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Reaction-Diffusion Patterns on Growing Domains

The reaction-diffusion (Turing) mechanism is one of the simplest and most elegant the-
ories for biological pattern formation. The recent experimental realisation of Turing
patterns in chemical systems has fostered renewed interest in reaction-diffusion the-
ory, however, its relevance to many biological problems has been questioned because
of the perceived failure of the mechanism to generate patterns reliably. A recent paper
suggesting the involvement of reaction-diffusion in fish skin patterns has implicated
domain growth as an important mechanism controlling pattern selection. In this thesis
we present a systematic study of the effects of domain growth on reaction-diffusion
patterns, and discuss the implications for reliable pattern generation.

Starting from the postulate that tissue growth rates are locally determined, we derive
general evolution equations for reaction-diffusion on growing domains as a problem in
kinematics. We argue that the biologically plausible scenario is to consider domain
growth on a longer timescale than pattern formation. Then it is found that the solu-
tion goes through a sequence of recognisable (quasi-steady) patterns. Using symmetry
arguments relating different pattern modes we show that for uniform domain growth
the solution evolves by frequency-doubling, the regular splitting or insertion of peaks
in the pattern. For pattern formation in two spatial dimensions domain growth is
found to select rectangular lattices, rather than the hexagonal planform that is pre-
ferred on the fixed domain. For nonuniform growth the local tissue expansion rate
varies across the domain and splitting or insertion may be restricted to regions of the
domain where the growth is sufficiently fast.

The behaviour of solutions can be studied asymptotically and peak splitting and inser-
tion are shown to occur according to the form of the reaction nullclines. We highlight a
novel behaviour, frequency-tripling, where both mechanisms operate simultaneously,
which is realised when quadratic terms are absent from the reaction kinetics. Any
particular pattern in a sequence remains established until the domain is sufficiently
large that a transition to a higher pattern mode occurs. This presents a degree of scale
invariance. The pattern which persists finally is not strongly dependent on the final
domain size, and hence domain growth can provide a mechanism for reliable pattern

selection.
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A. Reaction Schemes: Chemical and Population Kinetics

In this appendix we briefly introduce the various reaction schemes used in this thesis.
Employing the notation introduced in Chapter 2, the nondimensionalised concentra-
tions are labelled u,v,... and written in order of decreasing diffusivity, so that for
two-species models u represents the inhibitor and v the activator.

A.1 The Schnakenberg System

Schnakenberg [119] introduced a kinetic scheme derived from a hypothetical autocat-

alytic set of chemicals involving a trimolecular step:
X=A, B-=Y, 2X+4+Y —3X. (A.1)

The quantities A and B are external reactants, assumed to be of constant concentra-
tion. Application of the law of mass action and definition of appropriate nondimen-
sional quantities (see Murray’s book [88]), with u(¢) and v(t) representing the variation

over time of the concentrations Y and X respectively, gives

du 2

—p— = A2
&b w? = flu) (A2)
i—: =a+w? —v=g(uv) (A.3)

where a and b are nondimensional parameters, and usually a is small (~ b/10).
The Schnakenberg kinetic scheme is of cross activator-inhibitor type (see Sec-
tion 2.2.3) and has a unique kinetic steady state, (us,vs), for which

f(us,vs) = g(us,vs) =0, (A.4)
given here by
b
s = ’ s — . A.
u @10 vs=a+b (A.5)

We can expand the kinetic functions in powers of u and v about this steady state,
writing @ = u — us and ¥ = v — vs, and then, dropping the over-bars,
f(u,v) = —v2u — 2uvsw — 2vuv — uv® (A.6)
g(u,v) = v2u+ (2usvs — 1) v + 20uv + uev? + uv? (A7)

showing the presence of quadratic as well as cubic terms for both f and g (see sec-
tion 5.2).
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152 A. REACTION SCHEMES: CHEMICAL AND POPULATION KINETICS

A.2 The Gray-Scott Model

The Gray-Scott [45] model,! a variant of the autocatalytic model of glycolysis proposed
by Sel’kov [122], considers the autocatalytic production of chemical B which decays
to form product P in the irreversible reactions

A+2B 3B, B—P. (A.8)

Here B is self-activating (autocatalytic) while A is a substrate for which higher con-
centrations increase the rate of its own removal. In a closed reactor, for which initial
concentrations of A and B are specified and no material is allowed to enter or leave
the reactor, eventually all of the reactants would be converted to product. However,
nonequilibrium conditions may be maintained by a constant feed of the reactant A and
removal of the product P. After nondimensionalisation, under these nonequilibrium
conditions, the (cross-) kinetics are given by

f(u,v) = F(1 — u) — uv? (A.9)
g(u,v) = —(F + k)v + uv? (A.10)
where u is the nondimensional concentration of the substrate (A) and v of the activator
(B). Here F is the (nondimensional) flow rate of substrate A into the reactor and k is

effectively the rate constant for decay of B to form the product P. By varying these
two parameters the kinetics may have a single (trivial) steady state

up=1, v, =0 (A.11)

known as the the red state, or may exhibit bistability when the discriminant A =
1 — 4(F + k)?/F > 0, giving two additional steady states arising in a saddle-node

bifurcation

1 F
szi(l—\/g)y Ub:m<

1 F
ui:§(1+\/Z), v,-:m@—x/ﬂ) (A.13)

where the intermediate state (u;,v;) is unstable and the blue state (up, vp) is stable.

1+VA) (A.12)

This model has been widely studied, both as the simplest chemically plausible
model which gives oscillations in the continuously stirred reactor and also in the con-
text of chemical pattern formation in reaction-diffusion equations. In the vicinity of
the bistable regime the Gray-Scott model has been studied in the context of self-

replicating phenomena, as is discussed in Chapter 2.

'Known by its originators as the cubic autocatalysis model
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A.3 Gierer-Meinhardt Kinetics

Gierer and Meinhardt proposed several kinetic models based on biologically plausible
arguments in their paper on biological pattern formation [41], including activator-
inhibitor (pure) and activator-substrate (cross) kinetic schemes. The scheme which
has come to be known in the literature as the Gierer-Meinhardt model?® considers
autocatalytic activation of A and self-inhibition of H

0A AP 0%A
5p = Pop + P g nA+ DA—B:L'2 (A.14)
OH AT o°H

where 0 < (p —1)/q < r/(s + 1), which is postulated to explain the regenerative
properties of hydra observed in various transplantation experiments. Here the authors
consider inhomogeneous distributed source terms p(z) and p'(z), usually taken to be
simple gradients across the solution domain. However, for constant parameters these
kinetics may admit the diffusion-driven instability. The standard values assumed for
the powers in the quotients are p = r = 2, ¢ = 1 and s = 0, and the nondimensionalised

kinetics may be written as

f(u,v) = 1v* — pu (A.16)
v2
g(u,v) = vy T 2V +94 (A.17)

where u is the inhibitor (or substrate) and v the activator.

A.4 A Three-Species Model Arising in Population Dynamics

White and Gilligan [131] propose a model for the population dynamics of a host-
parasite-hyperparasite system, to account for persistent spatio-temporal patterns in
population densities in a homogeneous environment. The population dynamics is
described by local interaction terms and diffusion is assumed to model the spatial
spread and dispersion of each species. (Diffusion is commonly used as a model for the
spatial spread of root systems and for the dispersal of spores.) In the field, patchiness
has been observed for timescales much longer than those one would associate with
stochastic heterogeneities (where eventually a uniform infestation of parasite would be
expected). Phenomena monitored experimentally include drifting disease ‘hot-spots’
and periodic occurrence of disease at a particular spatial location.

?Denoted in their paper as Activator-Inhibitor Model with Different Sources
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In dimensional form the local dynamics are governed for host (H), parasite (P)
and hyperparasite (Q) by the system

dH H

dP cP

o =PPH - e (A.19)
d@

— =[P — A2
T [P —dQ (A.20)

where the host plant H grows logistically and is removed by the parasite P at a
rate a per unit parasite and has conversion factor b per unit host. Predation of the
hyperparasite () on the parasite is a saturating function of parasite population, with
conversion at a rate [ per unit parasite, and the hyperparasite has a natural decay
rate d.

Nondimensionalising in the manner described in Chapter 2, we reorder the system
with decreasing diffusivity. In their paper White and Gilligan assume Dg > Dy > Dp,
i.e. the hyperparasite is fastest dispersing and the parasite is the slowest. Following the
authors we scale the population densities with their steady state values when k = oo,
namely (Q°, H®, P°), such that u = Q/Q%, v = H/H® and w = P/P and then
for dy = Dg/Dg and d, = Dp/Dg we have

1

U = ;um - (u—w) (A.21)
dy v

Vg = —Upp +V (1 — —> —vw (A.22)
y K

wy = d—ww + (v v Uu v ) (A.23)

where the rescaled variables § = d/r, k = k/Hs, u = cQs/r and B = bPs. Time is
nondimensionalised with the rate parameter r. Here, as elsewhere, v is the dimen-
sionless scaling parameter which uniformly transforms the one-dimensional solution
domain to the unit interval. Labelling the kinetic functions f, g and h we find that
for this model f = f(u,w), g = g(v,w) and h = h(u,v,w). Naturally, in general for
the interaction of three species each kinetic function may depend on u, v and w.



B. Some Results from Fluid Mechanics

The results we reproduce below may be found in many elementary texts on fluid me-
chanics (see, for example, Acheson [1] or Chorin and Marsden [16]) and are employed
in Chapter 3 to derive a reaction-diffusion-advection equation.

Firstly we recall the definition of the material derivative. If for some scalar quantity
of interest, G = G(x,t) = G(z1,z2,x3,t), then G/t is the rate of change of G at
constant x = (z1,z2,x3) and the material derivative, DG/Dt, is the rate of change of
G following a fluid element

d oG DG
&G(wl(t),wg(t),:cg,(t),t) 5 T2 VG = D’

with z1(t), z2(t), z3(t) changing with time due to a flow velocity field a(x,t).

(B.1)

B.1 Reynolds Transport Theorem

This theorem concerns the rate of change of volume integrals over the finite but time
varying fluid element V().

di G(x,t) dx:/

[% +GV - a] dx (B.2)
tJv() V(1)

where G(x,t) is any scalar or vector function, and V(¢) is a region of space occupied
by a finite deforming fluid element. The range of integration implies ‘following the
fluid’ as the fluid element V(¢) is moving with the flow. The theorem may be proved
by considering a change of variables to the Lagrangian description of the flow, in
which spatial position x, with respect to some Cartesian coordinates, is parameterised
by position at time ¢t = 0, X = (X1, X2, X3), giving x = x(X,¢). Then the range of
integration is no longer a function of time, and the differential operator can be brought

inside the integral as a rate of change following the flow, giving

d

g v G(x,t)dx; dze dzs =

G(X,t)J(X,t)dX;dX2dX3
dt V(0)

- / [ +GE] dX;1 dXp dXs (B.3)
v(0)

where J(X,t) is the Jacobian for the transformation

Oz1 Oz1 Oz1

0X1 0Xo 0X3

J = Oza Oz Oz
- 0X1 0Xo 0X3
Oz3 Oz3 Oz3

0X1 0Xo 0X3

and V(0) is the volume of the flowing fluid element at time ¢ = 0. The computation
of the derivative D.J/Dt is achieved using Euler’s identity
- . B.4
2 = (Y -a) (B.4)
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which is proved in the following section. This allows us to write
DG DJ DG

- | == . B.

T+ G [Dt +G(V a)]J (B.5)

which on substitution into equation (B.3) and transforming back into coordinates (x, t)
gives the transport theorem (B.2). Using the definition of the material derivative (B.1)

this may be written as

d
— G(x,t)dx = /
dt /V(t) (3, 1) dx V(t)

B.2 Euler’s Identity

oG
[E + V- aG] dx. (BG)

The material derivative of the Jacobian determinant J(X, t) may be reduced to a sim-
ple form by the following considerations. Starting from the definition of the material

derivative, we have

DJ (&7) B1)
Dt ot)’ '
We use the multilinearity of the determinant to write
621‘1 62:1)1 6211:1 8.’1)1 8:131 8(131 8:131 8z1 811
BJ o0t0X, 0tdXs Ot0X3 0X1 0Xo 0X3 0X1 0Xo 0X3
Yy dxa Oza Oza + 0%zy  0%zy  0%zs + Oza Oza Oza
6t - 0X1 0Xo 0X3 0t0X1 0tdXs 0t0Xs 0X1 0Xo 0X3
Ozz  Oz3  Ozs Ozg O3  Ozs ’x3  8°z3  0’x3
0X1 0Xo 0X3 0X1 0Xo 0X3 otdX, OtdXs OtdXs
80.1 8(11 8(11 8391 8:171 02}1 8:171 02}1 6:1)1
0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 00Xy 0X3
_ | O=z2 Oza Oza + Oaa day dag + Oza Oza Oza (B 8)
- 0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3 : :
Oz3 Oz3 Oz3 Oz3 Oz3 Oz3 das das das
0X1 0Xa 0X3 0X1 0Xa 0X3 0X1 0Xs 0X3

Now a; = a;(z1,z2,z3) and by the chain rule

0X; 0z10X;  Oz20X;  Oz30X;

Oa; Oa; Ox1 =~ Oa; Oy  Oa; Ox3 (B.9)

Hence we may write the first term of (B.8) as

Oz o0z oz Oza Oz Ozo Oz3 Oz3 Oz3

0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3

80'1 8:132 81‘2 6.’1:2 aa'l 8(1)2 6.’1}2 8:132 aa'l 8392 6:132 6m2
o 0X1 0Xo 0X3 o 0X1 0Xo 0X3 Oz 0X1 0Xo 0X3
1 Oz3 Oz3 Oz3 2 Oz3 Oz3 Oz3 3 Oz3 Oz3 Oz3

0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3
(B.10)
for which the second and third terms are identically zero as two rows of the determinant
are repeated. Similarly computing the other terms of (B.8) we find
DI _ (22
Dt \ ot
8(11 6&2 8(13
=—J+—J+—J
0zx1 + 0z + Ozxs
=(V-a)J (B.11)

which is Euler’s identity.
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