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Optimal Modeling of Corneal Surfaces with Zernike
Polynomials

D. Robert Iskander*Member, IEEEMichael J. Collins, and Brett Davis

Abstract—Zernike polynomials are often used as an expansion tional representation in terms of a Zernike polynomial expan-
of corneal height data and for analysis of optical wavefronts. sjon [3].
Accurate modeling of corneal surfaces with Zernike polynomials The anterior surface of the cornea can be modeled by a finite
involves selecting the order of the polynomial expansion based on __ . - .
the measured data. We have compared the efficacy of various clas- series of Zernike polynomials [4]
sical model order selection techniques that can be utilized for this P
purpose, and propose an approach based on the bootstrap. First, .
it is shown in simulations that the bootstrap method outperforms Cp,0) = Z apZp(p,0) +e 1)
the classical model order selection techniques. Then, it is proved p=l
that the bootstrap technique is the most appropriate method in the
context of fitting Zernike polynomials to corneal elevation data,
allowing objective selection of the optimal number of Zernike Clp,0) corneal surface;
terms. The process of optimal fitting of Zernike polynomials the indexp polynomial-ordering number;
to corneal elevation data is discussed and examples are given Zp(p, 9)’ pth Zernike polynomial;
for normal corneas and for abnormal corneas with significant

where

distortion. The optimal model order varies as a function of the 11) B p
diameter of the cornea. AR - . .
ap, p =  coefficient associated with,,(p, 8);
Index Terms—Bootstrap, cornea, model order selection, Zernike 1 P
. b) i) y
polynomials. P order:
p normalized distance from the origin;
|. INTRODUCTION 0 angle;

measurement and modeling error (noise).

. . . (3]
T HE comeais the major refracting component of the hum{?‘tnis assumed that this noise is an independent and identically

e, contrlputlng ap_prommately two th|rds_of the eye’s OPjistributed random variable with zero-mean and finite variance.
tical power. The ideal optical shape of the anterior surface of t

. S . ... We shall consider the general case where the distribution of the
cornea is a prolate ellipsoid. However, there are wide varlatlona o .
additive noise is unknown.

in shape producing common aberrations such as astigmatisn].n such modeling, a fundamental problem arises of how many

Corneal conditions such as keratoconus, in which the corr?a . » L
. . R ernike terms one should use. Traditionally, vision researchers
thins and distorts, produce significant amounts of asymmetHc

. . o ave chosen to use the first 15 Zernike terms, which seems to
aberrations that cannot be corrected with traditional spectaclgs. . . o ;
Accurate measurement and modeling of the corneal surfaia legacy from the previous techniques of fitting Taylor series
L 9 . o%he wavefront data to include the spherical aberration compo-
is important from a number of perspectives. Corneal refractnIg{ee
surgery requires accurate ”.‘Ode"”g O.f comeal shape prior 1, trictly speaking, modeling corneal surfaces with (1) involves
surgery to ensure good optical and visual outcomes. Contac

X i séelectionof the model ancconditional estimatiorof the pa-
lens design and fitting can also be based upon corneal topgg- . .
o rameters. By selecting the model we mean choosing an appro-
raphy characterization.

. L . .Ooriate set of Zernike terms. The conditional estimation of the
To establish the contribution that the cornea makes to vision . . .
odel parameters refers to estimation conditioned on the chosen

one can take the measurement of the anterior surface of me

) . S . r?odel. In most practical cases, it is sufficient to choose only the
cornea using noninvasive instruments such as the videokerato-

. X model order of the polynomial expansiadh, rather than a par-
scope [1], and then apply geometrical and wave optics to detgr= being a subset 61 (p,0), ..., Zp(p,0)}.
mine the wavefront aberration error [2]. For this purpose, theOne way of selecting the numl73er7 of 7Zernik7e terms is to

corneal data from the videokeratoscope is often given a func: . ) . L
minimize the residual variance (it will always decrease when

more parameters are estimated) and determine a suitable cutoff
threshold value. If this threshold is too small, however, we
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Many model selection procedures can be applied to find the, | — 1, andm = ¢ + (n + (g2 mod 2)mod 2) respec-
optimal (in some sense) fit to the corneal surface with Zernikively, whereg;, = 051 + /8 —7), p = 1,...,P,
polynomials, because the model can be formulated as a lineae= |(n + 1)(¢1 — n + 1)], |-] is the floor operator and mod
regression in the unknown parameters. Some of the more catenotes the modulus operator.
monly used model selection procedures include Akaike’s infor- In some cases the Zernike polynomi#lg p, 6) are denoted
mation criterion (AIC) [5], the Rissanen’s minimum descriptioms a two—dimensional expansigfit™ (p, §) in terms of radial,
length (MDL) criterion [6], Hannan and Quinn (HQ) criterionn, and azimuthalyn, parameters [3]. This is mathematically
[7], and the corrected Akaike information criterion (AIE[8]. equivalentto Noll's notation and has been widely adopted by vi-
To the best of our knowledge, none of these model selectision researchers. We have chosen the Zernike polynomials pro-
criteria have been used in the context of selecting the numiparsed by Noll as they are convenient for subsequent statistical
of terms in Zernike polynomial expansion. As mentioned eaanalysis of the coefficient estimates and for finding the optimal
lier, in most reports in the literature concerning aberrations ofodel order (one-dimensional search for the minimum of the
the human eye, authors choose to use the first 15 Zernike tetmoststrap mean-square error). Other classifications of Zernike
[3]. It should be also noted that even in the general context tgkms are possible [12], and care should be taken when com-
linear regression, experimental as well as theoretical results paring the results of different authors.
dicate that these model selection criteria do not yield definitive The discrete data from the corneal surface, denoted in polar
results [8]. They may also perform poorly when the sample sizeordinates a€’(p4,84), d = 1,..., D, can be modeled by a
is small. finite series of discrete Zernike polynomials

In this paper, we first compare various methods for selecting
the optimal number of terms of a Zernike polynomial expansion ol
and propose a new method using the bootstrap [9]—[11]. With the C'(Pd: ) = > a7 (paba) +€a, d=1,...,D (2
bootstrap, the selection of the optimal number of Zernike terms p=1
can be performed in an objective manner. The bootstrap is a %’ere Zp(pa,0), p = 1,...,P, is thepth discrete Zernike

tistical technique for assessing the accuracy of a parameter e&é‘ﬁ/nomial sampled frong,(p, §) at discrete pointépy, 64),
mator in situations where conventional techniques are not valigl.” 4 D. Such sampling may require further orthogonal-
=1,...,D.

As noted by Zoubir [11], “the bootstrap does with a compute} o, using the Gram-Schmidt procedure.
what the experimenter would do in practice, if it were possible”, Using a set of such orthogonalised discrete Zemike polyno-
that is repeat the experiment. The bootstrap randomly reassigrnasy we can form a linear model
the observations and recomputes the estimates. The main benefit
in using the bootstrap is that knowledge of the distribution of the C=Za+e ©)
measurement and modeling error is not necessary.

The paper is organized as follows. In Section Il, we presefhere

the problem of modeling of the corneal surface with Zernike ¢ D-element column vector of corneal surface evaluated

polynomials using videokeratoscopic measurements. In Section at discrete pointépy,6q), d = 1,...,D;
I, we introduce the bootstrap-based procedure for selecting theg, (D x P) matrix of discrete, orthogonalised Zernike
optimal number of Zernike terms. Section IV is devoted to sim- polynomialsZ,,(pa, 64);

ulation and expel’imental results. We first show in simulations a P-element column vector of Zernike coefficients;

thatthe proposed bootstrap approach outperformsthe traditionag D-element column vector of the measurement and
model selection techniques. Then, we use the proposed tech- modeling error.

nique to determine the optimal Zernike expansion for videokeror such a model, the coefficient vectarcan be easily esti-
atoscopic measurements from normal and distorted corneasmated using the method of least-squares, i.e.,

[l. M ODELING WITH ZERNIKE POLYNOMIALS a=(z'"z2)'z%c (4)

The pth-order Zernike polynomial is defined as [4] whereT denotes the transposition and provided that the inverse

2(n + )R (p) cos(mb), evenp,m #0  €Xists.

Z,(p,0) = /20n + 1) R™(p)sin(mé), oddp,m # 0 In some commercially available videokeratoscopes one may
»(0:6) \/n(——i—lRO)(p) (p)sin(mf) m :po 7 have access to the slope rather than the height data. In such
m cases, we can form the following linear model [similar to (3)]
wheren is the radial degreey is the azimuthal frequency, and
acy oz
(n—m)/2 1ys Y| ap —_ ap €p
R =Y e e AR
5=0 S(T_S)( 2 _3)- 96 Y
The radial degree and the azimuthal frequency are integerisere9C/8p and 9C/36 are D-element column vectors of
which satisfym < n andn — |m| = even. The radial the partial derivatives of optical surfaces with respect tnd

degreen and the azimuthal frequency: can be evalu- 6, while 9Z/3p and38Z/86 are (D x P) matrices of partial
ated from the polynomial-ordering number using » = derivatives of the discrete, orthogonalised Zernike polynomials
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Zy(pa, 84) With respect tp andé. For such a model, the coef- TABLE |
ficient a can be eas"y estimated using BOOTSTRAPBASED SELECTION PROCEDURE FOR THEMODEL ORDER OF
ZERNIKE POLYNOMIAL EXPANSION
a_Z ’ a_C 1. Select 8 = fBmax, find the estimate ag of ag
a=| 9 dp using least-squares method and compute
0Z aC 5
o6 o Clpg,04) = Z apZp(pa,8a)
whereX* = (X?'X)~!X? denotes the Moore—Penrose pseudo =t
inverse ofX. Because slope measures provide twice as much 2. Compute the residuals 73 = C(pg,8a) -
data, this leads to better parameter estimates. Note that a similar Clpa;8a). d=1,...,D.
approach may be taken if the slope data are in the Cartesian 3. Rescale the empirical residuals
coordinates, if desired ) D 12
Note that the model based on the slopes is also linear in pa- =N AT D dZw) :
rameters. Thus, from the point of view of model order selection, =
a model based on the slope data can also be used for finding the 4 Forall 1 <0 < Bmax

(a) calculate &g and C'(pg,84) as in step 1.
(b) Using a. pseudo-random number generator,
draw independent bootstrap residuals 7 with re-

I1l. M ODEL ORDER SELECTION placement, from the empirical distribution of #4.
(¢) Define the bootstrap surface

optimal number of Zernike terms.

We can formulate the problem of finding the unknown model

order of the Zernike polynomial expansion in the following C*(pa,84) = C(pa, ba) + 75-
manner: given dis_crete values of the corneal surfage;, 64), (d) Using C*(p4,84) as the new surface, compute
d=1,...,D, estimateP. the least-squares estimate of ag, &3, and calculate
Let model3 be a subset of1, ..., P} corresponding to the
model in (2) of order3. Unders3, we have 8" (pa,02) = za Z,(pa,64)
C= Z’ga’g + ¢,
and
whereZg is a matrix containing the firgt columns ofZ andag - ,
is a column vector containing the firStelements of. The pro- SSEp, 1, (8) = 5 > ( (p4,64) = C*(pa, Gd)) .
posed methodology is based on minimizing bootstrap estimates =0
of the prediction error [10]. (e) Repeat steps (b)—(d) a large number of times
Let us assume thai = P. Theopt|mal model is (eg 100) to obtain a total of B bootstrap statistics
SSED, 1, (B)1,-- - ,SSED 1, (8) B, and estimate the
Bo = max{ﬁ :1<B<Pag # 0}' bootstrap mean-square error
Letey, d = 1,..., D, be an independent and identically dis- Ip,1,(8) = ] ZSSE;} Lo (B

tributed random variable drawn with replacement from the em-

pmcal distribution of 5. Choose 3 for which f‘D,LD(ﬁ) is a minimum.

D
D 1
— | fa— = F d=1....,D
Lp <7d D d_17d> ’ ’ where
where C* = Zyas +¢*
r
Fa=Clpa,00) =S apZ,(pa, b with £* being a column vector containing elemeafs d =
¢ (puBa) pz::l vZp(pa-a) 1,...,D. The model order selected by the bootstrap, denoted

_ _ _ _ by fp.1,,, is then the minimizer of
with a,, p = 1,..., P, being elements ¢k in (4) is thedth

residual under the largest model= P, andLp is a scaling D 8
parameter. By multiplying the residuals by the fac{gD/Lp ~ I'p 1, (8) = E. 5 Z < (pa,Ba) — Z (P, 64 )
we increase the variability among the bootstrap observations to p=1
achieve consistency [10], i.e., 1
ez
lim Pr {/313 Lp = /30} . . .
D—oo over3 = 1,..., P, whereE, is the asymptotic expectation
provided thatLp is such thatlimp_.., Lp/D = 0 and conditioned on the measured data [9]. A detailed procedure for
limp_o Lp = 0. selecting the model order is given in Table I.
Let us define the bootstrap analogéof as The first step in the procedure is to choose an arbitrary large

. number of termg,,,.. and perform a fit of Zernike polynomials
aj = (Z}QZ@) Zz;C* to the surface data using a least-squares procedure. Next, we
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o Lo TABLE I
. : A EMPIRICAL PROBABILITY (IN PERCENT) OF SELECTING THE MODEL ORDER OF
THE SURFACEC'1 (p, 8) FORD = 144AND Lp = 12

8 |Tpr., AIC MDL HQ AlCc
5 1 99.7  68.3 96.3 51.1 74.3
6] 03 78 31 78 83
7
8
9

0.0 6.4 0.6 8.0 6.2
0.0 5.2 0.0 6.7 4.5
0.0 1.7 0.0 3.0 1.3
10 0.0 1.4 0.0 3.2 0.8
11 0.0 2.7 0.0 4.0 1.7
12 0.0 2.0 0.0 4.3 0.9
13 0.0 2.0 0.0 4.1 1.2
14 0.0 1.2 0.0 3.7 0.2
15 0.0 1.3 0.0 4.1 0.6
I'p,z,(8)—Bootstrap, AIG3)—Akaike in-
formation criterion, MDL(3)—minimum descrip-

tion length, HEB)—Hannan and Quinn criterion,
AIC ¢ (3)—corrected Akaike information criterion.

(@) (b)

Fig. 1. The model used in performance analysis: pure surlagdg, )
representing (a) Seidel's astigmatism and (b) surface and measurement noise
with a2 = 1.

TABLE Il
EMPIRICAL PROBABILITY (IN PERCENT) OF SELECTING THE MODEL ORDER OF
@) (b) THE SURFACE C2(p, 8) FORD = 144AND Lp = 12

Fig. 2. The models used in performance analysis: pure suage, ¢) 8 [ Tpri, AIC MDL HQ AICc
representing (a) coma and (b) surface and measurement noisewithl. - 99’2 655 9O7.2 53.3 734
8
9

0.8 103 23 100 9.0
0.0 6.3 0.4 7.2 6.4

calculate the residuals by subtracting the fitted surface from
0| 00 21 00 42 21

the original one. In the third step, we detrend and rescale the nl oo 49 01 63 31
residuals. After that, we perform a bootstrap order selection pro- 121 0.0 32 00 45 2.2
cedure (steps 4(a)—4(e)) for all orders starting from 1 and ending 134 00 28 00 56 15

. ) . ) 41 00 28 00 54 12
at Aax IN Which we obtain the bootstrap mean-square error as a 5l oo 21 00 46 11

function of the model order. The last step is to choose that model - ——
d hich ltsinth . b I'p,1,(8)—Bootstrap, AIG3)—Akaike in-
order which results in the minimum bootstrap mean-square error. formafion_ criterion, MDI(3)—minimum - descrip-
A Matlab code of the bootstrap procedure for calculating the tion length, HE@)—Hannan and Quinn criterion,
. . . AIC ¢ (3)—corrected Akaike information criterion.
optimal number of Zernike terms can be obtained at no cost by
contacting the authors.

bootstrap algorithm from Table | to estimate the model order
in each case. The maximum model order and the number of
bootstrap replications were chosen#g.,. = 15 andB = 200,

We now demonstrate the power of the proposed methodolagpectively.

IV. SIMULATION AND EXPERIMENTAL RESULTS

using the following surface models In Tables Il and I, we show the empirical probabilities of
1 1 selecting a particular model (evaluated over 1000 independent
Cu(p,0) = 5+ 524(p.6) + Z5(p, ) + € runs) together with the results obtained by using classical model
Ca(p,0) = Z:(p,0) + ¢ (5) selection techniques.

It should be noted that none of the methods underestimates
wherep € [0,1] andé € [0, 2n]. The first surface representsthe true model order. In the test we ran, it was clear that
Seidel's regular astigmatism while the second surface represehts proposed bootstrap-based technique performs very well.
horizontal coma. Over 1000 replications, the empirical probability that the

The measurement zero-mean and unit variance Gausgiagthod selects the true order was very close to one. The only
noise process was added to the surface. In most opticdtaditional technique that provided comparable performance to
applications this would correspond to a very high level of thiae bootstrap was the MDL. All other model order selection
measurement noise. It should be noted that the knowledgecateria tend to over-parameterization (i.e., over-estimated the
the distribution of the measurement noise is not necessary fiare model order).
the bootstrap algorithm. In Figs. 1 and 2, the model surfacesOne may argue that the choice bf, (in our caseLp =
are shown together with a realization of the measurement nois®) may be a problem in practical situations. We noted that for
added to each surface. For illustration purposes, the surfaaegery high noise levelo? > 10) this parameter needs to be
in (5) have been sampled at four rings corresponding to radinsreased as the variability of bootstrap residuals is already high.
p1 = 0.25,p2 = 0.5,p3 = 0.75, andp, = 1, and at 36 equally For more guidelines as to the choice of the paraméterin
spaced semimeridians leading to a sampleDof= 144 data linear regression the reader is referred to Shao [10].
points. Such sampling is equivalent to placido disk instrumentsin many videokeratoscopic applications, the level of the mea-
which also adopt the polar coordinates, though the sampglerement noise may not be known. The scaling paranigter
size in the latter is usually much larger. We then applied tloan be tuned in such applications in the following manner. First,
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Fig. 3. Corneal axial power for subject A (normal topography).
we obtain height data from a known surface, typically itisa pi s . — SibjectA
raboloid. The optimal number of Zernike terms for a parabolo
should be four. We then tune the paramdtgrin our procedure -
until we achieve the desired number of terms.

&

A. Fitting Zernike Polynomials to Corneal Elevation

In the following we provide an example of fitting Zernike €
polynomials to the corneal elevation data measured by aV|de4_.
eratoscope (Optikon Keratron). The Keratron data are in t2
format of 26 rings and 256 semimeridians. S b

First, we chose a subject with a normal cornea. From tI& \:
videokeratoscope data we select a certain portion of the cor g _e| “{
around the instrument axis, for example an 8-mm diamet L

:
|
]

Q(B), AICC(P)

i
|
1
!
i
1
S-or |
\
1
1
1

a ——————
3 t

The axial power corneal map for subject A from the Keratrg -1at
videokeratoscope is shown in Fig. 3. Axial power is a commc
form of videkeratoscope data presentation and is calculated - : y pos
finding a normal to the surface and intersecting this normal wi... Model order §
the instrument axis. The reciprocal of this distance multlplled 4. The results of the model order selection criteria for fitting Zernike
the refractive index minus one is the axial dioptric power. Subje&f’ynom,m to comeal elevation for subject A. The minimuri’of ;. (3)
A's axial power map shows a typical decrease in axial powsrdenoted by a dashed vertical line which also indicates the optimum number
toward the periphery of the cornea with only minor asymmetry.°f terms.
We ran the proposed bootstrap algorithm and the other in-
formation criteria to estimate the required number of Zernik€ss than 600. This is because the penalty part of each of the cri-
terms for the corneal elevation. The maximum model order afffion is too small compared to the logarithm of the residual vari-
the number of bootstrap replications were chosepifg. = ance.However, the bootstrap-based technique, in contrast to tra-
40 andB = 200, respectively. The scaling paramefgs was ditional methods, has the ability to select an optimal model order
estimated in this case to Hep = 0.05 . This has ensured thatmuch earlier by appropriately setting the scaling parameger
the bootstrap residuals have some variability because the Ief€inoted in Fig. 4, the optimal model-order for the subject Awas
of the measurement noise is quite small (less than 3 microndpundtobe 11, aresultthatis expected foranormal cornea, which
In Fig. 4, we show the results of the model order selection cif a prolate ellipsoid with small levels of aberrations.
teria for fitting Zernike polynomials to corneal elevation for sub- Next, we repeated the above procedure for several subjects
ject A. The minimum ofi'> 1., (3) is denoted by a dashed ver-Wwith different corneal aberrations, in particular:
tical line which also indicates the optimal number of terms. It 1) subject B who has a significant amount of astigmatism;
should be noted that all the classical model selection technique®) subject C who has a decentred corneal apex;
cannot find a minimum as long as the number of Zernike terms is 3) subject D who has keratoconus;
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Fig. 6. Corneal axial power for subject C (decentred corneal apex).

4) subject E who has undergone a poorly centred refractiiew-tie pattern of axial power. The astigmatism is modeled

surgery procedure. theoretically by the fifth and sixth Zernike terms.

Axial power maps of the corneas of these subjects, from theSubjects C and D (Figs. 6 and 7) show axial power maps
Keratron are shown Figs. 5-8. The corresponding numberwlfiich are characteristic of a decentred corneal apex. In the case
optimal Zernike terms was found to be 11, 14, 8, and 12, ref Subject D, this is caused by a degenerative thinning of the
spectively. As previously observed, the classical model selectioornea leading to a protrusion of the corneal surface in the in-
techniques could not find a minimum as long as the number fer-otemporal region (the condition called keratoconus).

Zernike terms was less than several hundred. The corneal topography of subject E's eye is unusual. The

The axial power map for subject B (Fig. 5) shows classicalibject underwent a poorly centred refractive surgery procedure
with-the-rule astigmatism, where the vertical meridian of th@aser in situ keratomileusis) which resulted in regions of very
cornea is steeper (higher axial power) than the horizontailv axial power in the superior cornea, compared to relatively
meridian. Corneal astigmatism gives rise to a characterissiteeper normal axial powers in the inferior cornea.
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Fig. 7. Corneal axial power for subject D (keratoconus).

Fig. 8. Corneal axial power for subject E (decentred laser in situ keratomileusis).

B. Discussion ness, however, and for the purpose of illustration we have used

It can be noticed that in both the normal and astigmatic corn84Ch @ bootstrap procedure to determine the best Zernike expan-
the number of optimal Zernike terms was found to be eleven. TIF@N model for each of the considered comeas. In Table IV, we
is consistentwith the common viewthatthe corneacan be apprdx! the sets of Zernike terms for each of the cormneas.
imated by a conic (elliptical) surface. For distorted corneas, theWe can see from the data in Table IV that as expected, when
number of optimal Zernike terms varies from subject to subjectthe shape of the cornea becomes more irregular, the total number

Having determined the optimal model ordéy, one can pro- of Zernike terms required for modeling the cornea becomes
ceed to determine the optimal model, that is the set of Zernikigher. For example, the normal cornea of subject A requires
terms, being a subset 47 (p,6),...,Zs,(p,6)}. To do so, onlyfive Zernike terms whereas the cornea of subject E requires
we can use a similar bootstrap procedure to the one describeteimterms. This result indicates that by using arbitrary number of
[13] and [14]. The computational intensity of such a proceduiernike terms, for example 15, leads in most cases to over-pa-
is quite significant, especially whe®), is large. For complete- rameterization of the model.
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20 T T T T T T T

=10

20

=210

=10

Corneal diameter [mm]

Fig. 9. The results of the model order selection criteria for fitting Zernike polynomials to corneal elevation as a function of pupil diameterctsrAsdlj The
y-axis 3, is the optimal model order for the corresponding corneal diameter.

TABLE IV Itis also interesting to see how the optimal number of Zernike
THE OPTIMAL SET OF ZERNIKE TERMS ASDETERMINED BY THE BOOTSTRAP  tarms varies with corneal diameter. This is particulary important
PROCEDURE FORSUBJECTSA—E AND FOR CORNEAL DIAMETER OF 8 mm. THE .. . .
TICK AND THE CROSSDENOTE A SIGNIFICANT AND AN INsiGNIFIcanT Termin - When determining the corneal aberrations at high and low levels
THE ZERNIKE POLYNOMIAL EXPANSION, RESPECTIVELY of light (i.e., corresponding to small and large pupil diameters).

In Fig. 9, we show the optimal number of Zernike terms, deter-

Zf;fice A B sutge“ p E mined by the bootstrap procedure, as a function of pupil diam-
7 7 v v v v eter for all considered subjects.
Z % v v ooV v Subject A and B show systematic change from 4 and 6
gi \\; \é 5 y :; Zernike terms (respectively) for a small corneal diameter to 11
Z M J  x J o x Zernike terms for a large one. This trend reflects the elliptical
Zs x v v x nature of normal corneas. However, for distorted corneas there
Z7 v v v v v is no clear trend in the optimal number of Zernike terms as the
2 z ‘){ "; 4 & diameter varies. For these subjects the interactions between
Zo % % % J optimal number of Zernike terms and corneal diameter is less
Zn Vv Vv Vv Vv predictable than in the case of regular corneas.
Zyg X v The proposed bootstrap methodology is computationally in-
gij i‘/ tensive. To calculate the optimal number of Zernike terms for
Total 5 3 9 g 10 the given videokeratoscope dat® = 256 x 26 = 6656),
MSE5 || 2.8¢7 7.le7 4.4de7 1.5e-6 4.4e6 takes about 10 min on a Pentium Il, 450-MHz computer, for
MSEg || 2.1e-6 1.1e6 2.7e-6 2.le-6 6.0e-6 Bmax = 40 andB = 200. This corresponds to approximately

40 Gigaflops. On the other hand, calculating the optimal order

It is known that using more terms in polynomial expansiogOk only 6.5 s (1.2 Megaflops) fab = 144, S = 15, and

will reduce the MSE. However, the amount of increase in error — 200.
induced by choosing less Zernike terms is of interest. We have
calculated the MSE based on fitting the first 15 Zernike terms,
MSE; 3, to the surface as well as the optimal number of terms, We have proposed a procedure for determining the model
MSEg (see Table 1V). It could be seen that reduction in the MS&der of Zernike polynomial expansion using the bootstrap.
is small and that the MSE is smaller than the instrument err@ihe method is based on minimizing bootstrap estimates of
which is often estimated at 1-5 micrometers. the mean-square prediction error. The method achieves a very

V. SUMMARY
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high probability of selecting the true model, irrespective of the{14] A. M. Zoubir and D. R. Iskander, “Bootstrap modeling of a class of

statistical distributions of the measurement noise, while the nonstationary signals,[EEE Trans. Signal Processingol. 48, pp.
o . . 399-408, Feb. 2000.

sample size is small. It outperforms the classical model selection

techniques such as the AIC, MDL, HQ, and AJCThe proposed

method was applied to estimate the number of Zernike terms

when fitting them to corneal elevations. However, it could be

easily adopted to perform the fit to other optical surfaces

wavefronts.
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