9. Spikes and Transition-Layers: Piece-wise Linear Models

Two mechanisms for transition between quasi-steady patterns in sequences generated
on the slowly growing domain are observed for the kinetic models in the literature
admitting DDI. In the previous chapter these mechanisms were illustrated with Sch-
nakenberg kinetics for activator peak splitting, shown in Figure 4.1(a), and by the
Gierer-Meinhardt model for peak insertion, see Figure 4.10(a). In this chapter we
seek to understand these properties of the equations and in particular establish what
determines the mode of transition for a particular choice of kinetic scheme. To these
ends we simplify the problem by introducing a piece-wise linear approximation to the
reaction-diffusion system.

In Chapter 4 it was shown that for slow domain growth the evolution of solutions to
the PDE separates into two distinct timescales. Here we make use of this separation of
scales and consider the parameterisation by - of quasi-steady patterns which evolve on
the slow timescale. In the limit as p tends to zero these patterns are well approximated
by the steady state patterns for the reaction-diffusion equation on the fixed domain.
Furthermore, for small d the spatial behaviour of the reaction-diffusion system is
separated into regions where the solution varies on two distinct spatial scales. It is
convenient to write d = €2 where ¢ < 1. Then in the limit ¢ — 0 the spatial variation
of solutions in the steady state is determined by the outer equations

Ugz = —f(u,v) (5.1)
0 = g(u,v) (5.2)

suggesting that the solution must lie on the nullcline for v, except in the vicinity of
large spatial gradients in v, where we expand the independent variable, £ = z/e, to
obtain the inner approximation

uge = 0 (5.3)
vee = —79(w,v). (5.4)

Our method is to exploit the ratio of diffusivities d as a small parameter in a
singular perturbation expansion in which we look for solutions in the limit as d tends
to zero. In particular we can find closed form approximate solutions of the system,
showing that the slow dynamics carry the system to a point, which can be calculated,
where a solution of a given mode ceases to exist and where reorganisation of the pattern
ensues on the fast timescale. From this analysis we also identify a novel behaviour,
frequency-tripling, which is characteristic of a symmetry in the kinetic equations.

The steady patterns arising from the Turing instability in reaction-diffusion equa-
tions may be grouped into two classes, according to the asymptotic behaviour as the

T
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ratio of diffusivities tends to zero. Spike patterns, such as those generated by the Sch-
nakenberg and Gierer-Meinhardt systems, consist of periodic peaks in the activator
profile for which the amplitude increases (and becomes unbounded) and the width
decreases as d is reduced to zero. Thus spike patterns approximate §-functions in the
limit. Transition-layer patterns develop discontinuous jumps between two activator
levels, becoming step-functions as d tends to zero. The difference between these two
pattern-types is determined by the manner in which the kinetics saturate the growth
of destabilising modes, in particular by the shape of the nullcline for the activator ki-
netics (see, for example, Kerner and Osipov [62]—we take a similar approach to theirs
below).

Reaction-diffusion models for spatial patchiness in population levels for predator-
prey interactions have been proposed by Segel and Jackson [121] and Levin and
Segel [73], in which the spatial distribution is generated by DDI. In many such ecolog-
ical settings it is desirable that the subdivision of the domain into regions of high and
low population density is maintained when the prey species is effectively stationary,
such as herbivore-plant interactions (herbivorous copepods, zooplankton, and grazing
phytoplankton [73]) or various host-parasite systems [121]. In this case the ratio of
prey to predator diffusivity is reduced to zero. Mimura and Murray [83] showed that
for these models the spatial extent of regions of high population tended to zero with
the ratio of diffusivities (the kinetics are spike-type), and proposed that a cubic form
is required for the nullclines for pattern which continues to subdivide the domain as d
is decreased.

Much of the theory of large amplitude patterns of transition-layer type was de-
veloped by Fife [39, 40]. Kerner and Osipov discuss these patterns and their stabil-
ity [62] and also discuss spike-type kinetics. Spike patterns, or point condensations,
are the subject of much current interest (see Ni [92] for a recent review). Doelman
and co-workers have used geometric singular perturbation theory to investigate the
existence [33] and stability [32] of spike patterns in the Gray-Scott model, also studied
by Muratov and Osipov [86]. Alternatively, Ward et al. [53, 54| consider the stability
of spike solutions to the Gierer-Meinhardt system and the motion of spike solutions

in two and three dimensions.

5.1 Transition-Layer Theory

Fife [38] showed the existence of large amplitude stationary solutions in a class of
coupled reaction-diffusion equations, characterised by narrow transition regions which
subdivide the domain into two phases (high and low activator concentrations), requir-
ing one component to diffuse much faster that the other. Fife’s discussion of these
solutions depends on global properties of the system, rather than on the local be-
haviour of the system close to a bifurcation point, as do Turing’s analysis and the
weakly nonlinear bifurcation analysis presented in Chapter 2. Large amplitude weak
solutions to the steady state problem may be constructed in the limiting case € = 0 by
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allowing a jump discontinuity in the solution, which for € # 0 is smoothed out to give
a continuously differentiable graph. In the singular limit solutions are deemed weak
as they admit a jump discontinuity. In comparison to a bifurcation-type approach,
here we are nowhere near a fixed point in phase space. In fact the conditions derived
for Turing bifurcation from a homogeneous state, described in Chapter 2, are not nec-
essary requirements. Large amplitude solutions may be formed where a sufficiently
strong perturbation from a stable fixed point in the phase space takes the solution to a
branch of stationary inhomogeneous solutions, so-called Turing branches, as discussed
for the bistable Gray-Scott model in section 2.5.3.

The argument we present below is based in part on a discussion in the book by
Grindrod [46], where a population model for ecological patchiness (predator-prey type
interaction with diffusion) is considered. Conway [18] has a fuller discussion (see also
Murray and Mimura [83]). In this chapter we use singular perturbation theory to
construct heterogeneous solutions, showing existence of large amplitude patterns for
a concrete example, and then examine the dependence of these solutions on 7. We
will not pursue the analytical study of stability of the solutions, but rather refer to
the arguments presented for transition-layer solutions by Fife [39] and also the work
of Kerner and Osipov [62].

Transition-layer patterns may form in systems for which the activator nullcline
takes a cubic form in the (u,v) phase plane, so that g(u,v) = 0 must have three
solutions v = k(u). The shape of the inhibitor nullcline f = 0 is not crucial for the
existence of large amplitude patterns as long as the kinetics are monostable (such that
the curves f = 0 and g = 0 intersect only at one point). We will discuss variations of
this nullcline later. The two essential ingredients are the specific form of the activator
nullcline and that the ratio of diffusivities is a small parameter. Below we illustrate
the basic idea and show how it helps understand splitting and insertion. In a follow-
ing section we pursue a specific example, where the analysis has been dramatically
simplified by assuming a piece-wise linear form for the kinetics.

We study the coupled reaction-diffusion system for two species

1
62
Ut = ;'Uzz + g(u, U) (56)

with zero flux boundary conditions
Ug =1y, =0 on z=0,1 (5.7)

where the nullcline ¢ = 0 has cubic form. The steady states of this equation are
equivalent to the quasi-steady patterns for the problem on a growing domain, given
by equations (4.9)—(4.10).
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First we consider the possibility of solutions when ¢ = 0. Consider the activator
kinetics

v = g(u,v), (5.8)

which has three stationary branches (the nullcline g(u,v) = 0) in the phase space, v =
k;(u) where ¢ = 1,2, 3. In order to have transitions between two phases (corresponding
to two branches of the nullcline) it must be the case that two of the branches, ¢ = 1
and 3, are stable with respect to the dynamical system (5.8), for which we require
gy < 0. Following our ordering of the species in decreasing diffusivity, for DDI we
must have g, > 0 (self-activation of v) at the fixed point of the kinetics, which for
consistency must lie on the unstable branch.! However, we note that the existence of
the large amplitude transition-layer patterns does not depend on this condition, and
below we discuss the implications of the kinetic steady state lying elsewhere. Simple
considerations on the gradient of the nullcline at the fixed point (branch ¢ = 2) dictate
that for pure kinetics the nullcline is a negative cubic in v while for cross kinetics the
nullcline has positive cubic form.

Firstly we consider the case of pure kinetics for which the nullcline is a negative
cubic function of v, and so kj is defined on u € [umin,00) while k2 is defined on
U € [Umin, Umaz] and k3 on u € (—00, Umaz|. Here Umin and Umq, are the values of u at
the turning points of the curve g(u,v) = 0 in the phase plane. From the phase plane
it is straightforward to show that there are no nontrivial solutions with v = k;(u)
satisfying both the conditions imposed at the boundaries. Next we consider solutions
which are continuous in u(z) and its derivative uz(x) but which allow a discontinuity
in v(z) at = z* € [0, 1] where u = u* € [Umin, Umaz| satisfying the reduced system

0 = ugz + vh(u) (5.9)
where
) = [ (u, k1(w)), u < u*
hw) { f(u, k3(uw)), u>u* (5.10)

and for a pure system f(u,ki(u)) < 0 and f(u,ks3(u)) > 0 (for cross kinetics the
signs are reversed). Assuming monostability, h(u) has no roots (f(u,k2(u)) = 0 at
u = us which is on branch ¢ = 2). We look for orbits of this equation in the phase
plane starting and finishing on u; = 0. A schematic of a typical phase plane for
equation (5.9) is shown in Figure 5.1. Here we construct a solution such that v = k1 (u)
for 0 <z < z* and v = k3(u) for z* < z < 1. Evidently we could reverse the polarity,
and jump from branch ¢ = 3 to branch ¢ = 1 as z increases, for which we would have

!'We note that the so-called ‘unstable’ branch (i = 2) is unstable w.r.t. equation (5.8), however, it is
consistent that the fixed point of the kinetics (us,vs) which lies on this branch is stable w.r.t. the
dynamical system u: = f(u,v), v« = g(u,v), as required in the definition of the Turing bifurcation
(and may be driven unstable by spatially heterogeneous perturbation for the full reaction-diffusion
equation).
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FIGURE 5.1 Schematics of (a) the phase plane for equation (5.9), the outer problem for
transition-layer patterns, and (b) the solution (bold) and the curve g(u,v) = 0, showing
the solution lying on the nullcline away from the jump in v at w = v* and the limiting
points corresponding to case (i) and for case (ii) (see text for details).

h(u) replacing h(u) in equation (5.9) where

) — f(u, ks(w), w<u*
h( )_{ flu, ki(w), u>u* (5.11)

Multiplying by u, and integrating along orbits from 0 to z, we have the first integral

s’ 47 H (u(a)) ~ Hu(0)] =0 (5.12)

where

u(z)
H(u(z)) = / h(w) dw (5.13)
0
so that from (5.12) with boundary conditions (5.7)
H(u(1)) = H(u(0)). (5.14)
We can find x from the so-called ‘time-map’
1 u(z) dw
V21 )\ [H (u(0)) — H(w)

x

(5.15)

where in particular for z = 1

2
1| e dw
T2 [/u(o) VH (u(0) - H(w)] (5:16)

and we see that  parameterises the orbits in the (u,u,) phase space. In fact it can

be shown for a class of kinetic functions of the form we consider here that the time-
map (5.16) is a monotonically decreasing function of (0). This is shown explicitly in a
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result by Smoller and Wasserman [124]. Hence we can treat vy and u(1) as functionals
of u(0).

There are three possibilities for the solution, depending on the precise form of the
kinetics:

1. If H(umin) < H(Umaz) then for every u(0) € [Umin,u*] there is a <y such that
u(l) € [u*, ug] exists satisfying (5.14), where H(u3) = H(umsn). This is the case
shown in Figure 5.1(a).

2. If H(umin) > H(Umaz) then for every u(0) € [u1,u*] there is a v such that u(1) €
[U*, Umaz] exists satisfying (5.14), where H(41) = H (Umaz)-

3. If we have the symmetric case, where H(Umin) = H (Umaz), then for every u(0) €
[min,u*] there is a 7 such that u(1) € [u*, umaez] exists satisfying (5.14).

In each case 7y is determined by the time-map (5.16). In fact there is an infinite set of
~ satisfying (5.16) for particular «(0) and u(1) corresponding to different numbers of
cycles of the orbit, which give solutions of different mode.

Put otherwise, for a given  one can find u(0) and u(1l) satisfying the time
map (5.16) along with equation (5.14) for a particular number of cycles, where valid
solutions have u(0),u(1) € [Umin, Umaz|- Thus v parameterises the quasi-steady solu-
tions. Now u(0) is a monotonically decreasing function of 7, and so as -y increases the
solution may evolve towards a critical point v = ¢ at which the solution can no longer
be constructed (the solution ceases to exist) and at which point reorganisation to a
different mode must occur. For case (i) the critical point will occur at u(0) = Umin,
shown in Figure 5.2(a), while for case (ii) the critical point is reached for u(0) = @
(when u(1) = Umaz), as in Figure 5.2(b) (see also Figure 5.1(b)). Both these condi-
tions are reached simultaneously for case (iii). This analysis is pursued below with a
concrete example.

For € # 0 these discontinuous solutions do not have sufficient smoothness to satisfy
the equations. We treat the equations as a singular perturbation problem and expand
about z* in the stretched variable £ = (z — z*)/e for which we have the inner problem
for U(§) and V (§) describing the transition-layer,

0=Ug + e f(U,V) (5.17)
0="Vee +79(U,V) (5.18)

and so as |{| = oo we must have U — v* and V; — 0 (and thus V' — k;(u*) for
i = 1,3). Therefore we consider the reduced system where we let ¢ — 0 and take

U = u* giving
0= Ve +v9(u", V) (5.19)
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FIGURE 5.2 Evolution towards critical points as 7y varies for solutions in the limit as
€ — 0. In (a) H(tmin) < H(Umaz) so that the solution can no longer be constructed as
u(0) decreases through w;,;, with increasing v (case (i)), and in (b) H(Umin) > H(Umaz)
for which the solution ceases to exist when increasing -y causes u(0) to decrease below 4,
when u(1) = Upqq (case (ii)). When H(wmin) = H(Umaqz) these points coincide (case

(iii)).

and we seek a heteroclinic orbit connecting V' = ki(u*) and V' = k3(u*). Multiplying
equation (5.19) by V¢ and integrating over —oo < £ < oo we have

k3(u*)
G(u*) E/k :(3 ; g(u,w)ydw=0 (5.20)
1lu

and from considerations of the sign of g in different regions of the phase space we have
for pure kinetics

G(umin) >0 and G(Umaz) <0 (5.21)
while, for g(u,v) a decreasing function of u,
dG
.22
du* <0 (5.22)

so that the integral equation uniquely defines u*, and hence x*. For cross kinetics the
inequalities in (5.21) are reversed and for g(u,v) an increasing function of u then u*
is similarly uniquely determined.

Formally this analysis is equivalent to the leading order calculation in a matched
asymptotic expansion. The leading order behaviour is sufficient to establish existence
and the basic properties of the large amplitude solutions, including the location of
the transition-layer (and dependence on +). Similarly, periodic patterns may be con-
structed on the real line. We have said nothing about evolution from initial data or,
other than of the outer problem, the stability of the solutions that we construct, and
we will generally appeal to the results of numerical simulations for this purpose. How-
ever, in the literature various studies have been made of the stability of transition-layer
problems. In a similar problem, Fife [39] considers a transition-layer as a travelling
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wavefront with zero velocity and shows that a large spatial gradient may evolve from
smooth initial data. Furthermore he shows that near the transition region (z = z*) a
perturbed wavefront may move back towards #* under certain conditions.

Next we examine a specific and much simplified model and then investigate the
mechanisms for transitions between patterns at the critical points identified above,

determining how splitting and insertion are initiated.

5.2 Cubic Autocatalysis Model for Transition-Layer Patterns

Various schemes have been proposed in the literature as models of biochemical re-
actions with the prerequisites for the Turing bifurcation in a reaction-diffusion sys-
tem. We consider reaction schemes of polynomial type, and seek to understand the
influence of the nonlinearities on transitions between patterns on growing domains.
Ermentrout [37] considered the role of quadratic and cubic nonlinearities in reaction
terms in the generation of spotted and striped patterns on the two-dimensional do-
main. Following this example, we will consider the influence of cubic and quadratic
nonlinearities in the transitions between patterns. It is informative to expand the ki-
netic function about the steady state so that the order of different terms is established.

For concentration vector ¢ = ¢ — ¢s = (¢1,C2, . - - , ) the transformed kinetics are
R(c) = R(c +c;) = Ac + N (c) (5.23)
= Ac + Ns(c,¢) + N3(c,c,c) + ... (5.24)

and we will assume that R can be expanded in this way. We note, however, that
we no longer expect everywhere positive solutions for ¢, and the physically significant
quantities ¢ are recovered by the addition of the steady state concentrations c;. In this
form the linearised equation contains simply the Jacobian .4, which should satisfy the
conditions for Turing bifurcation, and the nonlinearities N5 and N3 are respectively
quadratic and cubic combinations of the ¢;. Hereinafter for notational convenience
we drop the over-bars, remembering that solutions may be negative legitimately. We
will restrict discussion to include quadratic and cubic nonlinearities only, as these
are the highest order terms associated with kinetics such as the Schnakenberg [119],
glycolysis [122, 4] and Gray-Scott [45] models. The system may be further simplified by
supposing that the nonlinear terms are in v and appear only in the activator equation
(in g(u,v)). Then considerations in the phase plane on the orientation of the nullcline
curve dictate that the cubic term in the kinetics must be negative (for both pure and
cross kinetics). Below it is shown numerically that this kinetic model can give rise to
Turing bifurcation to finite amplitude pattern, and that a sequence of patterns may
form on the growing domain as normal. We will consider reaction terms which consist
solely of odd powers of the dependent variables such that the reaction-diffusion system

is invariant under the parity transformation

(u,v) = (—u, —v) (5.25)
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and investigate the effect on pattern formation of quadratic perturbations which break
the symmetry.

We can choose the linear part of the reaction term to admit the Turing bifurcation
(although this is not required for the existence of large amplitude patterns of the
form we have described) and specify the relative polarities of the spatial profiles for
activator and inhibitor species according to the signs of the entries in the matrix A.
Initially we choose a pure kinetic system, in which the Fourier modes destabilising the
spatially homogeneous state are spatially in phase for the activator and inhibitor. The
nonlinear kinetics are given by f and g where

f(u,v) = —ou+wv (5.26)
g(u,v) = —u + pv + 6v* — v* (5.27)

where the positive constants ¢ and p are such that the linearised system,

—0o 1
e oo

satisfies the conditions for DDI. The effect of quadratic terms on the behaviour of a
system which is predominantly cubic is examined by introducing a small quadratic
contribution, |§| < 1. In chemically oriented discussions of cubic autocatalysis the
cubic term is usually given by wv?. This form generates the same qualitative be-
haviour, while begin less easily studied analytically, and so to examine the role of the
nonlinearities we proceed with the cubic in v.

In practice, even with this simple form, the nonlinearities in the equations are
such that construction of the transition-layer solutions is a nontrivial exercise. The
inner equations are easily integrated, but the k;(u) are the roots of a cubic and for the
outer equations a simple closed form solution cannot be found. However, the essential
features of the kinetic system are well approximated by a piece-wise linear version of

the reaction term.

5.2.1 Piece-wise Linear Approximation. The use of a piece-wise linear approxi-
mation to a nonlinear function is a means of rendering a nonlinear system analytically
tractable (see for example Rinzel and Keller [117] and Lane et al. [68]). We introduce
a piece-wise linear scheme which retains the qualitative features of the nullclines of
the nonlinear system (5.26)—(5.27), defined so that for § = 0 the turning points in the
v-nullcline coincide with those for the full nonlinear problem. If we insist that the
steady state of the kinetics is at the origin (so that the linearised system is simply
the linear part of the kinetics) then it is desirable that the nullcline be continuous
here. Therefore we approximate the nullcline by three linear regions. We will consider
the effect of introducing a non-zero quadratic contribution by removing the symmetry
of the nullcline, as will be shown in detail later. In general the gradient of the null-
cline can be different in each of the linear regions, but to preserve the symmetry we
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take equal gradients modulo their sign. For a pure kinetic system (5.26)—(5.27) the

piece-wise linear reaction term is

f(u,v) = —ou+wv (5.29)
g1 —u —n(v+ 26y), v < —0

g(u,v) =¢; =% g2 =< —u-+nv, -6 <v<0s (5.30)
g3 —u —n(v — 263), v > 03

where ¢ = 1,2, 3 define the three branches of the v-nullcline, dividing (u, v) space into
3 regions at the turning points where v = —f#; and v = 03 respectively, where 6; and
03 are positive constants. We will use subscripts to refer to these three regions. The
piece-wise linear kinetics are such that the reaction term is continuous at v = —6#; and
v = 03 for all u, and exhibit a unique fixed point (at the origin) for no < 1. In order
that the turning points for the v-nullcline with § = 0 are at the same locations as for
the nonlinear kinetics, we modify one of the parameters in the linearised equations,
defining the positive constant
2p
=5
This does not qualitatively change the behaviour of the equations. Furthermore, we

(5.31)

approximate the turning points for § # 0 by

1
0173 = g (\/3#4—(52 ¢5) (532)

which takes the appropriate values for v but not, therefore, for u.
We have chosen parameters such that the Turing bifurcation is still admitted in
the linearised system with

—].’I’]

Activator solutions on the slow uniformly growing domain for the full nonlinear ki-

A = l o 1 ] . (5.33)

netics (5.26)—(5.27) and for the piece-wise linear scheme (5.29)—(5.30) are compared
in Figure 5.3. All three possible sequence types are illustrated: frequency-doubling
by peak splitting in (a) and (b) and by peak insertion for (e) and (f), while (c) and
(d) show frequency-tripling, where peak splitting and insertion occur simultaneously.
The frequency-doubling sequences are recovered by the addition of small quadratic-like
perturbations to the kinetics, the sign of which determines the method of transition be-
tween quasi-steady patterns. In these cases the parity symmetry is broken by moving
one turning point for the v-nullcline relative to the other, according to equation (5.32).
In each case the nonlinear and piece-wise linear kinetics are shown to give qualitatively
similar results.
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FIGURE 5.3 Comparison of activator pattern sequences generated with nonlinear kinet-
ics (5.26)—(5.27), shown in the left-hand figures, and piece-wise linear kinetics (5.29-5.30),
shown on the right-hand, with ¢ = 1.0 and ¢ = 0.8 (so that n = 2x/3 = 0.533). For
(a) and (b) § = —0.01 giving frequency-doubling by peak splitting, while for (e) and (f)
d = 0.01 and the sequence is generated by peak insertion. For (c) and (d) 6 = 0 (the
nonlinearities are cubic) and the sequence generated exhibits frequency-tripling.
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FIGURE 5.4 Nullclines for piece-wise linear kinetics (5.34)—(5.35). Superimposed is
the v-nullcline for the nonlinear cubic autocatalysis system (5.27) (dashed line), with

dotted line).

o =1.0and = 0.8 (n=0.533). In (a) we plot the symmetric case (§ = 0) and in (b)

we introduce a quadratic perturbation (§ = 0.2) (the symmetric case is shown by the

Nullclines for this system, given by

f(u7 1)) =0,

g(u7 U) = Oa

nonlinear system (5.27).

are plotted in Figure 5.4, where we have superimposed the v-nullcline for the full

1
U= —0 (5.34)
—n(v + 2641), v < —b6
u=4q 1, —0; <v <63 (5.35)
—77(” - 203)7

v > 03

The piece-wise linear reaction-diffusion system may, naturally, be solved exactly

in each of the three regions of the reaction term, and the undetermined constants

eliminated by matching solution segments together appropriately. However, such an
undertaking is algebraically challenging, sufficiently so to obscure the insights to be

gained from the approximation. Indeed we quickly find that the solution cannot be

expressed in closed form. Therefore we pursue an asymptotic approximation where
we will consider only the leading order terms in an expansion in €.

5.3 Matched Asymptotic Analysis for the Piece-wise Linear System

Initially we will consider a solution with a single transition-layer on the domain (cor-
responding to a pattern of lowest mode) at

z=2x"€[0,1].

(5.36)
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From our discussion of pattern symmetries in Chapter 2 we recognise this as the basic
building block for steady state patterns of higher mode. Away from the transition-
layer itself, solutions lie on the nullcline g = 0 in regions ¢ = 1 and 7 = 3, the former
corresponding to v < 0 and the latter to v > 0. Therefore we take v = ki(u) near
z = 0, so that h(u) is defined as in section 5.1, and the transition-layer is a step
increase in v (corresponding to a pattern of negative polarity). Formally we assume

an expansion in powers of €

u(z,€) ~ Z dul)(z), v(z,€) ~ Z dvl)(z). (5.37)
§=0 =0

For the leading order problem we will drop the superscripts. Substituting the ex-
pansions into the steady state equations and collecting leading order terms we recover
equation (5.9), which determines the variation of u across the domain, where for region
1,

Uge — VA2 = 29601,  ug(0) =0 (5.38)
with solution
260,
u1(z) = a1 cosh (A /yz) — 2 (5.39)

where

= Josl
A= a—i—n. (5.40)

Similarly in region ¢ = 3 of the phase plane

ug(z) = azgcosh (A\\/y (1 —z)) + 2)\7023

which satisfies the zero flux condition at x = 1. These equations also determine the

(5.41)

activator profiles in the outer regime through the relations v;(z) = k;(u;(z)),

200

vi(x) = —% cosh (A\/yzx) — S¢E (5.42)

2003
A2
Taking as the inner variable £ = (z — z*) /¢, the solution, (U, V), in the vicinity of

v3(z) = —% cosh( A\ (1—1z)) + (5.43)

the transition-layer is written as a power series in €
§=0 §=0

(again, in the leading order calculation we will omit the superscript). The leading
order term in U is determined by equation (5.3). Linear dependence on ¢ will not
match with the outer solution, as calculated above, and so in the inner region we
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assume

U=u". (5.45)

This constant is determined by the integral (5.20) which we can evaluate easily enough,
giving

o = %n (05— 61). (5.46)

Thus we find that the value of u in the transition-layer does not depend on 7.
Construction of the inner solution for V is complicated by the fact that we must
piece together solutions for regions ¢ = 1,2 and 3, requiring continuity of the solution

where the kinetics change abruptly for V = —60; at a spatial location we denote as 19
and again where V' = 63, at the point £23. In region i = 1, for which g = g1 (u*, V), we
have
Vi — 1V = 2y (361 +0s) (5.47)
and we take the solution which decays as £ - —o0
Vi(€) = by exp (A7) — 5 (301 +0s). (5.48)
Similarly in region 3 we find
Va(€) = by exp (/7€) + 5 (61 + 365) (5.49)
which decays as £ — co. In region i = 2 the leading order term in V satisfies
Vee +ynV = %vn (03 — 61) (5.50)
for which
Va(€) = by sin (y7E + ) + % (65— 01). (5.51)
For continuity we require
Vi(&12) = Va(612) = —61 (5.52)
V2(€23) = V3(€23) = 63 (5.53)
Vil (€12) = Vol (€12),  [Val, (62s) = [Val, (62) (5.54)

and we seek to determine the six unknowns b;, for ¢ = 1,2, 3, £12, £23 and 8. However,
solving these equations we find
1 s 1 T
§12 = —— (—— - 5) , o Cz=— (— - 5) (5.55)
AR Vn \4
so that the intersection locations are known up to undetermined phase 5. This means
that in the leading order calculation we cannot determine the points &2 and &a3 within
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the transition-layer.? However, for 3 ~ O(1) this introduces only O(e) error in the
location of the transition layer x = x*. Taking f = 0, which is reasonable in particular
for #; = 03 where the transition is symmetrical about £ = 0, we find on substituting
U=vu*

Va(€) = 5 (61 + B0)exp | VAT + | — 5 (361 +64) (5.56)
Vale) = = (61 + 6a)sin [y ] + 5 (6 — ) (557)
V3(§) = —% (61 + 63) exp [—\/v_ng + ﬂ + % (61 + 3653) (5.58)

and the inner solution is determined up to the unknown position z*, which may vary
with ~.

To find the constants a1 and a3 we match the leading order inner and outer solu-
tions. Writing the outer solution for w in the inner variable, x = e¢£ + z*, and letting
€ — 0 we find

1 20

a1(z*) = O] (u + A;) (5.59)
o 1 . 204

as3(e”) = cosh (A\/7 (1 —z*)) <u a 7) (5:60)

and matching in v follows automatically. Thus we obtain composite solutions, noting
explicitly the dependence on v (and hence dimensional domain length)

260,

u(z) ~ ai1(y)cosh (A\/yz) — 2 0<z<z*(y) (5.61)
~ ag(y)cosh (A\/7(1—z)) + 2)%3, z*(y) <z <1 (5.62)
and
(@) ~ —‘“7(77) cosh (\/7e)
+%(91+03)exp [%4-\/%(:6_:2*(7))] —2(;31, 0 <z <za(y)

(5.63)

a17(7’)’) cosh (A/yz)

+ (61 + 63) l% sin [\/'W (ﬂ)] + 1] — 2‘;#, z12(7) <z < z*()
(5.64)

2We could simplify the analysis somewhat, at the expense of introducing an error in the inner region
which may not be O(e), by neglecting the inner solution in region 2 completely and matching solutions
in regions 1 and 3. Then continuity at £ = 0 determines the constants b1 and bs.
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~ —a?’fj) cosh (Ay/7(1 — z))

+ (61 + 63) l\}i sin [\/% (W)] - 1] + 2%203, 2" () < @ < w23(7)

(5.65)

~ —a?’?(:) cosh (A\\/A(1 — z))
—%(01+03)exp E—\/w_n(w_f*(”)] +2i203’ wos(7) <z <1
(5.66)

where the points x12 and za3 correspond to the locations at which the kinetic term
changes between regions 1 and 2, and 2 and 3 respectively, and are given by

€T () *() ET
Wk $23Y—$)|l,—-

The final condition required to determine the location of the transition-layer comes

z12(y) = 2*(7) - (5.67)

from integrating equation (5.9). As u(z) is continuous across the domain

1
/ h(w)dz = 0 (5.68)
0
obtains for h(u) defined as in equation (5.10). Evaluating to leading order gives
a1 sinh (A\/7z*) = —agsinh (A\/7y (1 — z*)) (5.69)

which states, consistently, that the gradient of v is continuous across the transition-
layer. Eliminating constants a; and ag using (5.59) and (5.60) we have for z*(7)
61 tanh(A\/yz*) = O3 tanh(\/~(1 — z*)) (5.70)
where we have defined
— 291 1 203
QlEv-i-u*, 93Ev—

which are independent of 4. Clearly for the symmetric case, ; = 63, * = 1/2 and

u* (5.71)

the transition-layer does not move with v (and hence changing domain length). For
the general case we solve by writing * = (In z)/2\,/7 and expanding (5.70) to obtain
the quadratic in z

(él + 9_3) 22 + (9_1 — §3) (exp (2)\ﬁ) — 1) Z — exp (2)\ﬁ) (0_1 + ég) =0 (572)

for which we take the positive solution z4 (7). In order that z*(v) € [0,1] we must
have 1 < zy () < exp (2A/7), for which we require

03 — 01 <1

- _ 5.73
Os+601| ( )
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FIGURE 5.5 Numerical solution (solid) and asymptotic approximation (dashed) for
piece-wise linear kinetics with o = 1.0, p = 0.8 (n = 0.533) and § = 0 (the symmetric
case) on the fixed domain. Activator solutions have larger amplitude than inhibitor
solutions (both are shown). Figures (a) and (b) have e = 0.1 while (¢) and (d) have
€ = 0.05. For the left-hand figures v = 2.0; for the right-hand plots v = 6.0. The
analytical approximation improves as € is decreased.

and this inequality holds always for 61,603 > 0 along with the condition for monosta-
bility, no < 1. Also, it follows that when 63 > 61, z* > 1/2, and similarly the reverse
is also true.

This completes the construction of the solution to the steady state problem. In
Figures 5.5 and 5.6 we plot steady state numerical solutions of equations (5.5)—
(5.6) with piece-wise linear kinetics (5.29)-(5.30) and the analytical solutions given in
equations (5.61)—(5.66). For the analytical solutions the location of the transition-layer
x*(7y) is calculated as above, and we compare the solutions for two values of the small
parameter €. In Figure 5.5 we take § = 0 such that §; = 63 and the location of the
transition-layer is shown to be independent of 7, while comparing left- to right-hand
plots we see that the transition becomes narrower (and increasingly steep) for larger
~v. When é > 0 then 63 > 6; and the transition-layer moves to the right for increasing
values of «, as shown in Figure 5.6. These figures suggest that the analytical solution
that we have constructed converges to the true solution as € is decreased. In Figure 5.7
we plot the L? error for each of these § and v parameter combinations.

Using the symmetry argument for steady state solutions, presented in Chapter 2,
patterns of higher spatial mode may be constructed by piecing together sections corre-
sponding to the lowest mode pattern, appropriately reflected and scaled. Alternatively
we can interpret this result to identify each half-wavelength section of a pattern of
higher mode (with zero flux boundaries) with the lowest mode pattern (with + scaled
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FIGURE 5.6 Numerical solution (solid) and asymptotic approximation (dashed) for
piece-wise linear kinetics with 6 = 0.2 and other details as for Figure 5.5. In (a) and (b)
we have € = 0.1 while for (c) and (d) € = 0.05. For the left-hand figures v = 2.0; for the
right-hand plots v = 5.0.

appropriately). This may also be understood by considering the time-map (5.16) where
patterns of higher mode correspond to multiple circuits of the orbit in the (u, u;) plane
for the lowest-mode pattern, so that a solution consisting of m circuits of the same
orbit exists when 7 is scaled by a factor m?2. Thus for the time-independent problem
each half-wavelength section will vary with « in the same manner. For slow uniform
domain growth, the evolving PDE solution in the quasi-steady regime remains in the
vicinity of these steady state solutions. Thus we may seek to understand the behaviour
of higher pattern modes when <y increases with time by considering only the simplest
pattern on the domain.

5.4 Transitions Between Patterns on the Growing Domain

We have constructed an approximate solution to the time-independent problem which
is valid for « less than a critical value, v¢, which we calculate below. For 7 greater
than this value the steady solution of lowest pattern mode no longer exists. On the
slowly growing domain, p small, this analytical solution approximates the quasi-steady
pattern and is valid up to the point at which a pattern of higher spatial frequency
is established for the PDE. The limiting feature for the construction of the analyti-
cal solution, as <y increases through the critical value, determines the mechanisms of
breakdown for the full reaction-diffusion system. Furthermore, once the critical value
e
breakdown for higher modes m through the scaling by the factor m2.

is established for the lowest mode, the symmetry analysis tells us the values for
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FIGURE 5.7 L2 error, E(e), for the analytical expressions for the activator solution v
compared to numerical solutions with v = 2.0, § = 0.0 (solid), v = 5.0, § = 0.0 (dotted),
v =2.0, 5§ = 0.2 (dashed) and v = 5.0, § = 0.2 (dot-dashed). Before calculating E(e) it
was verified that the numerical solutions were in the steady state.

5.4.1 Peak Splitting and Insertion. In the steady state the outer solution is con-
strained to lie on the v-nullcline. For slow uniform domain growth the quasi-steady
solution evolves until this condition can no longer be satisfied. As < increases the
solutions are limited by the turning points of the v-nullcline,

Umin = —No1, Umaz = N03. (5.74)

For the lowest pattern mode u(z) is monotonically increasing and the maximum and
minimum occur at the domain boundaries. As < is increased, one of these boundary
values increases through one of the turning points. Activator peak splitting or peak
insertion ensues, according to which of the points Umin O Umas 1S reached first. In
the symmetric case, where 1 = 03, both points are reached for the same value of
~ and simultaneous splitting and insertion follows, as demonstrated in the numerical
simulations shown in Figures 5.3(c) and 5.3(d), described as frequency-tripling. For
particular parameter sets we can use the values of u at the boundaries to predict
the critical v at which the transition between pattern modes occurs, and by which
mechanism.

At the domain boundaries, from equations (5.61)—(5.62) we have u(0) and u(1) as
functions of v

u(0) = a1(y) — 2)%1, u(1l) = a3(y) + 2)%3 (5.75)
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Now if u(0) = wmin at v = 7§ then substituting for a;(7) in the first of (5.75) we find

. _ 20,
Aﬁ$ ('Y) = cosh 1 lm] = ¢1 (576)

where ¢; is independent of . Substituting this into equation (5.72) with z = 2z; =
exp 2¢1, after some algebra we find

o [ 1, (B +85)22 — (6 —b5)z \]”
= [ (G280 o

Similarly, substituting into the second equation of (5.75),

* - >\2é3
)\ﬁm (’7) = cosh 1 lm] = ¢3 (578)

where ¢3 is independent of v, and we find that u(1) = wmqer at ¥ = 7§ where

1 (01 +03)23 + (0 — 03)z\ ]
22 In ( (51 + 9_3) + (51 — 53)Z3 )] (5'79)

for z3 = exp 2¢3. From the discussion of the time-map (5.16) in section 5.1, if v is a

C

V3 =

monotonically decreasing function of u(0) (see Figure 5.2),

du_(O) <0, (5.80)
dy

then the quasi-steady approximation breaks down as u(0) decreases through umin
where the solution branch disappears. Then locally g < 0 and so from equation (5.8),
which determines the dynamics in the outer part of the solution, we have v; < 0 (in the
fast timescale). For u below wpn, branch 3 of the nullcline g = 0 is attracting for this
dynamical system and the v-solution relaxes to this branch on the fast timescale, giving
a sudden growth of activator at the boundary (where there had been a minimum in the
solution profile). This is pattern transition via insertion of a new activator peak (see
the dashed arrow (i) in Figure 5.1(b)). By a similar argument on the time-map (5.16),
v may be shown to be an monotonic increasing function of u(1) (see [124]) so that

du(1) >0 (5.81)
dy

and the solution ceases to exist if u(1) increases through wmq, before um;y, is reached.
Here g > 0 and v; > 0 and so the v-solution relaxes to branch 1 of the nullcline on
the fast timescale giving a sudden collapse at the activator peak, producing pattern
change by activator peak splitting (see the dashed arrow (ii) in Figure 5.1(b)). When
the boundary values pass through these critical points at the same value of v, due to

the symmetry of the kinetics, both splitting and insertion occur simultaneously.
These critical points are functions of the kinetic parameters and in particular 6
and 3. In Figure 5.8 we plot the analytical predictions as functions of §, such that 6;
and 03 vary according to equation (5.32), where 6; < 03 for 6 > 0 and correspondingly



5.4. TRANSITIONS BETWEEN PATTERNS 97

8 75
\ |
1
\ & |
\
75F \ 4
\ m \\ *
N s
V+
T \\ VHA 7 \4
\UX [ +A 6.5 T+
\ A l
o N ® +
6.5F 4 x N + [N g \\ +
v + A [
> v x + o > 6 \®
x + \
6 S +
\
+
x N + ssl \ .
x ~ + N
550 ~ o 4 e + 4 +
~ + +
~ . N + + ®
~ N _ A
~ N _
T~a 5F @ -
5 N ] ® -
45 . . . I 45 . . . .
-0.2 -0.1 0 0.1 0.2 0 0.2 0.4 0.6 0.8 1
3 [
(a) (b)

FIGURE 5.8 Figures showing the analytical prediction of critical v for pattern transi-
tions by peak splitting, 75, (dotted) and insertion, {, (dashed) given in equations (5.79)
and (5.77) respectively, as functions of §. Other kinetic parameters are as in Figure 5.5.
In (a) points for splitting (marked x) and insertion (+) and simultaneous splitting and
insertion (marked ) are shown for numerical solutions with piece-wise linear kinetics on
the growing domain with p = 0.0001. The darts indicate points for transitions in the
full nonlinear system via splitting (marked V) and insertion (A) (with both marks for
simultaneous splitting and insertion). For both sets of data we have ¢ = 0.1. In (b)
we plot points for the onset of activator peak insertion for numerical solutions with the
piece-wise linear scheme for € = 0.1 (x) and € = 0.05 (circled symbols), showing conver-
gence to the analytical predictions as € — 0. There is an inherent error introduced in
judging when the onset of the transition occurs for the numerical simulations. However,
for small p the onset is very sudden, and we have taken a sufficiently small timestep for
the numerical integration that ¢ can be identified to within +0.05.

we have insertion for § > 0 (dashed line) and activator peak splitting for § < 0
(dotted line). Both curves, 7{(5) and v§(8), extend on either side of § = 0 and we
expect to observe the behaviour which occurs at lower 7.2 In Figure 5.8(a) we plot
points for splitting and insertion obtained from numerical simulations for both piece-
wise linear kinetics (crosses) and for the full nonlinear system (darts) on the slowly
growing domain, showing qualitatively similar behaviour for small §. Previously, in
Figure 5.3, it was shown that the evolution of pattern sequences on the growing domain
is similar for the nonlinear scheme and its piece-wise linear approximation, and this
is reinforced here in the transition behaviour at the critical v, from which we infer
that the piece-wise linear approximation is a reasonable one. In Figure 5.8(b) we plot
points obtained from numerical simulations for the onset of activator peak insertion for
the piece-wise linear scheme for two values of €, showing that the numerically derived
values approach the analytical prediction as € is decreased. For the growing domain

3In fact the curves do not extend very far on opposite sides of § = 0 as the curves tend to their
asymptotes where the denominators in equations (5.77) and (5.79) go to zero.
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we expect that there is also a contribution to the error from the rate of slow domain
growth, and that as € is decreased the numerical ¢ for onset of the transition will
approach the analytically predicted value as p — 0.

5.4.2 Spatial Frequency-Tripling. We have described a new phenomenon, spatial
frequency-tripling, which is realised on the slowly growing domain when the reaction-
diffusion equation is symmetric under the transformation (u,v) — (—u, —v).* We have
shown previously that steady state solutions with three times the spatial frequency may
be constructed from lower-mode solutions of the time-independent problem. However,
it is also useful to show that the symmetry argument in the full PDE system, outlined
in section 4.2.1 for spatial frequency-doubling, also accommodates this sequence. It
is straightforward to show that the full reaction-diffusion equation (4.22) is invariant
under the transformation (z,v) — (p3(x),~y/9) where the map

1— 3z, 0<z<i
p3(z) =<¢ 3z —1, 1<a<? (5.82)
3(1 —z), 2<z<1

corresponds to frequency-tripling, and the factor of /9 for the transformation corre-
sponds to the dimensional domain length changing by a factor of three. The same ar-
guments may then be applied as previously, such that if the solution ¢(z, 9v*) matches
the construction at three times the spatial frequency, g3(z,v*) = c(ps(x),v*), for
some 7y = * (rather than matching a construction with twice the spatial frequency at
4~*) then the frequency-tripling sequence should ensue, subject to the same proviso

concerning stability, which again we must conjecture from numerical results.

5.5 Discussion

Considering a piece-wise linear model of reaction and diffusion generating patterns of
transition-layer type, we have been able to determine the method of pattern reorgan-
isation on the growing domain and predict the onset of transitions by considering the
existence of solutions to the associated steady-state problem. Thus far we have not
considered the stability of these solutions (see the work of Kerner et al. for a lengthy
discussion [62]). The heterogeneous solutions which we have constructed disappear
when still at large amplitude (rather than with amplitude decaying to zero as v in-
creases through a bifurcation point of the homogeneous steady state). Furthermore,
numerical simulations for the growing domain problem have shown that the quasi-
steady solutions are stable as v increases up to the value, v¢, where the steady state
solution branch ceases to exist, at which point transitions to higher pattern mode
take place. This suggests that the branch of steady state heterogeneous solutions that

Tt is interesting to note that the symmetry required for frequency-tripling is the same as that required
for preferential selection of stripes over spots in two-dimensional pattern formation in reaction-diffusion
systems [37, 74].
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we have constructed is stable up to a point where the solution branch disappears in
a saddle-node bifurcation, and that there is no earlier exchange of stability with a
secondary bifurcating branch of solutions or otherwise. Thus from the construction
of solutions to the steady state problem and the numerical simulations we are able to
deduce features of the bifurcation structure of the underlying reaction-diffusion equa-
tion. Furthermore, in Chapter 4 we extended the symmetry argument to the full PDE
system (rather than considering only the time-independent problem) and so we expect
the same stability properties for solutions of higher pattern mode.

The bifurcation structure elaborated here explains the hysteretic behaviour re-
ported in the previous chapter. On increasing « the transition between solution
branches occurs at the saddle-node point. However, on decreasing v there is no rea-
son why the reverse transition should take place at this same value of v which does
not correspond to a bifurcation point of the higher mode solution, or indeed that the
downward transition should find the original primary bifurcation branch.

We have computed the critical values ¢ for the transition from lowest mode. The
critical value of v for any higher mode m is then determined from the symmetry
analysis to be m24°. The analytical expressions that we have constructed are approx-
imations to the lowest-mode pattern with negative polarity. Our arguments might
just as easily be based on patterns of positive polarity, where the outer part of the
lowest-mode solution would be determined by equation (5.9) with h(u) given by the
expression (5.11). Similarly, we have chosen a pure kinetic scheme such that solutions
for activator and inhibitor are in phase, but could equally have chosen cross kinetics
for the cubic autocatalysis model by swapping the signs of the two off-diagonal ele-
ments of the matrix A given in (5.28). The construction of solutions to the piece-wise
linear problem in the limit of small d and the analyses for pattern transitions on the
growing domain would follow with only minor modifications in this case.

For the kinetic scheme we have considered, heterogeneous solutions bifurcate from
the homogeneous steady state as patterns of initially infinitesimal amplitude in a super-
critical bifurcation. This was not required for the analysis. Transition-layer solutions
with different behaviour on the growing domain can be generated by relaxing the con-
dition that the kinetics admit the Turing bifurcation. In this case we no longer require
the fixed point of the kinetics to lie on the middle (unstable) branch of the nullcline.
When the kinetic steady state falls on one of the stable branches, either by chang-
ing g or shifting the u-nullcline (f = 0), sufficiently large amplitude perturbations of
the homogeneous solution (now locally stable to small amplitude perturbation) are
required to produce large amplitude patterns, which can be constructed in the limit
as we have described. However, if the extremal point of the solution on the v-nullcline
(at the domain boundary) reaches the fixed point then it will remain at this point,
also fixing the value at the other boundary, even as v increases with domain growth.
Then pattern transition at either of the turning points is precluded and the pattern
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mode will remain unchanged on the growing domain (although the transition-layer
region may move and will get progressively narrower on the unit interval).

Many of the models in the literature for biological pattern formation, including the
Schnakenberg and Gierer-Meinhardt models discussed in previous chapters, generate
spike-type patterns. Some analysis has already been carried out on spike solutions
to reaction-diffusion equations, where the form of the nullclines and accordingly the
asymptotic structure is different and somewhat less transparent than for the transition-
layer phenomena. In the following sections we consider some of the asymptotic prop-
erties of spike solutions, in particular the dependence of solutions on .

5.6 Analysis of Spike Patterns

Large amplitude patterns also exist as solutions in systems where the activator nullcline
has only one stable branch. Such patterns are characterised by the behaviour of the
width and height of the activator peak as € — 0 where, in contrast to transition-layer
patterns, the activator peak amplitude varies as some negative power of € and the peak
width is decreasing as € tends to zero. In this section we consider the Schnakenberg
kinetic scheme as a paradigm for spike patterns, and therefore we study kinetics of
cross-type. However, similar results may be obtained for pure systems (for example
the Gray-Scott model, see Doelman et al. [33]). Also we will consider a single activator
peak located within the domain, rather than simply the transition from low to high
concentration, as for the previous case.

Initially we consider the construction of solutions (existence) in the general setting.
The outer (5.1)—(5.2) and inner (5.3)—(5.4) scalings follow as before. For the case e = 0
then as before the activator v is governed by

vy = g(u,v) (5.83)

where the nullcline g(u,v) = 0 has two branches; v = k;(u) for ¢ = 1,2, where only
branch ¢ = 1 is stable (in comparison with the transition-layer problem there is no
stable branch v = k3(u)). For cross kinetics, to generate spike solutions® we require
that ki(u) is defined for u € (—00, Umaz] and ka(u) is defined for u € (00, Umqz]. In
fact for the Schnakenberg system (and many others) ka(u) is defined on u € [Uoo, Umaz)
where, as v — 00, u tends to the asymptote u — o, but this will not be important for
existence arguments. Furthermore, under the conditions required for the kinetics to
admit the Turing bifurcation, the kinetic steady state (us,vs) must lie on the unstable
branch 7 = 2. As for transition-layer patterns, the outer solution lies on the stable
part of the v-nullcline g(u,v) = 0, here branch ¢ = 1. The outer solution is governed
by

0 = ugg +vf(u, k1 (u)) (5.84)

Srather than inverted spikes, or gullies, see later discussion.
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FIGURE 5.9 Schematic of the phase plane for the (a) outer and (b) inner problems for
spikes with cross kinetics. In (a) the centralised peak corresponds to the trajectory A
to B and then at v = u* a jump to D, returning to A where u = u(0) at A (= u(1))
for symmetric steady solutions. Increasing 7 corresponds to larger orbits such that u(0)
is increasing with v (for pure schemes the figure is effectively reflected in © = 0 and
then u(0) is decreasing with +). The jump from B to D represents a discontinuity in u,
which corresponds to an excursion in the inner variable, shown in (b), where spikes are
homoclinic orbits in (v, v).

which is valid away from the location of the spike, x = z*, where u = u*. The

phase plane for equation (5.84) is shown schematically in Figure 5.9(a). The func-
tion f(u, ki (v)) has no roots and, for cross kinetics, is everywhere positive so that
trajectories in the (u,u;) resemble the form shown in the figure.

In the limit € — 0 there is a discontinuity in u, across the spike (where u is
continuous). Multiplying equation (5.84) by u, and integrating we have

o = £/2y(H(u(0)) — H (u)) (5.85)
where H(u) is defined, equivalently to equation (5.13), by
H(u) = /0 " fw, by (w)) dw (5.86)

and u(0) is the inhibitor concentration at the left-hand boundary, where u, = 0. Given
that f(u,k1(u)) > 0 (and is a monotonically decreasing function of u), H(u) is positive
and monotonically increasing and for real values of u, we must have u(0) > u(z)
everywhere on the domain (and similarly for u(1)) so that v is maximised at the
boundaries. Hence |u,| increases away from the boundaries and is greatest at the
spike, where v = u*. Thus u; takes opposite signs on either side of the peak and the
jump in the gradient across the spike is

Auy = 2¢/29(H(u(0)) — H (u*)) (5.87)
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and hence u, is discontinuous.
For ¢ # 0 we require a connecting trajectory to smooth out the discontinuity,
which is found by expanding in the inner variable £ = x /¢, giving

0="Vee+79(u",V) (5.88)

which has two fixed points, a saddle point at (V, V) = (k1(u*),0) where g, < 0 and a
centre at (ka(u*),0) where g, > 0. The centre is preserved for the nonlinear problem
due to the symmetry about V¢ = 0. We seek a solution which for periodic patterns
takes us from, and returns us to, the vicinity of the point (u*,k; (u*)), which is an
orbit in the (V,V¢) phaseplane homoclinic to the saddle at V' = k;(u*). The phase
plane for the inner problem is shown schematically in Figure 5.9(b).

In this way, by matching solutions for the inner and outer problems, we can show
the existence of large amplitude solutions in the form of spikes in the activator con-
centration. Next we construct such solutions for the Schnakenberg problem. The
time-independent reaction-diffusion problem with Schnakenberg kinetics, where the
kinetic parameter a is small, is given by

0 =gy +7 (b u0?) (5.89)
0= €vap +7 <6ﬂd + uv? — v) (5.90)

where 8 > 0. It is convenient to consider single spike solutions on the interval [—1, 1],
with zero flux conditions at the boundaries. The symmetry of the time-independent
problem, as discussed in Chapter 2, and in particular the symmetry of these equations
under z — —x suggests that we look for a spike centred at z* = 0.7 Half-peak solutions
follow immediately by considering the interval [0, 1].

Taking a regular series expansion for the outer region in variable x

u(z,€) = i ¢ u) (z), v(z,€) = i o) (z) (5.91)
j=0 j=0
to leading order we have

ul, = b (5.92)
0 =ul(@w%)?% - " (5.93)

with zero flux boundaries, which is solved to obtain
v’ =0 (5.94)
u®(z) = b <|a:| — ;:1:2> +c (5.95)

5The analysis follows with only minor modifications for a ~ O(1).

"Determination of the location of the transition-layer was found to be nontrivial, and is equivalent to
finding the width of the activator peak. For spike patterns the width of the peak tends to zero with
¢, and the location is assumed from symmetry arguments, thus no further assumptions are made here
than were employed for the transition-layer problem.
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where ¢ is a constant.?
Expanding about the peak by introducing the inner variable £ = z/¢ (for * = 0),
the inner region is governed by

0=Ug + ey (b—UV?) (5.96)
0="Vee +7(fa+UV-V) (5.97)

and again seeking a regular expansion
U e =Y U (€, V(o= V(g (5.98)

3=0 j=0
we find to leading order

Uk =0 (5.99)
Ve =y(V0-U"(V9)?). (5.100)

Given that we do not want U° to blow up as U ~ 1/¢ away from the spike, we choose
U? to be constant,

U0 = u, (5.101)
which may depend on . Solving equation (5.100) for V° we find
3 i
0(¢) = =~ sech® (—) 102
VE(€) 5 5¢C 5 (5.102)

which is in the form of a spike, homoclinic to (V,V) = (0,0) for £ € [—o0,00].
Matching inner to outer solutions is automatic for v and for u we find ¢ = u* so that
the leading order composite solutions are

1

u(z) ~ u* + b <|:c| - 53:2) (5.103)
3 9 (T fy)

o(z) ~ 5 sech ( ). (5.104)

Previously, for the transition-layer problem, we have evaluated the constant in-
hibitor concentration, u*, for the inner solution with the integral condition (5.20),
G(u*) = 0, which requires that the gradient Vg tends to zero away from the inner
region. However, we have effectively used this condition in the integration of equa-
tion (5.100), from which we deduce the form of the spike (5.102). For activator spike
amplitude vy then the integral is

G(u*) = /Ovpk g (u*,w) dw = 0. (5.105)

8Therefore we have du(z)/dy > 0 everywhere on the domain, and particularly at the boundaries, and
hence u(0) is an increasing function of v here.
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FIGURE 5.10 The relationship between activator amplitude vy, and inhibitor con-
centration u* in spikes for Schnakenberg kinetics. The solid line shows the analytical
expression (5.106) and the crosses show values obtained from numerical simulations for
different values of €, with € decreasing from right to left.

Evaluating the integral (for small a) we recover simply
o 3
Pk — 2u*

which is consistent with our composite solutions. We plot this relation in Figure 5.10,

(5.106)

along with data obtained from numerical simulations for different values of €, showing
close agreement to the analytical curve. However, thus far we have assumed uniform
expansions for the dependent variables which, from this figure, are not O(1) in the
inner region. This suggests that we rescale the equations to find variables which are
O(1) before taking the expansion in e. The following scaling of the equations is similar
to one used in a recent paper by Doelman et al. [33] who consider the spike solutions
in the Gray-Scott model.

We consider general scalings for the various terms in the inner equations, writing
u=¢€*0, and v=c¢€¢ "0 (5.107)

where «,r > 0. The time independent activator equation (5.4) becomes
0 =g+ (¢Pa+ @ Map? — 5) . (5.108)

To obtain solution in the form of a homoclinic orbit of the saddle point we must have
balance between the final two terms (otherwise the equation is linear and certainly
will not admit such a solution). Thus we require o = r, and we seek an inner solution
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(U (€),V(€)) for the equations

0= Uge + 207y (e — UV2) (5.109)
0="Tie+7 (cPa+0V2-V). (5.110)

For 0 < a < 1 we have €2(1=9) is small and the equations decouple (giving distinguished
subsystems describing inner and outer regimes). For o > 1, then from (5.109) we must
have U = 0 for which there is no homoclinic solution for V. If, however, o = 1 then
we recover a coupled second order ODE system for the inner region, so that in the
asymptotic limit the problem does not simplify in the manner described above.

If we assume that 0 < @ < 1, then expanding in powers of (1=

g, =3 = 00 (), V(=3 i PO (g) (5.111)
3=0 j=0

we recover the same leading order problem as was solved above, for which U0 is
constant, as in (5.101), and V0 is given by (5.102). Matching to the leading order
expressions for the outer problem, the composite solutions are

1
u(z) ~ €*ug + vb <|a:| — 2a:2> (5.112)

_a 3 xﬁ)
~ e h? (2 11
v(z) ~ € 23 sec ( o (5.113)

showing the scaling of the spike width and amplitude with e.

From this analysis we are not able to evaluate the parameter o, which determines
the scaling with €. In fact for Schnakenberg kinetics numerical simulations suggest
that the correct scaling in the inner region is a = 1, the situation in which there is no
simplification of the time-independent equations. Nevertheless, we can compare the
form of our approximate analytical solutions to the results of numerical simulations
by taking the numerical value of v,;, and calculating u* accordingly. In Figure 5.11 we
compare the analytical expressions (5.112) and (5.113) to numerical solutions for two
values of e. From these figures and from the part of the composite solutions on the
unit interval [0, 1] we may recover a mode m = 1 (half-peak) approximation. However,
it is apparent that the composite solution is not uniformly valid in this case, as the
zero-flux boundary condition for the inhibitor u is not satisfied at x = 0, where the
half-spike is located, as the gradient in the inhibitor u, is discontinuous (and hence
ill-defined) here. It is for this reason that we chose to construct a centralised spike on
[—1,1]. For € # 0 the discontinuity in u, is removed and the boundary condition can
be satisfied, so that the half-peak is a valid solution of the steady state problem.

5.6.1 Splitting and Insertion. The mechanism described previously for transi-
tions between quasi-steady patterns under slow uniform domain growth is sufficient
to explain transitions via peak insertion for spike patterns, demonstrated for Gierer-
Meinhardt kinetics in Figure 4.10(a). Here u(0) (the boundary value of w) increases
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(a) (b)

FIGURE 5.11 Numerical solution (solid) and asymptotic approximation (5.103)—(5.104)
(dotted) for spike solutions with Schnakenberg kinetics for two values of e. We plot
steady state solutions with v = 4.0 and (a) € ~ 0.0316 (d = 0.001) while in (b) ¢ = 0.01
(d = 0.0001). Note the different scales on the u and v axes.

with + until reaching umq, at the critical value of 7. At this point v locally increases
rapidly, giving a pattern transition on the fast timescale by activator peak insertion.
Similarly, spike systems with pure kinetics for which the v-nullcline has a stable branch
v = k1(u) € [Umin,o0) and an unstable branch v = ka(u) € [tumin, 00) undergo activa-
tor peak insertion when u(0), now decreasing with ~y, reaches iy, beyond which the
solution ceases to exist.

However, our numerical simulations have shown that spike-type patterns may
demonstrate both peak insertion and peak splitting on the growing domain. Spike
splitting is realised for Schnakenberg kinetics, shown in Figure 4.1(a). For transition-
layer patterns the mechanisms for splitting and insertion are essentially equivalent.
From the differences in the nullclines and, correspondingly, in the asymptotic be-
haviour of spike and transition-layer solutions, it is evident that an explanation of
spike splitting must take a different form. This is due to the fact that spikes are
homoclinic orbits in the (v,v;) plane, and do not connect two distinct branches of
the v-nullcline, as do transition-layers. However, a similar explanation in terms of
the existence of solutions as < increases might be expected. In fact, plotting spike
solutions in the (u,v) plane one notices that the approximation of constant u in the
spike region becomes less and less reasonable as v increases. This suggests that the
essential features responsible for spike splitting may not be captured in the leading
order expansion. Various other authors have sought to understand spike splitting, fol-
lowing the observation of splitting phenomena in the Gray-Scott model, as discussed in
Chapter 2. Doelman et al. [33] study two-pulse solutions to the Gray-Scott model and
consider existence and stability results for pairs of pulses on the unbounded domain.
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They identify the region of parameter space in which one-pulse solutions cease to exist
and show numerically that the self-replication process may occur in the vicinity of the
boundary of the stable one-pulse region. Further, they find that a pair of pulses will
separate with decreasing velocity, and evolve towards one of the stable multi-peak so-
lutions which act as attractors during the self-replication process. Reynolds et al. [116]
consider the splitting of moving pulses in terms of the balances of flux into the spike
region. However, at present we know of no transparent explanation of the splitting of
static spikes.

5.6.2 Pattern Sequences in the Gierer-Meinhardt Model. In the previous
chapter we noted that the kinetic model proposed by Gierer and Meinhardt, equa-
tions (4.29)—(4.30) (see Appendix A.3), can give a singular solution behaviour on the
growing domain, where transition between pattern modes appears to be precluded,
by setting the constant term in the activator kinetics, §, to zero. For non-zero val-
ues, pattern sequences are formed as usual, via activator peak insertion. These two
behaviours are illustrated in Figure 4.10.
For non-zero § the v-nullcline is given by

Vo2

(5.114)

uz,uzv—(s

where v and p9 are positive constants. Thus we have the standard arrangement in the
phase plane for pure kinetics with stable u = k;j(v) and unstable u = ka(v) branches
defined on u € [Upmin, 00), Where Uy, is the minimum value of (5.114). Insertion of new
peaks in the activator concentration profile occurs when u(0), decreasing as -y increases
(for pure kinetics) reaches this minimum value. However, when § is identically zero,
the v-nullcline becomes

v=0 (5.115)
u=ky(v) = 2o (5.116)
M2

where the former is the stable branch. Therefore, in the limit ¢ — 0, the outer part of
the solution lies on v = 0 in the phase space, and as v increases u(0) decreases towards
u(0) = 0. However, in the fast timescale, u(z,t) is governed by the equation
U = %um +110% — (5.117)
where v; and pq are positive constants. In the outer regime v is exponentially small
(and for € = 0 then v = 0). For zero flux conditions u is a minimum at the boundary
and so the second spatial derivative near the boundary is positive. Therefore the time
derivative at the boundary is bounded from below by
du(0)
dt

= —p1 u(0) (5.118)
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and for finite time u(0) is bounded away from zero. Thus the quasi-steady solutions
never obtain the minimum value for u for any finite value of v and the critical point
for insertion is never reached. For any non-zero § then the minimum point moves away
from u = 0 and we recover insertion as 7y increases through its critical value.

The somewhat surprising implication of this result is that the initial pattern mode
established from random initial data must persist with slowly increasing v. We have
identified the critical point in 7 as the point at which the solution ceases to exist
and hence infer that for § = 0 the solution branch exists for all . Furthermore, for
different choices of initial domain length and initial data, any pattern mode may be
established initially and so this result holds for all pattern modes (this is also evident
from the scaling of different solution branches with 7 as discussed in Chapter 2).
Finally, we have performed numerical simulations in which we added small amplitude
random noise to the solution at each integration timestep and found that the pattern
appears to remain stable with increasing . This singular property of the solutions
when § = 0 may be important as several authors (see for example Ni [92]) ignore the
constant terms when investigating the behaviour of solutions to the Gierer-Meinhardt

equations.

5.6.3 Piece-wise Linear Spikes. The necessary ingredients for spike solutions pre-
sented at the start of this section suggest that spikes should be possible in a piece-wise
linear kinetic scheme with the requisite features of the nullclines. To this end we in-
vestigate solutions of the piece-wise linear scheme introduced in section 5.2 when the
gradient of activator nullcline in region ¢ = 3 is varied.

To expedite comparison to the cross-kinetic Schnakenberg system, we study piece-
wise linear kinetics of cross-type

f(u,v) = —ou—w (5.119)
g1 u—n(v+ 2604), v < —61

gu,v)=gi=1{ g2 =1 u+n, —0; <v <63 (5.120)
g3 u— ¢n(v — 03) +nbs, v > 03

where we have introduced the parameter ¢ which will be varied to change the gradient
of the second stable branch of the v-nullcline, shown in Figure 5.12(a) for various
choices of ¢. The corresponding steady state numerical solutions for the half-peak
located at the right-hand boundary are shown in Figure 5.12(b). As ¢ is changed
from positive to zero and then to negative values, such that there are two and then
only one stable branches, the asymptotic behaviour of the solutions changes from
transition-layer to spike type, as expected.

The natural transition behaviour for this system on growing domains is to undergo
transitions by insertion of new activator peaks, shown in Figure 5.13(a), resembling
the pattern sequence in the Gierer-Meinhardt model. However, if 03 is also allowed to
vary, the splitting of peaks may be recovered for the piece-wise linear problem when 63
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(2) (b)

FIGURE 5.12 Spike solutions in the piece-wise linear model (5.119)—(5.120): evolution
from transition-layers to spikes as the second stable branch is removed. We use cross
kinetics with o = 1.0, y = 0.8 (so that n = 2u/3 =~ 0.533) and 61,3 = £+/1/3. The
nullclines are shown in (a) for (i) ¢ = 1.0 (dashed line, as previously studied), (ii)
¢ = 0.5, (ili) # = 0.1, (iv) ¢ = 0 where the branch is no longer stable and (v) ¢ = —0.1.
The corresponding steady state solution profiles for the activator v are plotted in (b)
with d = 0.01 and = 1.0, showing the transition to spike-type solutions as ¢ decreases
through zero.

is reduced towards zero, illustrated in Figure 5.13(b). Further analysis of these pattern
sequences has not been carried out, however, the simplification in the analysis of the
equations engendered by the introduction of the piece-wise linear approximation may
yield an understanding of the peak splitting phenomenon in spike solutions.

We have only considered the case when the homoclinic orbit in the (v,v,) plane
produces a spike increasing in v. If, however, the v-nullcline is the other way up in the
phase space, so that for cross kinetics the unstable, v = k1(u), and stable, v = ka(u),
branches are defined for u € [wmin,0), then inverted spikes or gullies are formed.
Similarly, this is the case for pure kinetics where the two branches of the v-nullcline
are defined on u € (—00,Umqz]- The results of a numerical simulation for such a
kinetic scheme are shown in Figure 5.13(c), where for slow domain growth the solution
undergoes splitting of the plateaus of high activator concentration (or, equivalently,
insertion of new gullies). Similarly, it should be possible to vary the nullclines such
that the gullies split as the domain grows (and new activator plateaus are inserted).
We do not know of any nonlinear kinetic schemes proposed in the literature which
generate these types of patterns, however, this behaviour is generic to the class of
reaction terms with nullclines of the form that we have described.

5.6.4 Discussion. The investigation of spike solutions has raised several interesting
questions. Firstly, during the construction of spike solutions to the Schnakenberg
model in the asymptotic limit ¢ — 0 we found that the formal expansion was only
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FIGURE 5.13

241/3 ~ 0.533). We take ¢ = —0.01

w/3 while in (b) 3 = 61/10. In (c) the parameters are as for (a)

0, =

but we have transformed the kinetics under (u,v) — (—u, —v).

model (5.119)—(5.120) with o = 1.0 and p = 0.8 (n

and (a) 63
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valid for 0 < a < 1. This parameter cannot be found analytically, however, numer-
ical simulations suggest @ ~ 1. Despite this apparent contradiction, the analytical
solutions give a good approximation to numerical simulations (see Figure 5.11). Sec-
ondly, although insertion of activator peaks (and the failure to do so when § = 0) in
the Gierer-Meinhardt model can be well understood, the analysis that we have pre-
sented does not give an explanation for spike splitting, as realised for Schnakenberg
kinetics. Furthermore, numerical simulations suggest that the leading order inner ap-
proximation, where u is constant, is not sufficient to understand the phenomenon.
The piece-wise linear model that we have described may prove useful as a simplified
system in which to explore this behaviour.
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