision researchers
have chosen to use the first 15 Zernike terms, which seems to
be a legacy from the previous techniques of fitting Taylor series
to the wavefront data to include the spherical aberration compo-
nent.

Strictly speaking, modeling corneal surfaces with (1) involves
selectionof the model andconditional estimationof the pa-
rameters. By selecting the model we mean choosing an appro-
priate set of Zernike terms. The conditional estimation of the
model parameters refers to estimation conditioned on the chosen
model. In most practical cases, it is sufficient to choose only the
model order of the polynomial expansion,, rather than a par-
ticular model being a subset of .

One way of selecting the number of Zernike terms is to
minimize the residual variance (it will always decrease when
more parameters are estimated) and determine a suitable cutoff
threshold value. If this threshold is too small, however, we
would over-parameterise our model and start modeling the
measurement error rather than the surface.

An alternative approach is to use some suitable penalty func-
tion that increases with the number of parameters. Adding this
penalty function to residual variance leads to model order selec-
tion criterion.
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Many model selection procedures can be applied to find the
optimal (in some sense) fit to the corneal surface with Zernike
polynomials, because the model can be formulated as a linear
regression in the unknown parameters. Some of the more com-
monly used model selection procedures include Akaike’s infor-
mation criterion (AIC) [5], the Rissanen’s minimum description
length (MDL) criterion [6], Hannan and Quinn (HQ) criterion
[7], and the corrected Akaike information criterion (AIC) [8].
To the best of our knowledge, none of these model selection
criteria have been used in the context of selecting the number
of terms in Zernike polynomial expansion. As mentioned ear-
lier, in most reports in the literature concerning aberrations of
the human eye, authors choose to use the first 15 Zernike terms
[3]. It should be also noted that even in the general context of
linear regression, experimental as well as theoretical results in-
dicate that these model selection criteria do not yield definitive
results [8]. They may also perform poorly when the sample size
is small.

In this paper, we first compare various methods for selecting
the optimal number of terms of a Zernike polynomial expansion
and propose a new method using the bootstrap [9]–[11]. With the
bootstrap, the selection of the optimal number of Zernike terms
can be performed in an objective manner. The bootstrap is a sta-
tistical technique for assessing the accuracy of a parameter esti-
mator in situations where conventional techniques are not valid.
As noted by Zoubir [11], “the bootstrap does with a computer
what the experimenter would do in practice, if it were possible”,
that is repeat the experiment. The bootstrap randomly reassigns
the observations and recomputes the estimates. The main benefit
in using the bootstrap is that knowledge of the distribution of the
measurement and modeling error is not necessary.

The paper is organized as follows. In Section II, we present
the problem of modeling of the corneal surface with Zernike
polynomials using videokeratoscopic measurements. In Section
III, we introduce the bootstrap-based procedure for selecting the
optimal number of Zernike terms. Section IV is devoted to sim-
ulation and experimental results. We first show in simulations
that the proposed bootstrap approach outperforms the traditional
model selection techniques. Then, we use the proposed tech-
nique to determine the optimal Zernike expansion for videoker-
atoscopic measurements from normal and distorted corneas.

II. M ODELING WITH ZERNIKE POLYNOMIALS

The th-order Zernike polynomial is defined as [4]

even
odd

where is the radial degree, is the azimuthal frequency, and

The radial degree and the azimuthal frequency are integers
which satisfy and even. The radial
degree and the azimuthal frequency can be evalu-
ated from the polynomial-ordering number using

, and respec-
tively, where

is the floor operator and mod
denotes the modulus operator.

In some cases the Zernike polynomials are denoted
as a two–dimensional expansion, in terms of radial,

, and azimuthal, , parameters [3]. This is mathematically
equivalent to Noll’s notation and has been widely adopted by vi-
sion researchers. We have chosen the Zernike polynomials pro-
posed by Noll as they are convenient for subsequent statistical
analysis of the coefficient estimates and for finding the optimal
model order (one-dimensional search for the minimum of the
bootstrap mean-square error). Other classifications of Zernike
terms are possible [12], and care should be taken when com-
paring the results of different authors.

The discrete data from the corneal surface, denoted in polar
coordinates as , can be modeled by a
finite series of discrete Zernike polynomials

(2)

where , is the th discrete Zernike
polynomial sampled from at discrete points

. Such sampling may require further orthogonal-
ization using the Gram-Schmidt procedure.

Using a set of such orthogonalised discrete Zernike polyno-
mials, we can form a linear model

(3)

where
-element column vector of corneal surface evaluated

at discrete points ;
matrix of discrete, orthogonalised Zernike

polynomials ;
-element column vector of Zernike coefficients;
-element column vector of the measurement and

modeling error.
For such a model, the coefficient vectorcan be easily esti-
mated using the method of least-squares, i.e.,

(4)

where denotes the transposition and provided that the inverse
exists.

In some commercially available videokeratoscopes one may
have access to the slope rather than the height data. In such
cases, we can form the following linear model [similar to (3)]

where and are -element column vectors of
the partial derivatives of optical surfaces with respect toand
, while and are matrices of partial

derivatives of the discrete, orthogonalised Zernike polynomials
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with respect to and . For such a model, the coef-
ficient can be easily estimated using

where denotes the Moore–Penrose pseudo
inverse of . Because slope measures provide twice as much
data, this leads to better parameter estimates. Note that a similar
approach may be taken if the slope data are in the Cartesian
coordinates, if desired.

Note that the model based on the slopes is also linear in pa-
rameters. Thus, from the point of view of model order selection,
a model based on the slope data can also be used for finding the
optimal number of Zernike terms.

III. M ODEL ORDER SELECTION

We can formulate the problem of finding the unknown model
order of the Zernike polynomial expansion in the following
manner: given discrete values of the corneal surface

, estimate .
Let model be a subset of corresponding to the

model in (2) of order . Under , we have

where is a matrix containing the first columns of and
is a column vector containing the firstelements of . The pro-
posed methodology is based on minimizing bootstrap estimates
of the prediction error [10].

Let us assume that . Theoptimalmodel is

Let , be an independent and identically dis-
tributed random variable drawn with replacement from the em-
pirical distribution of

where

with , being elements of in (4) is the th
residual under the largest model , and is a scaling
parameter. By multiplying the residuals by the factor
we increase the variability among the bootstrap observations to
achieve consistency [10], i.e.,

Pr

provided that is such that and
.

Let us define the bootstrap analog of as

TABLE I
BOOTSTRAP-BASED SELECTION PROCEDURE FOR THEMODEL ORDER OF

ZERNIKE POLYNOMIAL EXPANSION

where

with being a column vector containing elements
. The model order selected by the bootstrap, denoted

by , is then the minimizer of

E

E

over , whereE is the asymptotic expectation
conditioned on the measured data [9]. A detailed procedure for
selecting the model order is given in Table I.

The first step in the procedure is to choose an arbitrary large
number of terms and perform a fit of Zernike polynomials
to the surface data using a least-squares procedure. Next, we
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(a) (b)

Fig. 1. The model used in performance analysis: pure surfaceC (�; �)
representing (a) Seidel’s astigmatism and (b) surface and measurement noise
with � = 1.

(a) (b)

Fig. 2. The models used in performance analysis: pure surfaceC (�; �)
representing (a) coma and (b) surface and measurement noise with� = 1.

calculate the residuals by subtracting the fitted surface from
the original one. In the third step, we detrend and rescale the
residuals. After that, we perform a bootstrap order selection pro-
cedure (steps 4(a)–4(e)) for all orders starting from 1 and ending
at in which we obtain the bootstrap mean-square error as a
function of the model order. The last step is to choose that model
order which results in the minimum bootstrap mean-square error.

A Matlab code of the bootstrap procedure for calculating the
optimal number of Zernike terms can be obtained at no cost by
contacting the authors.

IV. SIMULATION AND EXPERIMENTAL RESULTS

We now demonstrate the power of the proposed methodology
using the following surface models

(5)

where and . The first surface represents
Seidel’s regular astigmatism while the second surface represents
horizontal coma.

The measurement zero-mean and unit variance Gaussian
noise process was added to the surface. In most optical
applications this would correspond to a very high level of the
measurement noise. It should be noted that the knowledge of
the distribution of the measurement noise is not necessary for
the bootstrap algorithm. In Figs. 1 and 2, the model surfaces
are shown together with a realization of the measurement noise
added to each surface. For illustration purposes, the surfaces
in (5) have been sampled at four rings corresponding to radius

0.25, 0.5, 0.75, and 1, and at 36 equally
spaced semimeridians leading to a sample of 144 data
points. Such sampling is equivalent to placido disk instruments
which also adopt the polar coordinates, though the sample
size in the latter is usually much larger. We then applied the

TABLE II
EMPIRICAL PROBABILITY (IN PERCENT) OF SELECTING THEMODEL ORDER OF

THE SURFACEC (�; �) FORD = 144AND L = 12

—Bootstrap, AIC —Akaike in-
formation criterion, MDL —minimum descrip-
tion length, HQ —Hannan and Quinn criterion,
AIC —corrected Akaike information criterion.

TABLE III
EMPIRICAL PROBABILITY (IN PERCENT) OF SELECTING THEMODEL ORDER OF

THE SURFACEC (�; �) FORD = 144AND L = 12

—Bootstrap, AIC —Akaike in-
formation criterion, MDL —minimum descrip-
tion length, HQ —Hannan and Quinn criterion,
AIC —corrected Akaike information criterion.

bootstrap algorithm from Table I to estimate the model order
in each case. The maximum model order and the number of
bootstrap replications were chosen to 15 and 200,
respectively.

In Tables II and III, we show the empirical probabilities of
selecting a particular model (evaluated over 1000 independent
runs) together with the results obtained by using classical model
selection techniques.

It should be noted that none of the methods underestimates
the true model order. In the test we ran, it was clear that
the proposed bootstrap-based technique performs very well.
Over 1000 replications, the empirical probability that the
method selects the true order was very close to one. The only
traditional technique that provided comparable performance to
the bootstrap was the MDL. All other model order selection
criteria tend to over-parameterization (i.e., over-estimated the
true model order).

One may argue that the choice of (in our case
12) may be a problem in practical situations. We noted that for
a very high noise level this parameter needs to be
increased as the variability of bootstrap residuals is already high.
For more guidelines as to the choice of the parameterin
linear regression the reader is referred to Shao [10].

In many videokeratoscopic applications, the level of the mea-
surement noise may not be known. The scaling parameter
can be tuned in such applications in the following manner. First,
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Fig. 3. Corneal axial power for subject A (normal topography).

we obtain height data from a known surface, typically it is a pa-
raboloid. The optimal number of Zernike terms for a paraboloid
should be four. We then tune the parameterin our procedure
until we achieve the desired number of terms.

A. Fitting Zernike Polynomials to Corneal Elevation

In the following we provide an example of fitting Zernike
polynomials to the corneal elevation data measured by a videok-
eratoscope (Optikon Keratron). The Keratron data are in the
format of 26 rings and 256 semimeridians.

First, we chose a subject with a normal cornea. From the
videokeratoscope data we select a certain portion of the cornea
around the instrument axis, for example an 8-mm diameter.
The axial power corneal map for subject A from the Keratron
videokeratoscope is shown in Fig. 3. Axial power is a common
form of videkeratoscope data presentation and is calculated by
finding a normal to the surface and intersecting this normal with
the instrument axis. The reciprocal of this distance multiplied by
the refractive index minus one is the axial dioptric power. Subject
A’s axial power map shows a typical decrease in axial power
toward the periphery of the cornea with only minor asymmetry.

We ran the proposed bootstrap algorithm and the other in-
formation criteria to estimate the required number of Zernike
terms for the corneal elevation. The maximum model order and
the number of bootstrap replications were chosen to
40 and 200, respectively. The scaling parameter was
estimated in this case to be 0.05 . This has ensured that
the bootstrap residuals have some variability because the level
of the measurement noise is quite small (less than 3 microns).

In Fig. 4, we show the results of the model order selection cri-
teria for fitting Zernike polynomials to corneal elevation for sub-
ject A. The minimum of is denoted by a dashed ver-
tical line which also indicates the optimal number of terms. It
should be noted that all the classical model selection techniques
cannot find a minimum as long as the number of Zernike terms is

Fig. 4. The results of the model order selection criteria for fitting Zernike
polynomials to corneal elevation for subject A. The minimum of�̂ (�)
is denoted by a dashed vertical line which also indicates the optimum number
of terms.

less than 600. This is because the penalty part of each of the cri-
terion is too small compared to the logarithm of the residual vari-
ance. However, the bootstrap-based technique, in contrast to tra-
ditional methods, has the ability to select an optimal model order
much earlier by appropriately setting the scaling parameter.
As noted in Fig. 4, the optimal model-order for the subject A was
found tobe11,a result that isexpected foranormalcornea,which
is a prolate ellipsoid with small levels of aberrations.

Next, we repeated the above procedure for several subjects
with different corneal aberrations, in particular:

1) subject B who has a significant amount of astigmatism;
2) subject C who has a decentred corneal apex;
3) subject D who has keratoconus;
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Fig. 5. Corneal axial power for subject B (astigmatism).

Fig. 6. Corneal axial power for subject C (decentred corneal apex).

4) subject E who has undergone a poorly centred refractive
surgery procedure.

Axial power maps of the corneas of these subjects, from the
Keratron are shown Figs. 5–8. The corresponding number of
optimal Zernike terms was found to be 11, 14, 8, and 12, re-
spectively. As previously observed, the classical model selection
techniques could not find a minimum as long as the number of
Zernike terms was less than several hundred.

The axial power map for subject B (Fig. 5) shows classical
with-the-rule astigmatism, where the vertical meridian of the
cornea is steeper (higher axial power) than the horizontal
meridian. Corneal astigmatism gives rise to a characteristic

bow-tie pattern of axial power. The astigmatism is modeled
theoretically by the fifth and sixth Zernike terms.

Subjects C and D (Figs. 6 and 7) show axial power maps
which are characteristic of a decentred corneal apex. In the case
of Subject D, this is caused by a degenerative thinning of the
cornea leading to a protrusion of the corneal surface in the in-
ferotemporal region (the condition called keratoconus).

The corneal topography of subject E’s eye is unusual. The
subject underwent a poorly centred refractive surgery procedure
(laser in situ keratomileusis) which resulted in regions of very
low axial power in the superior cornea, compared to relatively
steeper normal axial powers in the inferior cornea.
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Fig. 7. Corneal axial power for subject D (keratoconus).

Fig. 8. Corneal axial power for subject E (decentred laser in situ keratomileusis).

B. Discussion

It can be noticed that in both the normal and astigmatic cornea
the numberofoptimal Zernike terms was found tobeeleven. This
isconsistentwith thecommonviewthat thecorneacanbeapprox-
imated by a conic (elliptical) surface. For distorted corneas, the
number ofoptimalZernike terms varies from subject to subject.

Having determined the optimal model order,, one can pro-
ceed to determine the optimal model, that is the set of Zernike
terms, being a subset of . To do so,
we can use a similar bootstrap procedure to the one described in
[13] and [14]. The computational intensity of such a procedure
is quite significant, especially when is large. For complete-

ness, however, and for the purpose of illustration we have used
such a bootstrap procedure to determine the best Zernike expan-
sion model for each of the considered corneas. In Table IV, we
list the sets of Zernike terms for each of the corneas.

We can see from the data in Table IV that as expected, when
the shape of the cornea becomes more irregular, the total number
of Zernike terms required for modeling the cornea becomes
higher. For example, the normal cornea of subject A requires
only five Zernike terms whereas the cornea of subject E requires
ten terms. This result indicates that by using arbitrary number of
Zernike terms, for example 15, leads in most cases to over-pa-
rameterization of the model.



94 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 1, JANUARY 2001

Fig. 9. The results of the model order selection criteria for fitting Zernike polynomials to corneal elevation as a function of pupil diameter for subjects A–E. The
y-axis� is the optimal model order for the corresponding corneal diameter.

TABLE IV
THE OPTIMAL SET OF ZERNIKE TERMS ASDETERMINED BY THE BOOTSTRAP

PROCEDURE FORSUBJECTSA–E AND FOR CORNEAL DIAMETER OF 8 mm. THE

TICK AND THE CROSSDENOTE A SIGNIFICANT AND AN INSIGNIFICANT TERM IN

THE ZERNIKE POLYNOMIAL EXPANSION, RESPECTIVELY

It is known that using more terms in polynomial expansion
will reduce the MSE. However, the amount of increase in error
induced by choosing less Zernike terms is of interest. We have
calculated the MSE based on fitting the first 15 Zernike terms,

, to the surface as well as the optimal number of terms,
(see Table IV). It could be seen that reduction in the MSE

is small and that the MSE is smaller than the instrument error,
which is often estimated at 1–5 micrometers.

It is also interesting to see how the optimal number of Zernike
terms varies with corneal diameter. This is particulary important
when determining the corneal aberrations at high and low levels
of light (i.e., corresponding to small and large pupil diameters).
In Fig. 9, we show the optimal number of Zernike terms, deter-
mined by the bootstrap procedure, as a function of pupil diam-
eter for all considered subjects.

Subject A and B show systematic change from 4 and 6
Zernike terms (respectively) for a small corneal diameter to 11
Zernike terms for a large one. This trend reflects the elliptical
nature of normal corneas. However, for distorted corneas there
is no clear trend in the optimal number of Zernike terms as the
diameter varies. For these subjects the interactions between
optimal number of Zernike terms and corneal diameter is less
predictable than in the case of regular corneas.

The proposed bootstrap methodology is computationally in-
tensive. To calculate the optimal number of Zernike terms for
the given videokeratoscope data ,
takes about 10 min on a Pentium II, 450-MHz computer, for

40 and 200. This corresponds to approximately
40 Gigaflops. On the other hand, calculating the optimal order
took only 6.5 s (1.2 Megaflops) for 144, 15, and

200.

V. SUMMARY

We have proposed a procedure for determining the model
order of Zernike polynomial expansion using the bootstrap.
The method is based on minimizing bootstrap estimates of
the mean-square prediction error. The method achieves a very
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high probability of selecting the true model, irrespective of the
statistical distributions of the measurement noise, while the
sample size is small. It outperforms the classical model selection
techniques such as the AIC, MDL, HQ, and AIC. The proposed
method was applied to estimate the number of Zernike terms
when fitting them to corneal elevations. However, it could be
easily adopted to perform the fit to other optical surfaces or
wavefronts.
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