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Abstract

Non-invasive electrical imaging of the heart aims to quantitatively reconstruct information about the

electrical activity of the heart from multiple thoracic ECG signals. The computational framework

required to produce such electrical images of the heart from non-invasive torso surface signals

is presented. It is shown reliable electrical images of the heart can be obtained under a controlled

environment. This has been demonstrated using an anatomically realistic boundary element porcine

torso model.

The procedures required to create a subject specific model using a small number of control

points and to create a specific heart model from three-dimensional ultrasound images using a linear

fitting procedure are presented. From discrete ECG electrodes a continuous representation of the

potential field over the entire torso surface can also be produced using this linear fitting procedure.

The construction of the transfer matrices for the two predominant electrocardiographic sources

(epicardial potentials and myocardial activation times) are described in detail. The transfer matrices

are used to compute activation times within the heart and epicardial potentials on the heart surface.

Myocardial activation times are computed using an algorithm based on the Critical Point Theorem

while epicardial potentials are computed using standard Tikhonov and Truncated SVD spatially

regularised methods as well as Greensite’s spatial and temporal regularisation method. The regu-

larisation parameters for the epicardial potentials are determined using a variety of methods (e.g.,

CRESO criterion, L-curve, zero-crossing).

The potential and activation based formulations are compared in a comprehensive inverse sim-

ulation study. To try and capture the dynamic and variable nature of cardiac electrical activity,

the study is performed with three different types of cardiac sources with a realistic porcine model.

These simulations investigate the effect on the computed solutions of individual and combinations

of modelling errors. These errors include corruption in the torso surface signals, changes in material

properties and geometric distortion.

In general, the activation based formulation is preferred over the epicardial potential formula-

tions, with Greensite’s method found to be the best method for reconstructing epicardial potentials.

Under optimal conditions, the activation approach could reconstruct the activation times to within

4 ms RMS. Both potential and activation based formulations were found to be relatively insensitive

to changes in material properties such as lung conductivities and activation function shapes. When
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examining individual errors, the geometry and positions of the torso and heart had the greatest ef-

fects on the inverse solutions. The relative heart position needed to be determined to within5mm to

obtain results within2 ms of the solutions obtained under control conditions. When the modelling

errors are combined to produce errors which can be expected in a clinical or experimental situation

the activation based solutions were consistently more accurate than potential based solutions.

The next necessary step in this project is the detailed validation of the results againstin-vivo

data. This step is necessary before such algorithms can be reliably used to aid in the assessment of

heart function in a clinical environment.
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Notation

� Mathematical variables represented by bold lower case symbols are vector quantities (e.g.,

x) and bold upper case symbols refer to tensor quantities (e.g.,X).

� Einstein summation is used, where repeated indices imply summation over the individual

components. For example a vector dot product may be written as

aibi = a � b =
NX
i=1

aibi

whereN is the length of the vector.

� An inner product of two column vectors is denoted byh ; i.
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1 Introduction
& Historical Overview

Since the first electrocardiogram was recorded by Waller (1887), clinicians have been trying to de-

duce the electrical activity within the heart by examining recorded potentials on the body surface.

Cardiovascular diseases accounted for30% of all deaths in 1999 (World Health Organisation 2000),

therefore, the ability to accurately diagnose abnormal cardiac conditions using non-invasive mea-

surements would be highly beneficial both as a clinical aid and as a mass screening tool. This

effectively involves obtaining an accurate electrical image of the heart from electrical information

obtained from electrodes located on the torso surface.

By placing two electrodes anywhere on the torso surface, the potential difference between them

provides an indication of the electrical activity of the heart and can be displayed as an electrocar-

diogram (ECG). The electrical currents within the heart, which control its mechanical motion, are

reflected on the body surface and produce electrical potentials which vary continuously through-

out the cardiac cycle. By placing more electrodes on the torso, different ‘views’ of the electrical

activity of the heart can be obtained and by examining this information, cardiac function can be

inferred.

The standard 12-lead ECG is now an essential tool for the clinical diagnosis and monitoring of

irregular heart conditions. It is estimated that 100 million standard 12-lead ECGs are recorded

annually in the United States (Geselowitz 1989). By examining the amplitudes and timings of the

ECG waveforms and the relative positions between each electrode, clinicians are able to deduce

information about the electrical activity which is occurring within the heart. The analysis of this

information is an inverse problem (i.e., determining heart function from the corresponding torso

surface potentials) and is largely accomplished by experience based on pattern matching to signals

from known disorders. However, it is only able to provide a weak qualitative assessment of heart

function since it only obtains subsampled information from nine recording electrodes (of which

1
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only six are located near the heart).

The cause of some cardiac arrhythmias can be cured through the elimination of an arrythmogenic

substrate by applying high levels of electrical energy to generate heat at key sites within the heart.

This technique is called radio frequency ablation and involves placing a catheter directly onto

the target tissue and the burning of the surrounding area. The quick and accurate localisation of

the site is crucial to the successful clinical outcome of these ablative procedures. Practically, the

catheter ablation of conditions such as ventricular tachycardia is limited, in part, by the difficulty

in identifying suitable sites for ablation (Schilling, Peters & Davies 1998). In such procedures, in

addition to the recordings from 12-lead ECGs, invasive measurements from within the heart are

usually also required so that a clearer electrical image of the heart can be built up. This process

can still be extremely time consuming and the heart must be in a state which permits prolonged

monitoring.

An alternative approach for obtaining detailed non-invasive electrical images of the heart involves

the use of mathematical modelling and multiple ECG signals. These electrical images potentially

provide a clearer picture of the electrical activity than a standard 12-lead ECG. Methods to create

such images have been investigated for the past 30 years but, to date, no clinically accepted system

has been developed to augment the information provided by the 12-lead ECG (Brooks & MacLeod

1997).

A number of persistent barriers prevent the widespread use of electrical imaging methods in clinical

cardiology. In comparison to the standard 12-lead ECG, a far greater amount of data must be

gathered (e.g.,heart position and orientation, torso geometry, a large number of electrode locations

and signals). Even if this data can be obtained, it still remains questionable whether the additional

information produced by the electrical image will be sufficient to justify collecting the additional

information. The fact that dense torso ECG sampling can provide more information than the

standard 12-lead ECG is of little doubt (SippensGroenewegen, Spekhorst, van Hemel, Kingma,

Hauer, de Bakker, Grimbergen, Janse & Dunning 1993). However, significant challenges remain

in data processing, extraction and presentation of results in an appropriate form.
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1.1 Cardiac Anatomy & Function

The heart is an organ whose primary task is to pump blood around the body. It is situated near the

centre of the thoracic cavity between the two lungs. Figure 1.1 shows the anatomy of the four heart

chambers of a human heart. The lower, larger, thick walled chambers are the left ventricle (LV)

and right ventricle (RV), while the smaller upper chambers are the left atrium (LA) and right

atrium (RA). The heart muscle is called the myocardium and it encompasses the muscle between

the inner endocardial surfaces and the outer epicardial surface. The myocardium is composed of a

complex sheet and fibre structure that greatly varies throughout the heart (Le Grice, Smaill, Chai,

Edgar, Gavin & Hunter 1995). Figure 1.2 shows the heart fibres displayed on the endocardial

and epicardial surfaces on a canine heart model. The directions at which the fibres and sheets are

oriented affect the flow of the electrical activity and the mechanical motion of the heart.

Figure 1.1: A cross-section of a human heart taken through the four major chambers showing
that the wall of the left ventricle is substantially thicker than the right ventricular free wall.

Reproduced from Netter (1997).

The atria are relatively thin walled chambers which collect blood before feeding it into the ventricles

upon contraction. In contrast, the ventricles are larger chambers that forcefully contract, pumping

the blood out through arteries to the lungs and the body. Each respective atrium and ventricle pair

are separated by valves which help to regulate the blood flow; the tricuspid valve on the right and
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(a) (b)

Figure 1.2: The Auckland canine rectangular Cartesian heart model created from the data of
Le Grice et al. (1997) showing the varying fibre distribution within the myocardium. The gold
cylinders represent the complex fibre distribution on the epicardial and endocardial surfaces.
The epicardium is shown as dark red in (a) and a transparent surface in (b). In (b), the left

ventricle is shown as a green surface and the right ventricle as a blue surface.

the mitral (bicuspid) valve on the left.

The LV is responsible for pumping oxygenated blood around the body. Blood travels from the LV

through the aortic valve into the aorta. The aorta is the largest blood vessel in the body and carries

blood up towards the head and the arms, before arching over and travelling down the vertebral

column to carry blood towards the internal organs and the legs. The right ventricle pumps blood,

as it returns from the body, into the pulmonary artery which leads to the lungs, where the blood is

re-oxygenated ready for another cycle.

The heart is a unique organ which possesses an electrical conduction system which is capable of

providing coordinated rhythmic contraction to pump blood around the body. The different stages

of the cardiac cycle and how they relate to the mechanical motions of the heart and its ability to

pump the blood around the body is shown in a Wiggers diagram in Figure 1.3. The changes in

ventricular volume and resultant change in pressure are governed by the passage of the electrical

wavefront through the myocardium.

Each wave of cardiac activation originates from a group of self regulating pacemaker cells called



1.1 CARDIAC ANATOMY & FUNCTION 5

Figure 1.3: Wiggers diagram illustrating the eight primary phases of a cardiac cycle. The top
three traces show the pressure in the aorta, left ventricle and left atria in millimetres of mercury.
The next curve represents the left ventricular volume. Below that are the relative timings of
sounds produced by the heart in the cycle as heard using a stethoscope. The bottom trace repre-
sents the standard ECG reading with P wave, QRS complex and T waves marked. The Wiggers
diagram illustrates the relationship between the electrical wave in the myocardium, shown by
the ECG, the resultant mechanical deformation of the heart, shown by the change in volume
and the resultant change in pressure within the heart chambers. Reproduced from Katz (1992).
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the sinoatrial (SA) node which is located in the RA. From the SA node, the activation wave spreads

firstly though the RA, followed by the LA before gathering at the atrioventricular (AV) node. This

node is the only electrical pathway between the atria and the ventricles in a healthy human heart.

From the AV node the wavefront travels along a fast conducting pathway, known as thebundle

of His, to the bottom of the septum. From there, it spreads across the endocardial surface of

both ventricles via a fast conduction network, known as thePurkinje fibresand then through the

ventricular myocardium.

An action potential is a measure of the difference between the potential in the intracellular and

extracellular space (i.e., the transmembrane potential) of a single cardiac cell (myocyte) over time.

It provides a representation of the electrical activity within the cell. The activation-contraction

cycle within cardiac muscle cells is controlled largely by the concentration of calcium ions in the

myocardial cell. The relative timing of the action potential, intracellular calcium ion concentration

and the resultant force in a myocyte is shown in Figure 1.4. This shows the electrical-mechanical

coupling which occurs at a cellular level. Action potentials typically have a duration of250–300 ms

and there exists a delay of80–100 ms between the action potential upstroke and the mechanical

contraction of the muscle.

Action
Potential

�
Ca2+

�
i

300
ms

2001000

Force

Figure 1.4: Schematic of the relationship between the action potential, intracellular calcium
ion concentration and the resultant force in a cardiac cell. The rising action potential causes
the intracellular calcium ion concentration to rise which in turn causes the cell to contract
and develop force. The relative time (ms) is shown on the horizontal axis. The effect of
the electrical wave on the ventricular volume and the pressure is further illustrated in the

Wiggers diagram in Figure 1.3.
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1.2 Electrocardiology

The study of the electrical activity of the heart is known as electrocardiology. This can be achieved

examining the electrical recordings measured directly within the heart, or interpreting non-invasive

recordings on the torso surface.

ECG theory and notation was initially proposed by Einthoven (1903). The first human ECG traces

recorded by Waller (1887), as shown in Figure 1.5, contained simultaneous recordings of the elec-

tric and the mechanical motion which accompany each heart beat. Since then, non-invasive imag-

ing of mechanical heart motion has advanced from a cardiograph to clinically accepted imaging

modalities such as magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound.

However, the techniques for electrically imaging the heart non-invasively have not advanced signif-

icantly. In the last few decades there has been renewed interest in attempting to extract clearer and

more detailed information from the potentials measured on the torso surface. Rapidly increasing

computing power and improvements in mathematical modelling have allowed further advancement

in this field.

Figure 1.5: The first demonstration on a human of electromotive changes and mechanical mo-
tions which accompany the heart’s beat. The upper trace (t.t.) provides a measure of time,
while the middle trace (h.h.) indicates the heart’s movement from a cardiograph and the lower
trace (e.e.) the level of the mercury in a electrometer capillary measuring the resultant voltage

difference between a pair of electrodes. Reproduced from Waller (1887).

As non-invasive electrical imaging of the heart is a passive sensing method, it is theoretically more

difficult than other established medical imaging modalities (such as CT, MRI or ultrasound) which

actively measure the transmission or scattering of energy injected into the organ. The energy

transmitted by these active methods may be altered to provide varying conditions for improved

results when imaging different structures. In contrast, the ECG passively measures the energy

which has been generated by the heart and cannot be externally altered during a normal ECG

recording.
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1.2.1 The Problems of Electrocardiology

The problem of electrocardiology can be broken into two distinct problems, theforward prob-

lem and inverse problem. Both problems involve determining the relationship between electrical

activity at the heart level and on the torso surface.

A forward problem is the name given to the general class of problems which seek to determine

the resultant field that is generated from some imposed source. Thus, the forward problem of

electrocardiology seeks to determine the potentials and/or currents in the torso that result from a

given cardiac source.

The inverse problem of electrocardiology belongs to a class of ill-posed, remote sensing problems.

Given the resultant torso surface potential field, it seeks to determine the underlying cardiac source

generator. Effectively, all clinicians “solve” an inverse problem every time a diagnosis is made from

ECG signals. Torso surface potentials are spatially smoothed projections of the electrical current

sources associated with the cardiac activation. The inverse problem involves removing the masking

effects of the tissue between the heart and torso surface. The difficulty in the problem arises from

its non-unique solutions and ill-posed nature. By posing the problem in terms of reconstructing a

single dipole, a unique solution can be obtained. However, this solution provides little insight into

the underlying physiological events. If the inverse problem is posed in terms of epicardial potentials

or myocardial activation times, a unique solution can be obtained, but the problem becomes ill-

posed in nature. This means that any noise entering the process of measurement and modelling will

be amplified in the solution in an unknown and uncontrolled fashion (Huiskamp & Greensite 1997).

Practically, the inverse problem is the more useful of the two problems for use in diagnosis of

cardiac conditions from non-invasive recordings.

1.2.2 Electrocardiograms

When Waller (1887) performed the first human ECG, it was known that electrical activity could be

recorded from an exposed heart and that each heart beat was accompanied by changing voltages.

He decided to investigate the possibility of recording the resultant potential changes from the limbs

of animals and humans. He dipped his right hand and left foot into a two basins of salt solutions

which were connected to two poles of an electrometer and “at once had the pleasure of seeing the
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mercury column pulsate with each pulsation of the heart” (Besterman & Creese 1979).

Almost from the beginnings of electrocardiography, the concept of a vector force was invoked ini-

tially by Waller (1889) who suggested that the electromotive force of the heart could be represented

by a single dipole.

In 1901, Einthoven modified a string galvanometer to provide the earliest high-fidelity recording

of the ECG. The machine weighed approximately 600 pounds and required 5 operators (Einthoven

1903). Later the I, II and III leads were defined by utilising three electrodes on the left arm, right

arm and left leg, which he assumed to be at the corners of an equilateral triangle as shown in

Figure 1.6. This was later termed Einthoven’s triangle . A cardiac vector could be used to represent

the total electrical activity by combining each of the three limb leads.

Lead III

Left Arm

Lead II

Lead I

Right Arm

Left Leg

Figure 1.6: The orientation of the three bipolar leads I, II and III, forming Einthoven’s Trian-
gle. Einthoven simplified interpretation of the ECG by assuming the heart to lie in the centre
of an equilateral triangle, the corners of which are in contact with electrodes placed on the left
arm, right arm and the left leg. A normal mean QRS vector is shown at the centre of the triangle
and the dipole vector’s contribution to each of the leads is shown by projecting the head of the

dipole vector orthogonally onto each side of the triangle (dotted lines).

Each limb used in the recording of the ECG was regarded as an apex of an equilateral triangle,

equidistant electrically from the heart. This idea has its limitations in that it assumes the body is

an electrically homogeneous sphere. However, Einthoven’s original model has proven extremely

useful and still dominates much of current electrocardiology. This is primarily due to its simplicity

and ability to extract a large amount of information about the state of the heart using only a small

amount of measured data.
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A schematic diagram of a normal ECG trace and its temporal relationship with a ventricular action

potential is shown in Figure 1.7. The action potential shows the contribution of a single myocyte to

the ECG, while the ECG represents a global summation of the electrical activity within the entire

heart volume. The characteristic deflections of the ECG, were named at the beginning of the last

century by Einthoven after letters (P,Q,R,S and T). Intervals and segments are defined as regions

(e.g.,the P-R and S-T intervals) and additional complexes were defined as groups of waves (e.g.,

the QRS complex).

U

T

Q

R

P

300 ms

100 ms

S

100 mV

1:2 mV
ECG

0

1
2

3
4

4

Ventricular
Action Potential

Figure 1.7: Temporal relationships between a body surface ECG and a cardiac action potential.
The QRS complex is produced by the combination of the upstrokes of all the action potentials
throughout the ventricle. The P wave represents the depolarisation phase of the atria while
the isoelectric ST segment corresponds to the plateau in the action potential (phase 2) and
the T wave represents the repolarisation (phase 3) of the ventricular mass. The isoelectric
segment (phase 4) that comes after the T wave corresponds to ventricular diastole. The poorly

understood U wave is thought to represent the repolarisation of the Purkinje network.

In a normal heart, the first deflection of an ECG, which represents atrial depolarisation, is the P

wave. The duration of the P wave reflects the time taken for the wave of depolarisation to propagate

over the atria. After the P wave, the ECG returns to its baseline as the changing potential within the

heart cannot be detected on the torso surface. Within the heart, the wave propagates through the

AV node and Purkinje network. The QRS complex represents the wave of depolarisation passing

through the ventricular myocardium. The amplitude of the QRS complex is greater than that of the

P wave because of the larger ventricular mass compared to the atria. As a first approximation, the

QRS complex corresponds to the upstroke of the action potential, the ST segment to the plateau

and the T wave to repolarisation.
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Following the QRS, the ECG normally returns to its baseline, where it remains until the start of

the T wave. The isoelectric phase of the ST segment occurs when all regions of the ventricle are

in a depolarised state. The duration of the ST segment thus reflects the normally long plateau

of the ventricular action potential. Repolarisation of the ventricles generates the T wave, which

corresponds to phase 3 of the cardiac action potential as defined in Figure 1.7. The duration

of the T wave is considerably longer than that of the QRS complex because unlike ventricular

depolarisation, repolarisation does not spread as a rapidly propagated wave. In some normal ECGs

a small deflection is seen after the T wave. This is the U wave, whose origin remains uncertain. It

has been postulated that the U wave may be related to repolarisation of the Purkinje network, in

which the action potential duration is greater than that of the ventricular myocardium (Katz 1992).

The atria, like the ventricles, generate a potential difference during their repolarisation. The effect

of this is not usually seen on an ECG because its amplitude is small and its effect is masked by

the much larger QRS complex. The QT interval is a useful index of the ventricular action potential

duration. However, again, there is only a rough correlation as the ECG is a representation of the

sum of the potential differences produced by the entire ventricular myocardium.

1.2.3 The Standard 12-lead ECG

The most commonly used system of ECG leads is the standard 12-lead system. It uses a combina-

tion of 9 electrodes on the torso surface to produce12 waveforms which provide a representation

of the heart’s electrical activity. Standard 12-lead traces from a healthy subject are shown in Fig-

ure 1.8.

The standard 12-lead uses six precordial electrodes placed on the thorax at the heart level and three

extremity electrodes, placed on the left and right arms and the left leg. The exact locations of these

electrodes is shown in Table 1.1. Figure 1.9 shows a comparison between the9 electrodes used

with a standard 12-lead ECG and the256 electrode body surface mapping system currently used

at The University of Auckland. Further comparisons between other mapping systems around the

world are also shown in Table 1.2.

The extremity limb electrodes are used to derive a reference potential against which the other

electrodes are measured relative to. In standard electrocardiography theerroneousbelief that there

exists a point in space at which the potential should be assigned a zero value has led to the search

for the position of this ‘ideal’ reference location. The most commonly used reference point is the
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Figure 1.8: Traces from a standard 12-lead ECG from a healthy subject. The physical location
of the recording electrodes are shown in Figure 1.9.

ELECTRODE SYMBOL ATTACHMENT LOCATION

Right arm R Right wrist

Left arm L Left wrist

Left foot F Left ankle

Right foot G Right ankle

V1 Right sternal margin, fourth intercostal space

V2 Left sternal margin, fourth intercostal space

V3 Midway betweenV2 andV4
V4 Left mid-clavicular line, fifth intercostal space

V5 Left anterior auxiliary line,V4 space

V6 Left mid-auxiliary line,V4 andV5 level

Table 1.1: Placements of the nine electrodes used for a standard 12-lead ECG. These locations
are shown graphically in Figure 1.9.
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Figure 1.9: The electrode placement for the precordial leads of a standard 12-lead ECG (left)
compared with the 256 electrode BSPM setup used at The University of Auckland (right). Each
sphere represents an electrode on the torso surface. In both cases the electrodes are concentrated
over the heart to capture the higher potential gradients in that region. Typical recordings from

the 12-lead ECG setup is shown in Figure 1.8.

Wilson’s Central Terminal (WCT). This is an artificial reference point formed by averaging the

potentials observed at both arms and the left leg proposed by Wilson, MacLoed & Barker (1933).

Its major importance lies in the fact that so many electrocardiologists in the past have examined its

‘ideal’ nature and it has now been accepted as a standard.

The six chest leads proposed by Kossmann & Johnston (1935) are useful in evaluating abnormali-

ties arising in the ventricles. This is because the chest electrodes are placed so that the QRS com-

plexes recorded in leadsV1 andV2, over the anterior right chest wall, are influenced by the spread of

the wave of depolarisation of the right ventricle, whereasV5 andV6, over the left side of the chest,

reflect left ventricular depolarisation. In a normal ECG, however, the potentials generated by the

left ventricle are so dominant that they overwhelm, and usually completely obscure, the potential

differences caused by right ventricular depolarisation. For this reason, although the normal QRS

complexes inV5 andV6 are upright because they record the approaching wave of depolarisation

over the left ventricle, QRS complexes recorded in leadsV1 andV2 are normally inverted because

they are generated almost entirely by the wave of depolarisation of the left ventricle that moves

away from the right side of the chest.
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The strengths of a standard 12-lead system are undoubted. With only a small number of elec-

trodes and little time, a clinical diagnosis is possible. The fact that the 12-lead standard has

largely remained unchanged since the addition of the augmented limb leads (Goldberger 1942)

to Einthoven’s original three limb leads and the additional six chest leads, indicates its success.

However, its limitations are also evident. Anterior regions can be easily detected due to the prox-

imity of electrodes but there exist significant errors in other regions. Standard electrocardiology

has limited sensitivity to regional cardiac events and there is an emphasis on the intensity of ECG

forces. It is also highly reliant on interpretation via pattern matching. An experienced physician

will know the ranges of normal ECG readings given an individual’s age, sex, weight and a number

of other considerations. These factors however, increase the chance of a misdiagnosis. The rate of

false diagnosis in myocardial infarctions is as high as30% and results in unnecessary health-care

costs and in the United States this is estimated at US$4 billion per year (Selker 1989). A large

proportion of these expenses could be conserved if more accurate and advanced assessment tools

were available.

1.2.4 Invasive Mapping Techniques

In a clinical situation, due to the lack of detailed information provided by the standard 12-lead ECG,

a clearer electrical image of the heart is often required. One solution to this problem involves ob-

taining invasive measurements directly at the heart level. These potentials recorded directly on the

epicardial and/or endocardial surfaces are situated close to the underlying cardiac electrical sources

and therefore provide an opportunity for direct interpretation of electrical events that non-invasive

measurements will not permit. Unlike the recordings on the torso surface, these measurements

have not been affected by the torso volume.

There currently exist several established techniques for invasively obtaining electrical activity of the

heart. These include endocardial point-based contact catheters, non-contact catheter systems, epi-

cardial socks and plunge electrodes. Endocardial point-based catheters record the electrical activity

at localised region on the end of catheters (Biosense Webster 2000, Smeets, Ben-Haim, Rodriguez,

Timmermans & Wellens 1998). The non-contact methods involve a similar process but mathemati-

cally reconstruct the activity of a chamber of the heart from measurements obtained within the heart

chamber (Schilling et al. 1998, Gornick, Adler, Pederson, Hauck, Budd & Schweitzer 1999, Strick-

berger, Knight, Michaud, Pelosi & Morady 2000). More invasive methods involve large numbers

of direct measurement on and within the heart itself. These include covering the epicardial surface
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with an electrode sock (Nash, Bradley, Cheng, Pullan & Paterson 2000b) or by inserting arrays of

electrodes directly into the myocardium (Langrill & Roth 2001).

A drawback of these techniques is that they are all invasive and cannot be used for long-term moni-

toring. Point-based catheter mapping techniques fail to provide a global view of chamber activation

and cannot assess information on the epicardial surface. Some ventricular tachycardias utilise the

epicardium for part of the reentry circuit and, due to the limited field of view, unstable arrhythmias

cannot be easily mapped. Global activation maps are required to obtain a better understanding of

the critical elements necessary to initiate and maintain tachycardias.

1.2.5 Body Surface Potential Mapping

One of the major deficiencies of the conventional 12-lead ECG is that information is constructed

from an inadequately sampled subset of the body surface data. In general, accurate localisation of

the abnormal electrical events of the heart cannot be obtained from this subsampled data, especially

in the anterior regions. The technique known as Body Surface Potential Mapping (BSPM) involves

sampling potentials at a greater number of sites on the torso surface (in the range of32–256 elec-

trodes). With these additional recording sites, information missed by the standard 12-lead ECG

can be obtained.

The wave forms of ECG signals recorded at the body surface depend not only on the heart’s elec-

trical activity, but also on the positions of the electrode pairs used. When multiple lead positions

are used, each lead provides a different aspect of the heart’s electrical activity. The display of a set

of instantaneous potential data on a map representing the body surface is called a Body Surface

Map (BSM). The increasing experimental and clinical use of BSPM has shown that such maps

can be related to certain regional electrical processes in the heart. A body surface map is a low

resolution projection of cardiac electrical events filtered by the torso cavity.

With this greater amount of information, it is necessary to display this information in a useful

manner and interpret the information in accordance with known electro-physiological principles

to provide an accurate assessment of the cardiac state. These data can be interpreted directly

in the form of potential maps with pattern matching techniques as is now accepted in Japan for

daily clinical diagnosis (Watanabe 1996). However, the ability to determine details of regional

electrical activity in the heart from visual inspection of the BSPM is limited. There has been some
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directions made towards identifying sites of reentry based on visual examination of QRS integral

maps (SippensGroenewegen et al. 1993).

A better prospect would involve processing the large quantity of data through some form of mathe-

matical modelling, to unravel the filtering effects of the torso and recover the electrical information

at the heart level (i.e.,solving the inverse problem of electrocardiology).

Accurate solutions of the inverse problem from body surface maps will have great benefit for

improving diagnosis and hence decisions about the treatment of patients. For the successful non-

invasive computational calculation of cardiac sources, high quality body surface potential data must

be obtained as the input for an inverse solution. The practical acquisition of high quality data is a

non-trivial matter. However, this is becoming easier with the development of disposable electrode

strips and portable multichannel recording systems.

1.2.6 Technical Requirements

For ECG measurements to be used as input for a quantitative inverse procedure, a far greater quan-

tity of data, compared to the standard 12-lead ECG, must be gathered. In addition to the potential

measured at the electrodes, the electrode locations must be known and the torso volume conduc-

tor must be accurately modelled for each subject. The accuracy to which the input components

(e.g.,signals and torso geometry) must be determined to obtain an accurate inverse solution is still

unknown and is investigated in Chapter 7.

As BSPM has been primarily used for research, unlike the standard 12-lead, there is no interna-

tionally recognised standard for electrode positioning and recording systems. As shown in Ta-

ble 1.2 there are many different lead systems in use for the purpose of recording body surface maps

(Hoekema, Uijen, Stilli & van Oosterom 1998). These differ in electrode placement as well as in

the number of leads in use. In most lead systems, the electrodes are attached to the torso stripwise

(i.e., the electrodes are incorporated in vertical strips that are attached to the torso). The number of

strips, however, differs between lead systems, as does the number of leads per strips. The variation

in recording setups has resulted in difficulties in comparing data between different research groups

around the world.

The requirements for potential measurements are different for recording at different locations.
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SYSTEM CHANNELS DESCRIPTION

AMSTERDAM/NIJMEGEN 64 11 vertical strips

AUCKLAND 256 torso suit

BATH 40� 82 6 horizontal strips

BRUSSELS 120 15 vertical strips

DALHOUSIE 120 14 vertical strips with4� 7 electrodes

GRAZ/MONTREAL 63 10 vertical strips

HELSINKI 123 15 vertical strips

JAPAN 87 11 vertical strips

OXFORD 256 torso suit / epicardial sock

PARMA 219 18 vertical strips

UTAH (LUX-32) 32 5 strips on anterior and individual
electrodes on posterior

UTAH (LUX-192) 192 16 vertical strips

Table 1.2: Mapping system setups from different research groups around the world. The num-
ber of channels indicates the maximum number of electrodes which can be recorded at any one

time. Modified from Hoekema et al. (1998).

Generally faster responses and higher frequencies are required to accurately capture information

closer to the underlying cardiac sources (Barr & Spach 1977).

Brooks & MacLeod (1997) states that a BSPM system must have a flat response between0:05 Hz

and250 Hz. These limits are of particular importance to body surface mapping as different sites

on the surface have been found to have different high frequency components. Changes to the high

frequency cutoff will result in loss of information and changes to both limits will result in changes

in isopotentials. Temporal sampling rates are accepted to be between0:25 kHz and2 kHz. The

mapping of epicardial and endocardial potentials has different requirements. It is believed that

information about the wavefront velocity, the thickness of the wavefront and potential gradient

are lost if the spatial resolution is greater than2 mm. Typical recording frequencies are around

1–2 kHz while the frequencies of5–10 kHz are required for transmural mapping.

1.3 Data Visualisation

As with many computational techniques there is the recurring problem of interpretation and analysis

of the vast amounts of data which can be produced. The appropriate visualisation of these data is

a key component of the analysis of results. It must be presented in an intuitive form which can be

easily interpreted by clinicians.
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The irregular spatial sampling of potentials over a complex surface is another feature which dif-

ferentiates it from medical imaging modalities such as MRI and CT where the data is typically

provided in the form of uniformly distributed stacks. For both visualisation and modelling re-

quirements, the locations of the electrodes are needed in addition to the potential data itself. The

potential information can either be fitted to a regular grid and then standard interpolation techniques

used or directly interpolated from the measured data locations themselves.

There are a number of established methods for visualising large volumes of mapping data. They

include potential maps, integral maps and activation maps. The advantages and disadvantages of

each method are discussed below.

Potential Maps represent potentials at a given time instant and display the potentials on a specific

geometry. The geometry may either be a realistic model (as shown on the left in Figure 1.10) or

a stylised representation such as a two-dimensional projection of a three-dimensional shape (as

shown on the right in Figure 1.10). This is a cylindrical projection of the torso surface with the

anterior region in the left half of each map and the posterior region on the right. The central shared

edges correspond to the left mid-auxiliary line. The fact that this data representation does not

display temporal information may lead to misinterpretations. This has been overcome to some

degree by displaying sequences of maps or spatial and temporal signals at the same time.

Figure 1.10: Potential distribution displayed on a realistic model on the left with views from
anterior and posterior perspectives. On the right is a stylised two-dimensional representation
of the same data set. The data is displayed on a cylindrical projection which has been unrolled.
The anterior of the torso is shown on the left half of the map and the posterior on the right. The

marked centre of the map corresponds to the left mid-auxiliary line.

Integral Maps dramatically reduce the data by integrating each signal over time to produce an

integrated potential. The period over which the signal is integrated is usually over specific intervals

in the cardiac cycle (i.e., the QRS, ST and QRST intervals or over the whole heart cycle). This

technique also has the problem that temporal information is lost, however, there is some possibil-

ity of direct physiological interpretation of the resulting maps. It has been previously shown by
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Geselowitz (1985) that time integrals of QRS and QRST are related to the amplitude, area and

activation time of the cellular action potentials on the closed surface surrounding the ventricles.

Activation Maps are used to display the time, in and on the heart, at which each point is first

depolarised. Figure 3.4 shows an example of an experimentally measured activation field. The

progression of the depolarisation wave determines the contraction pattern and is essential for de-

termining heart function. A common method of determining the activation time is the maximum

negative downstroke of the extracellular potential. A similar method can be used for determining

the repolarisation time. The activation recovery interval (ARI) can be calculated by taking the

difference between the activation time and the repolarisation time.

1.4 Thesis Overview

The aim of this research is the development of a framework from which quantitative electrical

images of the heart can be obtained using non-invasive measurements on the torso surface. The

thesis will describe the computational and modelling issues associated with generating an electrical

image of the heart.

Chapter 1: Introduction & Historical Overview. An introduction to cardiac anatomy, standard

electrocardiographic techniques and the forward and inverse problems of electrocardiography.

Chapter 2: The Finite & Boundary Element Methods. The concepts of the finite element and

the boundary element methods are introduced in this chapter. The different basis functions and

element types used throughout this thesis are described along with concepts associated with mesh

refinement.

Chapter 3: Geometric & Field Fitting with the Finite Element Method. The linear field fitting

techniques using finite elements are described. The fields include scalar fields such as potentials

and activation times and three-dimensional geometric fitting techniques. The Sobolev smoothing

used to provide additional constraints on the fit is also introduced. The use of these methods are

then described for a number of different applications in Chapter 4. The fitting of potential fields

using the finite element method is a new approach to creating a potential field across the entire

torso surface. The customisation of generic models using control points is also new approaches for

creating a subject specific model given only a few landmark positions.
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Chapter 4: Geometric Torso & Cardiac Source Models.The construction process of the generic

porcine model using the techniques described in Chapter 3 is described along with the fitting re-

sults. The ability to easily customise a generic model using the host mesh customisation method

is presented. A number of different cardiac sources which attempt to capture various aspects of

cardiac activation are also described. These different cardiac sources are later used in Chapters (5)–

(7). A porcine model is used as the basis for all the numerical simulations. This model is chosen

so that the results derived from the simulation study presented in Chapter 7 can be used to enhance

and compliment the methods and results obtained from the validation experiments conducted by

Nash et al. (2000b).

Chapter 5: The Forward Problem of Electrocardiology. Construction of the transfer matrices

for the potential and activation based inverse methods are described. The formulation of the gov-

erning equations is a generalisation of previous work. Analytic test cases for the potential and ac-

tivation based transfer matrices using simplified geometries are presented. Finally, a convergence

analysis for the forward problem is performed using both potential and activation based cardiac

sources on the generic porcine model.

Chapter 6: The Inverse Problem of Electrocardiology. The different algorithms for creating

non-invasive electrical images of the heart using epicardial potential based and activation time

based approaches are introduced. Standard spatially regularised Tikhonov and Truncated Singular

Value Decomposition potential based methods as well as the spatially and temporally regularised

method of Greensite & Huiskamp (1998) are described. The techniques for obtaining an activation

based inverse solution through the use of the Critical Point Theorem are also described.

Chapter 7: The Sensitivity of Inverse Solutions to Modelling Errors. Results from a detailed

simulation study which analyses and compares the sensitivity and the reliability of the potential

and activation based inverse algorithms to a variety of modelling errors is presented. The effect of

material conductivities, correlated and uncorrelated signal errors and geometric modelling errors

are investigated. Finally, the algorithms are subjected to realistic errors which could be expected

in a clinical situation. This simulation study is the first known study which compares a variety of

inverse algorithms (potential and activation based) under a large variety of modelling and experi-

mental errors.

Chapter 8: Conclusions, Validation & Future Development. The important findings of this

thesis, limitations of the models and algorithms which have been developed and suggestions for

the orientation of future developments in this field of research are presented.



2 The Finite Element
& Boundary Element Methods

Use of the Finite Element Method (FEM) and the Boundary Element Method (BEM) for analysis

of a variety of problems has been widely accepted in many branches of science and engineering.

They are computational methods which break down a complex continuous problem into smaller

discrete components which are more amenable for analysis. These types of numerical techniques

are essential for solving problems which are too difficult to be solved using analytical approaches.

FEM is best suited for solving differential equations while BEM is a technique for solving linear

equations.

One of the key differences between the two methods is that FEM analyses the entire volume of

the area of interest, the solution domain, while BEM analyses problems by solving only over the

surface of the domain. They both solve problems by discretising the domain intoelementsto form

a piecewise description. For a three-dimensional problem, FEM discretises the domain into three-

dimensional volumes, while BEM uses two-dimensional surface elements in a three-dimensional

space. By using the BEM approach the problem size is essentially reduced by one dimension.

However, since the underlying integral equations couple the dependent variables at one element

with every other element, the coefficient matrix characterising the set of equations to be solved is

fully populated for any simply connected domain. As FEM is volume-based it is able to explicitly

account for anisotropies within the solution domain, with more elements and consequently more

solution Degrees of Freedom (DOF). However, as the dependent variables are expressed only in

terms their nearest neighbours, the coefficient matrix, while large, is also sparse.

For both methods, the elements are defined bynodesthroughout the domain. The elements are

formed from groups of surrounding nodes. The solution can be found at all points within the

domain by interpolating the nodal values through the use of basis functions defined in Section 2.2.

Through the use of high order cubic Hermite basis functions (see Section 2.2.2) the geometry of

21
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models and solution fields is well defined with much coarser meshes than finite difference schemes

(which use essentially constant basis functions).

2.1 Mesh Division

Typically elements are formed from simple structures such as quadrilaterals, cuboids, triangles or

tetrahedra. The triangulation approach allows complex domains to be discretised using unstructured

meshes, while quadrilaterals and cuboids usually form structured meshes.

The elements of the mesh are defined from key points in the domain known asnodes. Each element

is defined using a surrounding group of local nodes. Local nodes are a subset of all the global

nodes in the mesh. When solving a FEM or BEM problem each element is mapped to a normalised

material or local coordinate system, called� space. With this mapping each element, even though

they may physically be a different size, can be treated numerically identical in local� space. The�

coordinate system always varies between0 and1 for each� direction (i.e.,0 � �j � 1) within all

elements.

The union of the set of smaller sub-domains cover the entire domain of interest without overlapping.

Adjacent elements share nodal parameters, which ensures that dependent variables are continuous

throughout the entire domain.

This concept can be seen by considering a two-dimensional fluid flow problem with a U shaped do-

main as shown in Figure 2.1a. The curved domain can be divided into elements, in this case twenty.

Computationally, each element in local� space will form a unit square as shown in Figure 2.1c.

Each of these elements now has its own coordinate system, with each direction normalised between

0 and1.

2.2 One-Dimensional Basis Functions

Basis functions or interpolation functions are used to approximate quantities of interest between

nodal values (e.g.,geometric or solution variables) that vary over a particular domain. They consist

of sets of polynomials of different degrees, depending on the type of interpolation required and

provide the weighting for each local node for evaluating a field within the element.
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(a) Problem domain
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Figure 2.1: Schematics illustrating the mapping between global space and local� space. The
original problem (a) is defined in terms of a globalx coordinate system. After discretising
the problem into elements (b), each element in the mesh can then be mapped to a local�

coordinate system as shown in (c). Each element is then of unit size and can be considered
numerically equivalent.

Basis functions can be grouped into two main families,LagrangeandHermite. These two types of

basis function families determine the level of continuity of the interpolation variable across element

boundaries. Lagrange basis functions preserve continuity of the values of the dependent variables

across element boundaries (C0 continuity) and are explained further in Section 2.2.1. Hermite basis

functions, in addition to the values, also preserve continuity of the first derivative (C1 continuity)

and are described in further detail in Section 2.2.2.

Different interpolation schemes can also be used to alter the type of variation of the field within an

element. The three main interpolation methods for the Lagrange family arelinear, quadraticand

cubic. This determines the variation of a field within an element. Typically, low order polynomials

are chosen as the elements are of such a size that there is a relatively low variation within an

element and they can be easily numerically integrated using Gaussian quadrature schemes. Higher

than third order polynomials have the ability to represent a field more accurately at key points but

highly oscillatory and unphysiological fields may result between these points.
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The interpolation scheme and the continuity family are then paired to provide a description of the

field throughout the mesh (e.g.,a quadratic Lagrange basis function will have quadratic variation

within an element and no derivative continuity across element boundaries, whilst a cubic Hermite

basis function will have cubic variation within an element and also preserve variable and derivative

continuity across element boundaries).

The standard interpolation formula for interpolating within an element is given by

u (�) = "n (�) un (2.1)

whereun are the local nodes defining the element and"n (�) represents an unspecified basis func-

tion evaluated at the location� within the element and Einstein’s summation is implied.

2.2.1 Lagrange Basis Functions

The Lagrange basis functions are functions which are chosen such that at each local node only one

basis function has a value of1 and all the other basis functions are equal to0 (i.e., the nodal value

is exactly preserved at the node). At all points within an element, the sum of the basis functions

is equal to1. Linear and quadratic Lagrange basis functions are plotted in Figure 2.2, showing the

weighting contribution from each basis function as the position varies throughout an element.

Thenth Lagrange basis function evaluated at the position defined by� is denoted by'n (�).

Linear Lagrange

A linear Lagrange basis function is the simplest of the basis functions. For a one-dimensional case,

two nodes are required to define an element.

By considering an arbitrary scalar function,u (x), which varies over a one-dimensional element, a

linear approximation ofu can then be used to represent the variation of theu within the element.

Through the introduction of a normalising distance measure,�, Equation (2.2) can be used to
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interpolate nodal values in an arbitrary element.

u (�) = '1 (�)u1 + '2 (�)u2

where '1 (�) = 1� �

'2 (�) = �

(2.2)

whereu1 andu2 are the values of dependent variable at each end of the element, and variation

within the element is provided byu (�).

Quadratic Lagrange

A quadratic Lagrange element is constructed from three nodes and provides a quadratic variation

within an element. To interpolate within a quadratic Lagrange element Equation (2.3) can be used.

u (�) = '1 (�)u1 + '2 (�)u2 + '3 (�)u3

where '1 (�) = 2(� � 0:5)(� � 1)

'2 (�) = �4(�)(� � 1)

'3 (�) = 2�(� � 0:5)

(2.3)

whereu1; u2 andu3 are the values of a dependent variable at each of the local nodes within the

element.
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Figure 2.2: Lagrange basis functions. Illustrated are the linear (a) and quadratic (b) basis
functions and how the weight of each basis function varies through� space within an element.
All Lagrange basis functions haveC0 continuity across elements. Linear basis functions allow
linear variation within an element while the quadratic basis functions allow quadratic variation.
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2.2.2 Hermite Basis Functions

Like the Lagrange basis functions, Hermite basis functions provide continuity of the dependent

variable across element boundaries. In addition, they also provide continuity in the first derivative

with respect to arc length. For this reason, Hermite bases are ideal for representing a smoothly

varying curve or surface over the domain of interest.

With a Hermite basis function, interpolation of the dependent variable is determined from both the

values and the derivatives at each local node. A Hermite basis function at noden, derivatived and

evaluated at the position defined by� is denoted by	d
n (�). Note that the0th order derivative refers

to the value ofu.

Cubic Hermite Basis Functions

Cubic Hermite elements require two nodes to define a one-dimensional element. The interpolation

formula within an element can be given by the four cubic polynomials in Equation (2.4) and is

illustrated in Figure 2.3. The basis functions have values of0 and1 at each local node while the

derivative basis functions have derivatives of0 and1 at each local node.

The value of the field at a noden is given byun while two additional nodal parameters,
@u

@�

����
n

, are

introduced to ensure that there is continuity of the first derivative between neighbouring elements.

The value
@u

@�

����
n

is defined as the derivative of the field at noden with respect to the local�-

coordinate.

u (�) = 	0
1 (�)u1 +	0

2 (�)u2 +	1
2 (�)

du

d�

����
1

+	1
2 (�)

du

d�

����
2

where 	0
1 (�) = 1� 3�2 + 2�3

	0
2 (�) = �(� � 1)2

	1
1 (�) = �2(3� 2�)

	1
2 (�) = �2(� � 1)

(2.4)

However, as the derivative parameters are dependent upon the local element�-coordinate, which

will vary non-linearly between elements of different sizes, the parameters will usually be different

in two adjacent elements. To overcome this problem, a physical derivative
@u

@s

����
N

at each node is
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Figure 2.3: The four basis functions required for interpolating within cubic Hermite elements
(two for values and two for derivatives) are plotted. Hermite elements have nodal value and
derivative continuity across element and a cubic variation within the element. The variation of
the dependent variable within an element is defined by the value at each of the local nodes and
also by the derivative at the nodes. At each local node, one of the value basis functions has a

value of 0 and the other 1, while both derivative basis functions have a value of 0.

introduced, wheres is the arc-length andN is the global node. The derivative at a local node can

be calculated from Equation (2.5),

@u

@�

����
n

=

�
du

ds

�
N

�
ds

d�

�
e

(2.5)

where

�
@u

@s

�
N

is the physical arc-length derivative at global nodeN and

�
@s

@�

�
e

represents an

element scale factor which scales the arc-length derivative of global nodeN to the�-coordinate

derivative of element noden. Thus
@u

@s
is constrained to be continuous across element boundaries

rather than
du

d�
.

By definingSe =

�
@s

@�

�
e

, the cubic Hermite interpolation formula now becomes

u (�) = 	0
1 (�)u1 +	0

2 (�)u2 +	1
1 (�)

du1
ds

Se +	1
2 (�)

du2
ds

Se (2.6)
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2.3 Two and Three Dimensional Basis Functions

Two-dimensional and three-dimensional basis functions are obtained by taking the tensor (or outer

product) of multiple one-dimensional basis functions. The two main types of basis function families

considered in this thesis are the bilinear Lagrange and bicubic Hermite basis functions.

2.3.1 Bilinear Lagrange

The product of two linear Lagrange basis function results in the interpolation formula given in

Equation (2.7). The element has four degrees of freedom and, as with the one-dimensional linear

Lagrange basis function, preserves continuity of the interpolation variable,u, across elements.

u (�1; �2) = '1 (�1; �2)u1 + '2 (�1; �2)u2 + '3 (�1; �2) u3 + '4 (�1; �2) u4

where '1 (�1; �2) = (1� �1) (1� �2)

'2 (�1; �2) = �1 (1� �2)

'2 (�1; �2) = (1� �1) �2

'2 (�1; �2) = �1�2

(2.7)

2.3.2 Bicubic Hermite

A bicubic Hermite element is defined from four local nodes. As with the one-dimensional cubic

Hermite interpolation, both value and derivative continuity are preserved across elements.

A bicubic Hermite element has16 degrees of freedom,4 associated with each node, as shown in

Figure 2.4. At each node, there exists the value of the node, two derivatives of the value leaving the

node in each� direction and also a cross derivative, which governs the ‘twist’ within an element

u;
@u

@�1
;

@u

@�2
and

@u2

@�1�2

The need for the second-order cross-derivative term arises from the fact that asu is cubic in both

�1 and�2 independently, the derivative
@u

@�1
is quadratic in the�1 direction while cubic in the�2
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direction. The cubic variation ofuwith �2 is specified by the four nodal parameters:u1; u3;

�
@u

@�2

�
1

and

�
@u

@�2

�
3

defined at local nodes1 and3. However, since

�
@u

@�1

�
is cubic in�2 and independent

of these four parameters, additional parameters must be introduced. For local nodes1 and3, these

are �
@u

@�1

�
1

;

�
@u

@�1

�
3

;

�
@2u

@�1@�2

�
1

and

�
@2u

@�1@�2

�
3

Similarly,
@2u

@�1@�2
needs to be defined at local nodes two and four.

The bicubic interpolation of these nodal parameters is given by

u (�1; �2) = 	0
1 (�1)	

0
1 (�2) u1 +	0

2 (�1)	
0
1 (�2) u2

+	0
1 (�1)	

0
2 (�2) u3 +	0

2 (�1)	
0
2 (�2) u4

+	1
1 (�1)	

0
1 (�2)

�
@u

@�1

�
1

+	1
2 (�1)	

0
1 (�2)

�
@u

@�1

�
2

+	1
1 (�1)	

0
2 (�2)

�
@u

@�1

�
3

+	1
2 (�1)	

0
2 (�2)

�
@u

@�1

�
4

+	0
1 (�1)	

1
1 (�2)

�
@u

@�2

�
1

+	0
2 (�1)	

1
1 (�2)

�
@u

@�2

�
2

+	0
1 (�1)	

1
2 (�2)

�
@u

@�2

�
3

+	0
2 (�1)	

1
2 (�2)

�
@u

@�2

�
4

+	1
1 (�1)	

1
1 (�2)

�
@2u

@�1@�2

�
1

+	1
2 (�1)	

1
1 (�2)

�
@2u

@�1@�2

�
2

+	1
1 (�1)	

1
2 (�2)

�
@2u

@�1@�2

�
3

+	1
2 (�1)	

1
2 (�2)

�
@2u

@�1@�2

�
4

(2.8)

where	0
1 (�), 	

0
2 (�), 	

1
1 (�) and	1

2 (�) are the one-dimensional cubic Hermite basis functions as

defined in Equation (2.4).

As with one-dimensional cubic Hermite elements, the derivatives with respect to� in the two-

dimensional interpolation formula are expressed as the product of a nodal arc-length derivative and

a nodal scale factor. There is now a scale factor in each� direction at each noden,

�
du

d�i

�
n

=

�
du

dsi

�
N

(Si)e (2.9)
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Figure 2.4: Bicubic Hermite elements with four degrees of freedom associated with each node,
a value, two derivatives and a cross-derivative term. This results in 16 degrees of freedom for

each element for each scalar variable.

and for the cross-derivative term�
@2u

@�1@�2

�
n

=

�
@2u

@s1@s2

�
N

(S1)e (S2)e (2.10)

2.4 Sector Elements

One problem which arises when using quadrilateral elements (such as bicubic Hermite elements) to

describe a surface is that it is impossible to ‘close the surface’ in three-dimensions whilst maintain-

ing consistent� directions at the two ‘ends’ of the mesh.C1 continuity requires either consistent�

directions or a transformation at each node to take into account the inconsistent directions (Petera

& Pittman 1994).

One solution is to place one of the local nodes of a quadrilateral element in the same geometric

positions as another node, resulting in a triangular element. With effectively a repeated node, one�

direction is undefined and there is zero distance between the nodes. Numerical problems can result

from this zero distance due to the Gaussian quadrature integration used in BEM. An alternative

formulation involves using sector elements with three local nodes. The sector elements maintain

consistent� directions and close three-dimensional surfaces while maintainingC0 continuity at the

collapsed end of the element.

Considering the apex node (node3) shown in Figure 2.5b, interpolation in the�1 direction is a

standard interpolation. Interpolation in the�2 direction is different as that the nodal arc-length

derivative has been removed because it is no longer defined at node1. Interpolation for the line
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Figure 2.5: Three noded sector elements formed by collapsing a four noded quadrilateral ele-
ment. Here, the�1 direction has been collapsed: at the�1=0 end (b) and at the�1=1 end (c).

Alternatively, the elements could be collapsed in the�2 directions.

connecting local noden with local node3 is given by Equation (2.11).

u (�2) =�1 (�2) un + �2 (�2) u3 + �3 (�2)
@u

@�2

����
n

where �1 (�) = 1� �2

�2 (�) = �2

�3 (�) = � � �2

(2.11)

Considering the apex node (node1) shown in Figure 2.5c, interpolation for the line between local

node1 and local noden is now quadratic and is given by Equation (2.12). Interpolation in the�1

direction is a standard interpolation.

u (�2) =�1 (�2)un + �2 (�2)u1 + �3 (�2)
@u

@�2

����
n

where �1 (�) = 1� �2

�2 (�) = �2

�3 (�) = � � �2

(2.12)

The full interpolation formulation can then be found by taking the tensor product of the interpola-

tion in the�1 direction with the interpolation in the�2 direction (Equation (2.11) or Equation (2.12)).

The interpolation formula can be converted from nodal� derivatives to nodal arc-length derivatives

using the procedure outlined in Section 2.3.2.
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2.5 Mesh Refinement

When using a numerical solution method, the accuracy and reliability of the method needs to be

carefully investigated by performing aconvergence analysis. This involves monitoring the error in

the solution of a particular problem as the problem size (number of DOF used to solve the problem)

is systematically increased. By refining the mesh, the number of DOF associated with that mesh

increases and it becomes possible to accurately represent more complex fields.

When using a structured mesh, one method of uniformly increasing the resolution of a mesh is

to refine the elements. To ensure the DOF are uniformly distributed, the mesh is refined in all

elements at a certain location in� space. Local refinement is not considered in this thesis to avoid

the additional problem of hanging nodes (Stouboulis & Haque 1992).

Consider the case shown in Figure 2.6, where a single bicubic Hermite element element is refined

three times. It was refined once in the�1 direction and twice in the�2 direction. If the mesh had a

field u associated with each node, then the initial single element would have16 solution DOF (see

Section 2.3.2). By refining the mesh, there are now192 solution degrees of freedom, four at each

nodal position.

�2

�1
x

z

y

Figure 2.6: Refining a single bicubic Hermite element once in the�1 direction and twice in the
�2 direction, resulting in six elements. The element has been refined evenly in� space, with

element division in the�1 direction at�1 =0.5 and at�2 = 1
3 and 2

3 in the�2 direction.



3 Geometric & Field Fitting
with the Finite Element Method

The geometric torso model of the subject and their temporally varying torso potentials are necessary

inputs for the inverse problem of electrocardiology. This type of information is usually supplied

at discrete locations ordata points. These data can be in the form of geometric coordinates (e.g.,

points from a digitised surface) or a combination of geometric location and an associated field at

that point (e.g.,electrical potentials at a particular location on the torso surface or fibre orientation

at a given location within the myocardium).

Densely sampled field measurements typically provide a non-uniform geometrically discrete data

set. There are typically different numbers of sample points than computational nodes and their

locations do not usually coincide. There are two main reasons for this: (i) the number of com-

putational nodes is controlled by the mesh resolution required for a converged solution, a process

independent to the data gathering; and (ii) there are errors in the computational model and the

locations where the field measurements were obtained.

Mathematically, it is more useful to have the information as a continuous field, which means being

defined at the finite element node points. This way, the field can be evaluated at all points within the

domain using the standard interpolation formula given in Equation (2.1). The field fitting procedure

described in Section 3.2 can be used to create an accurate piecewise representation of the described

data.

When fitting different types of fields, the same least squares minimisation principles are used but the

objective function formulations are slightly different. Several different applications of geometric

and field fitting are outlined in Section 3.3 and their differences discussed.

33
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3.1 Interpolation and Fitting

The termcurve fittingor data fittingis used to describe the general problem of finding a function

which best matches a set of observed values at a number of discrete points. In the context of finite

elements, it describes the process of altering a set of finite element nodal parameters in such a way

that it provides an accurate representation of the data.

Consider the goal of finding a function to relate a set of geometric points,x1; x2; : : : ; xD with their

corresponding field valuesu1; u2; : : : ; uD (i.e., u (x)). In a simple case, this could be expressed

as an analytic function, but this is usually not the case. The field can also be approximated using

piecewise low order polynomials in a finite element representation. The approximated function

should providereasonablefunction values between the data points (interpolation) and may be

required to provide function values outside of the data range (extrapolation).

By using finite element field fitting it is possible to produce an accurate piecewise field repre-

sentation of an irregularly sampled field. By adjusting the nodal parameters (i.e., values and/or

derivatives) the field of the finite element mesh can provide an accurate representation at the data

points. One method is to minimise the squared distance between the data point values and the finite

element fieldu evaluated at the�d position corresponding to each data pointd (i.e.,u (�d)).

By considering a one-dimensional mesh, such as that shown in Figure 3.1, the problem of present-

ing a series of four points using two elements can be illustrated. Ifud is defined to be the known

discrete field values at irregularly spaced data point locations (d = 1; : : : ; D), by adjusting the

value and derivative of the centre node and the derivatives at the end nodes, a good representation

of the data can be obtained.

Figure 3.1: Adjusting the nodal parameters of the mesh to minimise the least-squares distance
between each data point (�) and its orthogonal projection on the surface. Shown is the effect
of adjusting the nodal and derivative parameters of the middle node and the derivative values

of the end nodes.
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3.2 Field Fitting

Smooth spatially varying fields can be efficiently defined in terms of nodally based fields on a

finite or boundary element mesh. By defining the fields at nodal positions the field can then be

interpolated throughout the finite element mesh through the use of the appropriate basis functions.

By storing nodally based information it is possible to directly use these data with the algorithms

described in Chapter 5 and Chapter 6 for solving in the forward and inverse problems of electro-

cardiology.

3.2.1 Data Projection

In practice, the locations at which field data is acquired will not lie exactly on the computational

mesh due to experimental errors and physical limitations of equipment. By orthogonally projecting

a data point,dn, onto the mesh surface, as shown in Figure 3.2, the local� positions and the element

within which it lies can be determined. This provides the closest point on the computational mesh

to the data point. The length of the projection vectors between the data point positions in space and

their orthogonal projection onto the mesh surface provides a measure of this geometric error.

d2Element A

Element B

� (d1)

� (d2)

d1

Figure 3.2: Projection of data pointsdn (�) onto different elements of a surface. The dashed
lines show the orthogonal projections of the data points onto the surface of the mesh and the�

positions for each data point within elements A and B.

To calculate�d, a non-linear iterative procedure is required. Given a starting� position for the data

point projection, the geometric position of this projection is given by the standard interpolation

formula in Equation (2.1). An error function can then be set up as the Euclidean distance between

this point and the actual position of the data point. The local� position that minimises this function

can then be found using the Newton-Raphson root finding method on the derivative of this function.

This � position is effectively the orthogonal projection of the data point onto the finite element
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surface. Convergence of the Newton-Raphson method is highly dependent on the non-linearity of

the objective function and the choice of the initial solution. For initial solutions sufficiently close

to the true solution, convergence is quadratic. The initial starting location was taken as the closest

element centre (i.e.,at� = 0:5 for each element) for each data point.

3.2.2 Linear Field Fitting

The field fitting problem is formulated as a minimisation procedure in which the objective is to

minimise the sum of squared differences, over all data points, between the known value at each

data point,ud, and the finite element field approximation evaluated at the projected�d position of

the data point,u (�d), i.e.,

minF (u) =
DX
d=1

[u (�d)� ud]
2 (3.1)

The field values of the nodes (un) of the element containing a data point can be interpolated to

give the value at an� location within the element (i.e., through the use of Equation (2.1)) or more

specifically

u (�d) = 'n (�d)un (3.2)

where'n (�d) represents basis functionn evaluated at location�d. The sum of squared differences

between this value and the measured valueud for all the data points (d = 1; : : : ; D) is

� =
DX
d=1

('n (�d) un � ud)
2 (3.3)

Minimising� with respect to the nodal parametersum results in

@�

@um
= 2

DX
d=1

('n (�d) un � ud)'m (�d) = 0 m;n = 1; : : : ; N (3.4)

or

 
DX
d=1

'm (�d)'n (�d)

!
un =

DX
d=1

'm (�d)ud m;n = 1; : : : ; N (3.5)
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This can then be assembled into a global system of equationsEmnun = Fm where

Emn =
DX
d=1

'm (�d)'n (�d)

Fm =
DX
d=1

'm (�d)ud

(3.6)

andun are the unknown field values at each finite element noden.

The solution of this system gives the fitted values of the field at nodal positions. This field can then

be evaluated using Equation (2.1) at all points within the mesh.

Thus, for a particular choice of interpolation or basis functions,'m, and the known field values,

ud, the right hand side terms,Fm can be computed. The unknown set of nodal parameters,un, are

then determined by solving the resulting system of linear equations. The set of fitted parameters

may then be substituted back into Equation (3.2) to compute the finite element field approximation

at any given� location in an element.

3.2.3 Error Metrics

The finite element fitting method minimises the deviation between the data and the interpolated

field (i.e., it minimises the root mean squared (RMS) error as defined in Equation (3.7)). The use

of only one error metric can be a misleading measure of the accuracy of a fit. By using a number

of different error metrics the quality of the solution can be better assessed.

Defined in Equations (3.7)–(3.9) are the RMS, relative RMS and similarity index (SI) error metrics.

They are the three primary error metrics which are used throughout this thesis. The metrics provide

a comparison between two scalar fields, a master field�m and a comparison field�c, each withN

samples.

The RMS error provides a direct error measure between the two fields, while the relative RMS error

provides a normalised error measure. Both are useful for determining the changes in magnitude
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between two fields.

RMS=

sX
(�m � �c)

2

N
(3.7)

Relative RMS=

vuuut
X

(�m � �c)
2X

�2m
(3.8)

The similarity index (SI), is a measure which is independent of the magnitudes of the two fields. It

provides a measure for the changes in pattern between two fields.

Similarity Index=

X
�m�c �

�X
�m
X

�c
�

NvuutX
�2m �

�X
�m
�2

N

X
�2c �

�X
�c
�2

N

(3.9)

3.2.4 Sobolev Smoothing

One of the primary aims of fitting discrete data is to provide a uniform distribution of the infor-

mation supplied by the data. Ultimately, in a well determined problem, there would be a large

quantity of evenly distributed data compared to mesh DOF and there would be no error associated

with the data. However, in practice, these data will be distributed in a non-uniform manner and

will have some degree of error associated with them. In some cases, the amount of data may be

sparsely distributed and the number of DOF used to represent this data may greatly outweigh the

information supplied (e.g.,fitting torso surface potentials to a computational mesh). In other cases

the data may be non-uniformly distributed or not obtainable in some locations (e.g., the lack of

right ventricular free wall information from ultrasound images as explained in Section 3.4.2).

Errors may be associated with the geometric location of the data point, the value of the field associ-

ated with the data point or a combination of the two. Typically, when dealing with experimentally

measured data there will be errors associated with both the geometric location and the field val-
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ues. The presence of these errors mean that minimising the least squared error between data points

and the evaluated field in Equation (3.1) will not necessarily produce an accurate finite element

representation of the underlying field being modelled. Even with clean data, free of any error,

minimisation of Equation (3.1) may produce a highly oscillatory field which is usually not desired.

With the lack of data in some locations, if the objective function is only measured in terms of de-

viation from the data points, as in Equation (3.1), the finite element representation of the field may

deviate in an unwanted manner without affecting the objective function. This situation was encoun-

tered when constructing a right ventricular surface from three-dimensional ultrasound images (see

Section 3.3.3). Typically, views of the right ventricular free walls are difficult to obtain, especially

when the subject is lying in a supine position, and it was found that lack of data in these locations

would cause the surface to collapse if it were not appropriately constrained. This was overcome

by constraining the position of a small number of nodes. An alternative approach is to perform

the model fitting process using three-dimensional volume elements instead of two-dimensional

surface elements (i.e., model the myocardium volume instead of modelling the endocardial and

epicardial surfaces). This way wall thickness, ventricular chamber volumes and the volumes of

groups elements can be explicitly modelled and constrained. Alternatively the addition of a shape

deformation penalty function to the objective function, as used by Cordier & Magnenat-Thalmann

(2000), or a host mesh fitting approach such as that described in Section 3.4.1 used.

When modelling realistic biological fields, discontinuities do not generally occur. By provid-

ing a penalty on discontinuities and excessively curved surfaces, accurate representations can be

achieved. Thissmoothness constraintor Sobolev value provides a penalty against excessive cur-

vature in a surface. The Sobolev value reduces the effect of error in the known data information,

both in the geometric locations of the field value and the actual field value and helps to prevent

ill-conditioning in the matrix when the information supplied by the data outweighs the DOF of the

fitted field.

Thepth order weighted Sobolev norm is defined as

gp;w (x) =

pX
q=0

X
i+j=q

wij





 @qx

@�1
i@�2

j






2

(3.10)

wherewij are weighting values applied to the component ofg (x). If the Sobolev norm is defined
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over the entire mesh then the Sobolev value can be calculated over the entire solution domain
 as

G (x) =

Z



g (x) d
 (3.11)

The constraint is then introduced by adding an additional term to the objective function in Equa-

tion (3.1),i.e.,

minF (u) =
DX
d=1

[u (�d)� ud]
2 +

Z



g (u (�)) d� (3.12)

For a two-dimensional surface, the smoothing constraint is given by
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The first term in Equation (3.12), represents the error between the known and constructed field,

while the second term in Equation (3.12) measures the deformation of the surface. This smoothness

constraint hence provides a penalty against excessive curvature in a surface. The parameter� is

applied to the first-derivative terms (a measure of length) and controls the tension of the surface

and the parameter� is applied to the second-derivative terms and controls the degree of surface

curvature (Terzopoulos 1986).

As the residual error and the Sobolev values are calculated independently, care must be taken to

balance their contributions to the objective function, when choosing the weighting values� and�.

The weights must be chosen such that the Sobolev value does not overwhelm the data residual and

the resulting field has little resemblance to the data.

A low Sobolev weighting often results in a mesh that closely matches the data, but has high local

curvature while a high Sobolev weighting will result in a mesh with low curvature (taking a form of

lowest energy) which does not match the data well. Examples of under, over and typical smoothing

values are illustrated in Figure 3.3.
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Consider the case of fitting an element to data specified by the analytic function

f(z) =

p
x2 + y2

2
(3.14)

in a rectangular-Cartesian coordinate system. The function was specified at14 randomly spaced

data points in thex � y plane with thez elevations analytically specified by Equation (3.14) and

are shown as purple spheres in Figure 3.3. A single10 � 10mm square bicubic Hermite element

is used to represent this surface. The horizontalx andy nodal values and derivatives were fixed

and thez elevation values and derivatives allowed to deviate. Different levels of smoothing were

applied and the resultant solutions shown in Figure 3.3 and Table 3.1 obtained.

Figure 3.3: The effects of Sobolev smoothing values (� and�) on a fitted surface. From the
left, the effects of under, typical and over smoothing the fitted surface. The smoothing values,
the RMS errors measuring the deviation between the data points (purple spheres) and the blue
surface as well as the RMS deviation between nodal points (gold spheres) and Equation (3.14)

are given in Table 3.1.

The primary measure of the accuracy of a good fit is the deviation between the known field values

at data points and the interpolated finite element field value.

As a known field (with the analytic function specified by Equation (3.14)) is being reconstructed,

it is possible to evaluate the field at extremities where data points are not influencing the fit (e.g.,

the nodal positions at the corners on the mesh). By examining the deviation between the field at

the nodes and the analytic values in Table 3.1, an improved measure of the accuracy of the fit can

be used.

From the RMS errors in Table 3.1, all three surfaces provide RMS errors of less than1 mm.

However, only the fit with typical smoothing values of� and� equal to1�10�3 provides an

accurate representation of the function at the nodal positions. The under-smoothed field matches

the data most accurately but suffers from very high local curvatures and the over-smoothed field

does not provide a true representation of the curvature present in the data.
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UNDER SMOOTHING TYPICAL SMOOTHING OVER SMOOTHING

� 1�10�5 1�10�3 1�100

� 1�10�5 1�10�3 1�100

RMS AT DATA POINTS 0:05 0:12 0:75
RMS AT NODES 2:29 0:46 2:66

Table 3.1: The effects of Sobolev smoothing values (� and�) on a fitted surface. RMS errors
(mm) measure the deviation between the surface and 11 data points and the deviation between
the 4 nodal positions and the analytic expression Equation (3.14). The surfaces are shown in
Figure 3.3. All three fields have an RMS error at the data points of less than 1 mm, but only
the surface produced with normal-smoothing values provided an accurate representation of the

analytic function.

3.3 Applications of Geometric and Field Fitting

The theory described in Section 3.2 provides a general procedure for creating a full finite element

field from discretely sampled data. Although the same principles are used, slight variations are

introduced when different forms of the data are being fitted to. Sections (3.3.1)–(3.3.3) outline a

number of different applications of the fitting techniques.

3.3.1 Activation Time Fitting

Potentials on the heart surface may be measured experimentally using an electrode sock. From

these signals an activation time can be calculated using a moving finite difference scheme at each

electrode. The point of greatest negative slope was considered to be activation of that location.

Displaying this information over the entire ventricular heart surface is known as an activation map

(see Section 1.3).

As the information is supplied at discrete positions, a full field must be created to display the

information over the entire heart surface. The data for the fit is provided by the location of the

electrode and an activation time for each electrode. The physical locations of the electrodes are

assumed to remain constant. This can be considered an accurate assumption as only the QRS

interval is modelled and little cardiac motion occurs during this phase of the cardiac cycle.

Figure 3.4 shows the fitted activation field with data obtained from potential recordings using

an epicardial sock with127 electrodes. The potentials were measured directly on the epicardial

surface of an anaesthetised pig using the methods of Nash et al. (2000b). Activation times were
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then calculated from each of the potential traces as the point of maximum downstroke, then a full

field created using the linear fitting methods described in Section 3.2.

0 5 10 15

Figure 3.4: Fitted activation field (ms) derived from signals obtained from a 127 electrode
epicardial sock. The locations of the electrodes are shown as purple spheres and the labelled
gold spheres (A–D) represent the four electrode traces shown in Figure 4.7. The activation
times were fitted with an RMS difference of 1.5 ms and the duration of the recorded activation
times at the electrodes was 16 ms compared with 15 ms for the entire fitted field. The anterior

epicardial surface is shown on the left and the posterior on the right.

The final fitted field had an RMS error of1:5 ms and the duration of the recorded activation field

was16 ms compared with15 ms for the fitted field. Considering the likely presence of errors

in the geometrical location of the electrodes, this fit provides a good representation of the actual

activation field.

3.3.2 Signal Fitting

For the inverse problem of electrocardiography it is necessary to have information about the tem-

porally varying potentials on the surface of the torso. With the discretisation process of the FEM

it is only necessary to provide information at each nodal site to be able to recreate the field at any

location within the domain. However, due to experimental limitations it is not possible to directly

measure the potentials at each nodal site. To overcome this problem, it is necessary to use the

known experimental data to interpolate information at the nodal sites.

The potentials on the heart surfaces and torso surface are both temporally varying. They can

however, be treated as being independent at each time step (Plonsey 1969). Fitting of such a

temporally varying scalar field uses the same principles as Section 3.3.1, except that the right hand
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side of the system in Equation (3.6) is recalculated at each time step. As with Section 3.3.1, each

data point is the location of the recording site of an electrode. The positions of the electrodes are

assumed to be constant during the recording period. This is a valid assumption since potentials are

recorded from the subjects during breath-holds so little respiratory motion occurs.

The potential field on the torso surface of a pig was reconstructed from ECG recordings obtained

simultaneously from256 sites. The potentials were recorded for8 seconds over16 heart cycles at a

frequency of1 kHz and then beat-averaged to produce a representative control heart cycle for this

animal. Of the256 recordings,16 were rejected due to poor or faulty recordings. The locations

of the recording sites were measured using a mechanical digitiser and then orthogonally projected

onto the model surface.

The model was customised using the generic model using the process outlined in Section 3.4.1. The

RMS error between the recorded electrode positions and their projected positions on the customised

torso surface was15:23 mm. This was considered to be a large error but is the only complete data

set available.

The signals were fitted to a bicubic Hermite field using Sobolev smoothing factors� and� (from

Equation (3.13)) equal to1�10�3 and the fitted signal subsequently constructed through the use of

Equation (2.1). A subset of8 electrode traces showing both fitted and recorded signals is given in

Figure 3.6 and their relative locations on the torso surface are shown in Figure 3.5.

106

37

130
177

151

98

61

154

223

Figure 3.5: Location of a subset of electrodes on the torso. The signals recorded from elec-
trodes 37, 61, 98, 106, 130, 154, 177 and 223 are shown in Figure 3.6. The signal recorded
from electrode 151 along with an instantaneous potential field on the surface of the pig model
is shown in Figure 3.7. The anterior surface is shown on the left and the posterior on the right.

The common edge down the centre corresponds to the left mid-auxiliary line.
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The numerical errors associated with these signals are given in Table 3.2. The time instances of

20; 30 and40 ms were chosen as times to compare the recorded and fitted signals as this was the

period with the sharpest gradients in the potential fields and were expected to be the hardest to

represent. An integral measure was also used over what was considered to be the QRS interval

(20–30 ms). From Table 3.2 and Figure 3.6, it can be seen that the fitted signals provide a good

representation of the recorded signals. The fitting has also removed some of the effects of exper-

imental error in the electrode location and signal noise. From the traces in Figure 3.6, the fitted

signal has less electrical noise artifacts if we assume that the true body surface signal is temporally

smooth.

MEASURE 20 ms 30 ms 40 ms QRS INTERVAL

REL. RMS 0:185 0:127 0:140 0:108
SI 0:970 0:991 0:987 0:994

MAX . j4�j 1:024�10�02 1:053�10�01 2:171�10�02 1:524�10�01

MIN. j4�j 3:224�10�03 2:851�10�02 1:558�10�04 5:727�10�02

MAX . 4�% �2:310 13:530 �4:180 �3:830
MIN. 4�% 0:410 1:650 �0:040 0:410

Table 3.2: Comparison of the 240 recorded electrodes and the fitted signals with different
measures: relative RMS, similarity index (SI), percentage and absolute differences (mV) of the
maximum and minimum signals. The error metrics are defined in Section 3.2.3. The signals

are compared at specific time instances and by integrating over the QRS interval.

An illustration of the full fitted field displayed on the pig model, at a specific time instant, is given

in Figure 3.7. The recorded signal from a single electrode is also displayed to mark the instant at

which this electrical state was recorded.

3.3.3 Geometric Fitting

With geometric fitting, the information is typically provided in the form of clouds of data which

have been extracted from medical images such as MRI, CT or ultrasound. The data points cor-

responding to surfaces of interest which have been extracted from the images. Figure 3.8 shows

traced images of the epicardial and endocardial heart surfaces from MRI and ultrasound data.

By minimising the sum of squares distance between each data point and its nearest point on the

surface, a geometric surface representation of the data can be achieved. To this point, it has been

assumed that the orthogonal� projections onto the finite element surface remain constant as the
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Figure 3.6: The recorded signals (red) compared with the fitted signals (blue) of 8 electrode
locations. Time (ms) is shown on the horizontal axis and potential (mV) on the vertical axis.

The electrode locations are illustrated in Figure 3.5.



3.3 APPLICATIONS OFGEOMETRIC AND FIELD FITTING 47

�0:5 0 0:5

Figure 3.7: Body surface potential map (mV) created by fitting data from 240 electrodes to a
geometrically customised computational pig torso model. The coloured field shows the spa-
tially varying potential field, from most negative (blue) to most positive (red). A trace from a
single electrode to mark the instant (red line) at which this electrical state was recorded is shown
in the centre. The location of this electrode (151) on the torso surface is shown in Figure 3.5.
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Figure 3.8: Epicardial and endocardial surface information is obtained by tracing around the
appropriate borders. On the left is a short axis MRI image through the heart and on the right an
ultrasound short axis view through the heart. The epicardial surface is traced with red points,

left ventricular chamber with green points and right ventricular chamber with blue points.

fitted field changes. This is usually an accurate assumption, except in the case where the geometry

of the surface changes after a fit (and thus the orthogonal projections). This can be overcome by

using an iterative linear fitting approach. Multiple fits are performed with the� projections (and

scale factors, if a Hermite mesh is used) being re-calculated after each linear fit until an adequate

solution has been obtained. As the calculation of the� projections change in a non-linear fashion,

the more accurate the initial mesh or starting solution, the faster the solution will converge to a

global minimum, although in practice only a few iterations are required.

Figure 3.9 illustrates fitting an epicardial surface model to sparse data obtained from three-

dimensional ultrasound images. The orthogonal projections at each iteration are shown as green

vectors. The crude initial mesh has no derivative information. The general topology of the epi-

cardium has already been reconstructed after one iteration. The RMS errors between the data

points and the orthogonal projections reduces from8:5 mm to 2:7 mm after one iteration. After

three iterations the RMS error has been reduced to2:2 mm.

3.4 Model Customisation

To use the information provided by imaging techniques such as MRI and CT it is necessary to

extract surface or volume information from the images. Even if the automated segmentation tech-

niques of Lorensen & Cline (1987) were completely reliable, the creation of a model of each surface
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Figure 3.9: Fitting an epicardial surface to sparse ultrasound data. Green error vectors indicate
the distances between each data point and its orthogonal projection onto the surface. Shown on
the left is the crude initial mesh with no derivative information. The subsequent images show
the mesh after one and three iterations. The RMS error has reduced from 8.5 mm to 2.7 mm

after the first iteration. The final RMS error after three iterations is 2.2 mm.

from the geometric data using triangulation techniques or the methods presented in Section 4.2, is

a non-trivial exercise. Such a complicated and time-consuming approach is impractical for routine

clinical applications.

The organs and structures being modelled typically have the same topological features for each

subject and it would be beneficial thata priori information can be used to help create a subject

specific model. The main objective of the customisation process is to have the ability to deform a

generic mesh to match a specific subject given only a relatively small number of parameters.

Cordier & Magnenat-Thalmann (2000) compared two techniques for organ reconstruction using the

Visible Human Dataset. The first technique was a semi-automatic snake technique, which defined

organ contours on each slice, then joined up the contours to create surfaces. Another technique

involved a Shape Constrained Deformable Model. The idea of this method is that shapes of organs

are similar for most patients. The initial shape was approximately placed within the organ and the

initial shape then deformed using the image information and the shape memory. The segmentation

process was formulated as the minimisation of a cost function which involved a shape memory

force that kept the shape of the generic model and an image interest force that moved vertices

towards high edge densities. Both of these methods require the full volumetric data in the form

of image slices, which is time consuming to obtain, with an MRI study taking the order of several

hours.

One method of creating a subject specific model is to use a ‘generic’ model with similar topo-

logical features and ‘customise’ it by minimising the differences between the generic model and

the subject. Crocombe (1997) investigated such techniques for quickly constructing models of
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a specific object with little geometric information given prior knowledge about the structure and

form of the data. The method consisted of two main steps: variable length scaling and radial scal-

ing. The variable length scaling attempted to adjust the elevation of each node according to key

landmark measurements (e.g.,the distance between hips and the Xiphoid process and the distance

between the Xiphoid and the supra-sternal notch). To account for radial variations in the models,

circumferential measurements at a number of elevations were obtained and polynomial functions

as a function of the elevation and cosine functions as a function of the angle around the girth were

adjusted. The polynomial functions provided a constant scaling at each elevation while the cosine

function allowed for variations at a given height. As the entire mesh is still being adjusted, but

being minimised with respect to fewer constraints than a full fitting technique, this procedure was

still quite time consuming. One major drawback to the radial scaling technique is that it assumed

that the data was located centrally around a given axis. If the subject is not lying on an orthogonal

axis then the data will need to be appropriately transformed.

3.4.1 Host Mesh Customisation

The method of host mesh customisation provides a novel method of customising a generic model

to a specific given only a few key landmark positions. It reduces the number of degrees of freedom

which are involved in the customisation process. This is achieved by embedding the object of

interest, theslavemesh (e.g.,a heart or torso model), within a largerhostmesh. The geometric

parameters of the slave mesh (e.g.,nodal position and derivatives) are then defined as material

coordinates, or� positions within the host mesh. By then deforming the host mesh, the slave mesh

is implicitly transported within it. The host mesh is able to transform the slave mesh (which may

contain a large number of DOF) by only manipulating a relatively small number of parameters, or

DOF.

The local� coordinates of the slave mesh remain constant within the host mesh, yet the global

positioning has changed due to the deformation of the host mesh. The global positions of the slave

mesh can then be updated to produce the customised model. By using different types of basis

functions to interpolate the host mesh, it is possible to represent different variations in the target

data (i.e., cubic Hermite basis functions will also allow a cubic variation and enforce continuous

derivatives across elements).

The deformation of the slave mesh can be controlled in a number of fashions. It can be moved
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by eye, till a suitable customised mesh results or an automated technique which involves control

points. Control points are pairs of landmark points which are identifiable on both the generic model

and the subject.

The control points typically consist of external landmarks such as the supra-sternal notch, the

Xiphoid process, hip and shoulder locations and girths at these locations. As the subject lies

supine on a table for the entire experimental procedure, it was assumed that this back plane was

concurrent between the generic and specific meshes. This provides the fitting process with an

additional constraint. Key features of the heart size and orientation are also used to position the

initial heart model inside the torso cavity. Detailed information about heart geometry can be added

later in the customisation process and is outlined further in Section 3.4.2

The RMS distances between the control point pairs are then minimised by adjusting the host mesh

through the use of the FEM fitting procedure from Section 3.2. The new positions of the embedded

slave mesh can then be recomputed from the new host mesh positions.

Figure 3.10 illustrates a simple example of this fitting technique where the slave mesh (shaded

circle) has been embedded within the square host mesh. The host mesh has then been deformed

to minimise the distances between the landmark points (white circles) and the target points (black

circles). The embedded slave mesh is thus deformed along with the host mesh.

Figure 3.10: A simple host mesh customisation example using bilinear basis functions. Four
landmark points are located within the left host mesh (white circles) and the corresponding tar-
get points on the right (black circles). By deforming the host mesh to minimise the differences,
a new host mesh geometry is created on the right. The shaded circular object embedded within

the host mesh was then transformed accordingly.

The customisation process for a specific animal is illustrated in Figure 3.11. The smaller generic

mesh has been customised to produce a mesh of a larger specific animal. Here, nine common

landmark pairs (the landmark points shown as gold spheres and the target points as green spheres)



52 GEOMETRIC & FIELD FITTING WITH THE FINITE ELEMENT METHOD

were used to control the slave mesh. All the landmarks and the generic mesh were placed within

an arbitrary host volume mesh and the local� coordinates calculated. This produced the deformed

outer green host mesh in Figure 3.11.

Figure 3.11: Host mesh fitting of the generic porcine model. The original host mesh is shown
in gold and the resulting deformed host mesh in green. On the left, the generic landmarks are
shown as gold spheres and target points as green spheres. The solid generic mesh is enclosed
within the original host mesh. Shown on the right is the opaque generic mesh and the transpar-
ent customised model. The original host mesh, shown in gold, is deformed to the green mesh

to minimise the distance between the target and generic landmark positions.

While the customisation process is not as accurate as what can be achieved by using full CT or

MRI information in a fitting procedure, it provides a quick way of tailoring a generic mesh to a

given animal. With full CT or MRI data the following process can be used to generate a starting

mesh from which to then do further non-linear fitting using the methods outlined in Section 4.2.

3.4.2 Heart Customisation

The orientation and size of each subject’s heart must by accurately determined for it to be effectively

used in the modelling process. The time, cost and availability of full MRI data for each subject

has meant that an alternative non-invasive imaging technique was required to obtain quantitative

three-dimensional geometry of a given subject’s heart. The use of three-dimensional ultrasound

has been used to provide an efficient non-invasive means by which to obtain heart geometry from

humans and unlike MRI does not exclude subjects with pacemakers.



3.4 MODEL CUSTOMISATION 53

The three-dimensional ultrasound setup used was similar to the system used at the University

of Washington (Legget, Leotta, Bolson, McDonald, Martin, Li, Otto & Sheehan 1998). It was

developed for the examination of heart valve geometry and has been adapted to obtain left and

right ventricular heart geometry. The setup consists of a standard two-dimensional ultrasound

transducer with a magnetic tracker mechanism attached as shown in Figure 3.12. The Flock of Birds

magnetic tracker system (Asension Technology Corporation 2000) consists of a magnetic field

transmitter and receiver that generates and receives three orthogonal magnetic fields. These are used

to compute the receiver’s three-dimensional position(x; y; z) and orientation (azimuth, elevation

and roll) in space with respect to the transmitter. The magnetic-field system allows the position

and orientation of the trans-thoracic transducer to be tracked during freehand scanning. This allows

acquisition of images from randomly oriented image planes from different acoustic windows. The

magnetic field system allows images to be acquired from any combination of intersecting, parallel

or oblique imaging planes, in order to fully interrogate the heart.

Figure 3.12: Hewlett-Packard S4 Ultrasound transducer with magnetic receiver. The ultra-
sound transducer (red) with holder (black and white) and the attached Flock of Birds magnetic

receiver. The larger square box in the background is the magnetic transmitter.

To minimise interference from the ferromagnetic materials, patients are scanned on a wooden bed

frame with brass screws. The subject lies supine (in the same position in which electrical recordings

will occur) and remain still for the duration of the scanning procedure, approximately20 minutes.

Landmark positions on the torso surface are obtained at the beginning and end of the procedure to

ensure the patient has not moved excessively. These are also used to align and combine the different

imaging modalities at a later stage. The two-dimensional ultrasound images are obtained at25 Hz

with a concurrent ECG trace so that images can be extracted at end-diastole. This corresponds to

the heart geometry during the QRS segment of the cycle as required for activation inverse modelling

of the ventricles.

The spatial relationship between the Flock of Birds magnetic receiver and the image plane must
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be known in order to achieve accurate image registration in three-dimensional space. The location

and orientation of the image plane was offset by the holder and the ultrasound transducer by an

unknown amount. To determine this relationship, a similar calibration process as that performed by

Legget et al. (1998) was employed. As shown in Figure 3.13, a glass bead was suspended from a

thread in a water phantom with a diameter of125 mm. A Hewlett-Packard Sonos 5550 ultrasound

machine with a S4 ultrasound transducer was used with a depth setting of10 cm.

This bead was then imaged from32 evenly spaced locations around the phantom. The location

of the centre bead in each image was then digitised by hand. As the size of the bead was small

(approximately2 mm in diameter), its acquisition with the ultrasound beam was also difficult.

However, the small size of the bead also ensured the centre of the bead was repeatedly imaged and

the error in digitisation was reduced. However, digitisation of the bead’s location was also difficult

due to the poor clarity of the images and the shadow and distortion effects caused by the bead itself.

An example of such distortions are shown in Figure 3.14.

Given the relative locations of the transducer and the glass bead, the system was calibrated by

minimising the predicted and measured distances in a least squares sense. The calibration process

was performed an additional two times with the transmitter in different orientations. The results

for the three independent calibration runs generated a transformation matrix which matched the

digitised data to within2 mm RMS. The ability to localise a point in three-dimensional space was

of similar accuracy of that reported by Legget et al. (1998) and better than that shown by Moritz,

Pearlman, McCabe, Medema, Ainsworth & Boles (1983).

Traditionally, ultrasound views of the heart have concentrated on the left ventricle and the valves.

Our procedure requires geometry of the left and right ventricles and the subject to be in a supine

position during the scanning process. The ultrasound views which were used included a combina-

tion of standard views as well as some views which have been tailored to obtain additional right

ventricular information. The views used include: parasternal long and short axis, apical two and

four chamber views, posterior apical chamber and subcostal views.

From the two-dimensional images, valve rings, epicardial and both endocardial surfaces were man-

ually traced. An example of tracing a two-dimensional slice is shown in Figure 3.15a. These were

then transformed and collated into three-dimensional data surfaces from which geometric models

can be created, such as shown in Figure 3.15b.

The large variability in heart shape between subjects and the difficulty in obtaining an even coverage
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Figure 3.13: The calibration process of the ultrasound setup. Shown on the left is a schematic
of the calibration setup and on the right the recording process. Ultrasound conductivity gel was
coated on the outside of the water phantom to ensure good contact with the transducer. The
glass bead was suspended inside the phantom and held still by a weight. The bead was then im-
aged from 32 locations around the phantom, producing images like that shown in Figure 3.14.

Figure 3.14: Two-dimensional ultrasound image of the glass bead obtained from the calibra-
tion setup shown in Figure 3.13.
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(a) (b)

Figure 3.15: Constructing a three-dimensional model from two-dimensional ultrasound im-
ages. (a) A two-dimensional ultrasound with traced surfaces. The epicardial, left ventric-
ular and right ventricular chamber surfaces were then identified and traced. (b) The three-
dimensional model constructed from two-dimensional data assembled into three-dimensional

space using the information from the magnetic tracker.

of data has meant the techniques described in Section 3.4.1 for customising the torso surface are not

totally suitable for creating a subject specific heart mesh. At this stage, the traditional linear fitting

methods described in Section 3.2 are used for creating the heart meshes as shown in Section 3.3.3.



4 Geometric Torso &
Cardiac Source Models

Over the last two decades, increasingly accurate numerical torso models have been used to study

a variety of electrical phenomena, including defibrillation, calculation of radiation doses in radio-

therapy, and the forward and inverse problems of electrocardiography (Skouibine, Trayanova &

Moore 1999, Bradley, Pullan & Hunter 1997). To study these events (using a mathematical mod-

elling approach) it is necessary to describe the electrical activity within the heart and the geometry

of the torso mathematically. This chapter describes the geometric and cardiac source models which

are used in Chapters (5)–(7) in forward and inverse simulations.

There now exists complete, high resolution, three-dimensional data sets of the male and female

human body from the Visible Human Project (National Library of Medicine 1994), to which

geometric torso models have been created (Lorensen 1996, Sachse, Werner, Mery-Waarden &

Dossel 1998, Magnenat-Thalmann & Cordier 2000). The Visible Human Project is the creation

of complete, anatomically detailed three-dimensional representations of normal male and female

human bodies. Acquisition of transverse CT, MRI and cyrosection images of a male and female ca-

daver have been completed and the data is freely available. However, as the subjects are deceased,

the heart is not in its natural state when these images were acquired.

With the common availability of non-invasive, medical imaging modalities such as MRI and CT,

obtaining further non-invasive data from specific subjects is also now possible. The data from these

imaging modalities is typically presented as a series of two-dimensional image planes, which when

stacked form a three-dimensional volume of data. From these data, realistic and accurate geometric

models can be created.

57
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4.1 Previous Geometric Models for Electrocardiology

There are three main model types which are used in modelling the inverse problem of electrocar-

diology: physical, analytic and numerical. Physical models approximate the solution domain but

measure, rather than solve, the governing physical equations. Analytic models grossly approximate

the solutions domains (usually in the form of regular, spherical or cylindrical domains) so that the

governing equations can be exactly solved everywhere with an analytic expression. Numerical

models approximate the solution domain, usually with discrete surfaces or volumes (finite/bound-

ary elements) and solve governing equations at a number of computational points within the solu-

tion domain.

Physical models typically consist of an electrolyte filled torso shaped tank. Different materials are

used to represent the internal torso homogeneities (e.g.,porous sand bags for lungs). Currently, the

most advanced physical models are those of Rush (1971) and MacLeod, Taccardi & Lux (1995).

These types of models are an essential part of understanding the problem and provide a controlled

and idealised environment from which detailedin-vivomeasurements can be obtained for validation

purposes. Physical models provide a near control environment in which it is possible to investigate

the effect of different modelling errors, however, they do not provide the complete controlled

environment of mathematical simulations or provide the exposure to the variety of errors which are

present inin-vivo experiments.

The earliest analytic models were based on dipoles within a spherical medium (Wilson &

Bayley 1950). These models, despite their simplicity, provide some useful results regarding the

effects of geometry and individual inhomogeneities on the torso potentials and currents. The most

advanced analytic model to date is the eccentric spheres model of Rudy & Plonsey (1979) and

Messinger-Rapport & Rudy (1986) where a system of eccentric spheres approximated ventricular

blood masses, the myocardium and the pericardium. Another torso model used surface Harmonic

expansions for modelling the human torso Hren & Stroink (1995). This was an efficient method for

modelling the human torso surface. However, the complex structures of the internal organs cannot

be modelled using these methods and there was no associated analytic solution.

The rapid increase in computing power has seen a shift away from using physical and analytic mod-

els towards using numerical models to solve the problems of electrocardiology. There have been a

few Finite Difference (FD) models (Budgett 1995), but the majority of numerical models have been

Finite Element (Yamashita & Takahashi 1984, Johnson, MacLeod & Ershler 1992) and Boundary

Element based (Tilg, Wach, SippensGroenewegen, Fischer, Modre, Roithinger, Mlynash, Reddy,



4.2 MODEL GENERATION 59

Roberts, Lesh & Steiner 1999, van Oosterom & Huiskamp 1989). There now exist coupled FEM-

BEM models which incorporated the advantages from each of the methods into the appropriate

regions (Bradley et al. 1997, Fischer, Tilg, Modre, Huiskamp, Fetzer, Rucker & Wach 2000).

4.2 Model Generation

Medical imaging techniques such as MRI and CT are able to producein-vivo volumetric data sets

of biological samples by exploiting the varying material properties of the different organs within

the torso. The volumetric data sets produced by the medical imaging techniques however, do

not directly provide information about the subject’s structure. From this volumetric data set, the

information must be classified or segmented such that regions of interest can be extracted.

Techniques such as Marching Cubes (Lorensen & Cline 1987) and Region Growing (Sapidis & Besl

1995) were designed to automatically segment data sets into areas of similar material properties.

However, due to the poor clarity of medical images and the close proximity and complexity of the

organs, the extraction of surfaces with the use of image processing is still a developing process,

and human intervention is almost always required.

This has led to the development of semi-automatic fitting techniques such as guide point fitting of

Hedley (1998) and the voxel classification of Budgett (1995). Hedley (1998) used a combination of

manually entered guide points and image analysis to construct a finite element left ventricle model

from short and long axis MRI images. Budgett (1995) used MRI data to extract voxel elements.

From the MRI images the fat, trunk, lung, heart, great blood vessels, liver and spine were extracted.

The images were filtered to enhance particular tissues and heuristic information was included about

the relative location of each of the organs. This involved a semi-automated approach where user

interaction is included at several stages in the classification process.

Automatic extraction of surface information from volume data sets is still a developing field. This

process is particularly difficult for features such as the endocardial surfaces, where there is not a

high contrast between the blood masses and myocardium, and the right ventricle, which has a thin

free wall. Despite manual digitisation of images being subject to human judgement, it is considered

to be the most stable method of surface classification. The geometric models produced in this thesis

were produced from manually digitised images.
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Structures such as papillary muscles within the heart are usually ignored when modelling the elec-

trical activity within the heart. They are unlikely to cause significant effects on the torso surface

potentials but can be included as another source of error in the modelling process. By taking a

boundary element modelling approach, including complex geometries, such as bone, would dra-

matically increase the problem complexity. Previously studies by Klepfer, Johnson & MacLeod

(1997) had found that the addition of bone structures has little effect on the forward computed torso

surface potentials.

The surface data can be used to create surface or volume meshes. To createC1 bicubic Hermite

surfaces meshes the geometric data fitting procedure described in Bradley et al. (1997) was em-

ployed. Each surface of the model was considered independently, but care was taken to ensure that

the surfaces did not intersect, especially when the surfaces are located in close proximity to each

other (e.g.,the lung surfaces surrounding the heart).

To minimise the fitting time, it was desirable to use an initial mesh which provided a close ap-

proximation to the data. To obtain the initial mesh, advantage was made of the fact that data were

arranged in slices with a constantz elevation. For each surface, the minimum number of nodes

in the circumferential direction was chosen which could still suitably represent the desired com-

plicated shape. The number of nodes in the longitudinal direction was chosen such that resulting

elements remained relatively square.

For each surface of interest, a number of uniformly spaced slices were chosen and a two-

dimensional mesh was constructed from nodes uniformly spaced circumferentially around the slice.

Care was taken to ensure that the position of each node lined up with the corresponding nodes from

the slice above and below. Initial derivatives were set from a straight line approximation between

nodes. Using the fitting procedure of Bradley et al. (1997), a two-dimensional mesh was fitted with

cubic Hermite elements.

These two-dimensional meshes where then stacked on top of one another. Bicubic Hermite ele-

ments were created by joining corresponding nodes between each of the slices. Initial derivatives

in the circumferential direction were obtained from the two-dimensional slices and calculated from

straight line approximations in the longitudinal direction and cross derivatives initially set to zero.

The fitting procedure was then applied to the full mesh to obtain the final three-dimensional mesh

for each surface.
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4.3 Generic Male Torso Model

The generic male torso model used in this thesis was based on the Bradley et al. (1997) high order

coupled FEM-BEM model. This model consisted of six regions: epicardium, left and right lungs,

skeletal muscle, subcutaneous fat and the outer torso layer. The homogeneous regions (epicardium

and lungs) were modelled using BEM while the anisotropic fat and muscle layer were modelled

using FEM. The data for this model was obtained from a healthy, 19 year old volunteer. It consisted

of a series of120 MRI images at5 mm intervals. This is the same data set from which the Utah

Torso model was constructed (MacLeod, Johnson & Ershler 1991, Johnson et al. 1992).

The activation based formulations for the forward and inverse problems of electrocardiology require

both the endocardial and epicardial surfaces to be explicitly modelled. Lack of detail in the original

MRI images prevented these surface being extracted so it was necessary to incorporate a new

ventricular heart model into the torso model. Therefore, the Auckland heart model, based on the

work of Nielsen, Le Grice, Smaill & Hunter (1991) and Le Grice et al. (1997) was used. The use

of this canine mesh allows the inclusion of the detailed fibre and sheet information obtained by

Le Grice et al. (1995) in the future.

The new heart model is a rectangular-Cartesian heart mesh is based on the60 element prolate mesh

of Le Grice et al. (1997) and the mesh fitted to their surface geometry data, using the positions

of the nodes in their mesh as initial values in the fitting process. The epicardial and endocardial

surfaces were artificially closed off at the valve plane with smooth surfaces to create an enclosed

domain for the boundary element mesh to surround. The size of the heart was then scaled by a

factor of11/3 in each direction to provide a heart of proportions more suited to a human.

Shown in Figure 4.1a is the epicardial surface from Bradley et al. (1997). This was less geomet-

rically accurate when compared to the new heart model shown in Figure 4.1b. Details such as

the inter-ventricular groove and endocardial surfaces are included in the new model. The previous

model was described by37 nodes while the new epicardial surface was modelled with62 nodes.

Both of these meshes were defined by bicubic Hermite basis functions.

The results from the fitting process are shown in Table 4.1 and the final fitted model shown in

Figure 4.2.
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(a) (b)

Figure 4.1: Anterior views of generic human heart models shown from the same perspective.
Shown in (a) is the epicardial surface model created by Bradley et al. (1997) from human
MRI scans. Shown in (b) is the new rectangular-Cartesian canine surface model created from
data of Le Grice et al. (1997). The canine model contains both endocardial surfaces while
the MRI model only contains epicardial surface information. The epicardial surface is shown
in red in (a) and the transparent surface in (b), the left endocardial surface in green and the

right endocardial surface in blue.

SURFACE NUMBER OF
NODES

NUMBER OF DATA
POINTS

RMS ERROR
(mm)

EPICARDIUM 62 802 1:37
LEFT VENTRICLE 62 770 2:18

RIGHT VENTRICLE 38 846 1:74
LEFT LUNG 74 2766 1:66

RIGHT LUNG 74 2750 1:69
OUTER TORSO 439 11966 1:43

TOTAL 749 19908 1:68

Table 4.1: Summary of the generic male torso fitting results obtained by fitting piecewise bicu-
bic Hermite surfaces to digitised data. The RMS errors are between digitised data points and
their orthogonal projections onto the fitted surfaces. The lungs and outer torso surfaces were
the same as those constructed by Bradley et al. (1997), while heart data was obtained from the

data of Le Grice et al. (1997).
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Figure 4.2: The full generic male model from an anterior perspective. Shown are the six
boundary element regions: epicardium (pale red), left and right ventricular chambers (green

and blue respectively), left and right lungs (beige) and the skin surface.
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Origin and Coordinate System

A rectangular Cartesian coordinate system was used to represent the data and the model. The origin

was located at the bottom of the Xiphoid process, on the back surface of the torso. This was chosen

so the coronal (x–z) plane will be the same as the table on which the subject is expected to lie

during a normal procedure. Thex axis is positive to the model’s left, they axis positive towards

the posterior of the torso and thez axis is positive towards the head.

4.4 Generic Porcine Model

The validation of numerical methods is crucial to their common acceptance. One method of vali-

dating a non-invasive electrical imaging algorithm is by obtaining concurrent measurements at the

heart level and on the torso surface. Such validation experiments are possible on some animals

and is currently being performed on pigs at the University of Oxford (Nash et al. 2000b). For the

purpose of analysing these experiments a generic porcine model was required.

To construct the generic pig model, a sequence of cross-sectional CT torso images of a20 kg

pig was obtained at the University of Oxford. CT scanning is a radiographic method that was

introduced in 1972 for neurological applications. It uses a rotating ultra thin X-ray beam with a

detector mounted on the opposite side. As the X-ray and detector make one revolution, the detector

takes numerous snapshots or profiles of the attenuated X-ray beam. Each profile is subdivided

spatially into a two-dimensional slice. Substances of different density are displayed at different

greyscales for visualisations of the internal structures. Bone, muscle and fat tissues absorb different

levels of the X-ray producing an attenuation coefficient that varies with density. High density bone

materials produce white pixels, whilst darker shades represent lower density fat and muscle. An

example of such a two-dimensional slice is shown in Figure 4.3.

The CT images were acquired from the deceased animal which was slowly ventilated. Each slice

was then acquired with the lungs fully inflated to simulate breath-hold in a live animal, as would

occur in the practice in thein-vivoexperiments. The generic model was created from99CT images,

each5 mm apart.

The porcine CT images were then digitised to provide a three-dimensional data set of six key

surfaces: epicardium, left and right endocardial chambers, left and right lungs and skin surfaces.
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Due to the leanness of the pig, the fat layer was not explicitly modelled and due to difficulty in

determining the base plane of the heart, both the ventricles and atria have been modelled as one

surface. These data were then used with the non-fitting procedure described in (Bradley et al. 1997),

to form piecewiseC1 continuous cubic Hermite elements of the above surfaces.

(a) (b)

Figure 4.3: A CT image slice (a) of the generic pig at mid-heart level. Shown in white are
the lungs, bones and fat layer. The muscle, myocardium and blood masses are shown as dark
regions. (b) is a closeup of the epicardium and lungs of the pig model with three of the CT

image slices from which the model was created overlayed at 25 mm intervals.

Origin and Coordinate System

The origin and coordinate system of the pig model is the same as that of the human torso. The

origin is located on the back surface of the pig in the supine position (i.e., on the surgical table)

and on the centreline of the pig. This is to account for the fact that the pig will be lying on a table

during anin-vivo experiment. The coronal (x–z) plane is equivalent to the table surface. Thex

axis was positive to the model’s left, they axis positive towards the posterior and thez axis was

positive towards the head.
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Figure 4.4: Generic porcine model created from digitised CT images (shown in Figure 4.3).
Shown are the skin surface (transparent), left and right lungs (beige) and the epicardial surface

(red). The ventricular chambers are not shown.
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4.4.1 Fitting Results

The six surfaces of the generic pig torso were fitted independently. The number of nodes for each

region was selected such that a good geometric representation of the surface could be achieved

while minimising the number of nodes. The final fitted model is shown in Figure 4.4 and the fitting

results in Table 4.2.

This generic model is referred to later as the model with level0 refinement (see Table B.1) and pro-

vides a framework on which to validate certain aspects of the whole procedure (e.g.,the appropriate

mesh resolution to use in the computational forward model).

SURFACE NUMBER OF
NODES

NUMBER OF DATA
POINTS

RMS ERROR
(mm)

EPICARDIAL 37 1603 1:23
LEFT VENTRICLE 27 500 1:47

RIGHT VENTRICLE 38 892 1:13
LEFT LUNG 74 2011 2:14

RIGHT LUNG 74 2640 2:71
OUTER TORSO 439 2417 2:47

TOTAL 689 10071 1:86

Table 4.2: Summary of the generic porcine fitting results obtained by fitting piecewise bicu-
bic Hermite surfaces to digitised CT slices of a particular pig. The RMS errors are between

digitised data points and their orthogonal projections onto the fitted surfaces.
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4.5 Material Properties

In addition to the geometric description of a computational model, the electrical conductivities of

the various torso inhomogeneities must be specified to provide a complete description of the model.

At a microscopic level, the discrete nature of cell structures dictate that all tissue is anisotropic.

However, at a macroscopic level, many tissues can be approximated as being electrically isotropic.

For the simulation studies conducted during the course of this research, the exact values of the

conductivities was felt not to be too critical. The sensitivity of the inverse solutions to the material

properties are investigated in Section 7.4.

A range of passive conductivities obtained experimentally and used in numerical simulations is

summarised in Table 4.3 while published bidomain conductivities are shown in Table 4.4. The

passive heart conductivity was used in the epicardial potential approach described in Section 5.6.2

while the bidomain conductivities in Section 4.5.2 are used for the activation approach described

in Section 5.6.3 .

4.5.1 Passive Electrical Conductivities

The passive conductivities used for this thesis were derived from a number of published experi-

mental papers (Rush, Abildskov & McFee 1963, Geddes & Baker 1967, Foster & Schwan 1989).

These conductivities were measured experimentally, mostly on dogs. The electrical properties of

the tissue are characterised by electrical conductivities parallel to (L) and perpendicular to (T) the

fibre distribution in the myocardium. However, by assuming the myocardium to be electrically

isotropic, an intermediate value must be used. This assumption also greatly reduces the problem

size of the inverse procedures described in Chapter 6.

The differences in material conductivities can be attributed to the fact that they were obtained exper-

imentally from a number of sources and under different conditions. Furthermore, the measurements

were performed using tissue samples, which may not represent the true impedance of the living

in-vivo tissue. Thus, there exists an uncertainty regarding the correct values of the tissue conduc-

tivities. However, a more important contribution may emerge from the fact that tissue conductivity

may be different between species and may change due to many physiological and pathological con-

ditions such as temperature, posture changes and when electrolytic or water balance of the body
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is disturbed (Hyttinen, Puurtinen, Kauppinen, Nousiainen, Laarne & Malmivuo 2000, Rosenthal,

Restieaux & Feig 1971).

In addition to the experimentally measured conductivities, the conductivities used in numerical

simulations were also considered (Fischer, Tilg, Wach, Modre, Leder & Nowak 1999, Bradley,

Pullan & Hunter 2000, Hyttinen et al. 2000). It should be noted that the conductivity value for

heart of Bradley et al. (2000) was increased to account for the fact that the model did not contain

blood masses.

The passive material conductivities were chosen to be consistent with the trends of multiple sources

presented in Table 4.3 rather than with an individual paper. The conductivity values used throughout

this thesis are shown in the last column of Table 4.3.

TISSUE RUSH GEDDES FOSTER FISCHER BRADLEY HYTTINEN THIS THESIS

BLOOD 0:617 0:667 0:600 0:60 — 0:667 0:63
HEART — 0:104 — — 0:50 0:22 0:30

HEART (L) 0:397 — — — — — —
HEART (T) 0:178 — — — — — —

LUNGS 0:048 0:046 0:089 0:04 0:05 0:075 0:05
TORSO 0:216 0:241 0:239 0:20 0:22 0:25 0:22

Table 4.3: Passive electrical conductivities (mS mm�1) obtained experimentally by Rush et al.
(1963), Geddes & Baker (1967) and Foster & Schwan (1989). Electrical conductivities used in
computational simulations by Fischer et al. (1999), Bradley et al. (2000), Hyttinen et al. (2000)
and those used in this thesis. The index L denotes conductivity in a longitudinal direction and

T the conductivity in the transverse direction with respect to to fibre orientation.

Heart conductivities vary greatly depending on the fibre direction within the myocardium. Trans-

verse heart conductivities were determined to be0:178 mS mm�1 while longitudinal conductivities

were determined to be0:397 mS mm�1 by Rush et al. (1963). The blood conductivities within the

ventricular chambers were fairly constant with values ranging from0:6 to 0:667 mS mm�1. This is

probably a result of the homogeneous nature of the medium and the ease with which experimental

samples can be obtained. A value of0:63 mS mm�1 was chosen for the simulations. The lung con-

ductivities vary depending to the degree to which a lung is inflated. The conductivities had a range

of 0:042–0:089 mS mm�1. The lung conductivity for this thesis was chosen to be0:05 mS mm�1.

The torso conductivities were generally obtained from human subjects and had values between

0:216 and0:241 mS mm�1 and a value of0:22 was chosen for this thesis.
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4.5.2 Bidomain Conductivities

The bidomain model (Tung 1978, Henriquez 1993) is a volume averaged model of the electrical

properties of cardiac tissue which models two inter-penetrating domains – the intracellular and

extracellular space. The electrical properties of the tissue are characterised by electrical conduc-

tivities parallel to (L) and perpendicular to (T) the myocardial fibres in the intracellular (i) and

extracellular space (e). The values of these conductivities determine much of the electrical be-

haviour of the tissue. No consensus exists regarding the correct values of these parameters for

mammalian ventricular muscle. The bidomain conductivities have been measured experimentally

(Clerc 1976, Roberts, Hersch & Scher 1979, Roberts & Scher 1982) but as summarised in Ta-

ble 4.4, the data is inconsistent. Roth (1997) determined a general rule for determining the ratios of

the bidomain conductivities where the intracellular conductivity is approximately the same and the

extracellular conductivity and the longitudinal conductivity was determined to be ten times greater

than the extracellular conductivity.

DOMAIN CLERC ROBERTS79 ROBERTS82 SKOUIBINE FISCHER THIS THESIS

�i (L) 0:17 0:28 0:34 0:375 — —
�i (T) 0:019 0:026 0:06 0:0375 — —
�i — — — — 0:04 0:3

�e (L) 0:62 0:22 0:12 0:375 — —
�e (T) 0:24 0:13 0:08 0:0214 — —
�e — — — — 0:16 0:3

Table 4.4: Summary of bidomain conductivities (mS mm�1). Conductivities were obtained
experimentally in (Clerc 1976, Roberts et al. 1979, Roberts & Scher 1982) and the values used
in numerical simulations (Skouibine et al. 1999, Fischer et al. 1999) and those used in this

thesis. The indices (L and T) are defined in Table 4.3

As with the passive material conductivities, the bidomain conductivities were chosen to be an

average of the multiple sources presented in Table 4.4 rather than with an individual paper. As with

the passive conductivities, the myocardium was assumed to be electrically isotropic, so averaged

intracellular and extracellular conductivity was used. The conductivity values used throughout this

thesis are shown in the last column of Table 4.4.

4.6 Cardiac Sources

It is necessary to have an accurate mathematical representation of the electrical activity of the heart

to model the electrical activity throughout the torso. The highly variable and dynamic nature of
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a normal and abnormal cardiac cycle is difficult to represent using a single mathematical cardiac

‘source’ model. The cardiac source is an essential and critical component of an accurate compu-

tational model. It has been shown that not only the type of the cardiac source but the point of the

heart cycle at which analysis of results occur is critical in the understanding of the forward and

inverse problems of electrocardiology (Hyttinen et al. 2000).

The two predominant source descriptions are a potential distribution on the epicardial surface and

the transmembrane potential gradient (essentially the activation wavefront during ventricular acti-

vation). To model the electrical activity within the torso, a cardiac source which specifies the electri-

cal distribution within the heart is usually required. This source description may either be recorded

by invasive means, approximated using electrical models or approximated using recordings from

sources thought to represent the potential distribution from a heart inside a torso. Throughout this

thesis a number of different heart sources are used. As these sources are merely approximations of

what is actually occurring within a heart, it is hoped that the different sources will cover a number

of aspects of cardiac activation.

In order to fully simulate both the activation sequence of the heart and clinically important patho-

logical conditions, a heart model needs to incorporate a detailed ionic current membrane model

and structures which affect the ionic currents (e.g., the Purkinje fibres and the myocardial fibre

and sheet structures). This must then be coupled into a detailed torso model so that the currents

flowing between the heart and torso can be correctly matched with the underlying ionic currents

which generate them (e.g.,Buist & Pullan 2001, Pullan & Buist 1998). This process is, however,

extremely complicated and computationally expensive. It is also not feasible to recreate what is

happening at the cellular level given only measurements on the torso surface.

Despite significant similarities in heart structure and function between pigs and humans and that

pigs are considered to be the ideal animal for human heart transplants, there still exists significant

differences between the two species. The duration of activation time is significantly shorter in a

pig compared to a human as indicated by the much higher heart rates in pigs. The hearts in pigs are

also oriented in line with the major axis of the torso as opposed to humans which have the heart

long axis typically oriented in the lower left/upper right quadrant of the thorax.

Normal activation sequences in human and pigs which have been measured in experiments are

described in Section 4.6.1 and Section 4.6.1. Sections (4.6.2)–(4.6.5) contain descriptions of the

cardiac sources which are used throughout the rest of this thesis. The sources include a simple

constant current dipole source, a simulated activation field derived from an eikonal solution, an
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activation field derived by specifying seed points which represent initial activation sites and a

source derived from an experimentally recorded epicardial potential distribution.

4.6.1 Normal Ventricular Activation Sequence

Although the ultimate aim of non-invasively imaging the heart is the diagnosis of abnormal heart

rhythms, the ability to model a normal activation sequence is essential as part of the validation

process. Presented below are descriptions of the normal activation sequences which occur in hu-

mans and pigs. Using these normal activation sequences as guidelines, the cardiac source models

described in Sections (4.6.2)–(4.6.5) were created. These source models are used in the forward

and inverse simulations described in Chapters (5)–(7).

Human Ventricular Activation

A normal human ventricular activation is considered to have a duration of around100 ms. Ex-

perimental measurements of the ventricular activation durations have been found to vary between

subjects but inversely computed activation times from experimentally measured body surface po-

tentials have values of between80–120 ms (Tilg et al. 1999, Fischer et al. 1999).

The most comprehensive investigation into the distribution of the excitation process of the human

heart is that of Durrer, van Dam, Freud, Janse, Meijler & Arzbaecher (1970). In this study, seven

individual hearts with no previous history of heart disease were examined. The isolated hearts were

perfused and continued beating in a spontaneous sinus rhythm for a period ranging from4 to 61/2

hours. The electrical activity of the heart was recorded from epicardial and intramural electrodes.

The QRS duration of the hearts varied from70–80 ms. It is possible that the regions of the heart to

be activated latest are small enough that they contribute little to the QRS complex. Thus, the total

excitation time may appear to be longer than the QRS measured from electrocardiograms.

The general pattern of excitation did not change after isolation of the heart. However, total exci-

tation in the perfused heart was completed earlier than in thein-situ heart. Measurements in the

normal human heart, performed during surgical interventions, indicate a conduction velocity of

about0:3 mm ms�1. In the isolated perfused human heart, a maximum conduction velocity of

0:45 mm ms�1 was found (Durrer et al. 1970).
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The duration of ventricular activation for natural sinus and pacemaker-generated rhythms are of

similar. This has been shown by comparing ECG recordings on the torso surface (Sands, Cheng &

Pullan 2000). However, the different initial activation sites means that the torso surface potential

patterns are significantly different.

Porcine Ventricular Activation

Porcine epicardial activation times for sinus rhythms have been measured to have a duration in

the range of15–25 ms while torso surface signals are usually in the range of30–40 ms. This

information was gathered from127 epicardial sock electrodes and256 torso surface electrodes in

the in-vivo experiments of Nash et al. (2000b).

From thein-vivo experiments it has been found that the duration of ventricular activation can be

significantly altered in pigs depending on the site of initial activation (Cheng, Nash, Bradley, Pullan

& Paterson 2000, Nash, Bradley, Cheng, Pullan & Paterson 2000a). A natural sinus rhythm had

a ventricular activation duration of20 ms while beats paced from the epicardial surface had a

duration of up to53 ms.

To date, there has been limited detailed analysis ofin-vivo analysis of the myocardial activation

pattern in pigs. There is some work which has been performed by Roshchevsky from the Russian

Academy of Sciences, however, this work is published in Russian. There are also the studies per-

formed by Nash et al. (2000b). This data only includesin-vivo measurements on the epicardial

surface, but concurrent endocardial measurements are intended to be obtained soon. The epicar-

dial measurements of one subject are used in Section 4.6.5 to produce an experimentally derived

activation source.

4.6.2 Single Dipole Source

A traditional approach to modelling the electrical activity within the heart involves the use of

dipoles. This typically involves specifying one, or more, moving or static dipoles within the heart.

From this dipole the resulting epicardial potentials can be calculated.

The use of a single dipole restricts the potential on the epicardial surface to contain only one

maxima and one minima, which is known to be physiologically unrealistic in a normal heart. Due
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to its simplicity, this results in a smooth activation pattern. The use of multiple dipoles means that

multiple maxima and minima may exist and can result in a more complex cardiac source than with

a single dipole.

A single moving dipole source provides a simple, temporally varying potential distribution over the

heart surface. To calculate the dipole orientation throughout the cardiac cycle a Frank vectorcar-

diograph (VCG) was recorded from a healthy male volunteer at Green Lane Hospital, Auckland.

This was used to produce a single cardiac cycle of length600 ms at a frequency of1 kHz. This is

the same cardiac source which was used by Bradley et al. (2000).

4.6.3 Eikonal Activation Profile

Using an eikonal equation, the myocardial excitation wavefront propagation was modelled in a180

element tricubic Hermite finite element mesh of the Auckland canine ventricular model (see Sec-

tion 4.3) by Tomlinson, Pullan & Hunter (1999). Similar methods had been previously conducted

by Colli Franzone, Gueeri, Penacchio & Taccardi (1998) and Keener (1991). Using this approach,

the spreading of excitation in the ventricular myocardium was modelled by treating the thin re-

gion of rapidly depolarising tissue as a propagation wavefront. The Petrov-Galerkin finite element

method was used to solve the eikonal-diffusion equation and used to determine tissue activation

times throughout the myocardium. The model included the effects of wavefront orientation in the

myocardial structure and wavefront curvature. Further details about the solution process of the

original cardiac source can be found in Tomlinson (2000).

From the excitation time solution, the resulting activation field was then transformed to the geom-

etry of the porcine heart model by orthogonal projections onto the surface and fitting the field in a

least squares sense.

The original canine activation profile and the fitted porcine activation profile are illustrated in

Figure 4.5. Comparing the differences between the canine solution and fitted solution gave an

RMS error of2:0 ms and a similarity index of0:99. The activation field of the canine model had

a duration of55 ms while the porcine model had a duration of52 ms. These differences were

attributed to the large geometric differences between the two heart models.
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Figure 4.5: The activation field (ms) generated from an eikonal equation model of ventricular
activation (first two columns) and the fitted activation field on the porcine heart model (last two
columns). The colour field represents activation time ranging from 0 to 50 ms, with red being
earliest and blue latest activation. The anterior surfaces are shown in the first and third columns
and the posterior in the second and last columns. The endocardial surfaces shown in bottom

row have been displaced below the epicardial surfaces in the top row for display purposes.

4.6.4 Point Stimulus Activation Profile

An activation map can be created by specifying seed points at certain locations and then using a

distance relationship between points on the heart surface to the seed point as a weighting on the

activation time. Each seed point effectively represents an ectopic focus or a point stimulus from a

catheter. A single seed point produces a spherical evolving wavefront, while the addition of more

seed points can result in more complicated patterns. The approach preserves the main features of a

true activation map and contains distinct points of initial activation. This approach is similar to that

of a Huygen’s wavefront theory based on the propagation of wavefronts in space where conduction

is considered to be isotropic. Okajima, Fujino, Kobayashi & Yamada (1968) used this theory to

specify the activation process of a block of tissue depending on its distance from all neighbouring

active regions.

The activation field shown in Figure 4.6 was created from two seed points (represented by purple

spheres) located near the left and right epicardial free walls. The seed near the right ventricular
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free wall was located further away resulting in a slight delay in activation compared to the other

seed point.

0 10 20 30 40 50

Figure 4.6: Cardiac source activation field (ms) generated from two activation seed points,
shown by purple spheres. The colour field represents activation times up to 50 ms, with red
being earliest activation and blue being latest activation. The anterior surfaces are shown on
the left and the posterior on the right. The endocardial surfaces in the bottom row have been

displaced below the epicardial surfaces in the top row for display purposes.

4.6.5 Experimentally Derived Activation Profile

An experimentally derived heart source provided an attempt to test the computational algorithms

with a cardiac source which closely represented cardiac activity in reality. The experimental proce-

dure, outlined in Nash et al. (2000b), was used to obtainin-vivo data. The experimental procedure

recorded concurrent epicardial, and torso surface potential recordings in domestic pigs. This is

achieved through the use of a sock around the ventricles, a basket catheter within the ventricles

and a vest on the torso surface, although, to date, these have not been obtained concurrently. The

elastic sock (Biomedical Instruments Designers, Montreal) contained127 unipolar stainless steel

electrodes with intra-electrode spacing of approximately5–10 mm. The Mercator High Density

Array Catheter (Cardiac Pathways Corporation 2000), with64 electrodes on eight flexible arms

was used to obtain endocardial measurements and the custom elastic vest with256 electrodes at a

spacing of approximately15 mm was placed over the torso surface.
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Endocardial recordings could not be reliably obtained, therefore the data set contained only epi-

cardial and torso surface potential recordings. For this data set, heart and torso geometries were

not accurately obtained, and as such, the data could not be directly used for forward or inverse

analysis. For use in the activation inverse approaches, the activation times must be known on the

endocardial surfaces as well. The cardiac source was therefore constructed using a combination of

the inverse procedures described in Section 6.3 and the fitting process described in Section 3.2.

The fitting procedure of Section 3.2 was used to recreate the information provided by the epicardial

sock. To obtain the locations of the epicardial electrodes, the chest of the pig was re-opened and as

many electrodes as possible (approximately40%) were digitised using a FARO Arm (Faro Tech-

nologies Incorporated 2000) mechanical digitiser. The remaining unknown epicardial electrode

locations were estimated using the predefined electrode topography of the epicardial sock. The

electrodes were aligned with the generic heart using known landmarks such as the LAD, and then

orthogonally projected onto the epicardial surface. The RMS distances of projecting the measured

electrode positions onto the generic heart mesh was0:6 mm.

Using the linear field fitting procedure described in Section 3.2 a full potential field was created for

the epicardial surface. Figure 4.7 shows the experimentally recorded and the fitted signals at four

locations on the epicardial surface. Due to inaccuracies in the geometric locations of the electrodes

and the complex nature of epicardial potentials the fitting procedure was unable to exactly represent

the measured potentials, with the most obvious location in the areas of high gradients.

Activation times were determined to lie at the maximum negative downstroke calculated using a

moving finite difference scheme. The presence of multiple downstrokes in the epicardial signals

may lead to some errors in determining the activation time. The effect of these errors are further

discussed in Section 7.7. It should be noted, however, that the activation times for the fitted and

original data have been largely unaffected for this data set.

Using a combination of the linear field fitting procedure outlined in Section 3.2 and the activation

inverse procedure described in Chapter 6, the activation field on the entire epicardial surface and

the endocardial surface was derived. The full fitted field on the epicardial surface is shown in Fig-

ure 3.4, while the activation field on both surfaces used in the inverse simulations in Section 6.4.2

and Section 7.6 is shown in Figure 4.8.

By comparing the fitted activation field at the electrode locations with experimentally recorded

signals, there was an RMS error of1:5 ms and a similarity index of0:95. The range of the recorded
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Figure 4.7: Potential traces from four typical electrodes, A–D, recorded from the epicardial
sock (red) and their fitted representations (blue). The activation time, shown by the vertical
green line, was determined from the maximum negative slope, calculated using a moving finite
difference interval. This remains relatively constant between the fitted and raw signals. The
fitted activation field from the 127 electrodes along with the locations of electrodes A–D is

shown in Figure 3.4.

activation times at the electrodes was16 ms compared with15 ms for the entire fitted field. This

showed that the fitted field provided an accurate representation of the recordedin-vivo data. The

activation duration for the entire field is20 ms compared to15 ms for the duration of epicardial

surface as measured experimentally.
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0 5 10 15 20

Figure 4.8: Experimental activation field (ms) derived from experimental data measured di-
rectly on the epicardial surface shown in Figure 3.4. Layout as described in Figure 4.6.





5 The Forward Problem
of Electrocardiology

Computation of the linear relationship between measured potentials at the body surface and an

appropriate cardiac source constitutes the forward problem of electrocardiology. The ultimate goal

of the theory and models developed in this thesis is in the study of the clinically useful inverse

problem of electrocardiology. However, accurately solving the forward problem is the first step of

such a task.

The two predominant inverse source formulations are the epicardial potential and myocardial acti-

vation source formulations. Although both attempt to obtain an electrical image of the heart, each

of their solutions are distinctly different.

The sources of torso surface potentials are largely confined to the heart and quasi-static conditions

apply, since capacitive and inductive effects of the passive torso organs are insignificant (Plonsey

1969). Therefore, a generalised Laplace’s equation is used to model the electrical activity in the

regions external to the heart. The epicardial potential formulations model the passive electrical

events from the epicardium through to the torso surface. The potentials on the body surface can

be non-invasively measured while those on the epicardium are generally unknown but provide a

clearer indication of the electrical activity occurring within the heart.

An alternative source formulation involves the activation times within the myocardium. These

are more directly related to the actual sources which generate the torso surface potentials. Using

the bidomain concept the source can be expressed in terms of the gradient of the transmembrane

potential (Yamashita & Geselowitz 1985).

81
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5.1 Governing Equations

A two-dimensional transverse slice through the torso is shown in Figure 5.1, identifying the main

regions which are of interest from an electrocardiographic viewpoint. Illustrated from the centre

of the schematic are the two ventricular blood masses surrounded by the myocardium, the two

lungs and the outer torso surface. All regions, except for the myocardium, were assumed to be

electrically passive.

Figure 5.1: A transverse slice through a pig torso at heart level. Shown, from the centre of the
diagram, are the left and right endocardial, epicardial, left and right lung and the skin surfaces.

The problems of electrocardiology, and other electro-magnetic problems, are governed by

Maxwell’s equations

r�E +
@B

@t
= 0 (5.1)

r�H �
@D

@t
= J (5.2)

whereE is the electric field intensity,B is the magnetic induction,H is the magnetic field intensity,

D is electric displacement andJ is the current density.

These equations can be simplified by taking into account the electrical properties of biological

tissues and the nature of heart cycles. The properties of the passive regions of biological tissue

mean that inductive, capacitative and propagation effects can be ignored. This means that the

problem can be thought of as beingquasi-static(Plonsey 1969) with the torso approximated as

a passive volume conductor. In practice, respiratory motion and physical movement will result

in electrical activity in the skeletal muscle. The effects of these additional electrical sources are

minimised by lying in a relaxed state when electrical recordings are being made and are assumed

to be negligible.
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Neglecting the effects of the time dependent terms results in

@B

@t
= 0

@D

@t
= 0 (5.3)

The current densityJ can be found from the sum of any conductive currents and any impressed

currents in that region,i.e.,

J = �E + J i (5.4)

where� is the conductivity tensor of the surrounding tissue andJ i is the impressed source current

density.

As J is solenoidal due to the conservation of current, taking the divergence of both sides of Equa-

tion (5.4) and using current conservation, results in

r � J = r � (�E + J i)

= 0
(5.5)

From Narayana (1972), the electric field is irrotational and conservative (i.e.,r�E = 0) and there

must be an electric potential scalar� that satisfies the equation,

r� = �E (5.6)

Substituting Equation (5.6) into Equation (5.5) results in the Poisson equation

r � (�r�) = �r � J i (5.7)

5.1.1 Generalised Laplace’s Equation

By considering regions external to the epicardium and assuming that there are no current sources

from skeletal muscle or other external sources (i.e., J i = 0), the Poisson equation specified in

Equation (5.7) collapses to a generalised Laplace’s equation

r � (�r�) = 0 (5.8)
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Equation (5.8) is the governing equation for the epicardial potential based formulations for the

problems of electrocardiology.

5.1.2 Poisson Equation

By using an activation based formulation, it is necessary to model the electrical activity within the

myocardium as well. The bidomain source model (Henriquez 1993) is the basis of this formulation.

The micro-structure of cardiac muscle is comprised of coupled cells enveloped by collagen, fluid

and blood vessels. The bidomain model takes a continuous approach and represents groups of cells

as discrete points, each with a portion of intracellular space and extracellular space. Quasi-static

assumptions and Ohm’s Law imply that the current density at all bidomain locations must satisfy

J = ��ir�i � �er�e (5.9)

where�i and�e are the conductivity tensors of the intra- and extracellular space and�i and�e are

the intra- and extracellular potentials.

The Poisson equation defined in Equation (5.7) has its source term derived from the transmembrane

potential which is defined as the potential difference between the intra- and extracellular spaces

(i.e., �m = �i � �e). A temporally varying transmembrane potential (or action potential) of a

single cardiac cell, as shown in Figure 1.4, is well documented by experiments and computational

models which numerically simulate the activity of a cell. These models range from being simple

empirical models (Hunter, McNaughton & Noble 1975) to detailed ionic current models (Beeler &

Reuter 1977, Luo & Rudy 1994, Noble, Varghese, Kohl & Noble 1998).

By using Equation (5.5) and substituting the definition of the transmembrane potential into Equa-

tion (5.9), the bidomain equation is given by

r � [(�i + �e)r�e] = �r � (�ir�m) (5.10)
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5.1.3 Boundary Conditions

The boundary conditions for the forward and inverse problems are prescribed potentials on the

body and/or the heart surface, and no current (flux) leaving the body surface,i.e.,

�H = f (x; t) on�H (5.11)

�B = g (y; t) on�B (5.12)

@�B

@n
= 0 on�B (5.13)

�B (yi) = 0 on�B (5.14)

where�H are the potentials located on the heart,�B are the potentials on the torso surface,t is

a measure of time,x are points located on the heart surface�H , y are points located on the torso

surface�B, yi is a point on the torso surface chosen to be the reference potential andn is the

outward normal direction.

If the problem is modelled using activation source model and Equation (5.10) is solved then there

is an additional boundary condition that restricts the transmembrane potential to the myocardium

@�m
@n

= 0 on�H (5.15)

In most cases, only the torso surface potential values for Equation (5.12) are known and the heart

potentials in Equation (5.11) are unknown. A no flux boundary condition can be imposed on

the torso surface/air interface as the conductivity of the air is effectively zero. Equation (5.14)

corresponds to a location on the torso surface to which all other potential values are referenced. In

the simulations in this thesis, the reference point is taken to be the near the right hip, which is the

common position used for right leg grounding in electrocardiographic recordings.

5.2 Coupling Regions

When modelling organs with distinctly different material or physical properties, it is convenient to

model each organ as distinctregions. These regions can then be modelled using the appropriate

numerical methods and assigned appropriate conductivity values.
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Regions such as the myocardium and skeletal muscle contain a complex fibre distribution which

greatly affect its electrical properties while regions such as the blood masses and the lungs can be

approximated as having homogeneous conductivities. The anisotropic nature of these regions can

be explicitly modelled using the FEM. To ensure continuity of current and potentials at the interface

between each region, continuity conditions are placed upon the nodes on these surfaces. Such a

method was employed by Bradley et al. (1997) for the coupled FEM/BEM human torso, which used

boundary elements to model isotropic regions and finite elements to model the anisotropic skeletal

muscle regions. At this stage, isotropic material properties are assumed throughout and all regions

are modelled using BEM so all coupling involves a BEM-BEM interface. This is because there is

currently no detailed fibre information for the skeletal muscle or the myocardium of a pig model

and introducing anisotropy in the myocardium greatly increases the complexity of the problem.

In each boundary element regionr, a system of equations can be constructed in the form

P r�r = Qrqr (5.16)

where the vector�r contains the unknown node based potentials in regionr, andqr the unknown

normal currents (fluxes), andP andQ are the boundary element potential and flux matrices.

Consider a domain consisting of two annuli. The first region, shown as dark grey in Figure 5.2,

covers the space surrounded by the inner circle defined by nodes1–8. The second annulus, shown

in Figure 5.2 unshaded, is defined by nodes5–12.

The systems in each of the two regions shown in Figure 5.2, modelled using linear basis functions,

can be written as

P 1

2
664
�11
...

�81

3
775 = Q1

2
664
q11
...

q81

3
775 and P 2

2
664
�52
...

�122

3
775 = Q2

2
664
q52
...

q122

3
775 (5.17)

whereP r andQr are the boundary element potential and flux matrices for regionr and�nr andqnr
are the potential and flux nodal values for regionr and global noden.

By adopting a global numbering system for the entire problem any number ofr matrices can be
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Figure 5.2: Coupling of two boundary element regions. The first region is the shaded annulus
and is defined by nodes 1–8. The second annulus is defined by nodes 5–12. The regions are
coupled by setting continuity conditions on the normal currents and potentials on the nodes at

the interface surfaces (i.e., nodes 5–8).

assembled into a single set of matrix equations of the form

Pglobal� = Qglobalq (5.18)

where the global matrices contain theP r andQr sub-matrix blocks which are fully populated and

unsymmetric.

For the example shown in Figure 5.2, there are32 unknowns (a total of16 nodes in all regions,

each with two DOF) and only16 equations. In order to reduce the number of unknowns and couple

the two regions together the interface conditions for potential and current are used.

�n1 = �n2 (5.19)

qn1 = �qn2 (5.20)

for nodes,n = 5; : : : ; 8.

By applying boundary conditions involving potential or normal current to the8 boundary nodes,
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the system is reduced to a standard16� 16 system of the form

Ru = s (5.21)

whereR is the reduced global matrix,u is the vector of global unknowns ands is the known RHS

vector.

5.3 Transfer Matrices From a Boundary Element Point of View

Three different, but consistent, transfer matrices can be generated which map potentials between

different surfaces within the torso. Two map from transmembrane potentials to epicardial or torso

surface potentials. The third transfer matrix maps potentials from the epicardial surface to the

torso surface. These transfer matrices are able to provide consistent potentials throughout the torso

given a single heart source (i.e.,from an activation heart source, corresponding epicardial and torso

surface potentials are able to be produced) to enable direct comparison between the potential and

activation based inverse approaches.

The partial differential equation defined in Equation (5.10) can be solved using a weighted residuals

approach withw a (as yet unspecified) weighting function. Then, from weighted residuals

Z

H

r � ([�i + �e]r�e)w d
 +

Z

H

r � (�ir�m)w d
 = 0 (5.22)

where
H is the domain of the heart (i.e., the myocardium).

Using Green’s theorem gives

Z
�H

w [�i + �e]r�e � n d��

Z

H

[�i + �e]r�e � rw d
 +

Z

H

r � (�ir�m)w d
 = 0 (5.23)

wheren is the unit outward normal and�H are the surfaces of the heart.
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Applying Green’s theorem to the second integral again gives

Z
�H

w [�i + �e]r�e � n d��

Z
�H

�e [�i + �e]rw � n d�

+

Z

H

r � ([�i + �e]rw)�e d
 +

Z

H

r � (�ir�m)w d
 = 0 (5.24)

This is the standard boundary integral equation for Poisson’s equation with a general source term.

For the special case of the source being given by�r � (�ir�m) it is possible to apply a similar

procedure to that above on this term,i.e.,

Z

H

r � (�ir�m)w d
 =

Z
�H

w�ir�m � n d��

Z

H

�ir�m � rw d


=

Z
�H

w�ir�m � n d��

Z
�H

�m�irw � n d�

+

Z

H

r � (�irw)�m d
 (5.25)

Substituting Equation (5.25) into Equation (5.24) results in

Z
�H

w [�i + �e]r�e � n d��

Z
�H

�e [�i + �e]rw � n d�

+

Z

H

r � ([�i + �e]rw)�e d
 +

Z
�H

w�ir�m �n d�

�

Z
�H

�m�irw �n d� +

Z

H

r � (�irw)�m d
 = 0 (5.26)

which is a generalisation of Equation 31 from (Yamashita & Geselowitz 1985).

To this point, no assumptions have been made onw, �i or �e (apart from differentiability and

integrability) so Equation (5.26) is totally general. Yamashita & Geselowitz (1985) assumed that
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w was a Green’s function satisfying

r � ([�i + �e]rw) + Æ (x0) = 0 (5.27)

and

�erw �n = 0 on�B (5.28)

whereÆ (x0) is the Dirac delta distribution centred at a pointx0 within the torso and�B is the

surface of the torso. This resulted in the removal of the first volume integral in Equation (5.26).

In practice, such a Green’s function for the heart cannot be found analytically, since both�i and

�e are in general anisotropic and inhomogeneous. By assuming that they are homogeneous, both

conductivity tensors can be represented by constant3 � 3 matrices, which are diagonal in the co-

ordinate system defined by the myocardial fibres and sheets. The fibre and sheet orientation in the

heart is very complex and this anisotropy means that it is not possible to solve Equation (5.27) ana-

lytically, even under the assumption of equal anisotropy ratios. This is true irrespective of whether

a proper Green’s function is used (i.e., impose Equation (5.28)) or merely look for a freespace

Green’s function (also known as a fundamental solution) which is a solution of Equation (5.27)

with appropriate boundary conditions at infinity (i.e., the no-flux condition on�B is ignored).

By further assuming that the heart domain is isotropic in both the extra and intracellular domains, it

is possible to apply a standard boundary element procedure to Equation (5.26). For thisw is taken

to be the freespace Green’s function,i.e.,a solution of

r � (rw) + Æ (x0) = 0 (5.29)

wherex0 is now an arbitrary point in space andw vanishes at infinity. In three-dimensions, the

solution of this equation is

w (x;x0) =
1

4�R
(5.30)

whereR = krk
2
= kx� x0k2 is the distance measured fromx0.

With w defined in Equation (5.30),x inside
H and assuming material isotropy (i.e.,�i = �iI,

�e = �eI and�i = k�e wherek is a constant) Equation (5.29) can be used to simplify the domain
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integrals in Equation (5.26) so that

Z

H

r � ([�i + �e]rw (x;x0))�e (x) d
 (x) = (1 + k) �e

Z

H

r � (rw (x;x0))�e (x) d
 (x)

= � (1 + k) �e�e (x0) (5.31)

Z

H

r � (�irw (x;x0))�m (x) d
 (x) = k�e

Z

H

r � (rw (x;x0))�m (x) d
 (x)

= �k�e�m (x0) (5.32)

Thus, Equation (5.26) becomes

(1 + k) �e

Z
�H

w (x;x0)r�e (x) � n (x) d� (x)

� (1 + k) �e

Z
�H

�e (x)rw (x;x0) � n (x) d� (x)� (1 + k) �e�e (x0)

+ k�e

Z
�H

w (x;x0)r�m (x) �n (x) d� (x)

� k�e

Z
�H

�m (x)rw (x;x0) � n (x) d� (x)� k�e�m (x0) = 0 (5.33)

The equation of more interest is the case whenx0 2 �H (i.e.,x0 on the boundary of the domain).

To derive this equation,x0 is considered to be at a smooth point on the boundary of
H and a

hemispherical region of radius" centred atx0 constructed.
0H was defined to be the extended

region (i.e.,
H plus the hemispherical region). Thenx0 is interior to
0H so Equation (5.33) is

valid with �H replaced by@
0H . If this equation is considered aslim
"#0

, if �" is the boundary of the

hemispherical region, and��" the boundary of that part of
H that is outside the hemisphere (so
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@
0H = �" [ ��") then as long as the surface atx0 has a unique tangent plane

lim
"#0

Z
�"

�e (x)rw (x;x0) � n (x) d� (x) = lim
"#0

�1

4�R2
2�R2�e (
)

= �
�e (x0)

2
(5.34)

where
 is some point on the hemisphere of radius� and the mean value theorem has been applied.

Similarly,

lim
"#0

Z
�"

�m (x)rw (x;x0) � n (x) d� (x) = lim
"#0

�1

4�R2
2�R2�m (
)

= �
�m (x0)

2
(5.35)

It can also be shown that

lim
"#0

Z
�"

w (x;x0)r�e (x) � n (x) d� (x) = 0 (5.36)

and

lim
"#0

Z
�"

w (x;x0)r�m (x) � n (x) d� (x) = 0 (5.37)

As lim
"#0

��" ! �H and while the integrands are singular whenx0 is onx, the integrals exist in the

standard sense, so

lim
"#0

Z
��"

(each integrand) d� =

Z
�H

(same integrand) d� (5.38)

Substituting Equations (5.34)–(5.38) into Equation (5.33) and dividing through by(1 + k) �e, the
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general boundary integral equation is defined as

c (x0)�e (x0) +

Z
�H

�e (x)rw (x;x0) � n (x) d� (x)

+
k

1 + k
c (x0)�m (x0) +

k

1 + k

Z
�H

�m (x)rw (x;x0) � n (x) d� (x)

=

Z
�H

w (x;x0)

�i + �e
qe (x) d� (x) +

k

1 + k

Z
�H

w (x;x0)r�m (x) � n (x) d� (x) (5.39)

where

c (x0) =

8>>>>>><
>>>>>>:

1 if x0 2 
H

1

2
if x0 2 �H and�H smooth atx0

internal solid angle
4�

if x0 2 �H and�H not smooth atx0

0 if x0 outside
H

(5.40)

andqe (x) = r�e (x) � n (x) is the extracellular normal current at the pointx.

Equation (5.39) relates�e and�m at the pointx0 to the values of�e,�m, qe andr�m�n everywhere

on�H . On�H ,r�m�n is0 since transmembrane potentials are confined to the heart, which removes

the last integral in Equation (5.39).

External to the heart, there are assumed to be no electrical sources so the governing equation

collapses from a Poisson equation to the generalised Laplace’s equation defined in Equation (5.8).

Continuity of extracellular potential and current across the myocardial boundaries provides the

links between Equation (5.8) and Equation (5.39). In the usual way, it is possible to discretise the

boundaries of all regions involved and assemble the following matrices, as described in Section 5.2

0
BBBB@

all coefficients

of potentials from

Equation (5.39)

and Equation (5.8)

1
CCCCA

0
BBBBBBB@

�m

�H
e

�1

e

...

�N
e

1
CCCCCCCA

=

0
BBBB@

all coefficients

of currents from

Equation (5.39)

and Equation (5.8)

1
CCCCA

0
BBBB@
qHe

q1e
...

qNe

1
CCCCA (5.41)
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where

N is the number of tissue regions outside the heart

�i
e is a vector of nodal values of�e in regioni

�m is a vector of nodal values of�m on the heart

�H
e is a vector of nodal values of�e on the heart

qie is a vector of nodal values ofqe on the surface of regioni

qHe is a vector of nodal values ofqe on the heart surface

The coefficient matrices include all the continuity constraints. Also, since
@�m

@n
is0 on�H , this term

is not present in Equation (5.41). It is worth noting that the coefficients of�m in Equation (5.39)

are just
k

k + 1
times the coefficients of�e in that equation. Use of this fact allows the speed up of

the assembly of Equation (5.41).

Equation (5.41) can be considered to be an implicit relationship between the transmembrane po-

tentials�m and the torso potentials�B. To construct an explicit transfer matrix,A, use is made of

the definition of the transfer matrix,i.e.,

�B = A�m (5.42)

Using this relationship,�m can be set to be the vectorek (i.e.,a unit vector that is zero everywhere

except at the kth position) and Equation (5.41) solved. The resulting solution for�B corresponds

to the kth column ofA. Alternatively the transfer matrix which maps from�m through to�H
e can

be constructed by suitable rearrangement of Equation (5.41).

The construction of the transfer matrix described previously has assumed homogeneity and isotropy

in the myocardium from Equation (5.31) onwards. It is worth pointing out that the assumptions of

homogeneity and isotropy are not required to use the activation imaging algorithm of Huiskamp &

Greensite (1997). It is also possible to construct a transfer matrix relating activation times to torso

potentials without these assumptions. However, the transfer matrix construction under anisotropic

conditions becomes significantly more difficult. The bidomain equations (or a weak form of them,

such as that given in Equation (5.26)) have to be solved throughout the heart (using some volume-

discretisation procedure representing the full myocardial-fibre orientation) and coupled to solutions

of Equation (5.8) outside the heart. This dramatically increases the problem size. Work on this is

progressing (e.g.,Pullan & Buist 1998, Buist & Pullan 2001) but at this stage homogeneity and

isotropy is assumed.
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5.4 Activation Function

The transfer matrix described in Section 5.3 is capable of mapping from heart transmembrane

potentials to torso surface potentials. To relate the torso surface potentials directly to the underlying

activation wavefront, an additional mapping from transmembrane potentials to activation times (or

vice versa) is required. To achieve this mapping the underlying physiology of an ventricular action

potential is modelled.

The activation phase of a normal ventricular action potential contains a sharp region of depolarisa-

tion which corresponds to the time at which the activation wave passes that point (i.e.,the activation

times). By assigning an activation time to each node on the heart surface, transmembrane potentials

can be calculated using anarctan function (Tilg 1998) or via the Heaviside step function

�m = a + bH (t� � (x)) (5.43)

wheret is the current solution time step and� (x) is the activation time at a point on the heart

surface,a is the resting transmembrane potential andb is the height of the transmembrane jump.

Shown in Figure 5.3 is a comparison between the ventricular action potential (solid line) and its

Heaviside step function approximation overlayed with a dashed line.

500250

1
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4

Figure 5.3: A schematic ventricular action potential (solid line) and the Heaviside approxima-
tion (dashed line). The four phases of the action potential are labelled; 1: upstroke, 2: plateau,
3: recovery, 4: rest. The resting potential is typically around -80 mV and this rises to a peak of
approximately 20 mV (i.e., a transmembrane jump of approximately 100 mV). The duration of

the entire action potential typically lasts for 300 ms.

The Heaviside step function models an elementary source at a point on the heart surfacex, activated

at time� (x) which remains activated until the entire domain has been activated. Since only the

QRS interval of the ECG is modelled (i.e., the activation phase) in this thesis the recovery phase
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(phase 3) of the action potential was not considered. Ventricular repolarisation can be modelled

using a similar process but calculating recovery times instead of activation times. However, the

modelling of ventricular repolarisation introduces the additional complications of the mechanical

motion of the heart. During the recovery stage of the cardiac cycle the geometry of the ventricles

cannot be assumed to be fixed. Also, as shown in Figure 5.3, repolarisation occurs over a relatively

long time period so it is difficult to define a distinct recovery time unlike the activation time which

is defined by a sharp upstroke.

If the sources are switched ‘on’ at discrete locations on the heart surface (i.e., the nodal positions),

then the resultant simulated potentials are discontinuous. This gives rise to body surface potentials

that are not continuous with respect to the activation times. For use in the optimisation phase of the

activation inverse procedure (see Section 6.3.1) it is more desirable to deal with functions which

are continuous and the speed of convergence is greatly aided by continuous derivatives as well

(Huiskamp & van Oosterom 1988).

To account for this, Equation (5.43) was approximated by the sigmoid function,S (t� �) shown in

Figure 5.4. This results in values of�m that are smooth and continuous but still contain the general

features of the activation phase of a ventricular action potential.

(a+ b; �)

a

(a+ b

2
; �) b

w

2

�m

t

(a; �)�w

2

Figure 5.4: Approximation of the Heaviside step function by a sigmoidal function. This func-
tion contains the parameters! andb to determine its shape. The! parameter controls the width
or window of the activation upstroke (i.e., the duration of the depolarisation) while theb pa-
rameter controls the height of the transmembrane jump, i.e., the difference between the resting
potential (a) and the maximum systolic potential. Time is shown on the horizontal axis and the

transmembrane potential on the vertical axis.

In this function, thea andb parameters again represent the transmembrane resting potential and

the transmembrane jump respectively. The smooth function is created by gradually activating the

sources over a timespan of!.
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If u is defined ast � � (x) the smooth activation function can be represented mathematically by

the function

S (u) =

8>>>>>><
>>>>>>:

a u � �!
2

a+ b
2

�
2

!
u+ 1

�2
�!

2
< u � 0

b� b
2

�
2

!
u� 1

�2
0 < u < !

2

a+ b u � !
2

(5.44)

The derivatives of the torso surface potential with respect to the activation times for use in the

optimisation phase are given by

@�̂B

@�
= A � (�1)

8>>>>>><
>>>>>>:

0 u � �!
2

b
�
2

!
u+ 1

�
2

w
�!

2
< u � 0

�b
�
2

!
u� 1

�
2

!
0 < u < !

2

0 u � !
2

(5.45)

5.5 Analytic Test Cases

Analytic solutions to mathematical problems have been used for many years to study the behaviour

of electrocardiographic problems (e.g.,Wilson & Bayley 1950, Brody 1956, McFee & Rush 1968).

In most cases, the use of analytic solutions has required simplifying assumptions to be made, so

that a qualitative understanding of the problem may be gained. However, analytic solutions are

still vitally important in modern computational studies. As computational techniques are only

ever approximations of real solutions, they inherently contain modelling errors. To quantify the

component of error which corresponds to the numerical solution method, it is necessary to be able

to compare the computed solution with an exact or analytic solution. To make the test as realistic as

possible, it is desirable to perform the test on a problem that is similar to the ‘real world’ scenario.

The standard approach for the finite and boundary element methods when testing a computational

procedure is to compare the results generated against some known analytical solutions so that errors

in the method can be quantified. It is also standard practice to perform a convergence analysis

in which the error in a particular problem is investigated as the problem size is systematically

increased (i.e.,element mesh size decreased).
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The numerical error associated with a finite or boundary element method can be reduced byrefining

the mesh as described in Section 2.5. By refining the elements once in each� direction the element

size is reduced by a factor of4. This also introduces an increased number of solution DOF used to

solve the problem and as a result the mesh is able to better represent the solution field.

The standard approach forconvergence analysisof a finite and boundary element methods is to

compare the solutions as the element sizes are reduced. With a stable numerical procedure, the

error will decrease as the solution DOF is increased. If the numerical method is stable, refining

the mesh will result in a fixed rate of decrease in error. If this is the case, the convergence results

should produce a straight line on alog� log plot of the measure of error versus a measure of the

problem size. The slope of this line provides an indication of the rate of convergence.

To quantify the degree of refinement two measures are used, characteristic element size (h) and

the number of solution DOF. To calculate the characteristic element size in irregular meshes,h is

defined to be the square root of the average element areas for two-dimensional surface elements.

The number of solution DOF is a parameter which provides a consistent size of the computational

problem.

The Normalised Integral Difference Squared (NIDS) error metric, defined in Equation (5.46) pro-

vides a relative measure of the differences between two solutions.

NIDS =

vuuuuuuuut

Z
�

(�analytic� �numeric)
2 d�

Z
�

(�analytic)
2 d�

(5.46)

The RMS measure as defined in Equation (3.7) was also used to provide a measure of the absolute

difference between two solutions.

5.5.1 Laplace’s Equation Analytic Test Problem

A dipole in a concentric sphere problem is a common analytic solution to Laplace’s equation.

As the electrical activity external to the heart is governed by the generalised Laplace’s equation,
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this analytic solution ensures that the epicardial to body surface potential transfer matrix defined

in Section 5.3 has been constructed correctly. Additional analytic test problems which solved for

eccentric dipoles and normal currents on the outer spheres (by setting potential boundary conditions

on the outer surfaces) have previously been thoroughly tested by Harris (1996) and Bradley et al.

(1997).

The dipole in a sphere problem consists of finding the potential and current distribution insideN

homogeneous concentric spheres with a single dipole located at an arbitrary position inside the

spheres. A test problem with a static dipole in a concentric sphere problem was performed with

physically realistic boundary conditions of no normal current flow was imposed on the surface of

the outer sphere.

Governing Equations & Boundary Conditions

By considering a concentric sphere setup, as shown in Figure 5.5, where the domains for both

spheres are governed by the generalised Laplace’s equation, we have a simplified representation of

a heart in a torso. The surface of the inner sphere represents the epicardial surface and the surface of

the outer sphere, the torso surface. The problem is defined in the spherical polar coordinate system

(r; �; �), with 0 � � � 2� for the circumferential coordinate and0 � � � � for the azimuthal

coordinate, although numerical solutions were carried out in a rectangular Cartesian framework.

R1

R2

�1
�2

@�

@n

�ref

z

x

Figure 5.5: Schematic of Laplace’s equation analytic solution. The setup consists of two con-
centric spheres of radiusR1 andR2 with varying conductivities (�1 and�2). A dipole is lo-
cated at the origin. A no flux boundary condition is applied to the outer surface as well as a
reference potential at one node. Potentials are computed on both surfaces and normal currents

on the inner surface.
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The governing equations are subject to the boundary conditions which closely represent those

of an epicardial potential formulation for the problem of electrocardiology. Equation (5.47) and

Equation (5.48) ensure continuity of potential and current on the interface surface between the two

regions. Equation (5.49) specifies a no-flux boundary condition on the outer surface representing

the torso surface/air interface and a reference potential is specified with Equation (5.50).

�out = �in at r = R1 (5.47)

�in
@�in

@r
= �out

@�out

@r
at r = R1 (5.48)

@�out

@r
= 0 at r = R2 (5.49)

�out = 0 at r = R2; � = 0 (5.50)

General Solution for Laplace’s Equation

The general solutions to the three-dimensional Laplace’s equation in polar coordinates is given by

� (r; �; �) =
1X
n=0

nX
m=0

(Amn cos (m�) +Bmn sin (m�))

�
Cmnr

n +
Dmn

rn+1

�
Pm
n (cos �) (5.51)

wherePm
n (cos �) is the associate Legendre polynomials of degreen and orderm as specified

below:

Associate Legendre Polynomials

Pm
n (x) = (�1)m

�
1� x2

�m
2
dm

dxm
Pn (x)

P 0
0 (x) = 1

P 0
1 (x) = x

P 1
1 (x) = �

�
1� x2

� 1
2

P 0
2 (x) =

1

2

�
3x2 � 1

�

wherePn (x) is the Legendre polynomial of degreen as specified by Rodrigues’ formula,
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Legendre Polynomials

Pn (x) =
1

2nn!

dn

dxn
�
x2 � 1

�n
P0 (x) = 1

P1 (x) = x

P2 (x) =
1

2

�
3x2 � 1

�
P3 (x) =

1

2

�
5x3 � 3x

�

Considering a dipole insideN concentric spheres problem, ifi is used to denote the region between,

or inside, adjacent concentric shells (i.e., i = 1 is the inner sphere,2 � i � N are the concentric

shells andi = N +1 is the domain outside the sphere) then Equation (5.51) can be applied in each

region,i.e.,

�i (r; �; �) =
1X
n=0

nX
m=0

�
Ai
mn cos (m�) +Bi

mn sin (m�)
��

Ci
mnr

n +
Di

mn

rn+1

�
Pm
n (cos �) (5.52)

Dipole in an Infinite Medium

If a region contains a dipole, the dipole solution can be written in the same form as Equation (5.51)

� (r; �; �) =
1X
n=0

nX
m=0

(Emn cos (m�) + Fmn sin (m�))

�
Gmnr

n +
Hmn

rn+1

�
Pm
n (cos �) (5.53)

whereEmn, Fmn, Gmn andHmn are known constants for the particular dipole location and orien-

tation.

The potential field due to a dipole (up to an additive constant) is given by Plonsey & Barr (1988)

as

� (x) =
� cos 


4��kx2dk
(5.54)

wherex is the observation position,� is the magnitude and orientation of the dipole,
 is the angle

between the dipole observation orientation and the observation point, andxd the vector from the

dipole centre to the observation point.
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For a centric dipole inside a sphere, Equation (5.54),kxdk is the radius (r) of the observation point

and Equation (5.54) becomes

� (x) =
� cos 


4��r2
(5.55)

Considering the Cartesian components of� (i.e.,�x; �y; �z), the potential for a centric dipole in an

infinite medium is

� (r; �; �) =
�x cos � sin � + �y sin � sin � + �z cos �

4��r2
(5.56)

By comparing Equation (5.56) and Equation (5.53), the separated coefficients are

E01 =
�z
4��

E11 =
��x
4��

F11 =
��y
4��

H01 = H11 = 1

with all other coefficients equal to zero.

Coefficient Evaluation

Once the expression for the potential due to a dipole in an infinite domain has been found, this

may be used in conjunction with the boundary conditions of continuity of potential and current

across surfaces. If there areN spheres in the problem (whereN � 1), then we can generateN � 1

equations from continuity considerations, andN equations from conservation of current. There is

one coefficient for the centre sphere and two coefficients for each of theN � 1 shells surrounding

it. In total, this gives us2N � 1 equations and2N � 1 unknowns. From this a system of linear

equations can be generated for eachm;n spherical harmonic pair. Further details can be found in

Bradley et al. (1997).

Source Term Due to a Dipole

To allow for dipolar source terms to be included, a source term must be included in the boundary

integral equations. For a dipole with magnitude and direction given by the vector�, located at the

point�0, this source term is given by

V (x;�;�0) =
r � �

4��r3
(5.57)
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wherer = krk
2
= k�0 � xk2 and� is the conductivity of the space (Plonsey & Barr 1988, Bradley

1998).

This yields a matrix system of the form

P�+ d = Qq (5.58)

whereP is the boundary element global dependent variable matrix andQ is the boundary element

global flux variable matrix andd is the source vector due to any dipoles.

Convergence Analysis

A particular solution to the generalised Laplace’s equation with the setup as illustrated in Figure 5.5

was investigated. The inner sphere had unit radius and the second sphere radius2. The static

dipole was centred at the origin with strength of1:7; 1:2; 2:2. The inner sphere had a conductivity

of 0:3 mS mm�1 while the outer sphere had a conductivity of0:2 mS mm�1.

The problem was solved with bilinear Lagrange basis functions (the same basis functions used

for the forward and inverse simulations). The initial mesh consisted of4 � 4 elements in the

circumferential and azimuthal directions. Further refinement (i.e.,once in each� direction) resulted

in 8� 8, 16� 16 and32� 32 elements in each direction.

Shown in Figure 5.6 is the convergence analysis of the potential distribution at28 nodal positions

on both spheres. These nodal positions are uniformly distributed and correspond to the node lo-

cations at the lowest mesh resolution (4 � 4). Shown in Figure 5.7 is the convergence analysis of

the current distribution at each of the nodal positions. In both cases the numerical solutions have

been compared to the analytical solutions using the comparison metrics RMS and NIDS defined

in Equation (3.7) and Equation (5.46), respectively. From the convergence plots, as the mesh reso-

lution (and therefore solution DOF) increases, the deviation between the numerical and analytical

results reduced, indicating a linear rate of convergence.



104 THE FORWARD PROBLEM OF ELECTROCARDIOLOGY

Potential Convergence Analysis
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Figure 5.6: Convergence analysis of potential on both spheres due to a dipole in the Laplace’s
equation setup shown in Figure 5.5.

Normal Current Convergence Analysis
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Figure 5.7: Convergence analysis of the current on the inner sphere due to a dipole in the
Laplace’s equation setup shown in Figure 5.5.

5.5.2 Poisson Equation Analytic Test Problem

If the electrical activity within the myocardium is to be modelled through to the torso surface,

Equation (5.10) must be solved. Presented here is a bidomain based analytic solution which en-

sures that the transfer matrix mapping from transmembrane potential to torso surface potentials, as

described in Section 5.3, has been constructed correctly.

In order to verify the results computed by the numerical solutions, an analytic solution that com-

bined a bidomain and a generalised Laplace’s equation setup was calculated for a simplified test

geometry. Two concentric spheres representing the myocardium enclosed by a torso of homoge-

neous conductivity were defined. On the inner sphere surface a known transmembrane potential

distribution was applied to depict the excitation wavefront at a particular time instant and on the
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�1:5 �1:0 �0:5 0 0:5 1:0 1:5

Figure 5.8: Potential (mV) generated by a dipole (purple arrow) of strength 1.7, 1.2, 2.2 in the
Laplace’s equation setup shown in Figure 5.5. The inner sphere of unit radius has a conductivity

of 0.3 mS mm�1 and the outer sphere of radius 2 has a conductivity of 0.2 mS mm�1.

outer surface, the resultant potentials were determined.

Governing Equations & Boundary Conditions

By considering the solutions to the bidomain and generalised Laplace’s equation within a concen-

tric sphere setup as shown in Figure 5.9, the governing equations can be specified as

r �
�
(�i + �e)r�

in
e

�
= �r � (�ir�m) (5.59)

r �
�
�r�oute

�
= 0 (5.60)

where Equation (5.59) is the governing equation for the inner sphere and Equation (5.60) is the

governing equation in the outer sphere and�ine and�oute are the extracellular potentials located on

the inner and outer spheres respectively.

This setup provides a simplified representation of a heart in a torso. The inner sphere represents

the epicardial surface and the outer sphere represents the torso surface. The problem was defined

in the spherical polar coordinate system with coordinates(r; �; �), with 0 � � � 2� for the cir-

cumferential coordinate and0 � � � � for the azimuthal coordinate, although numerical solutions
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were carried out in a rectangular Cartesian framework. This creates a situation where an analytic

solution can be generated which closely represents the true problem of solving for activation times

in a human torso.

x

z

R2

R1

�out
e

�in
e

�m

@�out
e

@n
= 0

�i; �e

�ref

�

Figure 5.9: Schematic of analytic bidomain problem setup, with inner sphere of radiusR1 and
outer sphere of radiusR2. Bidomain conductivity parameters of�i and�e in the inner sphere
and passive conductivity of� in the outer sphere were specified. The transmembrane potential
�m on the inner surface was specified by Equation (5.67) and a no flux boundary condition
was specified on the outer surface as well a reference potential at the top of the outer sphere,
(R2; �; 0). The extracellular potential (�ine ) on the inner surface and extracellular (�oute ) on the

outer surface as well as the normal derivatives were solved for.

The governing equations are subject to the boundary conditions which closely represent those

of the true boundary conditions encountered within a torso. At the inner surface, there is a no-

flux boundary condition for the transmembrane potential, as specified by Equation (5.61). The

interface between the inner and outer surfaces must have the same values of extracellular potential

and continuity of current across the boundary. These are enforced by the boundary conditions

Equation (5.62) and Equation (5.63). The boundary condition, Equation (5.64), ensures that there is

a no flux boundary condition on the outer surface which represents the torso surface/air interface on

a human. An additional boundary condition of a reference potential was chosen in Equation (5.65)
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and arbitrarily to be located at(R2; �; 0) (i.e.,at the top of the outer sphere) and set to0.

@�m
@r

= 0 at r = R1 (5.61)

�oute = �ine at r = R1 (5.62)

(�i + �e)
@�ine
@r

= �
@�oute

@r
at r = R1 (5.63)

@�oute

@r
= 0 at r = R2 (5.64)

�oute = 0 at r = R2; � = 0 (5.65)

Analytic Transmembrane Potentials

From Equation (5.59) within the inner sphere (i.e., for 0 < r � R1)

r2

�
�ine +

�i
�i + �e

�m

�
= 0 (5.66)

In polar spheroidal coordinates, if�m is defined to be the potential field generated by a centric

dipole of magnitude, in the rectangular Cartesian coordinate system,� = (�x; �y; �z) inside a

sphere of radiusR1 with a no-flux boundary condition set on the outer sphere atR1, then,

�m (r; �; �) =
(R3

1 + 2r3)

R3
1r

2
(�x cos � sin � + �y sin � sin � + �z cos �) (5.67)

With �m chosen as such, Equation (5.61) is satisfied and�m is itself a solution to Laplace’s equation

inside the inner sphere (except at the origin).

Analytic Extracellular Potentials

From Equation (5.66), if�m is a solution to Laplace’s equation then it is necessary to find�ine such

that�ine +
�i

�i + �e
�m satisfies Laplace’s equation inside the first sphere. The general solution to

Laplace’s equation in polar spheroidal coordinates is given by

�ine =
1X
n=0

nX
m=0

(Amn cos (m�) +Bmn sin (m�))

�
Cmnr

n +
Dmn

rn+1

�
Pm
n (cos �) (5.68)
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wherePm
n (cos �) is the associate Legendre polynomials of degreen and orderm, as defined in

Section 5.5.1,

If the extracellular potentials are first considered on the surface of the inner sphere, from the or-

thogonality of spherical harmonic functions the choice of�m only contains themn coefficients:

00, 01 and11. The general expression for�ine thus need only contain these coefficients,i.e.,

�ine (r; �; �) = (A11 cos � +B11 sin �)

�
C11r +

D11

r2

�
sin �

+ A01

�
C01r +

D01

r2

�
cos � + A00

�
C00 +

D00

r

�
�

�
�i

�i + �e

�
�m

(5.69)

Grouping the coefficients

C0 = A00C00

D0 = A00D00

C1 = A01C01

D1 = A01D01

the extracellular potential for the inner sphere is given by

�ine (r; �; �) = (A11 cos � +B11 sin �)

�
C11r +

D11

r2

�
sin �

+

�
C1r +

D1

r2

�
cos � +

�
C0 +

D0

r

�
�

�i
�i + �e

�m

(5.70)

Next, the extracellular potentials on the outer sphere are considered. In the outer sphere, Laplace’s

equation for�oute must be satisfied. The general solution to Laplace’s equation in spherical polar

coordinates is given by

�ine =
1X
n=0

nX
m=0

(Emn cos (m�) + Fmn sin (m�))

�
Gmnr

n +
Hmn

rn+1

�
Pm
n (cos �) (5.71)

From orthogonality of spherical harmonic functions the general solution for the outside sphere is

hence

�oute =(E11 cos � + F11 sin �)

�
G11r +

H11

r2

�
sin �

+ E01

�
G01r +

H01

r2

�
cos � + E00

�
G00 +

H00

r

� (5.72)
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Grouping the coefficients

G0 = E00G00

H0 = E00H00

G1 = E01G01

H1 = E01H01

the expression for the extracellular potential in the outer sphere is given by

�oute (r; �; �) = (E11 cos � + F11 sin �)

�
G11r +

H11

r2

�
sin �

+

�
G1r +

H1

r2

�
cos � +

�
G0 +

H0

r

� (5.73)

Thus, from Equation (5.70) and Equation (5.73), the general expression for�e throughout the

domain is therefore given by

�e (r; �; �) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A11 cos � +B11 sin �)

�
C11r +

D11

r2

�
sin �

+

�
C1r +

D1

r2

�
cos � + C0 +

D0

r
�

�i
�i + �e

�m (r; �; �) 0 < r � R1

(E11 cos � + F11 sin �)

�
G11r +

H11

r2

�
sin �

+

�
G1r +

H1

r2

�
cos � +G0 +

H0

r
R1 < r � R2

(5.74)

By applying boundary conditions specific to this problem setup to the general solution specified in

Equation (5.74), it is now possible to obtain a specific solution.

By substituting Equation (5.74) into Equation (5.62), continuity of potential across the inner sphere
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surface implies

G0 +
H0

R1

= C0 +
D0

R1

(5.75)

E11

�
G11R1 +

H11

R2
1

�
= A11

�
C11R1 +

D11

R2
1

�
�

3�i
R2
1 (�i + �e)

�x (5.76)

F11

�
G11R1 +

H11

R2
1

�
= B11

�
C11R1 +

D11

R2
1

�
�

3�i
R2
1 (�i + �e)

�y (5.77)

G1R1 +
H1

R2
1

= C1R1 +
D1

R2
1

�
3�i

R2
1 (�i + �e)

�z (5.78)

By substituting Equation (5.74) into Equation (5.63), continuity of current across the inner sphere

boundary implies

�H0

R2
1

=
(�i + �e)D0

R2
1

(5.79)

�E11

�
G11 �

2H11

R3
1

�
= (�i + �e)A11

�
C11 �

2D11

R3
1

�
(5.80)

�F11

�
G11 �

2H11

R3
1

�
= (�i + �e)B11

�
C11 �

2D11

R3
1

�
(5.81)

�

�
G1 �

2H1

R3
1

�
= (�i + �e)

�
C1 �

2D1

R3
1

�
(5.82)

Substituting Equation (5.74) into Equation (5.64), the no-flux boundary condition across the outer

surface implies

G11 �
2H11

R3
2

= 0 (5.83)

G1 �
2H1

R3
2

= 0 (5.84)

�
H0

R2
2

= 0 (5.85)

Substituting Equation (5.74) into Equation (5.65), specification of the reference potential at the top

of the outer sphere(R2; �; 0) implies

�ref = G1R2 +
H1

R2
2

+G0 +
H0

R2

(5.86)
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By applying the boundary conditions to Equation (5.74), two sets of independent linear equations

are formed. The first set contains the five equations, Equations (5.76)–(5.77) and Equations (5.80)–

(5.81) and Equation (5.83). These equations involve eight unknownsA11 – H11, all with ‘11’

coefficients. The second set contains the equations Equation (5.75), Equations (5.78)–(5.79) and

Equations (5.84)–(5.86). These seven equations involve the eight unknownsC0, C1, D0, D1, G0,

G1, H0 andH1, all with either ‘0’ or ‘1’ coefficients.

To solve these under-determined systems of linear equations, three coefficients in the first system

and one coefficient in the second system must be fixed. It is desirable to have the resultant cir-

cumferential variation directly dependent on the underlying dipole orientation that is generating

�m, so theC11; D11 andH11 coefficients were chosen so as to normalise the equations in the radial

direction.

From Equations (5.80) and (5.81)

E11 =
(�i + �e)R

3
2 (R

3
1C11 � 2D11)

2� (R3
1 �R3

2)H11

A11 = �A11 (5.87)

F11 =
(�i + �e)R

3
2 (R

3
1C11 � 2D11)

2� (R3
1 �R3

2)H11

B11 = �B11 (5.88)

and thus by combining Equations (5.76) and (5.77)

A11 =
�3�iR

3
2

(�i + �e) (� (2R3
1 +R3

2)H11 � R3
2 (C11R3

1 +D11))
�x = ��x (5.89)

B11 =
�3�iR

3
2

(�i + �e) (� (2R3
1 +R3

2)H11 � R3
2 (C11R3

1 +D11))
�y = ��y (5.90)

For the second set of equations, it should be noted thatH0 (and thusD0 from Equation (5.79))

can not be fixed as it is implicitly zero from Equation (5.85). It should also be noted that ifC0 or

G0 is fixed the resulting expression for�e in the outer sphere will not depend on the dipole source

generating�m. For this reason, and to be consistent with the choice of coefficients from the first

set of equations,C1 was the coefficient chosen to be fixed. Thus, from Equation (5.85),H0 = 0

and therefore from Equation (5.79)D0 = 0. This gives, from Equation (5.75),C0 = G0.
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Equation (5.84) can be rearranged into the form

G1 =
2H1

R3
2

(5.91)

and thus from Equations (5.78) and (5.82) theD1 andH1 coefficients are defined by

D1 =
3 (2R3

1 +R3
2) ((�i + �e)R

3
1C1 � 2�i�z)

2 ((2�i + 2�e + �)R3
1 + (�i + �e � �)R3

2)
�R3

1C1 +
3�i�z
�i + �e

(5.92)

and

H1 =
3R3

2 ((�i + �e)R
3
1C1 � 2�i�z)

2 ((2�i + 2�e + �)R3
1 + (�i + �e � �)R3

2)
(5.93)

The final coefficient can then be obtained from Equation (5.86),i.e.,

G0 = �ref�
9R2 ((�i + �e)R

3
1C1 � 2�i�z)

2 ((2�i + 2�e + �)R3
1 + (�i + �e � �)R3

2)
(5.94)

Using Equations (5.75)–(5.86) an analytic test solution for a specific situation is presented in Sec-

tion 5.5.2.

Singularity at the Origin

It should be noted that as both�m and�ine only exist within the inner sphere, which is centred at

the origin, the
1

r2
terms in Equation (5.67) and Equation (5.74) contain singularities whenr = 0.

The effect of these singularities must be taken into account when performing an integration of the

type in Equation (5.22). The
1

r
terms contained in Equation (5.74) do not result in a singularity as

the coefficientsH0 andD0 are implicitly zero.

The resulting singularity from�ine , when integrated with the weighted function, acts like a dipole

source as in the generalised Laplace’s formulation in Section 5.5.1. The correction factor that needs

to be added to the LHS of Equation (5.39) can be determined by considering two sourcesS and
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S+ with their strengths defined as

�s =
It
krk

(5.95)

�+s =
It

kr � ��k
(5.96)

whereIt is the total injected current,� is a direction and� 2 R and� > 0

The potential field that results from a dipole that is created from such two sources when they are

brought towards each other is given by

�m = lim
�!0

�
1

�

�
�+s � �s

��

= lim
�!0

It

�
1

�

�
1

kr � ��k
�

1

krk

��

= lim
�!0

It

8<
:
r �

q
r2 � 2�r � �+ �2k�k2

�rkr � ��k

9=
;

= lim
�!0

It

8>><
>>:
1�

r
1� 2�

r � p

r2
+ �2

k�k2

r2

�kr � ��k

9>>=
>>;

= lim
�!0

It

8<
:
1�

�
1� �

r � �

r2
+O(�2)

�
�kr � ��k

9=
;

= It
r � �?

r3

(5.97)

where�? = (A11D11; B11D11; D1) and is the pseudo-dipole singularity source which is derived

from the coefficents for each directional component of Equation (5.70).

Convergence Analysis

A particular solution to the Poisson equation with the setup as illustrated in Figure 5.9 was inves-

tigated, with the inner sphere of radius 1 and the outer sphere of radius 3, the dipole specified by

� = (1; 2; 1), the bidomain conductivities given by�i = 2 and�e = 4 and the passive conductivity
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set to� = 2. By specifying four coefficients to create a fully determined system

C11 = 1 D11 = 1 H11 = 1 C1 = 1

the system of equations can be solved. The full set of16 coefficients were

C0 =�
27

122
D0 = 0 G0 = �

27

122
H0 = 0

C1 =1 D1 =
87

122
G1 =

3

61
H1 =

81

122

A11 =
52

17
B11 =

104

17
C11 = 1 D11 = 1

E11 =
81

17
F11 =

162

17
G11 =

2

27
H11 = 1

The general solution for�e, subject to the boundary conditions specified by Equations (5.61)–(5.65)

was found to be

�e =

8>>>>>>>><
>>>>>>>>:

�
52

17
cos � +

104

17
sin �

��
r +

1

r2

�
sin � +

�
r +

87

122r2

�
cos �

�
(2r3 + 1)

3r2
(cos � sin � + 2 sin � sin � + cos �)�

27

122
0 � r � 1

�
81

17
cos � +

162

17
sin �

��
2

27
r +

1

r2

�
sin � +

�
3r

61
+

81

122r2

�
cos � �

27

122
1 � r � 3

(5.98)

and the normal derivatives given by

@�e
@n

=

8>>>>>>>><
>>>>>>>>:

�
52

17
cos � +

104

17
sin �

��
1�

2

r3

�
sin � +

�
1�

174

122r3

�
cos �

�
2 (r3 � 1)

3r3
(cos � sin � sin � sin � + �z cos �) 0 � r � 1

�
81

17
cos � +

162

17
sin �

��
2

27
�

2

r3

�
sin � +

�
3

61
�

162

122r3

�
cos � 1 � r � 3

(5.99)

The numerically calculated solutions for this problem were compared to the analytic solution pro-
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vided by Equation (5.98) and Equation (5.99) using the RMS and NIDS comparison metrics, de-

fined in Equation (3.7) and Equation (5.46) respectively.

The problem was solved using bilinear Lagrange basis functions (the same basis functions used

for the forward and inverse simulations) with the mesh systematically refined in each� direction.

The convergence plots for potential and normal currents on both surfaces are shown in Figure 5.10

and Figure 5.11. The error measures are plotted against the average characteristic element size (h),

defined as the square root of the average surface area of each element, and the solution DOF. The

slopes of the convergence plots in Figure 5.10 and Figure 5.11 indicate the problem has a linear

rate of convergence.

Extracellular Potential Convergence Analysis
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Figure 5.10: Convergence analysis for the extracellular potentials on both surfaces generated
by the dipole in Equation (5.67) subject to the conditions specified by Equations (5.61)–(5.65).
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Figure 5.11: Convergence analysis for the normal current on the inner sphere
generated by the dipole in Equation (5.67) subject to the boundary conditions

specified by Equations (5.61)–(5.65).

Figure 5.12 shows the potential and the normal current at five evenly spaced points, by specifying

� = 0 and varying� from 0 to �. Effectively this is a slice from the top to the bottom of the sphere
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with the points corresponding to nodes at the lowest resolution mesh. The left plot shows the

potential on the outer surface (r = R2) and the right plot the current at the inner surface (r = R1).

Note that the reference potential is set to0 mV at � = 0. It can be seen that as the mesh is refined,

the solution approaches the analytic solution.

Potential and Normal Current Convergence at � = �
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Figure 5.12: Comparison between the analytic and the numerical extracellular potentials at
r = R2 and the currents atr = R1. The analytic potential is specified by Equation (5.98) and

the analytic normal current is specified by Equation (5.99)
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�12 �6 0 6 12

Figure 5.13: Analytic extracellular potential (mV) solutions at a refinement level of 20�20
(20 elements in the circumferential and azimuthal directions with a total of 400 elements for
each of the two surfaces). The purple arrow represents the dipole strength and orientation

(1, 2, 1).
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5.6 Convergence Analysis of Generic Model

The generic porcine model, described in Section 4.4, was constructed with the minimum number

of DOF necessary to accurately represent the geometric shape of the torso. However, to accurately

represent a changing potential field further refinement may be required. At the heart level there

are high potential gradients caused by the rapidly moving wavefront and the sharp upstroke in a

ventricular action potential. To be able to resolve such rapidly varying fields a relatively fine mesh

resolution is required. On the torso surface, the potential fields are the low resolution projection of

the electrical activity occurring within the heart. The signal magnitudes have been attenuated and

the potentials are also distributed over a larger physical area. Typically a lower resolution mesh is

required there than on the heart. The torso model must be systematically refined to a point where

the change in solution upon further refinement is below an acceptable level.

Shown in Figure 5.14 is the effect of refining the model once in each� direction. Further details

about the refinement of each surface is given in Table B.1. The average characteristic element

sizes (h) of the left ventricular surface have reduced from13 mm to 7 mm while the average

characteristic element size for the right ventricle has reduced from14:8 mm to 7:4 mm.

Figure 5.14: The result of refining the endocardial surfaces once in each direction. The left
endocardial surface is shown in green, the right endocardial surface is blue and white lines
show the element borders. On the left is the heart model created by fitting the geometric data

and on the right, the computational model needed for a converged forward solution.

The geometric model described Section 4.4 was used to test the refinement level required for a

converged forward solution. This was performed using the heart sources described in Sections 4.6.2
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and 4.6.3 and imposing the boundary conditions described in Section 5.1.3.

5.6.1 Mesh Resolution

The full reference porcine model consisted of six regions. As explained in Section 4.4, the epicar-

dial, left and right endocardial, left and right lung and skin surfaces were modelled. The full list of

information about each surface of the model as it was refined is shown in Table B.1. One level of

refinement is defined as refinement at� = 0:5 once in each� direction.

A factorial design was used to determine the appropriate level of refinement for each of the regions.

Each surface was refined while all other surfaces remained constant and the resulting solutions

examined. More detailed information about each surface is shown for the different refinement

levels of each surface is shown in Table B.1.

5.6.2 Potential Based Convergence

The potential based formula is governed by the generalised Laplace’s equation throughout the entire

domain. The dynamic dipole source described in Section 4.6.2 was used to calculate potentials on

the epicardial surface. These potential distributions were then mapped through to the torso surface

via a traditional epicardial potential to torso surface potential transfer matrix. Using this setup a

range of simulations at different refinement levels were performed to quantify the effect of mesh

resolution on solution convergence.

Since the use of the dipole source was to determine the appropriate mesh resolution for a tradi-

tional potential inverse, no blood masses were included in the forward simulations involving this

source. Both endocardial surfaces were removed with this cardiac source and the passive material

conductivities defined in Table 4.3 were used in the remaining four regions.

To quantify the changes between refined meshes only the potentials at the nodal positions from the

least refined case (level0) were used for the refinement comparisons. There were37 sites on the

epicardium and254 sites on the torso surface used for comparisons.

Key events in the cardiac cycle were used as temporal markers for comparisons. They were peak P,
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peak R, peak T and the QRS interval. These times and intervals were determined by solving the

forward problem and examining the resultant signals on the dominant chest leads such as those

shown in Figure 5.16.

An isoparametric formulation was used in the forward solutions,i.e., the dependent variable (po-

tential) was approximated using the same basis functions used for the geometry (cubic Hermite

interpolation). Epicardial potentials were then calculated from the dipole source inside the heart

as part of the solution and these potentials changed with heart mesh refinement. Therefore for this

analysis, epicardial and torso surface potentials were compared.

To test whether a model with a certain refinement level had converged, a particular region was

progressively refined until there was no significant change in the solution. To determine the appro-

priate resolution of the entire mesh, this process needed to be repeated with the other regions in the

mesh at various levels of refinements as well. From this large number of simulations, a reference

model was chosen which had each region at an appropriate resolution for a converged forward so-

lution using bicubic Hermite elements. Detailed results of this series of simulations are presented

in Tables (B.2)–(B.7).

A B

D

C

Figure 5.15: Four typical torso surface signals are shown for potential and activation for-
ward convergence analysis simulations. There locations on the torso surface are shown
schematically above. These signals are shown graphically in Figure 5.16 and Figure 5.19.

Layout as described in Figure 3.5.

For all cases, refining each of the surfaces had minimal effect upon the resultant torso surface

potentials. In each of the simulations, if only the torso surface potentials were examined, then

a converged solution was obtained with the first level refinement for each surface. However, by

also examining the epicardial surface potentials a very different trend is encountered. As each



5.6 CONVERGENCEANALYSIS OF GENERIC MODEL 121

Torso Surface Signals Computed from Dipole Source
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Figure 5.16: Torso surface signals using the dipole source described in Section 4.6.2. The re-
sultant solutions with the heart refined once (red) and refined twice (blue) have been overlayed.
All other regions are at the converged resolutions. The location of each electrode is shown

schematically in Figure 5.15.

surface is systematically refined the magnitudes of the epicardial surface potentials changed greatly.

The patterns of the signals (as shown by the similarity index error metric) are unchanged for all

refinement levels but the magnitudes of the signals slowly converge as each surface is systematically

refined.

The final converged model contains the epicardium refined to level2, the left and right lung and

the torso refined to level1. This resulted in an average characteristic element size of approximately

5 mm for the epicardial surface,10 mm for the lung surfaces and18 mm for the torso surface.

Torso potentials generated using this reference model140 ms into the simulation are shown in

Figure 5.17.

The convergence analysis was repeated using bilinear Lagrange basis functions (the interpolation

which is eventually used in the inverse simulations). Similar trends were obtained when compared

to the bicubic Hermite simulations and the same refinement was required to obtain a converged
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solution. The results from these simulations are summarised in Table B.8 and Table B.9. Both

interpolation functions show a linear rate of convergence as shown in Figure 5.18.

�4 �3 �2 �1 0 1

Figure 5.17: Torso surface potential fields (mV), 140 ms into the simulation, created by solv-
ing the forward problem and using the dipole source described in Section 4.6.2. The problem
was solved using the converged mesh resolution, with all surfaces refined once in each direc-
tion, except the epicardial surface which was refined twice in each direction. Corresponding
torso surface signals are shown in Figure 5.16. The anterior view is shown on the left and the

posterior on the right.

The use of a dipole source meant that the epicardial potentials were calculated as part of the solution

procedure. As the epicardial surface was refined, the potentials calculated at the epicardial nodal

positions also changed. This was not the case when an activation cardiac source was used, as in

Section 5.6.3, where the activation times are not numerically calculated for each refinement level.
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Convergence Comparison Between Bicubic Hermite and Bilinear Lagrange Basis Functions
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Figure 5.18: Forward convergence of generic model with dipole source using bilinear La-
grange and bicubic Hermite basis functions. The effect of refining the epicardial surface on
the computed epicardial potentials (left) and the torso surface potentials (right) are compared
when using different interpolating basis functions. The relative RMS error metric defined in

Equation (3.8) is plotted against the average characteristic element size.

5.6.3 Activation Based Convergence

The activation based formulation maps activation times from the epicardial and endocardial sur-

faces through to the torso surface via a transmembrane to torso surface potential transfer matrix and

from the epicardial and endocardial surfaces through to the epicardial surface via a transmembrane

to epicardial surface potential transfer matrix. The same convergence analysis process described in

Section 5.6.2 was repeated using the eikonal activation profile described in Section 4.6.3 except that

only linear Lagrange interpolation was used. This interpolation scheme is the same as that used by

the inverse procedures described in Chapter 6 and the inverse simulations presented in Chapter 7.

The model contained all six surfaces and the conductivities defined in Tables 4.3 and 4.4 were used.

Since the activation sequence was derived from a ventricular model (Tomlinson 2000), only the

QRS interval of the cardiac cycle was considered. As outlined in Section 4.6.3, the activation

sequence had a duration of52 ms. Key events of the QRS interval were used as temporal markers

for comparisons. They were peak Q, peak R, peak S and the QRS interval. These times were again

determined by solving the forward problem and examining the resultant signals in the dominant

chest leads on the torso surface such as those shown in Figure 5.19.

As with Section 5.6.2, to quantify the changes between refined meshes the potentials at the nodal

positions on the epicardial (37 sites) and torso surface of the unrefined model (254 sites) were used.

Again, convergence was determined by altering the refinement level of a given region while holding
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Torso Surface Signals Using Eikonal Source
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Figure 5.19: Torso surface signals using the eikonal source described in Section 4.6.3. The
resultant solutions with the generic heart (red) and refined once (blue) have been overlayed.
All other regions are at the converged resolutions. The location of each electrode is shown

schematically in Figure 5.15.

all other regions constant. Detailed results for convergence analysis with an activation source are

shown in Tables (B.11)–(B.19).

When using the activation based approach with the eikonal source, the solutions converged at a

faster rate than the epicardial potential forward simulations with the dipole source. After one level

of refinement all surfaces had an average error of less than1% on both the computed epicardial and

torso surface potentials. The final converged solution using the activation source required a single

refinement in each� direction for each of the six surfaces. This resulted in an average characteristic

element size of approximately18 mm for the torso surface and10mm for the epicardial, ventricular

chamber and lung surfaces. A potential map for the converged model10 ms into the simulation is

shown in Figure 5.20.
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�3 �2 �1 0 1 2 3

Figure 5.20: Torso surface potential map (mV), 10 ms into the simulation, created by solving
the forward problem and using the eikonal activation source described in Section 4.6.3. The
converged mesh resolution, with all surfaces refined once in each direction, was used. Corre-
sponding torso surface signals are shown in Figure 5.19. Layout as described in Figure 5.17.

5.6.4 Convergence Summary

The forward convergence analysis was performed using a dipole source and an activation cardiac

source. Convergence was determined by performing a series of forward simulations and comparing

the resultant epicardial and torso surface signals at common locations.

The dipole source calculated epicardial potentials as part of the solution process and used an epicar-

dial to torso surface transfer matrix to calculate the torso surface potentials. Both bicubic Hermite

and bilinear Lagrange basis functions were used as the interpolation function for the solution, with

each producing similar results. To obtain a converged solution with the dipole source each surface

was refined once in each direction and the epicardial surface was refined twice in each direction.
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With the activation source, bilinear Lagrange basis functions were used as the interpolation func-

tion. This is the same basis function that is used with the inverse procedures described in Chapter 6.

Epicardial potentials were calculated using a transmembrane to epicardial surface potential trans-

fer matrix while torso surface potentials were generated using a transmembrane to torso surface

potential transfer matrix. To obtain a converged solution with the activation source each surface

only needed to be refined once in each direction despite only using a linear Lagrange basis function

used to interpolate the solution.



6 The Inverse Problem
of Electrocardiology

Quantitative interpretation of the multiply sampled ECG signals in terms of the underlying cardiac

source generator is an inverse problem and various mathematical algorithms have been developed

over the years in an attempt to solve this electrical imaging problem (e.g.,Barr & Spach 1978,

Gulrajani, Roberge & Savard 1984, Martin, Pilkington & Morrow 1975, Oster & Rudy 1992). To

date, none of these have been proven to be reliable and stable enough to be routinely used in a

clinical situation.

Unless the inverse problem is posed in a particular manner, it is not uniquely determined (i.e.,there

exist multiple cardiac electrical generator configurations that can give rise to the same thoracic

ECGs). Earlier approaches to the inverse problem modelling the heart as a combination of a small

number of fixed or moving dipoles (e.g.,Miller & Geselowitz 1978, Huiskamp 1998). This non-

uniqueness has hampered attempts at solving the inverse problem and the resulting dipoles, also

provide poor insight into the underlying cardiac function.

Currently, the most widely used formulation of the inverse problem of electrocardiology involves

determining the epicardial potentials. It has been recognised that by posing the problem in terms of

reconstructing epicardial potentials, the problem is uniquely determined (Yamashita 1982, Martin

& Pilkington 1972), however the problem also becomes ill-posed. This means that the presence

of any noise (which always exists in practice), will be amplified in the computed solution in an

unknown and uncontrolled fashion.

The emergence of a general theory for such ill-posed problems (Tikhonov & Arsenin 1977) and the

introduction of the ideas behind constraining the mathematical solutions have resulted in the large

number of variants of the inverse algorithms in existence today in the field of electrocardiographic

imaging. Regularised solutions to the inverse problem of electrocardiography first appeared in

127
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the mid-70s (Barr & Spach 1978). Since then, considerable effort has been put into finding more

reliable and controllable inverse solutions. Initially, much of this effort went towards studying the

effects of various regularisation constraints and the choice of the regularisation parameter. It has

now been recognised that there is an increasing need to impose some form of temporal constraint on

the solutions (Gulrajani 1998) due to the poor performances of algorithms which only regularise

in the spatial domain and also the ability to make use of the temporal correlation of solutions

at adjacent time steps. Recently, elaborate regularisation techniques which combine both spatial

and temporal constraints on the solutions have been developed (Oster & Rudy 1992, Greensite &

Huiskamp 1998, Brooks, Ahmad, MacLeod & Maratos 1999). One of the main problems with

a regularisation technique is that it is not knowna priori the degree of regularisation to apply.

With a known solution, it is possible to obtain an optimal regularisation parameter which will

optimally reconstruct the desired solution. However, since many of the regularisation techniques

are based on a general mathematical approach for ill-posed problems they fail to account for the

underlying physiological processes governing the generation of the body surface potentials (namely

an evolving wave of activation) and are lacking in reliability.

When dealing with epicardial potentials, there exist sharp gradients between the unpolarised and

depolarised regions (i.e.,at the site of the activation wavefront). These sharp transition zones mean

that the problem must be solved at a resolution capable of capturing this detailed information.

These regions are also not well handled by the standard regularisation techniques described in

Section 6.2. In addition, many of the algorithms construct the inverse solution by treating each

time instance independently, which, at least theoretically, is not the optimal way to proceed with

such temporally correlated information as is present in ECG signals (Oster & Rudy 1992, Greensite

& Huiskamp 1998).

The principal interest in electrically imaging the heart is to estimate the real electrical generators

present within the myocardium. Due to the proximity of the epicardial potentials to the actual elec-

trical source they are able to provide a close representation of the electrophysiological processes

occurring within the myocardium (Spach & Barr 1975). However, it is clear that even if the inverse

problem can be accurately and reliably solved in terms of the epicardial potentials, the results need

to be interpreted in a form which is clinically useful as a diagnostic aid. Reconstruction of the

myocardial activation times is a formulation which is still close to the underlying physiology of the

problem and inherently more stable than the epicardial potential approach. By posing the problem

in terms of activation times, the solution domain can been reduced from temporally and spatially

varying potentials to just spatially varying activation times and thus there exists the possibility of a

better-posed problem – while still maintaining what is, in some regards, the most physiologically
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important feature of the solutions (Brooks & MacLeod 1997). In addition, by following an activa-

tion based approach, the solution no longer possesses sharp gradients (which makes the problem

mathematically difficult) as it is essentially representing a continuous evolving wavefront. The

solution method using the activation based formulation is described in detail in Section 6.3.

6.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a mathematical technique which can determine the prin-

cipal components of the information contained within a matrix (Press, Teukolsky, Vetterling &

Flannery 1992). If an SVD is applied to a transfer matrixA, then the transfer matrix can be

rearranged to be of the form

A = U�V T

= �iuivi
T

(6.1)

whereU andV are orthogonal matrices (their columns are orthonormal) and� contains the

weighting singular values whileui andvi are vectors forming the orthogonal matrices and�i

are the singular values withi = 1; : : : ; N . The singular values are typically sorted in decreasing

order with the larger values corresponding to principal components of theAmatrix. The eigenvec-

tors corresponding to small singular values are assumed to correspond to random noise space and

are often discarded to create a more stable system of equations.

To understand how regularisation can stabilise an inverse problem, Hansen (1992) rearranged the

standard inverse problem formulation to be of the form

�H =
�
ATA+ �I

��1
AT�B

=

�
�i

�2i + �2

�
viui

T�B

(6.2)

where
�
ATA+ �I

��1
is defined as the pseudo inverse (further explained in Section 6.2),� is a

regularisation parameter andI is the identity matrix.

By examining Equation (6.2), when�i is small, the solution becomes unstable due to the presence

of the�2i term in the denominator. This can be overcome by two methods. The regularisation term

� can be increased to help to stabilise the solution, especially for values of� � �. This technique

is further explained in Section 6.2.1. An alternative approach involves totally removing the effects
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of the equations which correspond to small singular values as explained in Section 6.2.2. Both the

truncation and regularisation techniques are employed in the activation based inverse approaches

in Section 6.3, and by Greensite’s spatial and temporal potential regularisation technique described

in Section 6.2.3.

An SVD can also be applied to the torso surface signal data matrix�B (which stores the signal

information in each row of the matrix and the potentials each time instant in the columns of the

matrix) to determine its principal components. This factorises the spatial eigenvectors intoU and

the temporal eigenvectors intoV . The columns ofU andV corresponding to small singular values

are assumed to correspond to Gaussian noise and typically removed (Huiskamp & Greensite 1997).

The method of determining when the singular values corresponding to noise space can be estimated

by plotting thelog of the ordered singular values against the rank of the matrix. This typically

results in a characteristic ‘L’ shaped curve as shown in Figure 6.1. It has been postulated that the

points below which the curve levels off corresponds to noise space (Huiskamp & Greensite 1997).

A number of different methods are used for determining the best place at which to cut off the

singular values such as the Akaike Information Criterion (Akaike 1974) and the point of steepest

curvature. However, none of these have been found to be truly reliable in practice. The points

selected as the cutoff of the singular values are given in Figure 6.1 by the horizontal and vertical

green lines. The upper left quadrant corresponds to the significant singular values and the lower

right quadrant the small singular values which are discarded.
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Figure 6.1: Singular value spectra of two different torso surface signal matrices. On the left are
the singular values from a signal matrix recorded from a normal male volunteer and on the right
simulated signals from the double point cardiac source described in Section 4.6.4. The singular
values have been normalised and plotted on a log scale to emphasise the curvature in the sin-
gular values. The lower right quadrant (as defined by the vertical and horizontal green lines)
correspond to the ranks and singular values which have been considered to correspond to noise.
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6.2 Epicardial Potential Formulation

The standard solution approach to solving the epicardial inverse problem of electrocardiography is

based on solving a set of independent quasi-static problems of the form given by

�B = A�H (6.3)

whereA is the geometric noise-corrupted transfer matrix and�B is a noise-corrupted body surface

potential distribution and�H is the unknown epicardial potential solution. If only the depolarisa-

tion phase of the heart cycle is modelled thenA it is valid to assume this remains constant as the

heart does not contract during this period. As the potential distributions on the torso and heart vary

temporally, the solutions can be stored as corresponding columns in each matrix.

By treating every individual equation independently and solving each time step (or column)�B of

�B for its corresponding solution for�H , results in

�H = A
y
�t
�B (6.4)

whereAy
�t

is the regularised (either Tikhonov or Truncated Singular Value Decomposition (TSVD))

pseudo inverse ofA at timet. These two families of regularisation methods are currently the most

widely used in solving the epicardial inverse problem of electrocardiology. These two spatially reg-

ularising families as well as the temporally and spatially regularised solution method of Greensite

& Huiskamp (1998) are further described in Sections (6.2.1)–(6.2.3).

6.2.1 Tikhonov Regularisation

The least squares solution to inverse problem using a Tikhonov regularisation scheme is given by

�H = min k�B �A�Hk2 + �kR�Hk2 (6.5)

where the first term of Equation (6.5) is the least squares solution to Equation (6.3) and the second

term regularises the solution by imposing a penalty function on the solution via the regularisation

matrixR and the weighting term�t 2 Iand positive.

which determines the amount of regularisation to be applied.



132 THE INVERSE PROBLEM OF ELECTROCARDIOLOGY

The regularisation matrix changes depending on the type of Tikhonov regularisation used. For

zero-order Tikhonov regularisation,R = I (the identity matrix) for first-order TikhonovR = G

(the surface gradient) and for the second-order TikhonovR = L (the surface Laplacian). Each of

the regularisation methods constrains the solution in different ways. The amplitude of the solution

is constrained with the use of the zero-order Tikhonov, the surface gradient for the first-order and

the surface curvature of the second-order Tikhonov methods. The� parameter may be altered to

vary between different time steps as denoted by the subscriptt. Thus the pseudo inverse for each

time step is given by

A
y
�t
=
�
ATA+ �2tR

TR
��1

AT (6.6)

It has previously been found using an eccentric sphere model that the zero-order Tikhonov regu-

larisation method performs as well as those of higher order (Messinger-Rapport & Rudy 1988),

therefore the zero-order Tikhonov technique has widely been adopted as the standard Tikhonov

technique for the epicardial potential inverse methods.

The solution to Equation (6.3) using zero-order Tikhonov regularisation can be written as

�H =
�
ATA+ �2tI

��1
AT�B

=
NX
n=1

fn(t)
huA;n;�Bi

�A;n
vA;n

(6.7)

whereh ; i is the inner product of two column vectors,uA;n andvA;n are the nth vectors from the

SVD of A, �A;n is the nth singular value from the SVD ofA andfn(t) are the Tikhonov filter

factors given by

fn(t) =
�2A;n

�2A;n + �2t
w

8<
:1 �A;n � �t

�2A;n=�
2
t �A;n � �t

(6.8)

Hence the filter factors filter out the contribution of�H corresponding to the small singular val-

ues less than the value defined by�t whilst leaving the SVD components corresponding to large

singular values almost unaffected. For values of� ' �t, the solution begins to be damped by the

regularisation.
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6.2.2 Truncated SVD Regularisation

Another method of treating the ill-conditioned nature of the transfer matrixA is to derive a new

problem with a well-conditioned rank-deficient transfer matrix (Hansen & O’Leary 1993). A rank-

deficient matrix which theoretically does not contain information pertaining to noise and error can

be obtained by truncating the SVD expansion defined in Section 6.1,i.e.,

A�t =
�tX
n=1

un�nvn
T �t � N (6.9)

whereN is the full rank of the matrix and the size of�t determines the level of regularisation for

time t and�t 2 Iand positive.

The TSVD solution is then obtained by minimising the objective function,

�H = min kA�t�H � �Bk2 (6.10)

The pseudo inverse for the problem is given by

A
y
�t
= ~V ~� ~U

T
(6.11)

where ~U and ~V contain the first�t columns of the orthogonal matrices and~� are the first�t
singular values.

Thus the solution to Equation (6.3) using TSVD regularisation is given by

�H = ~V ~� ~U
T
�B

=
�tX
n=1

huA;n;�Bi

�A;n
vA;n

(6.12)

This formulation is similar to that of the Tikhonov regularisation method defined in Equation (6.7)

where the terms up to and including�t are included in the summation and have a filter factor of

one whilst the remaining terms have a filter factor of zero.
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6.2.3 Greensite Temporal & Spatial Regularisation

Standard regularisation techniques have achieved only limited success in solving the inverse prob-

lem of electrocardiology (Brooks et al. 1999). The major drawback with these regularisation

schemes is that they impose non-physiological constraints on the problem and ignore the temporal

dependency of the data.

The method of Greensite & Huiskamp (1998) regularises both the temporal and the spatial do-

mains of the problem. The equations associated with each time point are regularised, based on the

idea (and proved theoretically in Greensite & Huiskamp (1998)) that a solution based on optimal

regularisation of each integral equation associated with eachprinciple componentof the data will

be more accurate than a solution based on the optimal regularisation of each integral equation as-

sociated with eachtime point. By imposing no additionala priori constraints, this new method

addresses uncorrelated noise only and with the presence of dominating correlated noise such as

geometric error it may only be successful in producing a cleaner signal (Greensite 1992).

Instead of treating each column (or time step) of�B independently, they are treated as a family of

solutions. The SVD of the body surface potentials are given by

�B = UB�BV
T
B

=
X
i

uB;i �B;i vB;i
(6.13)

whereUB represents the spatial components,VB the temporal components and�B the singular

values of the signal matrix.

Thus Equation (6.3) can be solved by

�H = A
y
�i
�B

=
X
i

�B;iA
y
�i
uB;i vB;i

(6.14)

whereAy
�i

is the pseudo inverse for each individual equationi determined either from Tikhonov

regularisation with regularisation parameter�i or TSVD regularisation with a truncation rank�i.

The solution to Equation (6.14) is obtained by solving a two step problem. Initially a system of



6.2 EPICARDIAL POTENTIAL FORMULATION 135

linear equations for each equationi is solved,i.e.,

uB;i = A
i (6.15)

whose solution is obtained by


i = A
y
�i
uB;i (6.16)

i.e., a traditional Tikhonov or TSVD inverse applied touB;i, the spatial basis vector, rather than

�B. In the context of a zero-order Tikhonov regularisation, the solution to Equation (6.16) is given

by


i =
NX
n=1

huA;n;uB;ii
�A;n

�2A;n + �2i
vA;n (6.17)

and similarly for the TSVD regularisation technique


i =

�iX
n=1

huA;n;uB;ii

�A;n
vA;n (6.18)

Finally, the solution to Equation (6.3) is given by

�H =
X
i

�B;i 
i vB;i (6.19)

6.2.4 Determining the Regularisation Parameter

Determining the level of regularisation to apply to a solution has been found to be critical in

obtaining an appropriate solution (Hansen 1998). This typically involves determining the value

to assign to�t. If too much regularisation is introduced the solution will be over-damped while if

insufficient regularisation is used, the solution will be too noisy.

There exist a number ofa posteriormethods to obtain the ‘best’ regularisation parameter. Com-

monly accepted methods are generalised cross validation (GCV) method of Golub, Heath & Wahba

(1979), the L-Curve curve method of Hansen & O’Leary (1993), the zero-crossing method of John-

ston & Gulrajani (1997) and the Composite REsidual and Smoothing Operator (CRESO) criterion
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of Colli Franzone, Guerri, Taccardi & Viganotti (1985). If the heart solution is also known (which

is not usually the case in practice) then it is possible to compute the optimal regularisation param-

eter using the optimal criterion to compute a theoretical optimal solution given each regularisation

technique.

Optimal Criterion

The optimal criterion, although not feasible except in simulation studies, places a theoretical limit

on the optimal performance of a given regularisation scheme and thus leads to a valid comparison

measure between different regularisation approaches. It uses the known heart solution to determine

the optimal regularisation parameter which best matches the known solution.

The optimal solution for Tikhonov and TSVD regularisation schemes can be obtained by choosing

the optimal regularisation parameters�t at timet for the solution to Equation (6.4). The optimal

regularisation parameter is determined as the parameter which minimises




�H;i � �̂H;i





2

(6.20)

where�̂H;i is theith regularised solution and forms theith column of the regularised solution.

The optimal regularised solution to Greensite’s potential method can be obtained by regularising

everyith equation individually since the columns ofUB are orthogonal, hence are linearly inde-

pendent. Thus for every solution
i of Equation (6.16) the optimal regularisation parameter is the

value which minimises

k�B;i 
i vB;i ��HkF (6.21)

wherek kF is the Frobenius norm.

L-Curve Criterion

The L-Curve method uses a plot of all valid regularisation parameters (�) of the regularisation

objective function (R�H) against the corresponding residual objective function (A�H � �B).

This determines a value of� which provides a balance between the two components which are

minimised in Equation (6.5). For discrete ill-posed problems it turns out that the L-curve, when
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plotted on alog-log scale, often has a characteristic L-shaped appearance with a corner separating

the vertical and horizontal components of the curve as shown in Figure 6.2. The point of maximum

curvature (or the corner of the plot) is used to determine the optimal regularisation parameter to

use. As long as the uncorrelated Gaussian noise present in�B dominates the correlated geometric

noise, inA, this curve is in the form of an ‘L’. However, with high quality recording systems the

Gaussian noise levels are typically low and there are difficulties in obtaining the point of highest

curvature.

over-smoothing

optimal

Regularisation Norm

Residual Norm

under-smoothing

Figure 6.2: The L-curve is a log-log plot of the residual norm, log
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2
. This plot is typically of the form of an ‘L’. The corner of

the ‘L’ strikes a balance between the residual of the solution and the regularisation norm.

With little regularisation introduced, the solution is dominated by the residual norm. This situation

is called under-smoothing and corresponds to the upper left component of the curve as shown in

Figure 6.2. When a large amount of regularisation is introduced, then the solution is dominated by

the regularisation error. This situation is called over-smoothing and corresponds to the lower right

portion of the plot.

The plot basically consists of two components which intersect at what is considered an optimal

value to choose for�. For low values of the regularisation parameters, corresponding to the vertical

section of the L-curve, the solution is sensitive to small changes in the value of�. When large

amounts of regularisation are introduced, the solution becomes dominated by the residual norm.

This corresponds to the horizontal section of the L-curve which is not sensitive to changes in the

regularisation value.
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CRESO Criterion

The Composite REsidual and Smoothing Operator (CRESO) criterion, proposed by Colli Franzone

et al. (1985), finds the regularisation parameter for which the difference between the derivative of

the residual term and the derivative of the smoothing term is maximised. The CRESO regularisation

parameter is determined as the smallest value of�2 that results in a relative maximum of the

function,

C (�t) = k�Hk2
2 + 2�2t

d

d�t
k�Hk2

2 (6.22)

where theC (�t) is the derivative of the functionB (�t), where

B (�t) = �2tk�Hk2
2 � kA�H � �Bk2

2 (6.23)

As the CRESO function is only strictly defined for a continuous regularisation parameter it cannot

be used for the discrete TSVD approximation.

Zero-Crossing Criterion

The zero-crossing criterion of Johnston & Gulrajani (2000) is another method of determining the

corner of the L-Curve. It aims to find the appropriate regularisation parameter by solving the

functionB (�t) = 0 given in Equation (6.23) for the smallest value of�t. It has the advantage that

it is simpler to compute and has previously been found to perform as well and sometimes better

than the CRESO criterion or L-curve methods (Johnston & Gulrajani 1997).

6.3 Myocardial Activation Time Formulation

The formulation of the inverse problem in terms of myocardial activation times was first performed

by Cuppen & van Oosterom (1984). The recent development of a new algorithm by Huiskamp &

Greensite (1997) has lead to further development in this field. For diagnosing arrhymias, activation

times provide a better representation of the electrical activity of the heart than epicardial potentials.

The problem size has been reduced by a dimension only timing information is modelled on the

heart surfaces. By tracking the activation wavefront instead of the potential values throughout the
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heart, a lower resolution mesh is typically required. This smaller problem size allows the possibility

of a better posed problem than that provided by a standard potential approach.

6.3.1 Determining & Refining the Activation Sequence

The inverse problem can be formulated as an optimisation problem which attempts to determine

an appropriate cardiac source which matches the known torso surface potentials. By using the

relationships defined in Section 5.4, the derivatives of the torso surface potentials with respect to

the activation times on the heart can be calculated. Using an initial activation sequence, as estimated

by the critical point algorithm, an optimisation loop can be used to solve multiple forward problems

and adjust the heart activation times to minimise the differences between the known and computed

torso surface potentials. This is used to iteratively refine the activation sequence.

The ultimate test of the accuracy of an inverse algorithm is a direct comparison between the known

input and the inversely computed cardiac activation field� (x). However, without invasive mea-

surements these are not available for comparison. Typically, only the torso surface potentials are

known and the only measure of error which can be used for a solution is a difference measure

between the recorded and calculated torso surface signals.

The most simple and common approach is to use the sum of squares difference between the

recorded and calculated torso surface potentials as the error measure (Huiskamp & Greensite 1997,

Fischer 1999),i.e.,
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(6.24)

where�B are the recorded body surface potentials and�̂B =A � (x) are the computed body surface

potentials generated from the activation field on the myocardial surfaces for each time step.

Alternative choices for the residual vectors include using a similarity index (as defined in Equa-

tion (3.9)) as a measure of the differences between the two sets of torso surface potentials. As the

goal is to maximise the similarity index between the two signal sets, the residual function can then

be formulated as
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A better objective function may involve employing both of these residuals (or additional ones) in

the form,
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where�i are parameters controlling the degree of weighting of each residual component.

It is also possible to optimise the parameters which define the shape of the activation function

(e.g.,!, a and b) as defined in Equation (5.4) and the passive and bidomain conductivity values of

the model. However, in practice, these values are not altered as part of the optimisation procedure

as the problem becomes ill-posed with too many DOF being optimised.

6.3.2 Estimation of the Activation Sequence

The optimisation approach for determining the activation times as described in Section 6.3.1 re-

quires an initial estimate which is then gradually improved and refined according to the forward

projected body surface potentials. An accurate initial estimate of the activation field is crucial to

prevent the optimisation phase converging to a local minimum (Huiskamp & van Oosterom 1988).

The quality of the initial estimate will be related to the quality of the final solution. The critical

point algorithm provides a good initial estimate of the activation field on the heart surfaces.

This algorithm revolves around the identification of the critical points and times of the surface

activation function (i.e., epicardial and endocardial breakthrough/termination points and times)

(Huiskamp & Greensite 1997). The approach involves the use of a modified MUSIC (MUltiple

SIgnal Classification) algorithm from antenna theory (Schmidt 1986). It arises from the observation

that when an evolving cardiac activation wavefront intersects the endocardial or epicardial surface

a ‘hole’ develops in the wavefront. The ‘holes’ developed in the propagating wavefront, when it

intersects the epicardial surface, results in a changed slope in the temporal ECG, leading to a step

discontinuity or ‘jump’ in the first derivative of the ECG traces (Greensite 1992). The times at

which these discontinuities occur identify the critical times associated with the critical points.

If � (x) is defined to be the activation time on the heart surface (�H ) at locationx and if the

wavefront breaks through at locationx0, thenr� (x0) = 0 and this point is considered to be a

critical point. This time� (x0) at which this breakthrough occurs is the critical time corresponding

to the critical point.
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The critical pointsx0 correspond to extrema sites on the map of the heart surface activation times

(i.e.,minima, maxima or saddle points). The epicardial breakthrough of the transmural wavefront

arriving from the endocardium is identified by a minimum in the epicardial activation maps, sites

where the epicardial wavefront dies out would be a maximum and a collision of two epicardial

wavefronts would constitute a saddle point.

6.3.3 Critical Points & Times

Following considerable mathematical manipulation (Greensite 1995), this critical point observation

leads to two important results:

1. x0 is a critical point of� (x) with critical time � (x0) () a is in the space spanned by

the spatial eigenvectors of�B, wherea is the column of the transfer matrix from�m to�B

corresponding to the pointx0.

2. With all critical points of� (x) determined, the computation of� (x) (on both the epicardial

and endocardial surfaces) is a well-posed problem.

Examples of critical points in a simulated activation wavefront are shown in Figure 6.3. They

show the activation wavefront (gold surface) computed by Tomlinson (2000) as it collides with the

epicardial and endocardial surfaces. The heart is viewed from the apex with the epicardial surface

displayed with a transparent material, the left ventricular surface in green and the right ventricular

surface in blue. The left-most image shows the initial activation sites representing the Purkinje

sites, followed by the first and second critical points near the right ventricular wall in the middle

and right images.

The key assumption required to prove the first point above is that the change in transmembrane

potential as the activation wavefront passes each point is modelled as a uniform step jump, as

shown in Equation (5.4) and Figure 5.4. This is not a practical restriction for normal hearts, but

does imply that the maximal temporal resolution is the duration of a transmembrane upstroke and

the maximal spatial resolution is the width of the activation wavefront.

To compute the critical points and times, two inputs are required: the ‘recorded’ torso surface po-

tential matrix� (y; t) and the transfer matrixA (x;y) which maps from transmembrane potentials

to body surface potentials. The signal matrix� (y; t) is of size number of electrodes� time steps,

wherey is a point on the torso surface,t 2 [1; T ] andT is the total number of time steps in the
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Figure 6.3: Critical points and times as an activation wavefront from Tomlinson (2000) col-
lides with the heart walls. The left-most image shows the initial activation sites near the endo-
cardial surfaces. The middle and right images show critical points as the activation wavefront
(gold surface) collides with the epicardial surface and a hole is formed in the wavefront. The
heart is viewed from the apex with the epicardium shown as a transparent surface, the left

ventricular surface in green and the right ventricular surface in blue.

torso surface signals. Essentially each column of the matrix contains the potential information at

each electrode at a particular instant in time and forms a body surface potential map as described

in Section 1.3. Each row of the signal matrix corresponds to the potential recorded by a particular

electrode over time. It is essentially storing an ECG trace for the electrode, similar to those shown

in Figure 1.8.

The transmembrane potential to torso surface potential transfer matrixA (as constructed in Sec-

tion 5.3) maps from locations on the epicardial and endocardial surfaces (x) to points on the torso

surface (y). This contains the geometrical and conductivity information of the model.

6.3.4 Critical Point Function

A reciprocal of distance from signal space (Greensite 1995) can be constructed by

MT
1 (x) =

 
1�

RX
r=1

[a (x;y) � ur (y)]

!�1

(6.27)

wherea (x;y) =
A (x;y)

kA (x;y)k
andur is therth column of the spatial eigenvector matrixU andk�k

is theL1-norm.
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This measure exaggerates points which are close due to fact thata (x;y) is normalised and the

entire function is inverted. This function thus emphasisesx points which are close to signal space.

In practice, no singularities occur inMT
1 (x) due to noise and errors associated with the signal and

transfer matrices.

To find the activation times corresponding to these critical points, the following functions are con-

structed

M+ (x; t) =M t
1 (x) (6.28)

M� (x; t) =MT
t (x) (6.29)

where1 < t < T . These two functions look at the distance from signal space where the signal

space is restricted to[1; t] and[t; T ] respectively. From these two functions, a zero-crossing matrix

(of size number of heart nodes� number of time steps) is constructed with

Z (x; t) =M+ (x; t)�M� (x; t) (6.30)

Each row of the zero-crossing matrix corresponds to distance from signal space at a particular

location on the heart. These functions are similar to step functions as shown in Figure 6.4, with

high gradients at the point at which thex-axis is crossed. Theoretically, the critical point function

corresponding to a critical point crosses zero at the critical time.

The statement of the critical point theorem relates to critical points only; therefore the activation

field as estimated by the zero-crossing times of Equation (6.30) can be considered accurate at those

points only. However, as the estimates of activation times are essentially generated as a distance

measure, the critical point function estimate of activation times for points not corresponding to

critical points are a reasonable estimate of the true activation sequences. As stated in Section 6.3.3,

with all critical points and times accurately defined computing all the activation times is now,

theoretically, a well-posed problem. The difficulty lies in the accuracy and reliability of the critical

points and times generated by Equation (6.30) and imposing these in the optimisation.

One flaw in the critical point algorithm is that it cannot reliably distinguish between events on the

epicardial and endocardial surfaces (possibly due to the fact that the myocardium is assumed to be

a homogeneous region for this thesis). Endocardial timings merely seem to follow the correspond-

ing timing found at the epicardium. This can be understood by considering two adjacent points on
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Figure 6.4: Comparison of critical point functions between critical and non-critical points. The
top row shows the three functions individually scaled. Bottom row has all the functions scaled
to the same ranges. The larger jump in the critical point function for node C indicates it corre-
sponds to a critical point and time. The vertical green line marks the points at which the func-
tions cross the horizontal axis and provide an estimate of the activation time at each location.

either side of the myocardium. The close proximity between these two points and the high correla-

tion between the transfer matrix columns corresponding to the two points, means that an epicardial

critical point could be incorrectly assigned to an endocardial point orvice versa. It is believed that

the majority of critical points are located on the epicardial surface as activation on the endocardial

surface in a normal heart is highly dominated by the distributed Purkinje network. In addition,

the activation times as estimated by the critical point function tend to be compressed towards the

centre of the time domain. As stated by Huiskamp & Greensite (1997), there is a “tendency for

estimates of critical times to be restricted to a narrow time interval; the early events tend to come

later, whereas the late events happen earlier”. This can possibly be overcome by the introduction of

an anisotropic transfer matrix, however, as previously explained in Section 5.3, isotropy is assumed

at this stage. Initial investigations have been performed on the creation of an anisotropic transfer

matrix, however, this has been limited to the forward problem of electrocardiography (Fischer

et al. 2000).

This can be understood by decomposing a signal into Gaussian noise and the pure signal com-

ponents. For the Gaussian noise component, with little significant information, the critical point

function will produce a slow ramping function, crossing zero halfway through the time interval.

The signal component will produce a fast, steep ramp crossing at the critical time. When the two

critical point functions are combined, the Gaussian noise contributions will drag the true activation
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times closer to the centre of the time interval. This is illustrated on simulated signals in Figure 6.5,

where the critical point estimates of the activations times for clean signals are compared to corre-

sponding signals which have had100 �V RMS of Gaussian noise added.
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Figure 6.5: Estimates of activations as determined by the critical point algorithm. The acti-
vation times (as determined by the point at which the functions cross zero) are compared for
‘clean’ (red) and ‘noisy’ (blue) signals. The overlayed graphs show that with increased noise
levels, the estimates are compressed towards the centre of the time domain (indicated by the
green vertical line). The magnitudes of the functions are also reduced, indicating a reduced

certainty in the solutions.

As the critical point algorithm only provides an estimate of the true activation sequence from the

body surface signals, it is desirable to obtain a more accurate representation of the true activation

sequence through the refinement process described in Section 6.3.1.

6.3.5 Myocardial Activation Regularisation Constraints

The activation based inverse formulation has had few developments when compared to the potential

based formulation. The currently exists a vast array of regularisation methods for the epicardial

potential based approaches. The activation approach is also believed to be more stable in a variety
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of situations than the potential inverse methods (Brooks & MacLeod 1997). The most commonly

used regularisation technique for the activation time formulation involves the inclusion of a surface

Laplacian constraint as shown in Equation (6.5). The degree of regularisation which is applied is

to the objective function is controlled by the regularisation parameter�.

Surface Laplacian Constraint

The surface Laplacian constraint is a second order Tikhonov constraint. However, unlike the use

of this constraint in epicardial potential approaches, it has a physiological basis as the path of the

surface activation wavefront is known to be continuous and smooth at a length scale greater than

the size of cell.

The Laplacian constraintL or penalty function forces the field (the activation wavefront) to have a

smooth curvature,i.e.,

L =

�
@2u

@s12
+

@2u

@s22

�
(6.31)

whereu is an unspecified scalar field andsi are the local coordinates in theith direction.

A simple method of approximating the surface Laplacian at the nodal positions is by a finite differ-

ence technique. If a one-dimensional mesh is considered, with a pointx0 with neighboursx1 and

x2. If ui is defined to be the field at locationxi (i.e.,u (xi)) then a Taylor’s series expansion by an

amounth yields,

u (x0 + h) = u (x0) + h
du

dx

����
x=x0

+
h2

2!

d2u

dx2

����
x=x0

+ � � �

+
hn

n!

dnu

dxn

����
x=x0

+
hn+1

n+ 1!

dn+1u

dxn+1

����
x=�

(6.32)

wherex0 < � < x0 + h

Considering a non-uniform mesh, (i.e.,h is different in each direction) and defining�xa to be the

distance between noden anda then noden represents the point which the Laplacian is centred

around.

Combining the Taylor series expansion ofu (x0 ��x1) andu (x0 +�x2) and rearranging for the
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�s1 �s2

n 21

Figure 6.6: Central difference approximation to the second derivative at noden. The distances
between noden and nodei is given by�si

second derivative term results in

d2u

dx2
' 2 �

u2 � 2ui + u1
�s21 +�s22

(6.33)

whereun is defined asu (xn), u1 is defined asu (xn ��x1) andu2 is defined asu (xn +�x2) and

�si is defined as�xi.

There is a slight error introduced as the first derivative terms do not exactly cancel due to the

variations in adjacent elements. The magnitude of the error term is given by(�s1 ��s2)
du

dx
,

where(�s1 � �s2) is a measure of the differences in size between neighbouring elements. This

error term was assumed to be negligible due to the relatively regular sizes of the elements and the

fact that only an approximation to the surface Laplacian is required.

For a two-dimensional surface, Equation (6.33) can be generalised to to regularise the activation

field, � (x). If we consider a pointi as shown in Figure 6.7 the surface Laplacian given at that point

is given by,

Li =
�A � 2�i + �B
�s2i;A +�s2i;B

+
�C � 2�i + �D
�s2i;C +�s2i;D

(6.34)

whereLi is the surface Laplacian at nodei, and�n is the activation field at noden and�si;A
represents the Euclidian distance between nodesi and nodeA.

Equation (6.34) is a generalisation of the formulation proposed by Oostendorp & van Oosterom

(1989). This was formulated as

Li =
n

h2
(�� � �i) (6.35)

wheren is the number of nodes surrounding pointi, �� is the average field at each of then points,

andh the distance between each of these nodes and the central nodei. In this case, the constant
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distanceh assumes that all surrounding nodes are equidistant from the central node. This is not the

case for our geometric models.

D

�si;C

�si;D

�si;A �si;B

A B

C

i

Figure 6.7: Schematic of a regular grid used for calculating the surface Laplacian at point i.
The surface Laplacian for a given node is given in Equation (6.34). Points A, B, C and D are the
nodes surrounding point i and the� si;A is the Euclidean distance between point i and point A.

The derivative of this Laplacian constraint with respect to to the optimisation variables (�i) is given

by,

@L

@�i
=

�4

�s2i;A +�s2i;B
+

2

�s2i;A +�s2i;A?
+

2

�s2i;B +�s2i;B?
(6.36)

where the superscript? indicates the next neighbouring node further away from pointi.

6.3.6 Critical Point & Times Constraints

Parts of the activation sequence as determined by the critical point estimation in Section 6.3.2

can also be constrained during the optimisation process of Section 6.3.1. Critical points and/or

times may be constrained to remain local maxima, minima or saddle points of� (x), however, in

practice, this has not been done in our simulations due to its questionable benefit and large number

of variables already being optimised.
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6.4 Control Inverse Simulations

The control (or reference) inverse simulations for the three cardiac sources (double point, eikonal

and experimentally derived), described in Sections (4.6.3)–(4.6.5), are examined in detail in Sec-

tions (6.4.1)–(6.4.3). As the cardiac sources used are merely approximations of what is actually

occurring within anin-vivo heart, it is necessary to use a number of different cardiac sources to

capture the dynamic and variable nature of the electrical propagation within the heart. These car-

diac sources are also used later in Chapter 7 for investigating the sensitivity of each of the inverse

algorithms. The results from these control simulations provide a theoretical limit of the best results

achievable by the activation based formulation.

Using the cardiac sources, the forward problem procedures outlined in Chapter 5 were used to

compute torso surface signals. To replicate optimal experimental conditions, absolute Gaussian

noise levels of10 �V RMS were applied to the torso surface signals. As it is technically impossible

to achieve totally clean signals,10 �V RMS of Gaussian noise provides a lower bound on the noise

levels which could be expected under optimal conditions. These known torso surface signals were

then used as input for the inverse algorithm. No geometric or material property errors were included

at this stage – the effect of these errors are examined in detail in Section 7.2.

The porcine model used in the control simulation is composed of all six surfaces (epicardial, left

and right endocardial, left and right lungs and skin surface) refined once in each direction, the

refinement required for a converged solution as determined in Section 5.6.3.

The inverse solution for each of the cardiac sources is presented graphically in the form of activation

maps in Figures (6.8)–(6.10). Displayed for each cardiac source are graphical representations of

(from left to right) the input source, the solution computed using the activation based formulation

and the difference between the two solutions. The black regions in the difference map correspond

to areas which have less than1 ms difference between the input and computed solutions. A table

of results for each simulation compares the known and computed activation fields (� ) and the

corresponding known and computed torso surface potentials (�B) after the initial critical point

algorithm (CPA) and after the refinement phase of the procedure (Final). In addition the differences

between the known and computed activation fields on the epicardium (EPI) and the left (LV) and

right (RV) endocardium are displayed. Three error measures, defined in Section 3.2.3, are used

to compare the solutions: RMS, relative RMS and the similarity index. The RMS errors for the

activation fields are given inms and inmV for the torso surface potentials.
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6.4.1 Double Point Stimulus Activation Profile

The double point activation profile, described in Section 4.6.4, was used as an input for the activa-

tion based inverse algorithm. Comparisons between the known activation fields and the computed

fields are shown graphically in Figure 6.8 and numerically in Table 6.1 using error metrics defined

in Section 3.2.3.

Input Inverse Difference

0 10 20 30 40 50 �10 0 10

Figure 6.8: Activation and difference maps (ms) comparing the analytic double point
source and the control inverse computed solution. Shown are the input activation field
(left two columns) and the inverted activation field (middle two columns) and the dif-
ferences between the two fields (right two columns). The coloured field represents
the activation times in ms, with red being earliest activation and blue latest activation.
Anterior views are shown in the first, third and fifth columns and posterior views in
the second and fourth and sixth columns. The epicardial surfaces are shown in the
top row and the endocardial surface on the bottom row. The purple spheres in the
input source show the locations of the activation seed points used for generating the
activation field. Black regions in the difference map indicate areas with error of less than 1 ms.

By examining the activation fields on each of the three surfaces, it can be seen that the error is

evenly distributed throughout the heart mesh. There is a tendency for the activation times to be

compressed towards the centre of the time domain (i.e., early activation times occurring late and

vice versa). It should be noted that on the left endocardial surface, the activation field worsened

after the refinement stage of the algorithm despite the epicardial and right endocardial surfaces

improving. This may possibly be due to the fact that the left endocardial surface had a better initial

critical point estimate when compared to the other two surfaces.
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�
B

� �EPI �LV �RV

RMS
CPA 0:20 4:8 4:7 4:8 4:8

FINAL 0:02 4:1 4:1 4:0 4:2

REL.
RMS

CPA 0:79 0:09 0:09 0:09 0:10
FINAL 0:07 0:08 0:08 0:08 0:08

SI
CPA 0:90 0:92 0:96 0:75 0:93

FINAL 1:00 0:93 0:95 0:83 0:93

MAX .
CPA 12:6 12:5 12:6 12:6

FINAL 12:5 12:5 10:4 11:1

Table 6.1: Comparison between the analytic double point source and the control inverse com-
puted solution. Shown are the comparisons between the known and computed activation fields
(ms) and the known and computed torso surface potentials (mV). The RMS, rel. RMS and sim-
ilarity index error metrics defined in Section 3.2.3 as well as the maximum error are used to
compare the estimate from the critical point algorithm and the optimised solutions for the torso
surface signals (�B), the activation field (� ), and the activation field on the epicardial (EPI),

left ventricular (LV) and right ventricular (RV) surfaces.

6.4.2 Eikonal Activation Profile

The eikonal activation profile, described in Section 4.6.3, was used as input for the activation based

inverse algorithm. Comparisons between the known activation fields and the computed fields are

shown graphically in Figure 6.9 and numerically using error metrics in Table 6.2.

�B � �EPI �LV �RV

RMS
CPA 1:45 12:0 10:3 15:6 10:3

FINAL 0:16 11:4 10:4 15:1 9:0

REL.
RMS

CPA 1:01 0:46 0:30 0:76 0:57
FINAL 0:11 0:44 0:30 0:74 0:49

SI
CPA �0:34 0:35 0:50 0:35 0:51

FINAL 0:99 0:50 0:48 0:34 0:54

MAX .
CPA 27:7 27:0 27:6 19:8

FINAL 44:0 37:5 44:0 24:8

Table 6.2: Comparison between the analytic eikonal source and the control computed solution.
Layout as described in Table 6.1.

The complex nature of this cardiac source (with endocardial the endocardial surface activating

signifcantly earlier than the epicardial surface) meant that this activation field was the most difficult

of the three cardiac sources to reconstruct. This source was the only source which was constructed

using inhomogeneous material properties within the heart. However, in the inverse procedure,

homogeneous material properties are assumed.
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Input Inverse Difference

0 10 20 30 40 50 �20 0 20

Figure 6.9: Activation and difference maps (ms) comparing the analytic eikonal source and
the control inverse computed solution. Black regions in the difference map indicate areas with

error of less than 1 ms. Layout as described in Figure 6.8.

The initial activation field as estimated by the critical point function was extremely poor with the

corresponding torso surface signals having a relative RMS of1:01 and a similarity index of�0:34.

This can be attributed to the lack in ability for the critical point algorithm to distinguish between

critical points occurring on the epicardial and endocardial surfaces. It should be noted that there

were significant problems in reconstructing the activation field on the left ventricular surface. The

activation field on this surface was reconstructed with an RMS error approximately5 ms greater

than on the epicardial and right endocardial surfaces. This is also reflected in the large increase in

the maximum error on the left ventricular surface.

6.4.3 Experimentally Derived Activation Profile

The experimentally derived profile, described in Section 4.6.5, was used as input for the activation

based inverse algorithm. Comparison between the known activation fields and the computed fields

are shown graphically in Figure 6.10 and numerically using error metrics in Table 6.3.

The shorter duration of this cardiac source meant that the possibility for large errors to occur were

reduced. Again the critical point function provided a poor initial estimate of the activation field

with corresponding torso surface signals having a relative RMS of1:00 and a similarity index of

0:09. The error in the reconstructed activation fields was evenly distributed over the each of the
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Input Inverse Difference

0 5 10 15 20 �5 0 5

Figure 6.10: Activation and difference maps (ms) comparing the analytic experimentally de-
rived source and the control computed solution. Black regions in the difference map indicate

areas with error of less than 1 ms. Layout as described in Figure 6.8.

�B � �EPI �LV �RV

RMS
CPA 0:83 2:7 2:3 2:7 3:1

FINAL 0:02 2:4 2:3 2:6 2:3

REL.
RMS

CPA 1:00 0:08 0:07 0:08 0:10
FINAL 0:02 0:07 0:07 0:08 0:08

SI
CPA 0:09 0:68 0:79 0:60 0:70

FINAL 1:00 0:77 0:76 0:74 0:72

MAX .
CPA 7:9 5:8 6:2 7:9

FINAL 8:2 7:8 7:1 8:2

Table 6.3: Comparison between the analytic experimentally measured source and the control
computed solution. Layout as described in Table 6.1.

three heart surfaces, with errors of around2 ms occurring on each surface. Despite the RMS and

SI errors indicating an improvement in the quality of the solutions during the optimisation phase of

the algorithm, the maximum error increased for each of the three heart surfaces at the same time.

6.4.4 Summary for Control Inverse Simulations

In general, all three of the cardiac sources behaved in similar ways. The torso surface potentials

which were being minimised were dramatically improved from the critical point estimates, with

all cases having similarity indexes greater than0:99. The optimised activation fields on the heart

surface were improved when compared to the critical point estimates but not significantly. In all
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cases the activation fields were improved by less than2 ms RMS.

There was also a tendency for the activation fields to be compressed towards the centre of the time

domain (i.e., early activation times occurring later than expected and vice versa). The refinement

stage of the procedure addresses this to some extent but does not entirely remedy this problem.

The ‘patchy’ nature of the difference maps may indicate that insufficient regularisation was used

in the solution process. However, it was found that the computed solutions were fairly insensitive

to the degree of regularisation applied with general features remaining the same. When additional

levels of regularisation were applied smoother activation fields were produced, but the damping of

the maxima and minima meant that better solutions were not necessarily produced. This indicates

that more elaborate regularisation schemes (such as those used in the potential based formulations)

may need to be devised.

6.4.5 Effect of Refinement Level

To investigate the effect of the refinement level upon the inverse solutions, the same control simula-

tions with the eikonal cardiac source performed with one lower and one higher level of refinement

for the epicardial surface (i.e., refinement level0 and2 as described in Table B.1).

The eikonal activation field was fitted, using the linear fitting techniques described in Section 3.3.1,

to an epicardial mesh with refinement level2. Torso surface potentials were then generated by

solving the forward problem. These then used as input for inverse problem after applying10 �V

RMS of noise (as with the control simulations described in Sections (6.4.1)–(6.4.3)).

The inverse simulations were performed using the under- and over-refined transfer matrices. With

the lower refined transfer matrix, poor inverse solutions were obtained, due to the optimisation

phase of the inverse procedure converging to the wrong solution. This can be attributed to the

fact that the unconverged transfer matrix was producing incorrect and inconsistent torso surface

potentials. The resulting solutions had an RMS error of8 ms. When the over-refined transfer

matrix was used, solutions were less than1 ms RMS different to those obtained for the reference

torso simulation shown in Table 6.2. These results are consistent with the forward convergence

results described in Section 5.6.3 with the corresponding torso models.



7 The Sensitivity of Inverse Solutions
to Modelling Errors

In practice, errors of one form or another will always be present in the modelling process. As a

result of the ill-posed nature of both the potential and activation formulations of the inverse problem

of electrocardiology, small errors can result in large inaccuracies in the final solution. For these

algorithms and techniques to be reliably used in a clinical situation two key requirements must be

addressed: the solutions must be accurate and defined in a physiologically meaningful sense, and

perform reliability under the presence of both measurement noise, geometrical modelling errors

and other uncertainties that are inevitable in a practical environment (MacLeod & Brooks 1998).

It is essential to quantify the effects which these errors may cause on the computed solutions and

the degree of accuracy required to obtain a stable solution. One of the key advantages of using

a numerical modelling technique is the ability to easily adjust a wide variety of parameters. The

effects of each of these parameters on the inverse solutions can therefore be carefully investigated

in an isolated manner.

To date there has not been a detailed simulation study comparing activation and potential for-

mulations and investigating a variety of modelling errors using a realistic geometry. Outlined in

Section 7.1 are some previous attempts at addressing the effects of modelling errors on the in-

verse problem of electrocardiology. Presented in the remaining sections are a comprehensive study

comparing the Tikhonov (Tikhonov & Arsenin 1977) and Greensite (Greensite & Huiskamp 1998)

potential based formulations and an activation based formulation (Huiskamp & Greensite 1997),

using a realistic geometric torso model and a number of different heart sources. The potential

based TSVD method was also implemented but it was found to be extremely susceptible to any

noise in all cases except for when optimal regularisation was used. For this reason, only the TSVD

solutions with optimal regularisation parameters are presented.

155
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7.1 Previous Investigations

There have been several studies investigating the effects of torso geometry on the solution of the

inverse problem to date. However, there appears to be no comprehensive study on a large variety of

modelling errors, with different cardiac sources, using realistic geometry. The majority of studies

have only involved reconstruction of epicardial potentials using the traditional inverse methods

described in Section 6.2.

Messinger-Rapport & Rudy (1986) used an idealised eccentric spheres model to analyse the effects

of changes in torso geometry and conductivity on the recovery of epicardial potentials from elec-

trical signals recorded on the torso surface. The eccentric spherical model is simple enough to be

solved analytically yet contained sufficient information on geometric and conductivity factors to

allow analysis of the effects of varying these parameters. The geometric parameters investigated by

Messinger-Rapport & Rudy (1986) were the relative position and size of the heart within the torso.

It was found that the inverse procedure was sensitive to variations in these geometric parameters

with small changes in heart position resulting in a large loss in the resolution of calculated epicar-

dial potentials. However, no regularisation techniques were used in the inverse procedure and it is

expected that the use of such techniques would improve the resulting solution when geometrical

errors are present.

The layered inhomogeneous eccentric spheres system was also used by Throne & Olson (1995)

to look at the effect of errors in geometry and conductivities on solutions to the inverse problem

of electrocardiography. Four different numerical methods were used to solve the inverse problem

with two methods using a regularisation technique. Throne & Olson (1995) found that although

the regularised methods performed better in the presence of geometric errors, small errors in heart

size and position still had a significant effect on the resulting solution.

Inverse procedures were performed on realistic torso geometries by Huiskamp & van Oosterom

(1989). The differences in the solutions were compared using a ‘standard’ realistic torso geometry

and using the ‘tailored’ or actual geometry of the patient. Torso models were created for three sub-

jects using contours from MRI images and a triangularisation technique. The models included an

outer skin surface, lungs and a heart. The inverse problem was then solved with the corresponding

patient ECG recordings. They then solved the inverse problem using mismatched ECG recordings

and torso model to determine differences between using the actual geometric measurements and

some standard model. Huiskamp & van Oosterom (1989) found that a fixed standard torso model

gave unreliable results when used to solve the inverse problem. They concluded that a patient
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specific model incorporating at least accurate torso size, heart orientation and position with respect

to the ECG lead positions would be necessary for accurate inverse solutions. Similar results were

obtained by Johnston & Kilpatrick (1995), who performed a similar study using16 realistic torsos

with varying heart sizes and positions.

Investigations into the effect of the number of torso residuals in the activation inverse to use and

the complexity of the torso model were conducted by Modre (2000). In this study the number of

electrodes was varied between20, 41 and62. The torso models were also varied by using a model

with no lungs and using a torso model with similar geometry. With the electrode setups with41 and

62 electrodes there was little variation, while when using21 electrodes results were significantly

poorer with both correct and incorrect geometry. However, the number of electrodes required is

highly dependent upon the heart source which is being reconstructed.

Ramanathan & Rudy (2001b) studied the effects of torso inhomogeneities on reconstruction of

epicardial potentials using zero-order Tikhonov methods. By solving the inverse problem with

different torso configurations, it was found that the material properties have a minimal effect on the

final inverse solutions. When Gaussian signal noise and electrode location error was added to the

solution, an approximating the torso as being homogeneous resulted in more accurate solutions.

7.2 Simulation Study Overview

The modelling errors associated with an electrical imaging inverse problem can be categorised into

three general classes. They consist of errors resulting from the torso surface signal data, the material

conductivities and the geometric model. Errors in the signal data can be attributed to inaccurate

measurements of the potential values (largely due to unavoidable presence of Gaussian noise) and

uncertainty in the electrode locations. Material conductivities are known to vary between people

and can vary from day to day (see Section 4.5.1). The geometrical model is usually a simplification

of the true torso. Incorrect measurements may be made and not all regions are usually explicitly

modelled (e.g.,bones, blood vessels, cardiac fat) or simplifications made about complex structures

(e.g.,ignoring papillary muscles in the ventricles and the anisotropic nature of the myocardium).

There are also assumptions and simplifications which are implied on the shape and duration of the

activation wavefront.

Using the realistic porcine model described in Section 4.4 and the transfer matrices described in



158 THE SENSITIVITY OF INVERSE SOLUTIONS TO MODELLING ERRORS

Section 5.3 and a known activation field on the heart, corresponding epicardial and torso surface

signals were computed. The torso surface signals and/or the transfer matrices were then subjected to

varying amounts of modelling error and a series of inverse solutions computed using the corrupted

input. The computed solutions can then be compared to the known cardiac source and the effect of

the modelling errors on the computed solutions examined.

Using a modelling approach it is possible to carefully examine the sensitivity of the inverse algo-

rithms with respect to a variety of modelling errors or a combination of these errors. The main

input for the inverse algorithms is the torso surface signal information. The effects of errors asso-

ciated with the potentials and the electrode locations on the inverse algorithms are investigated in

Section 7.3. The torso model is defined by both the geometrical model and the material conduc-

tivities assigned to the various regions being modelled. With the activation inverse approach there

are additional bidomain material properties which must also be set. The effect of material property

errors are investigated in Section 7.4 while the effect of the errors in the surface description of the

torso, incorrect size and/or orientation of the heart and lungs are investigated in Section 7.5.

For each of these simulations the double point heart source described in Section 4.6.4 was used

as the cardiac source. For each simulation (except when electrical noise was applied), Gaussian

noise levels of5 �V were applied to represent what are considered minimal experimental noise

levels. Similar scales and layouts are used in each of these sections to enable accurate comparison

between the different simulations.

As a test of the ability of the inverse algorithms to cope with realistic experimental errors which

could be encountered in a real life situation, a number of different signal, geometric and material

property errors were all combined in Section 7.6. In this series of simulations three different cardiac

sources were used: the double point source described in Section 4.6.4, the eikonal source described

in Section 4.6.3 and the experimentally derived source described in Section 4.6.5.

In order to compare the potential and activation based formulations directly, one of the solutions

must be converted to a compatible form for comparison. Activation times are able to be extracted

from the epicardial potentials to provide an equivalent solutions for comparison. The activation

sequence was derived from an epicardial potential map by identifying, at each nodal site, the max-

imum negative slope using a moving finite difference interval. This time was then assigned as the

activation time for that particular position (Oster, Taccardi, Lux, Ershler & Rudy 1998). However,

there is error associated with this conversion process which is further discussed in Section 7.7.
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As the endocardial surfaces are not explicitly modelled in the potential formulations, only the

solutions on the epicardial surfaces were compared with the activation based solutions. The two

measures which were used to compare the different activation time solutions were the RMS error

(defined in Equation (3.7)) and the similarity index (defined in Equation (3.9)).

For each simulation, a series of eight plots, each displaying an error measure comparing the com-

puted and known solutions against the level of applied modelling error, illustrates the results for

each situation. The RMS error is used in the left column of plots and the similarity index is used on

the right column of plots. The first row of plots shows the results for the activation based solutions,

while the results for the potential based formulations are shown in the remaining three rows. For

the activation based plots, each line represents the level of regularisation which was applied to the

solutions. The degree of regularisation applied refers to the� parameter defined in Equation (6.5).

Each line on the potential based simulations corresponds to the method by which the regularisation

parameter was computed. The results for each simulation are also presented in tabular form in

Appendix C.
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7.3 Effect of Signal Errors

Recorded potentials on the torso surface�B are almost certainly contaminated with errors of two

main different forms: correlated and uncorrelated noise. This can be written as

�B = �̂B + kE1 +E2 (7.1)

where�B represents the recorded data,�̂B is the true signal data,E1 represents normalised,

Gaussian (or uncorrelated) noise scaled by a factork andE2 represents correlated signal noise.

The correlated signal noise can arise from the recording equipment and errors resulting from in-

correctly determining the locations of the recording electrodes, while uncorrelated noise usually

results from recording background noise.

One method of simulating a noise corrupted signal it is to apply an absolute RMS voltage level

of random noise to a ‘clean’ signal. This absolute noise is applied constantly across all signals

independent of the peak to peak range of the signals. The other common methods of measuring

noise levels are percentage noise levels (as defined in Equation (7.2)) and Signal-to-Noise ratio

(as defined in Equation (7.3)). These are relative noise measures which give a measure of noise

dependent on the peak to peak levels of the signal. Thus ‘small’ signals will typically have larger

noise characteristics and ‘large’ signals will typically have small noise characteristics using this

measure.

Percentage Noise=
kE1 +E2

�exact
(7.2)

Signal-to-Ratio (SNR)= 20 log10

�
k�exactkF

kkE1 +E2kF

�
(7.3)

The geometric model used for investigating the effect of signal errors contained all six regions and

the same transfer matrix is used throughout as only the signal data matrix is being corrupted in

different manners.
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7.3.1 Effect of Uncorrelated Electrical Noise

The most common type of signal error which is conventionally investigated in inverse simulations

is Gaussian electrical noise. It is traditionally thought to have the least effect upon the inverse solu-

tions, possibly due to the ability of algorithms to distinguish Gaussian noise. Typical experimental

recordings have noise levels in the range of10–50 �V. However, under optimal conditions, using

active electrodes from BioSemi (2000) it is possible to achieve recordings with noise levels of3 �V

(Tilg 1998).

Absolute RMS noise levels in the range of1–100 �V were applied to ‘clean’ simulated signals.

A sample of four of the signal traces are shown in Figure 7.2. The location of the four sample

electrodes on the torso surface are shown in Figure 7.1.

ELECTRODE PEAK-TO-PEAK ABS RMS % SNR
(mV) (�V) (dB)

A 0.02
1 0:05 26:0
10 0:5 6:02
100 5 �14:0

B 0.02
1 0:05 26:0
10 0:5 6:02
100 5 �14:0

C 1.0
1 0:001 60:0
10 0:01 40:0
100 0:1 20:0

D 3.0
1 0:0003 70:5
10 0:0033 49:6
100 0:0333 29:6

256
ELECTRODES

4.0
1 0:0003 72:0
10 0:0025 52:0
100 0:025 32:0

Table 7.1: Noise levels applied to four sample electrodes. Absolute Gaussian noise was applied
to each of the electrodes. The locations of the sample electrodes are shown in Figure 7.1 and

their traces shown in Figure 7.2.
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CD

B A

Figure 7.1: Schematic diagram illustrating the location of the electrodes A–D described in
Figure 7.2 and Table 7.1. Layout as described in Figure 3.5
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Figure 7.2: Applying Gaussian noise to simulated clean signals. Four typical signal traces are
displayed – two ‘small’ signals (top row) and two ‘large’ signals (bottom row). The location of
each electrode on the torso surface is shown in Figure 7.1. Time is shown on the horizontal axis
in ms and potential on the vertical in mV. Note that the original signal with no applied noise is

masked by the 1�V signal.
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The inverse solutions for these corrupted signals are shown in Figure 7.3. They show that sim-

ilar results were obtained for both potential and activation based approaches, with solution error

gradually increasing with higher levels of applied noise. At noise levels less than50 �V, solution

errors did not significantly increase, especially in the potential based formulations. Under optimal

conditions, the potential based approaches provided better results than the activation formulation

but results were similar for both approaches at noise levels greater than10 �V. With applied noise

levels below10 �V there was a rapid increase in the solution error as shown by the sharp gradients

in the plots in Figure 7.3.

The Greensite optimal and zero-crossing methods were almost identical, as were the Greensite

CRESO and L-curve techniques at producing regularised solutions. All Tikhonov regularisation

methods produced similar trends while the L-curve technique was marginally favoured over the

zero-crossing method for determining the regularisation parameter.
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Figure 7.3: Effect of Gaussian electrical noise on activation and potential based formulations.
The left column shows the comparisons between analytic and computed activation times using
the RMS measure and the right column with a similarity index (SI) comparison. The first row
corresponds to the activation based approach (Act) with different regularisation values and the
last three rows correspond to the potential based approaches, Greensite TSVD (Green TSVD),

Greensite Tikhonov (Green Tikh) and first order Tikhonov (Tikh).
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7.3.2 Effect of Uncorrelated Electrode Displacement

To investigate the effect of uncorrelated electrode displacements, electrode positions were trans-

lated by5; 10 and15 mm in each of the three rectangular Cartesian axis directions using a nor-

mally distributed random number sequence. This resulted in electrode points in free space which

were then orthogonally projected back onto the surface of the model to provide corrupted elec-

trode positions. Using these new electrode positions, the potential field values were evaluated and

then assigned to the original nodal positions. The resultant RMS displacements between the nodal

positions and the corrupted electrode positions was calculated to be7; 15 and22 mm respectively.

Figure 7.4 shows the inverse solutions when the electrodes were displaced in an uncorrelated fash-

ion. They show that the activation approaches provided more stable solutions, especially with

higher regularisation parameters when electrodes were significantly displaced, with all solutions

errors less than2 ms different from the control simulations. When the electrodes were translated

less than7 mm results were similar to those obtained under control conditions.

The potential formulations provided less stable results, with even small electrode displacements

resulting in immediate degradation of the inverse solutions. The Tikhonov potential approaches

all provided similar trends but there was large variability between the different Greensite methods,

with the CRESO method providing the best regularised solutions.
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Figure 7.4: Effect of uncorrelated electrode displacement on activation and potential based
formulations. Layout as described in Figure 7.3.
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7.3.3 Effect of Correlated Electrode Displacement

To investigate the effect of correlated electrode displacement the electrodes were rotated about the

sagittal plane (z-axis) in the clockwise (positive) and anti-clockwise (negative) directions. The

rotations were�10;�5; 5 and10Æ. These rotations corresponded to average RMS displacements

of 15; 7:5; 7:5 and15 mm for the electrodes. This sort of error could occur if the equipment used

to record electrode positions was not correctly calibrated.

The activation approach provided similar results for all regularisation parameters. All solutions

were within1 ms of the control solutions when the electrode positions were rotated up to10Æ in

either direction in the coronal plane.

Both the Greensite and Tikhonov approaches had unstable results with significant errors resulting

unless the optimal method was used to determine the regularisation parameter. With both the

Greensite and Tikhonov approaches, the CRESO method failed when electrodes were rotated in

anti-clockwise direction by10Æ. The electrode positions must be known to within5Æ to obtain

solutions within1 ms of the control solutions. Significant errors resulted if the electrode were

displaced by more than5Æ using the potential based formulations.

As the Gaussian noise is generated using a pseudo random number generator, to fully test the

inverse algorithms and the randomness of the random number generator, the simulations where

repeated multiple times with different sets of Gaussian corrupted signals. With each of the cases,

near identical results were obtained.
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Figure 7.5: Effect of correlated electrode displacement on activation and potential based for-
mulations. Layout as described in Figure 7.3.
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7.4 Effect of Material Property Errors

The effect which the material parameters have on the inverse solutions is investigated in this section.

Activation based formulations are believed to be less susceptible to material conductivity values

(Green, Taccardi, Ershler & Lux 1991) when compared to potential based approaches. The passive

conductivities outside the heart should linearly scale the calculated torso potentials due to the

conductivity scalar in the generalised Laplace’s equation.

The full six region torso matrix with the same input signals are used, with the conductivity values

varying the transfer matrices for each simulation run.

7.4.1 Effect of the Transmembrane Jump Magnitudes

The magnitude of the transmembrane jump as defined in Section 5.4 is a key component in the

relationship between the transmembrane potential and the body surface potentials. Although the

transmembrane jump of an action potentials is typically constant throughout the myocardium in a

healthy heart, in cases such as ischaemia, the magnitude of the transmembrane jumps may vary in

different regions of the heart (Holland & Brooks 1976, Holland & Brooks 1977).

The effect of this parameter was investigated by adjusting the magnitude from80–120 mV when

performing the inverse solutions with the default value for all other simulations set to100 mV.
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Figure 7.6: Effect of transmembrane jump magnitude on the activation based formulation. As
potential based approaches do not contain a transmembrane jump parameter, only the activation

based approaches were examined for this simulation.
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Figure 7.6 shows there is almost no effect of adjusting the transmembrane jump magnitudes. When

the magnitudes were adjusted in the range of80–120 mV there was less than1 mV change in all

solutions compared to the control simulation.

7.4.2 Effect of the Width of the Activation Upstroke

As described in Section 5.4, the activation wavefront is modelled as a Heaviside step function which

is then approximated as a sigmoid function. One of the key parameters of the function specified in

Equation (5.44) is the activation width!. This parameter determines the transition zone between

the activated and unactivated regions.

The effect of this parameter was investigated by adjusting the magnitude from1–8 ms when per-

forming the inverse solutions with the default value for all other simulations set to5 ms.
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Figure 7.7: Effect of width of the activation upstroke on the activation based formulation. As
potential based approaches do not model the activation upstroke parameter, only the activation

based approaches were examined for this simulation.

Figure 7.7 shows there is almost no effect of adjusting the width of the activation function. When

the magnitudes were adjusted in the range of1–8 ms there was less than1 mV change in all

solutions compared to the control simulation.
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7.4.3 Effect of Lung Masses & Conductivities

The effect of the lung masses on the inverse solutions is investigated by varying the lung conduc-

tivities and also by setting the lungs conductivity to be the same as the surrounding torso cavity.

The conductivities of the lungs were varied from0:01–0:22 mS mm�1, where a conductivity value

of 0:22 mS mm�1 corresponded to the control torso cavity conductivity and the control lung con-

ductivity was originally set to0:05 mS mm�1. The remaining torso conductivities are the standard

values specified in Section 4.5.1.

The inverse solutions with varying lung conductivities are shown in Figure 7.8. They show that in

general, there was little change in the solution errors when the lung conductivities where changed

in the inverse problem. The one exception was the potential based approaches which failed when

the conductivities were reduced significantly below that of the normal control value. For all cases,

when the conductivity levels were increased, the resultant solutions changed by less than1 ms from

the control solutions. The L-curve method was preferred over the other methods for determining

the regularisation parameter in the potential based approaches, while the CRESO method failed

with low conductivity values.

The lungs masses were also totally removed (i.e.,a homogeneous heart torso model was used) in a

simulation. The solutions with this setup were similar to those obtained when the lung conductivi-

ties were set to be equal to the surrounding torso cavity with RMS errors of less than1 ms.

This lack of effect of the changes in lung conductivities on the inverse solutions is in contrast to

other forward problem simulations (Klepfer et al. 1997, van Oosterom & Huiskamp 1989, Bradley

et al. 2000). In these simulations the resultant torso surface potentials have been found to change

dramatically with changes in the surrounding tissue impedance.

The inverse study conducted by (Ramanathan & Rudy 2001a) has shown similar results which

indicate that the inclusion of the lung inhomogeneities contribute little to the accuracy of the inverse

solutions.
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Figure 7.8: Effect of lung conductivities on activation and potential based formula-
tions. Layout as described in Figure 7.3.
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7.5 Effect of Geometric Errors

The relative positions between the heart and the torso surface plays an important role in determining

the pattern of current flow, and hence the potential distribution on the torso surface. To quantify

this and investigate the effect of errors in modelling the torso geometry, this section investigates

the effect of heart size and position as well as torso size.

The close proximity of the lung and heart surfaces means it was necessary to omit the lungs from

these simulations to avoid intersection between surfaces when the heart was moved and a four

region model was used. Different transfer matrices were used with different geometric setups but

the same signal data matrix was used for all simulation runs.

7.5.1 Effect of Heart Translation in the Lateral Directions

To investigate the effect of translating the heart in the lateral directions, the heart was translated

up to30 mm in the right lateral (negative) direction and up to20 mm in the left lateral (positive)

direction.

Figure 7.9 shows the inverse solutions when the heart was translated in the lateral directions.

The solution errors in both potential and activation approaches increased at a slower rate when the

heart was translated in the right lateral direction when compared to translations in the left lateral

direction. Figure 7.9 shows that, in general, the activation based approaches were affected less by

the geometric error and the potential approaches were severely compromised when the heart was

translated more than10 mm in either direction.

All the different regularisation parameters produced similar results with the activation approach,

however there was large variability with the potential based approaches. The Tikhonov methods

provided the best results under control conditions. The L-curve and zero-crossing methods pro-

vided the best regularised solutions. Translations by less than5 mm resulted in less than1 ms error

in the inverse solutions when using a potential based approach.
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Lateral Heart Translations
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Figure 7.9: Effect of lateral heart translations on activation and potential based formulations.
Layout as described in Figure 7.3.
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7.5.2 Effect of Heart Translation in the Posterior-Anterior Directions

To investigate the effect of heart translation in the posterior-anterior directions, the heart was trans-

lated up to15 mm in the posterior (positive) direction and up to20 mm in the anterior (negative)

direction.

Figure 7.10 shows that the solutions errors increased at a lower rate when the heart was translated

in the posterior direction for both activation and potential approaches.

The activation approaches provided similar results for all regularisation parameters except for when

the heart was translated in extreme cases. It provided best results when the heart was translated less

than10 mm. The potential approaches provided acceptable results when the heart was translated

less than5 mm.

Under control conditions, the Tikhonov methods were able to produce the best results, while, when

the heart was translated from the control position, the activation approaches, in general, provided

better results than the potential approaches.
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Posterior-Anterior Heart Translations
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Figure 7.10: Effect of posterior-anterior heart translations on activation and potential based
formulations. Layout as described in Figure 7.3.
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7.5.3 Effect of Heart Translation in the Superior-Inferior Directions

To investigate the effect of heart translation in the superior-inferior directions, the heart was trans-

lated up to30 mm in both the superior (positive) and inferior (negative) directions.

Figure 7.11 shows that the errors increased at a slightly slower rate when the heart was translated

in the inferior direction when compared to translations in the superior direction for both potential

and activation approaches.

The activation approach produced similar results for all regularisation parameters and the heart

was able to displaced by up to10 mm without the resultant solution deteriorating by more than

1 ms RMS. In general the activation approach was more stable to heart translations in the superior-

inferior directions.

The potential approaches were also able to produce results within1 ms RMS of the control simu-

lations if the heart was translated less than10 mm. However, large errors resulted with all methods

of determining the regularisation parameters if the heart was further translated. The L-curve and

zero-crossing methods provided the best solutions when the heart was displaced less than10 mm.
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Figure 7.11: Effect of superior-inferior heart translations on activation and potential based
formulations. Layout as described in Figure 7.3.
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7.5.4 Effect of Heart Rotation About the Coronal Plane

To investigate the effect of wrongly orientating the heart, the heart was rotated between�15–45Æ

about the coronal plane (i.e., about they-axis) with the centre of rotation defined as the centroid

of the heart and the amount of rotation defined in degrees. A positive rotation was defined as an

anti-clockwise rotation about the axis and a negative rotation a clockwise rotation from a superior

perspective.

Figure 7.12 shows that the activation based approach provided solutions within1 ms of the control

simulation when the heart was rotated within15Æ of the control position and produced similar

results with different regularisation parameters. There was a near linear decrease in accuracy as

the heart was further rotated from the control position.

The potential approaches were generally highly unstable with both the Greensite and Tikhonov

methods providing similar results. The CRESO methods for determining the regularisation pa-

rameters failed for both Greensite and Tikhonov methods for at both15 and45Æ anti-clockwise

rotations. In each of these cases infeasible solutions resulted. The L-curve method was preferred

over the zero-crossing method for determining the regularisation parameter.

In general, the activation approaches provided more stable results than the potential based formu-

lations, especially at higher levels of heart rotation.
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Heart Rotation about the Coronal Plane
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Figure 7.12: Effect of heart rotations about the coronal plane on activation and potential based
formulations. Layout as described in Figure 7.3.
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7.5.5 Effect of Heart Rotation About the Sagittal Plane

To investigate the effect of misorientating the heart, the heart was rotated clockwise (positive) and

anti-clockwise (negative) about the sagittal plane (i.e.,about thez-axis) with the centre of rotation

defined as the centroid of the heart and the amount of rotation was in the range of�45–45Æ.

Figure 7.13 shows that using the activation based formulation, errors increased at a lower rate when

the heart was rotated in the clockwise direction while it increased at a lower rate with the potential

based formulations when the heart was rotated in the anti-clockwise direction.

The regularisation parameter had minimal effect on the activation approach solutions. For the

potential formulations, the L-curve and zero-crossing methods for determining the regularisation

parameters produced similar results. The CRESO method for determining the regularisation param-

eter failed for all heart rotations with the Greensite method and failed when the heart was rotated

more than15Æ with the Tikhonov methods. In each of these cases infeasible solutions resulted.

In general, the Tikhonov methods produced the best results under control conditions positions and

the activation approach was favoured especially if the heart was rotated in the clockwise direction.
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Heart Rotation about the Sagittal Plane
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Figure 7.13: Effect of heart rotations about the sagittal plane on activation and potential based
formulations. Layout as described in Figure 7.3.
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7.5.6 Effect of Heart Size

To investigate the effect of incorrectly determining the heart size, simple scaling of the heart was

used. The heart volume was altered by scaling the distance between each heart node and the origin

of the mesh in each direction. The change in heart volume was measured as a ratio between the

volume of the control heart mesh and each corrupted heart volume,i.e.,

Volume change=
V

V0
(7.4)

whereV0 is the volume of the control mesh andV is the new volume.

The changes in epicardial volumes for each run of the simulation are shown in Table 7.2. The heart

volumes were varied by between0:65 and1:43 times the epicardial control mesh. The heart was

not scaled in they direction to prevent the heart surfaces intersecting with the torso surface.

SIMULATION A B C D E

SCALE

FACTORS
0:8 0:8 0:8 0:9 0:9 0:9 1:0 1:0 1:0 1:1 1:0 1:1 1:2 1:0 1:2

VOLUME

(mm3)
7:55�104 9:51�104 1:17�105 1:41�105 1:67�105

V=V0 RATIO 0:65 0:81 1:00 1:21 1:43

Table 7.2: Heart scaling parameters used to alter the volume of the heart mass. The shaded
column represents the control simulation.

The activation based approaches produced similar results for all regularisation parameters and

results within1 ms RMS of the control case were obtained when the size of the heart was altered

by up to20%.

The potential based approaches were generally stable when the heart size was reduced by20% but

failed if the heart size was reduced further. The CRESO method was unstable especially when

the size of the heart was under-estimated while the L-curve method was slightly favoured over the

zero-crossing method for determining the regularisation parameter.

Both activation and potential based methods continued to produce favourable results when the heart

was20% smaller than the control heart size. The activation approach was able to produce better

solutions than the potential based methods when the heart volume was over-estimated.
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Figure 7.14: Effect of heart size on activation and potential based formulations.
Layout as described in Figure 7.3.
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7.5.7 Effect of Torso Size

To investigate the effect of the size of torso cavity on the inverse solutions, simple scaling of

the torso surface was used to create known errors in the transfer matrices. The measure of torso

cavity changes were the same as that used to measure the changes in heart volume as specified in

Equation (7.4).

The torso cavity volumes were varied between0:64 and1:72 times the volume of the control mesh.

The sizes of the torso volumes for each run of the simulation are shown in Table 7.3. The torso

size was not reduced in they direction to prevent intersection of the heart and torso surfaces.

SIMULATION A B C D E

SCALE

FACTORS
0:8 1:0 0:8 0:9 1:0 0:9 1:0 1:0 1:0 1:1 1:1 1:1 1:2 1:2 1:2

VOLUME

(mm3)
7:98�106 1:01�107 1:25�107 1:65�107 2:15�107

V=V0 RATIO 0:64 0:81 1:00 1:32 1:72

Table 7.3: Torso scaling parameters used to alter the volume of the torso mass. The shaded
column represents the control simulation.

Figure 7.15 shows that the activation based approaches tended to favour under-estimating the torso

size. When the torso size was within20% of the actual size results remained within1 ms RMS of

the control simulations.

The potential based approaches failed when the incorrect torso sizes were used. Errors rapidly

increased as the torso size was increased or decreased from the control. The zero-crossing method

for both potential approaches provided the best choice of regularisation parameter.
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Figure 7.15: Effect of torso size on activation and potential based formulations. Layout as
described in Figure 7.3.
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7.6 Effect of Realistic Experimental Errors

To simulate the conditions which may occur in a realistic clinical or experimental situation, a

variety of the errors, previously considered, were combined into a single simulation. The non-

linearity of the inverse problem means that the solutions will not be a linear combination of all

the previous simulations where individual errors where applied and also why a number of different

source models were investigated.

Again, due to the proximity of the heart and lung surfaces, the lungs have been removed for this se-

ries of simulations. Using the double point, eikonal and the experimentally derived cardiac sources

as described in Sections (4.6.4)–(4.6.5), corresponding torso surface potentials were computed.

To add the combined modelling errors to the inverse simulations, geometric errors were first applied

to the heart position and size. The heart was scaled using the coefficients defined in Table 7.2 by

1:1; 1:05; 1:05 and translated by(5; 8;�4) mm. The heart was then rotated about the coronal plane

(y axis) by5Æ and then about the sagittal plane (z axis) by5Æ. The signal data was corrupted by

50 �V RMS of Gaussian noise and the physical locations of electrodes then were displaced by a

distance of7 mmRMS. In addition, the magnitude of the transmembrane jump was increased from

100 mV to 110 mV.

The results of the inverse results for each of the three cardiac sources is illustrated in Figures (7.16)–

(7.20). For each cardiac source there is a series of eight plots with the same layouts as described

in Section 7.2. Along with the plots, the solutions are shown graphically with activation maps and

difference maps. The top row of each figure contains (from left to right) the input cardiac field

followed by the computed solutions for the activation and the Greensite potential inverse approach.

The second row of each figure contains the difference maps between the input cardiac source and

the computed solutions. The black regions on the difference maps correspond to areas which have

less than1 ms difference between the input and computed solutions.

With the double point and experimentally derived heart source, the activation approach outper-

formed all the potential based approaches under control and realistic conditions. With the eikonal

heart source, the potential based approaches outperformed the activation based approaches under

control conditions. However, when typical errors were added to the simulations, the activation

based approaches consistently outperformed all the potential based approaches.

By examining the difference maps it can be seen that with the eikonal and experimentally derived
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cardiac sources, for both activation and potential based formulations, the computed solutions tended

to move towards the centre of the activation ranges (i.e.,regions which should have activated early,

activated later than expected and vice versa). This feature is exhibited with the activation based

solution with the double point source but not by the Greensite potential based solution.

Applying different levels of regularisation to the activation based formulation did not significantly

improve the computed solutions. With higher levels of regularisation, smoother activation fields

were produced, however, the magnitudes of the minima and maxima were adversely affected re-

sulting in poor solutions.

The different methods for determining the regularisation parameters for the potential formulations

tended to produce comparable results with no method performing consistently better. Despite

sometimes failing when subjected to the individual errors (e.g.,Figure 7.12 from the simulation

where the heart was rotated about the coronal plane) and generally performing poorly, when sub-

jected to the combined errors, the CRESO method was slightly favoured when using a standard

Tikhonov regularisation method. The zero-crossing method was slightly favoured when using the

Greensite regularisation method, however, in general, all methods for determining the regularisa-

tion parameter performed similarly.
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Realistic Simulation with Double Point Cardiac Source

Input Source Activ. (Realistic) Potl. Greensite (Realistic)

0 10 20 30 40 50

Activ. Difference Potl. Difference

�10 0 10

Figure 7.16: Comparison between the activation based and potential based formulations (ms)
using the double point cardiac source with realistic experimental errors. Shown on the top
row from the left is the input activation source, the computed activation field using the activa-
tion based formulation and the computed activation field using the Greensite potential method.
The second row shows the activation difference maps between the input source and each of
the computed solutions. Each subfigure shows the activation field on the epicardial surface
(top) and any associated endocardial views (bottom) and anterior views in the left columns and
posterior views in the right columns. Note that the potential based methods only compute solu-
tions on the epicardial surfaces, and thus do not have any solutions on the endocardial surfaces

associated with them.
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Realistic Simulation with Double Point Cardiac Source
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Figure 7.17: Effect of realistic errors on activation and potential based formulations with dou-
ble point cardiac source. Layout as described in Figure 7.3.
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Realistic Simulation with Eikonal Cardiac Source

Input Source Activ. (Realistic) Potl. Greensite (Realistic)

0 10 20 30 40 50

Activ. Difference Potl. Difference

�20 0 20

Figure 7.18: Comparison between the activation and potential based formulations (ms)
using the eikonal cardiac source with realistic experimental errors. Layout as

described in Figure 7.16.
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Realistic Simulation with Eikonal Cardiac Source
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Figure 7.19: Effect of realistic errors on activation and potential based formulations with
eikonal cardiac source. Layout as described in Figure 7.3.
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Realistic Simulation with Experimentally Derived Source

Input Source Activ. (Realistic) Potl. Greensite (Realistic)

0 5 10 15 20

Activ. Difference Potl. Difference

�5 0 5

Figure 7.20: Comparison between the activation and potential based formulations (ms) us-
ing the experimentally derived cardiac source with realistic experimental errors. Layout as

described in Figure 7.16.
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Realistic Errors with Experimentally Derived Cardiac Source

0

4

8

12

16

Control Realistic Errors

R
M

S

Act Reg 0
Act Reg 5

Act Reg 50
Act Reg 500

0

0.25

0.5

0.75

1

Control Realistic Errors

S
I

Act Reg 0
Act Reg 5

Act Reg 50
Act Reg 500

0

4

8

12

16

Control Realistic Errors

R
M

S

Green TSVD Optimal TSVD Optimal

0

0.25

0.5

0.75

1

Control Realistic Errors

S
I

Green TSVD Optimal TSVD Optimal

0

4

8

12

16

Control Realistic Errors

R
M

S

Green Tikh CRESO
Green Tikh L-curve

Green Tikh Optimal
Green Tikh Zcross

0

0.25

0.5

0.75

1

Control Realistic Errors

S
I

Green Tikh CRESO
Green Tikh L-curve

Green Tikh Optimal
Green Tikh Zcross

0

4

8

12

16

Control Realistic Errors

R
M

S

Tikh CRESO
Tikh L-curve

Tikh Optimal
Tikh Zcross

0

0.25

0.5

0.75

1

Control Realistic Errors

S
I

Tikh CRESO
Tikh L-curve

Tikh Optimal
Tikh Zcross

Figure 7.21: Effect of realistic errors on activation and potential based formulations with ex-
perimentally derived cardiac source. Layout as described in Figure 7.3.



196 THE SENSITIVITY OF INVERSE SOLUTIONS TO MODELLING ERRORS

7.7 Comparisons Between Activation & Potential

Formulations

As explained in Section 7.2, in order to directly compare the potential and activation formulations,

the temporally varying potentials were converted to activation times by assigning the point of

maximum negative slope to be the activation time. By converting the potential solutions to an

activation based solution, only the point of maximum downstroke needs to be accurately modelled.

A large amount of information contained within the signal is effectively lost and the extracted

portion corresponding to the maximum negative slope may not necessarily be a true representation

of the true signal correlation. With this conversion process errors resulted, even when the exact

epicardial distribution was used.

Due to the vast number of signals produced in such a comprehensive simulation study, it was not

feasible to manually validate the activation times as determined from the maximum negative slope

from the moving finite different scheme. The moving finite difference method was sufficient for

simple traces where only one region of negative slope exists but can lead to significant errors with

more complex traces. This conversion process can be dramatically improved with more elaborate

methods of determining the appropriate activation times.

Table 7.4 and Figure 7.22 illustrate cases of error resulting from deriving activation times from

the exact epicardial solution for three different cardiac sources. Another source of error associated

with epicardial inverse activation times is that the activation times were calculated at discrete time

intervals and hence an error of up to0:5 ms can be associated at each heart node.

CARDIAC SOURCE RMS (ms) SI

DOUBLE POINT 1:14 1:00
EIKONAL 2:34 0:95

EXPERIMENTALLY DERIVED 2:23 0:88

Table 7.4: Comparison between the original activation times and those derived from the cor-
responding epicardial potential distributions using a moving finite difference calculation. The
three cardiac sources correspond to those used in the realistic error simulations described in
Section 7.6 while the RMS and similarity index error metrics are defined in Section 3.2.3.
Figure 7.22 shows graphically the minimum, median and maximum error associated with the

conversion process for one source.

The fact that, occasionally, with the potential inverse solutions (e.g.,the geometric error simulations

in Section 7.5), the optimal regularisation schemes did not produce the best solutions is an indicator
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Figure 7.22: Exact epicardial traces which represents the minimum, median and maximum
error associated with the derived activation times from the experimentally derived activation
sequence. The vertical blue line represents the activation time derived from the maximum neg-
ative slope and the green vertical line represents the activation time from which the signals
were generated. The differences between the original and derived activation times for each
signal (from left to right) are 0.23, 1.01 and 9.44 ms. The errors associated with the epicar-
dial surface for three cardiac sources used in the realistic error simulations in Section 7.6 are

given in Table 7.4.

of the difficulty of directly comparing the activation and potential based formulations.

7.7.1 Effect of Individual Errors

Applying signal errors had a moderate effect on the inverse solutions. Under uncorrelated signal

errors (potential recordings and electrode position measurements) the CRESO criterion for deter-

mining the regularisation parameter performed close to optimal for both standard and Greensite

Tikhonov regularisation. However, under all forms of correlated error the CRESO criterion per-

formed poorly. This can be explained due to the algorithm choosing the wrong relative maximum

for the regularisation parameter. This can result in an under- or over-regularised solution. It has

been postulated that a better approach would be to choose the relative maxima that results in a

feasible solution rather than the first relative maxima which satisfies the CRESO criteria (Johnston

& Gulrajani 2000).

The material properties, in general, only had a minor effect on the inverse solutions. Altering the

transmembrane jump magnitude within the range of80–120 mV as with adjusting the width of the

activation upstroke had minimal effects on the inverse solutions.

It was found that due to the non-linear optimisation process, even when the magnitude of the trans-

membrane jump was set to the control value100mV, the best results were not necessarily obtained.

Varying the lung conductivities resulted in little difference in both the activation and potential in-
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verse solutions. By increasing the lung conductivities to the same value as the surrounding torso

conductivities, similar results were obtained. If necessary, the lungs could be completely removed

and a homogeneous torso region used, resulting in reduced computation in the generation of the

transfer matrix.

Torso and heart geometry, as expected, had the greatest effects on the inverse solutions. In general,

the heart needed to be positioned within5 mm to obtain results within2 ms RMS of the control

simulations.

Translating the heart closer to the centre of the torso in the posterior direction (negativey-axis)

produced significantly worse errors in comparison to translating the heart towards the anterior

body surface wall. Translation along the right lateral directions (negativex-axis) and the inferior

direction (negativez-axis) resulted in similar observations but to a lesser extent.

A larger heart and smaller torso size should be favoured if in doubt of the true geometry as solutions

errors tended to increase at a lower rate when these sizes were underestimated.

Table 7.5 shows a summary of the preferred algorithms under different categories of applied errors.

This is a general summary with the preferred algorithm dependent upon the levels of error intro-

duced into the system. The individual results for each simulation should be examined for more

detailed analysis. However, the results provide an indication of the strength of each algorithm

when subjected to a moderate level of error and indicate that the activation based method was the

preferred inverse algorithm when ever correlated errors were introduced into the system.

APPLIED ERROR METHOD 1 METHOD 2

SIGNAL NOISE GREENSITE-TIKHONOV, CRESO TIKHONOV, L-CURVE

ELECTRODE

DISPLACEMENT
ACTIVATION

GREENSITE-TIKHONOV,
L-CURVE

CONDUCTIVITY ACTIVATION TIKHONOV, L-CURVE

HEART POSITION ACTIVATION TIKHONOV, ZERO-CROSSING

HEART SIZE ACTIVATION
GREENSITE-TIKHONOV,

ZERO-CROSSING

Table 7.5: Summary of preferred inverse algorithms for typical levels of modelling errors. The
applied errors have been grouped into signal, material property and geometric errors. The two
most preferred algorithms (excluding optimal based methods) for each type of modelling error

are listed.
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7.7.2 Effect of Combined Errors

When the various signal, material and geometric errors were combined to form realistic modelling

errors which could be encountered in an experimental or clinical situation, different trends than

with individual errors were observed. In all cases, when typical errors were applied, the activation

based solutions still out performed the potential based approaches, but the different regularisa-

tion schemes for the potential approaches all provided similar results. There was no significantly

favoured method for determining the regularisation parameter, but unlike when errors were applied

individually, the CRESO criterion performed on par with the L-curve and zero-crossing methods.

The zero-crossing method may be slightly favoured over the other two methods for determining

the regularisation parameter.

Although with the control simulations with an eikonal cardiac source both the activation and poten-

tial inverse simulations produced poor results (RMS error of8 ms and SI value of0:5), the potential

inverse solutions were significantly worse under realistic conditions.

For the experimentally derived activation sequence under realistic conditions, all the potential based

inverse solutions produced stable solutions. The activation inverse results had an RMS error ap-

proximately1 ms smaller than the potential based inverse.

7.7.3 General Comparisons

The Laplacian constraint for the activation based formulation did not greatly improve the solution

accuracy. The regularisation parameter which controls the weight given to the body surface residual

and activation sequence curvature did provide smoother activation patterns, as would be expected

in a normal activation sequence. However, the solution error did not decrease as the maxima and

minima in the solutions were usually smoothed out, increasing the error.

Under nearly all circumstances the optimal Tikhonov schemes outperformed the optimal TSVD

schemes which reinforced the decision to base the study on a Tikhonov family of regularisation

schemes. The L-curve and zero-crossing criterion were the besta posteriormethods and resulted

in similar comparison metrics. The reason for this is that the zero-crossing criterion is similar to

the L-curve minimal-product criterion (Johnston & Gulrajani 2000).
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In general the L-curve and zero-crossing criterion produced better results under most protocols

for both Tikhonov and Greensite Tikhonov regularisation. Despite the fact that no one potential

regularisation scheme produced consistently stable and accurate results over a range of geometric

and signal noise encountered, the L-curve method tended to provide the best regularisation solu-

tions except for the cases where size of the heart or torso was adjusted. The zero-crossing method

for determining the regularisation parameter may be slightly favoured over the L-curve method

as it generally performed well with both individual and combined errors as found by Johnston &

Gulrajani (1997).

The Greensite Tikhonov and TSVD methods outperformed the standard techniques only under

recording noise error. Both approaches performed on par with one another under uncorrelated

measurement noise. However, the Greensite techniques should always be preferred over the more

widely accepted spatial regularisation formulations since Greensite’s method will always result in

a smoother solution set and a reduced variation in the temporal domain.

Only under Gaussian electrical noise did the potential based inverse supersede the activation in-

verse approach. In all other cases the activation based solutions showed more stable and ordered

solutions trends than the more volatile potential inverse approaches. It can be concluded that for

activation comparison the myocardial activation inverse is preferred over the potential based solu-

tions. However, error introduced when extracting an activation sequence from an epicardial poten-

tial distribution means it is difficult to make a clear comparison between the two inverse regimes.



8 Conclusions, Validation
& Future Developments

There is a general expectation that myocardial electrical source images can be obtained of sufficient

accuracy and reliability for them to be useful as an aid for clinical assessment of the heart. The

initial steps for determining the reliability and ability for non-invasive electrical imaging algorithms

to produce maps of the epicardial and endocardial surfaces which can be of use as a diagnostic tool

have been presented.

The methods for efficiently creating a patient specific heart and torso model and the necessary tools

for creating and analysing an electrical image of the heart have been developed. Using these tools,

a comprehensive inverse simulation study with realistic geometry and several different cardiac

sources was performed using both potential and activation based inverse formulations. In addition,

a large variety of individual modelling errors as well as a combination of realistic errors which

could be expected to be encountered in an experimental or clinical situation were imposed on the

simulations.

The simulation study aims to improve the understanding of the inverse problem. Despite being the

largest known study to date of the effects of experimental and modelling errors, it still contains a

number of weaknesses. Even though a number of heart sources were used, due to the non-linearity

of the problem, different heart sources may result in different trends. There are also difficulties in

comparing the results between the different solution types, and further errors are introduced in the

conversion between potential and activation based solutions. Only one set of combined errors was

investigated and different sets of combined errors may lead to slight different trends in terms of

relative performance of the various algorithms. Thus, despite the large study, definitive statements

about relative performances in real situations cannot be made. Rather, these results can be used to

indicate likely trends.

201
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Despite these short comings of the simulation study, it is possible to obtain a number of key find-

ings. It was found that the relative positions between the heart and torso is critical in computing an

accurate solution. Signal errors also have a moderate effect upon the final outcome of the solution.

Material property errors were however, found to have an almost negligible effect upon the inverse

solutions. The minimal effect of the lung masses indicates that it may not be necessary to include

these in the geometric model for future inverse studies. The inverse algorithms found the presence

of correlated errors (such as the geometric errors) the had the largest effects on the final solutions.

It was found that the activation based solutions produced the most stable and consistent results,

with Greensite’s method the most favoured of the potential based formulations. The zero-crossing

and L-curve methods were the best methods for determining the regularisation parameters, with

the zero-crossing method slightly favoured when applying individual errors and when typical ex-

perimental errors were applied. The surface Laplacian regularisation had minimal effect upon the

final solution error metrics for the activation based inverse solutions despite smoother (and more

feasible) solutions being obtained. More elaborate regularisation techniques would improve this

situation.

Although the activation based formulations produced more accurate and stable results under the

majority of conditions, the potential based formulations are computationally much more efficient.

In a clinical situation, where solutions must be generated, ultimately, in ‘real-time’, the potential

based solutions will undoubtedly play a significant role.

8.1 Validation of Numerical Methods

Despite comparing simplified problems against known analytic solutions and performing a vast

variety of inverse simulations with encouraging results, simulations alone will never be sufficient

to determine the viability of an electrical imaging procedure in a clinical situation. To quantitatively

validate the performance of the inverse procedures, numerical results must be directly compared

with experimentally obtained data under conditions which closely match those which would be

encountered in a clinical situation.

One approach to obtain such data is to performin-vitro experiments on perfused hearts in a torso

tank. Data from suchin-vitro experiments from perfused canine hearts in a homogeneous cylindri-

cal tank have been collected (Oster & Rudy 1992, Oster, Taccardi, Lux, Ershler & Rudy 1997, Oster
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et al. 1998). Similar experiments have been performed under control conditions and with acute is-

chaemia (MacLeod et al. 1995). These experiments provide a high level of experimental control

from which accurate data can be acquired. However, they do not provide a true representation of

the in-vivo situation.

Of particular use for validating both potential and activation based inverse algorithms would be

simultaneously recorded epicardial, endocardial and torso surface potentials. Until recently, only

two sets ofin-vivo data have ever been collected, one in a chimpanzee (Spach, Barr, Lanning &

Tucek 1977) and one in a dog (Barr & Spach 1978). Three groups are currently attempting to

obtain detailedin-vivo data. They are located at the University Laboratory of Physiology, Oxford,

the Bioimaging group at the Graz University of Technology and the Bioengineering Research

Group at The University of Auckland.

The Graz group have obtained data from human subjects to both validate and further refine an

activation-based imaging approach (Tilg et al. 1999). They aim to supplement the information that

is currently available to a cardiologist faced with the task of curing a person of a cardiac arrhythmia

via a catheterisation procedure. During the procedure,62 ECG leads are used to acquire torso

surface potentials while an electro-anatomical catheter mapping system (Biosense Webster 2000)

is used to record endocardial potentials at known geometrical locations. One major disadvantage

of this system is that data from only one one recording site can be obtained at a time. To obtain

an image of one surface of heart, multiple beats must be used to ‘build up’ an image of the heart.

Using this system, it is therefore, not possible to validate irregular beats.

An alternative approach being used at Oxford involves invasive experiments on pigs with simulta-

neously densely sampled torso and cardiac potential information (Nash et al. 2000b). A vest with

256 electrodes with approximately15 mm spacing is placed on the torso surface and an epicardial

sock with127 electrodes with approximately7 mm spacing placed around the ventricles. It is

also hoped to include the use of an endocardial basket catheter system with64 electrodes (Cardiac

Pathways Corporation 2000) to obtain concurrent endocardial information. In the procedure pigs

are thoracotomised and an epicardial electrode sock is placed inside of the pericardium. The chest

is then re-closed with the epicardial electrode wires exiting near the diaphragm and the chest cavity

filled with saline to eliminate air pockets. Apart from normal sinus rhythms, abnormal beats can be

also initiated, either by pacing down any of the epicardial electrodes, via the injection of drugs or

by closing and opening of ligates around one of the major coronary arteries. Further information

about this process can be found in Nash et al. (2000b).
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Finally, the ultimate set of data for validation would involve collecting data for single beat analysis

from human subjects. At Green Lane Hospital in Auckland, human volunteer subjects already

undergoing catheter ablation surgery are candidates for gathering such data (Sands et al. 2000). At

the conclusion of a successful procedure, the heart will be paced at single or multiple sites using a

catheter. Electrical activity can be recorded at any of the remaining catheters within the heart and

a256 electrode vest similar to that used at the University of Oxford.

Each of the three groups attempting to produce the necessary data for validation of the inverse

algorithms presented have their advantages and disadvantages. The data from the Oxford group

provides the greatest quantity of information with measurements on epicardial, endocardial and

torso surface potential recordings. However, the ultimate validation will need to be performed

on in-vivo human data for the methods to be clinically accepted. The data obtained from the Graz

group is able to provide an activation field on an entire endocardial surface while the Auckland data

will only contain discrete measurements, possibly, from multiple endocardial surfaces. However,

using the beat averaging method of the Carto system, the Graz group cannot obtain data from

unstable arrhythmias. By recording data from each beat individually, the Auckland group is able

to capture complex arrhythmias and attempt to analyse this data.

8.2 Future Developments

To increase the acceptance of non-invasive electrical imaging of the heart for use in a clinical

situation, development of a reliable scheme for obtainingin-vivo data from which validation of

numerical results is required. Undoubtedly, further hurdles will eventuate when these methods are

used in a clinical situation, but this can only be remedied once this process is performed in a routine

situation.

Improvement of the initial estimate of the activation field provided by the critical point algorithm is

desirable. The activation timings, as provided by the critical point functions, tend to be compressed

towards the centre of the temporal domain and difficulties exist in distinguishing between events on

the endocardial and epicardial surfaces. A possible solution involves coupling of the critical point

algorithm with a reliable potential inverse algorithm to obtain a better initial estimate of the activa-

tion times. The simulation study has shown that the Greensite spatial and temporal regularisation

method is the preferred potential inverse approach.
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The models presented in this thesis have assumed isotropic material properties. This is not a valid

assumption within the skeletal muscle region and within the myocardium where electrical conduc-

tivities are greatly affected by the fibres within these regions. These isotropic assumptions may

have led to the poor performance of the inverse algorithms with the eikonal cardiac source as it

was derived from a simulation within a ventricular model with anisotropic material properties. The

benefits of the inclusion of a detailed anisotropic heart model are unknown at this stage (and the

material property simulations indicate that they have little effect upon the final solution) but may

enable more accurate results with experimental and clinical data. The inclusion of heart fibre in-

formation may possibly help to overcome the problem with distinguishing critical points on the

endocardial and epicardial surfaces. Even if it is shown that inclusion of the fibre information was

beneficial it is difficult to obtain fibre information on a patient specific basis, with the most com-

mon method using generic information and rule based method for assigning the fibre distribution

(Sachse, Frech, Werner & D�ossel 1999).

Use of more detailed cardiac source models in the heart, solving directly from cell to body surface,

such as the work of Buist & Pullan (2001), may be desired. This would enable more detailed anal-

ysis at the cellular level, however, the detail required for accurate solutions is unknown. There is

the possibility that a less complex cardiac model such the eikonal equation approach of Tomlinson

et al. (1999) may be sufficient.

As discussed in Section 7.7, errors are introduced when temporally and spatially varying potential

based solutions are converted to spatially varying activation times. As activation times are believed

to be clinically more informative, they are the preferred method of describing the electrical activity

within the heart. At present a simple moving average finite difference scheme is used to automat-

ically calculate the maximum negative slope. Due to the vast number of signals produced in such

a comprehensive simulation study, it was not feasible to manually check each activation time as

automatically determined. This method is sufficient for simple traces where only one region of

negative slope exists but can lead to significant errors with more complex traces. This conversion

process can be dramatically improved with more elaborate methods of determining the appropriate

time of activation.

It is also necessary to reduce the computational time of the algorithms, if such methods are intended

for use in a ‘real-time’ clinical situation. Using a precomputed transfer matrix and torso model,

the activation approach is an order of magnitude slower than the potential based inverse solutions

(minutes compared to seconds). With further refinement of the code it should be possible to have

both potential and activation based formulations automated and obtain an accurate solution in less
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than 10 minutes.

A more robust method for determining the heart geometry is also required. Three-dimensional

ultrasound is easily accessible and relatively cheap, however, the large variability in quality of

cardiac images between subjects will undoubtedly mean that an alternative imaging modality will

need to be investigated once the value and reliability of the inverse algorithms have been proven.

At this point in time MRI is the leading candidate for providing the most reliable images of the

heart. It is however, relatively expensive and time consuming to obtain all the necessary data.

The simulations under both control and realistic conditions showed that the accuracy of the inverse

solutions are highly dependent on the cardiac source which is being recovered. Further simulations

should be performed with a larger variety of more realistic cardiac sources.

To be able to model re-entrant arrhythmias it is necessary to be able to model the repolarisation

phase of the cardiac wavefront. Some work has been performed by Tilg (1998) using similar

methods to model the activation phase of the cardiac cycle. However, the modelling of this phase

of the cardiac cycle is significantly different to modelling the activation wavefront. Unlike the

activation phase the repolarisation phase does not contain a sharp jump. However, one of the key

assumptions of the critical point theorem is that it can be approximated as a uniform step jump,

which is not the case with recovery wavefront. In addition, during the recovery phase (unlike the

activation phase) the heart is subject to motion as it is in its systolic phase of the cardiac cycle.



A Laplace’s & Poisson Equation
Analytic Test Solutions

The results for the analytic test solutions for the generalised Laplace’s equation problem described

in Section 5.5.1 are presented in tabular form in Appendix A.1 and the solutions to the Poisson

equation problem described in Section 5.5.2 presented in Appendix A.2.

The generalised Laplace’s equation test problem corresponds to the setup of an epicardial to torso

surface transfer matrix while the Poisson equation problem test the transmembrane to epicardial

surface and the transmembrane to torso surface transfer matrices.

A.1 Convergence of Analytic Laplace’s Equation Problem

The derivation of the general solution to the Laplace’s equation along with a specific case is pre-

sented in Section 5.5.1. The numerical solutions are compared to the analytic solutions using the

error metrics defined in Section 3.2.3 as the mesh was systematically refined.

Table A.1 and Table A.2 show the reduction in error between the numerical and analytic solution

as the mesh is refined. The results are also shown graphically in Figures (5.6)–(5.8).
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REFINEMENT NODES ELEMENTS
AVERAGE

CHARACTERISTIC
ELEMENT SIZE

RMS
(mV)

NIDS
(%)

4�4 28 32 1:5 0:210 47:30
8�8 116 128 0:46 0:035 7:28

12�12 484 512 0:12 0:008 1:51
20�20 1988 2048 0:03 0:002 0:35

Table A.1: Convergence analysis of potential for Laplace’s equation problem. The nu-
merical results have been compared to the analytic solution using the comparison metrics

defined in Section 3.2.3.

REFINEMENT NODES ELEMENTS
AVERAGE

CHARACTERISTIC
ELEMENT SIZE

RMS
(�A mm�2)

NIDS
(%)

4�4 28 32 1:5 0:124 85:90
8�8 116 128 0:46 0:024 18:56

12�12 484 512 0:12 0:006 4:35
20�20 1988 2048 0:03 0:001 1:05

Table A.2: Convergence analysis of normal current for Laplace’s equation problem. The nu-
merical results have been compared to the analytic solution using the comparison metrics de-

fined in Section 3.2.3.
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A.2 Convergence of Analytic Poisson Equation Problem

The derivation of the general solution to the Poisson equation along with a specific case is presented

in Section 5.5.2. The numerical solutions are compared to the analytic solutions using the error

metrics defined in Section 3.2.3 as the mesh was systematically refined.

Table A.3 and Table A.4 show the reduction in error between the numerical and analytic solution as

the mesh is refined. The variation of the extracellular potential and normal currents as the mesh is

refined is shown Table A.5 and Table A.6. The results are also shown graphically in Figures (5.10)–

(5.13).

A.2.1 Convergence Analysis of Potential and Normal Current

REFINEMENT NODES ELEMENTS
AVERAGE

CHARACTERISTIC
ELEMENT SIZE

RMS
(mV)

NIDS
(%)

4�4 28 32 0:77 26:54 122:8
8�8 116 128 0:43 4:84 23:2

12�12 484 512 0:30 1:94 9:5
20�20 1988 2048 0:18 0:65 3:2

Table A.3: Convergence analysis of the extracellular potential for Poisson equation problem
The numerical results have been compared to the analytic solution specified by Equation (5.98)

using the comparison metrics defined in Section 3.2.3.

REFINEMENT NODES ELEMENTS
AVERAGE

CHARACTERISTIC
ELEMENT SIZE

RMS
(�A mm�2)

NIDS
(%)

4�4 28 32 0:77 1:15 34:1
8�8 116 128 0:43 0:21 5:5

12�12 484 512 0:30 0:08 2:1
20�20 1988 2048 0:18 0:03 0:6

Table A.4: Convergence analysis of the normal current for Poisson equation problem. The
numerical results have been compared to the analytic solution specified by Equation (5.99)

using the comparison metrics defined in Section 3.2.3.
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A.2.2 Comparison of Potential and Normal Current with Analytic Solution

POINT ANGLE ANALYTIC 4�4 8�8 20�20

1 0 0:00 0:00 0:00 0:00
2 45 1:06 1:38 1:11 1:07
3 90 1:37 1:95 1:45 1:39
4 135 0:75 0:70 0:72 0:73
5 180 �0:44 �0:83 �0:514 �0:45

Table A.5: Extracellular potentials (mV) calculated from the analytic solution to Case 1, given
by Equation (5.98), on the outer sphere. The potentials have been evaluated at the plane of

� = �
2

at five equally spaced locations.

POINT ANGLE ANALYTIC 4�4 8�8 20�20

1 0 �2:56 �3:13 �2:74 �2:60
2 45 �14:79 �28:13 �16:89 �15:07
3 90 �18:35 �46:29 �23:69 �19:09
4 135 �11:17 �17:64 �12:06 �11:29
5 180 2:56 3:12 2:74 2:59

Table A.6: Current distributions (�A mm�2) calculated from the analytic solution to the Pois-
son equation problem given by Equation (5.99), on the inner sphere. The potentials have been

evaluated at the plane of� = �
2

at five equally spaced locations.



B Convergence Analysis
of Generic Porcine Model

As the FEM and the BEM are numerical methods which solve problems by discretising the domain,

error results from the size of each discretisation unit. The appropriate refinement level required for

the generic porcine was determined be conducting a series of forward problem simulations.

Two sets of convergence simulations were conducted using different source models. They were

the dipole source used by Bradley et al. (2000) and the eikonal activation source used throughout

this thesis. Both of these sources are described in detail in Section 4.6. Further details about the

forward simulations can be found in Section 5.6.

Further information about the different refinement levels used in the forward simulations are shown

in Appendix B.1 while the convergence results when using the dipole source are given in Ap-

pendix B.2 and the results when using the activation source are given in Appendix B.3.
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B.1 Porcine Model Surface Information

SURFACE
REFINEMENT

LEVEL
NUMBER

OF NODES
NUMBER OF
ELEMENTS

GEOMETRIC
DOF PER

COORDINATE

CHARACTERISTIC
ELEMENT SIZE

(h)
mm

EPICARDIUM

0 37 40 142 21:3
1 152 160 602 10:6
2 622 640 2658 5:3
2:5 1242 1280 5114 3:8

LEFT LUNG

0 74 80 290 17:9
1 306 320 1218 8:9
2 1250 1280 4994 4:5

RIGHT

LUNG

0 74 80 290 20:4
1 306 320 1218 10:2
2 1250 1280 4994 5:1

LEFT

VENTRICLE

0 27 30 102 13:0
1 112 120 442 7:0
2 462 480 1842 3:4

RIGHT

VENTRICLE

0 38 42 146 14:8
1 158 168 626 7:4
2 650 672 2594 3:7

SKIN

0 254 264 1010 37:3
1 1034 1056 4130 18:6
2 4178 4224 16706 9:3

Table B.1: Mesh statistics for each surface of the generic porcine model at different refinement
levels. Refinement level 0 refers to the surfaces created from geometric fitting. Each higher
refinement level involves refining the surface uniformly in each� direction. The epicardial
refinement of 2.5 corresponds to 3 levels of refinement in the�=1 direction and 2 levels of

refinement in the�=2 direction.
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B.2 Forward Simulation with Dipole Source

The convergence results for forward simulations with the dipole source using bicubic Hermite

interpolation are displayed in Tables (B.2)–(B.7). Table B.8 and Table B.9 summarise the results

for the forward simulations using bilinear Lagrange interpolation. These results are analysed in

detail in Section 5.6.2.

The reference converged torso model was composed of the epicardial, lungs and torso surfaces

with each surface refined once in each direction except the epicardial surface which was refined

twice in each direction.

The epicardial potentials and torso surface potentials for each simulations were compared with

those from the reference simulation. To compare solutions between different refinement levels,

the epicardial potentials were compared at37 common locations and the torso surface potentials at

254 common locations. These locations corresponded to the nodal positions at the lowest level of

refinement.

The signals were compared using the error metrics defined in Section 3.2.3. Key events in the

cardiac cycle were used as temporal markers for comparisons. They were Peak P, Peak R, Peak T

and QRS interval. These times were determined by solving the forward problem and examining

the resultant signals on the dominant chest leads such as those shown in Figure 5.16.
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Effect of Refining the Epicardial Surface on Epicardial Surface Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 1:016�10+00 9:940�10�01 9:730�10�01 9:951�10�01

1� 2 1:691�10�01 3:270�10�01 3:671�10�01 2:670�10�01

2� 2:5 5:795�10�02 8:466�10�02 4:502�10�02 8:759�10�02

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000
2� 2:5 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 2:369�10+00 3:155�10+01 7:420�10+00 3:270�10+02

1� 2 5:444�10�02 9:653�10�01 2:401�10�01 9:968�10+00

2� 2:5 1:868�10�02 2:500�10�01 2:939�10�02 3:274�10+00

MIN. j4�j 0� 1 2:372�10+00 3:157�10+01 7:437�10+00 3:275�10+02

1� 2 5:454�10�02 9:680�10�01 2:397�10�01 1:001�10+01

2� 2:5 1:870�10�02 2:505�10�01 2:949�10�02 3:279�10+00

MAX . 4�% 0� 1 �83:130 �84:580 129:650 �81:460
1� 2 12:770 20:160 �12:400 15:460
2� 2:5 �4:380 �5:220 �1:520 �5:080

MIN. 4�% 0� 1 �123:280 �117:640 83:460 �123:700
1� 2 10:860 16:970 �19:430 13:760
2� 2:5 �3:720 �4:390 �2:390 �4:510

Table B.2: Effect of refining the epicardial surface on the epicardial surface potentials using a
moving dipole source. All regions, except the epicardial surface, are maintained at the refine-
ment level set by the reference model (both lungs and torso at level 1 refinement). The different
comparison metrics used are listed in the first column. The second column outlines the different
levels of refinement used for each surface, while the remaining columns show the comparisons

at different time instances.
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Effect of Refining the Epicardial Surface on Torso Surface Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 3:199�10�02 4:719�10�02 1:049�10�01 4:103�10�02

1� 2 1:365�10�03 2:548�10�03 3:233�10�03 2:434�10�03

2� 2:5 1:487�10�03 7:081�10�04 2:500�10�03 8:687�10�04

SI 0� 1 1:000 0:999 0:997 0:999
1� 2 1:000 1:000 1:000 1:000
2� 2:5 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 8:504�10�03 1:376�10�01 1:116�10�01 1:366�10+00

1� 2 5:888�10�05 9:803�10�04 2:286�10�03 7:715�10�03

2� 2:5 1:957�10�04 7:235�10�04 4:632�10�04 1:151�10�02

MIN. j4�j 0� 1 2:659�10�03 4:853�10�02 3:213�10�02 6:624�10�02

1� 2 4:000�10�04 1:279�10�03 1:156�10�03 4:415�10�04

2� 2:5 1:653�10�04 7:176�10�04 3:763�10�04 1:060�10�02

MAX . 4�% 0� 1 10:390 14:330 �12:000 8:150
1� 2 �0:070 �0:090 0:280 �0:040
2� 2:5 0:220 0:070 0:060 0:060

MIN. 4�% 0� 1 0:560 0:900 �8:420 �0:100
1� 2 0:090 �0:020 0:280 0:000
2� 2:5 0:040 0:010 0:090 0:020

Table B.3: Effect of refining the epicardial surface on the torso surface potentials using a mov-
ing dipole source. All regions, except the torso surface, are maintained at the refinement level

set by the reference model.
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Effect of Refining the Lung Surfaces on Epicardial Surface Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 1:992�10�01 2:315�10�01 7:517�10�02 2:319�10�01

1� 2 1:018�10�01 1:116�10�01 9:441�10�02 1:194�10�01

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 6:387�10�02 6:465�10�01 4:881�10�02 8:265�10+00

1� 2 3:268�10�02 3:283�10�01 6:143�10�02 4:453�10+00

MIN. j4�j 0� 1 6:519�10�02 6:924�10�01 6:158�10�02 8:777�10+00

1� 2 3:292�10�02 3:315�10�01 6:212�10�02 4:492�10+00

MAX . 4�% 0� 1 14:980 13:500 2:520 12:820
1� 2 �7:660 �6:860 �3:170 �6:900

MIN. 4�% 0� 1 12:980 12:140 4:990 12:070
1� 2 �6:550 �5:810 �5:030 �6:180

Table B.4: Effect of refining the the lung surfaces on the epicardial surface potentials using a
moving dipole source. All regions, except the lung surfaces, are maintained at the refinement

level set by the reference model.

Effect of Refining the Lung Surfaces on Torso Surface Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 7:622�10�03 8:798�10�03 1:165�10�02 9:335�10�03

1� 2 5:232�10�04 6:151�10�04 6:579�10�04 6:431�10�04

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 5:665�10�03 6:036�10�02 1:516�10�03 7:752�10�01

1� 2 2:160�10�04 2:925�10�03 3:936�10�04 3:719�10�02

MIN. j4�j 0� 1 1:434�10�03 5:511�10�03 3:660�10�03 5:219�10�02

1� 2 1:343�10�04 5:541�10�04 6:637�10�05 6:455�10�03

MAX . 4�% 0� 1 �6:270 �5:500 0:190 �4:270
1� 2 0:240 0:270 0:050 0:200

MIN. 4�% 0� 1 �0:310 �0:100 0:880 �0:080
1� 2 0:030 0:010 �0:020 0:010

Table B.5: Effect of refining the the lung surfaces on the torso surface potentials using a moving
dipole source. All regions, except the lung surfaces, are maintained at the refinement level set

by the reference model.
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Effect of Refining the Torso Surface on Epicardial Surface Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 1:735�10�01 5:208�10�02 3:306�10�01 6:216�10�03

1� 2 3:443�10�01 3:980�10�01 1:264�10�01 3:982�10�01

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 5:708�10�02 1:684�10�01 2:067�10�01 2:444�10�01

1� 2 1:111�10�01 1:178�10+00 8:362�10�02 1:491�10+01

MIN. j4�j 0� 1 5:506�10�02 1:479�10�01 2:179�10�01 3:648�10�02

1� 2 1:109�10�01 1:176�10+00 8:258�10�02 1:490�10+01

MAX . 4�% 0� 1 �13:390 �3:520 10:670 �0:380
1� 2 26:050 24:600 4:320 23:130

MIN. 4�% 0� 1 �10:960 �2:590 17:660 0:050
1� 2 22:080 20:630 6:690 20:480

Table B.6: Effect of refining the torso surface on the epicardial surface potentials using a mov-
ing dipole source. All regions, except the torso surface, are maintained at the refinement level

set by the reference model.

Effect of Refining the Torso Surface on Torso Potentials
using a Dipole Source with Bicubic Hermite Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 4:899�10�03 6:529�10�03 9:835�10�03 6:919�10�03

1� 2 2:728�10�04 3:720�10�04 8:055�10�04 3:556�10�04

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 5:315�10�04 6:119�10�03 4:330�10�03 9:542�10�02

1� 2 3:889�10�06 2:418�10�04 3:214�10�04 3:393�10�03

MIN. j4�j 0� 1 1:616�10�03 2:833�10�03 1:758�10�03 5:529�10�02

1� 2 5:540�10�05 2:060�10�04 2:575�10�04 2:379�10�04

MAX . 4�% 0� 1 �0:590 �0:560 �0:530 �0:530
1� 2 0:000 0:020 0:040 0:020

MIN. 4�% 0� 1 0:340 �0:050 �0:420 �0:080
1� 2 �0:010 0:000 0:060 0:000

Table B.7: Effect of refining the torso surface on the epicardial surface potentials using a mov-
ing dipole source. All regions, except the torso surface, are maintained at the refinement level

set by the reference model.
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Effect of Refining the Epicardial Surface on Epicardial Surface Potentials
using a Dipole Source with Bilinear Lagrange Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 6:560�10+00 9:075�10�01 9:330�10+00 7:285�10+00

1� 2 3:151�10�01 3:474�10�01 3:160�10�01 2:980�10�01

2� 2:5 8:398�10�02 7:121�10�02 8:271�10�03 7:125�10�02

SI 0� 1 0:662 0:517 0:412 0:622
1� 2 0:998 0:998 0:997 0:999
2� 2:5 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 1:987�10+00 2:580�10+01 2:275�10+00 2:591�10+02

1� 2 1:063�10�01 1:131�10+00 3:129�10�01 1:134�10+01

2� 2:5 2:849�10�02 2:327�10�01 9:663�10�03 2:736�10+00

MIN. j4�j 0� 1 4:416�10+00 5:417�10+00 7:136�10+00 6:656�10+01

1� 2 1:090�10�01 1:191�10+00 2:991�10�01 1:211�10+01

2� 2:5 2:896�10�02 2:446�10�01 5:335�10�03 2:887�10+00

MAX . 4�% 0� 1 417:57 533:67 �100:16 383:21
1� 2 28:78 30:55 �12:11 20:16
2� 2:5 �7:71 �6:28 0:37 �4:86

MIN. 4�% 0� 1 99:87 99:85 �845:28 99:81
1� 2 19:77 18:01 �54:88 15:37
2� 2:5 �5:25 �3:70 0:98 �3:66

Table B.8: Effect of refining the epicardial surface on the epicardial surface potentials using
a moving dipole source with bilinear Lagrange interpolation. All regions, except the torso

surface, are maintained at the refinement level set by the reference model.
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Effect of Refining the Epicardial Surface on Torso Surface Potentials
using a Dipole Source with Bilinear Lagrange Interpolation

MEASURE
Refinement

Level
Peak P Peak R Peak T QRS Integral

REL. RMS 0� 1 6:539�10�02 1:125�10�01 1:018�10�01 1:147�10�01

1� 2 1:203�10�02 1:967�10�02 1:522�10�02 1:873�10�02

2� 2:5 2:365�10�03 3:914�10�03 3:980�10�03 3:701�10�03

SI 0� 1 0:997 0:994 0:996 0:994
1� 2 1:000 1:000 1:000 1:000
2� 2:5 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 1:019�10�02 4:195�10�01 9:065�10�02 6:452�10+00

1� 2 3:684�10�03 5:454�10�02 2:250�10�02 7:272�10�01

2� 2:5 9:561�10�04 1:287�10�02 6:614�10�03 1:720�10�01

MIN. j4�j 0� 1 1:870�10�02 6:520�10�01 3:655�10�02 8:774�10+00

1� 2 5:848�10�03 7:054�10�02 6:475�10�03 9:252�10�01

2� 2:5 9:455�10�04 1:664�10�02 1:019�10�03 2:169�10�01

MAX . 4�% 0� 1 �11:72 �40:29 11:64 �37:15
1� 2 �4:06 �4:98 �2:81 �4:02
2� 2:5 1:05 1:17 0:83 0:95

MIN. 4�% 0� 1 4:08 12:47 8:92 13:59
1� 2 1:26 1:33 1:56 1:41
2� 2:5 �0:20 �0:31 �0:24 �0:33

Table B.9: Effect of refining the epicardial surface on the torso surface potentials using a mov-
ing dipole source with bilinear Lagrange interpolation. All regions, except the torso surface,

are maintained at the refinement level set by the reference model.
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B.3 Forward Simulation with an Activation Source

The convergence results for forward simulations with the dipole source are displayed in Ta-

bles (B.10)–(B.19). These results are analysed in detail in Section 5.6.3.

The reference converged torso model was composed of the epicardial, left and right endocardial,

the left and right lungs and the torso surfaces with each surface refined once in each direction.

The epicardial potentials and torso surface potentials for each simulations were compared with

those from the reference simulation. To compare solutions between different refinement levels,

the epicardial potentials were compared at37 common locations and the torso surface potentials at

254 common locations. These locations corresponded to the nodal positions at the lowest level of

refinement.

The signals were compared using the error metrics defined in Section 3.2.3. Key events in the

cardiac cycle were used as temporal markers for comparisons. They were Peak Q at12 ms, Peak R

at31 ms, Peak S at43 ms and QRS interval of10–45 ms. These times were determined by solving

the forward problem and examining the resultant signals on the dominant chest leads.
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Effect of Refining the Epicardial Surface on Epicardial Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 2:933�10�02 1:081�10�01 1:055�10�01 4:374�10�02

1� 2 1:041�10�02 4:095�10�02 4:702�10�02 2:498�10�02

SI 0� 1 1:000 0:994 0:995 0:999
1� 2 1:000 0:999 0:999 1:000

MAX . j4�j 0� 1 4:627�10�03 6:834�10�03 2:495�10�03 2:355�10�02

1� 2 1:091�10�03 1:702�10�03 6:292�10�04 5:607�10�03

MIN. j4�j 0� 1 3:357�10�03 1:843�10�03 1:488�10�03 2:690�10�02

1� 2 8:230�10�05 3:028�10�03 1:572�10�03 2:338�10�02

MAX . 4�% 0� 1 �3:780 �7:140 �2:170 1:350
1� 2 �0:890 1:780 �0:550 �0:320

MIN. 4�% 0� 1 3:340 1:360 6:760 1:200
1� 2 0:080 2:230 �7:150 1:040

Table B.10: Effect of refining the epicardial surface on the torso surface potentials using an
activation source. All regions, except the epicardial surface, were maintained at refinement
level specified by the reference model (left and right ventricular chambers, both lungs and
torso surfaces at level 1). The different comparison metrics used are listed in the first column.
The second column outlines the different levels of refinement used for each surface, while the

remaining columns show the comparisons at different time instances.

Effect of Refining the Epicardial Surface on Torso Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 7:029�10�02 3:065�10�01 2:456�10�01 5:011�10�02

1� 2 1:456�10�02 5:926�10�02 1:469�10�01 3:678�10�02

SI 0� 1 0:998 0:946 0:981 0:999
1� 2 1:000 0:998 0:993 1:000

MAX . j4�j 0� 1 6:340�10�03 5:491�10�04 1:484�10�02 8:905�10�02

1� 2 7:701�10�04 1:618�10�03 2:557�10�03 8:671�10�03

MIN. j4�j 0� 1 2:023�10�03 2:175�10�02 3:233�10�04 2:835�10�03

1� 2 6:245�10�04 9:605�10�03 2:808�10�04 2:160�10�02

MAX . 4�% 0� 1 �13:170 1:460 �24:700 �11:510
1� 2 1:600 4:300 4:260 1:120

MIN. 4�% 0� 1 2:740 44:410 �3:170 �0:350
1� 2 �0:850 �19:610 2:750 2:660

Table B.11: Effect of refining the torso surface on the torso surface potentials using an activa-
tion source. All regions, except the torso surface, were maintained at refinement level specified

by the reference model.
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Effect of Refining the Left Ventricular Chamber on Epicardial Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 3:210�10�02 6:778�10�02 8:201�10�02 2:517�10�02

1� 2 9:624�10�03 1:728�10�02 1:707�10�02 1:150�10�02

SI 0� 1 1:000 0:998 0:998 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 2:655�10�04 1:982�10�03 2:424�10�03 7:119�10�03

1� 2 8:881�10�04 2:261�10�04 6:160�10�04 1:035�10�02

MIN. j4�j 0� 1 3:479�10�03 3:438�10�03 1:222�10�03 6:018�10�03

1� 2 5:276�10�04 5:384�10�05 3:132�10�05 8:333�10�04

MAX . 4�% 0� 1 �0:220 2:070 2:110 0:410
1� 2 �0:730 �0:240 0:540 �0:590

MIN. 4�% 0� 1 �3:460 2:540 �5:560 0:270
1� 2 �0:520 0:040 �0:140 0:040

Table B.12: Effect of refining the left ventricular surface on the epicardial surface potentials
using an activation source. All regions, except the left ventricular surface, were maintained at

refinement level specified by the reference model.

Effect of Refining the Left Ventricular Chamber on Torso Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 2:161�10�02 7:205�10�02 9:760�10�02 1:683�10�02

1� 2 6:300�10�03 9:582�10�03 1:931�10�02 1:027�10�02

SI 0� 1 1:000 0:999 0:997 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 2:581�10�04 6:946�10�04 1:772�10�05 1:976�10�02

1� 2 4:895�10�04 7:905�10�05 2:925�10�04 2:398�10�03

MIN. j4�j 0� 1 7:256�10�04 3:689�10�03 2:435�10�03 1:005�10�02

1� 2 1:036�10�04 3:016�10�04 6:626�10�04 1:321�10�03

MAX . 4�% 0� 1 �0:540 1:850 �0:030 2:550
1� 2 �1:020 �0:210 0:490 �0:310

MIN. 4�% 0� 1 0:980 7:530 �23:890 �1:240
1� 2 �0:140 0:620 �6:500 0:160

Table B.13: Effect of refining the left ventricular surface on the torso surface potentials us-
ing an activation source. All regions, except the left ventricular surface, were maintained at

refinement level specified by the reference model.



B.3 FORWARD SIMULATION WITH AN ACTIVATION SOURCE 223

Effect of Refining the Right Ventricular Chamber on Epicardial Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK P PEAK R PEAK T QRS INTEGRAL

REL. RMS 0� 1 1:022�10�01 5:925�10�02 2:721�10�02 7:256�10�02

1� 2 1:929�10�02 3:932�10�02 1:284�10�02 2:236�10�02

SI 0� 1 0:995 0:998 1:000 0:997
1� 2 1:000 0:999 1:000 1:000

MAX . j4�j 0� 1 4:120�10�03 3:531�10�03 5:570�10�04 5:595�10�02

1� 2 5:487�10�04 7:078�10�03 4:018�10�05 8:005�10�03

MIN. j4�j 0� 1 8:101�10�04 2:647�10�03 5:024�10�05 5:169�10�02

1� 2 4:108�10�04 2:791�10�04 1:910�10�04 1:645�10�02

MAX . 4�% 0� 1 3:370 3:690 0:480 3:200
1� 2 �0:450 �7:390 �0:030 0:460

MIN. 4�% 0� 1 0:810 �1:950 �0:230 2:300
1� 2 �0:410 0:210 �0:870 �0:730

Table B.14: Effect of refining the right ventricular surface on the epicardial surface potentials
using an activation source. All regions, except the right ventricular surface, were maintained at

refinement level specified by the reference model.

Effect of Refining the Right Ventricular Chamber on Torso Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK P PEAK R PEAK T QRS INTEGRAL

REL. RMS 0� 1 3:883�10�02 3:025�10�02 2:523�10�02 4:613�10�02

1� 2 9:546�10�03 3:651�10�02 9:022�10�03 8:034�10�03

SI 0� 1 0:999 1:000 1:000 0:999
1� 2 1:000 0:999 1:000 1:000

MAX . j4�j 0� 1 2:763�10�04 1:203�10�03 2:531�10�04 2:046�10�02

1� 2 1:778�10�04 1:799�10�03 2:823�10�05 7:352�10�03

MIN. j4�j 0� 1 2:203�10�03 9:565�10�04 1:125�10�03 2:691�10�02

1� 2 6:764�10�05 1:997�10�03 8:021�10�05 8:680�10�03

MAX . 4�% 0� 1 0:570 �3:200 0:420 2:640
1� 2 0:370 �4:780 �0:050 0:950

MIN. 4�% 0� 1 2:980 �1:950 �11:040 �3:310
1� 2 �0:090 �4:080 0:790 �1:070

Table B.15: Effect of refining the right ventricular surface on the torso surface potentials us-
ing an activation source. All regions, except the right ventricular surface, were maintained at

refinement level specified by the reference model.
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Effect of Refining the Lung Surfaces on Epicardial Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 3:817�10�02 4:821�10�02 7:418�10�02 4:271�10�02

1� 2 9:819�10�03 1:120�10�02 2:128�10�02 1:646�10�02

SI 0� 1 1:000 1:000 0:999 0:999
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 1:105�10�02 3:531�10�04 1:257�10�02 9:341�10�02

1� 2 2:237�10�03 1:102�10�04 2:821�10�03 4:083�10�02

MIN. j4�j 0� 1 1:781�10�04 9:501�10�03 2:669�10�04 1:552�10�02

1� 2 6:822�10�05 2:192�10�03 1:509�10�05 1:072�10�03

MAX . 4�% 0� 1 �9:030 0:370 �10:930 �5:340
1� 2 1:830 0:120 2:450 2:330

MIN. 4�% 0� 1 0:180 7:010 1:210 0:690
1� 2 �0:070 �1:620 0:070 �0:050

Table B.16: Effect of refining the lung surfaces on the epicardial surface potentials using an
activation source. All regions, except the lung surfaces, were maintained at refinement level

specified by the reference model.

Effect of Refining the Lung Surfaces on Torso Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 1:158�10�02 3:435�10�02 1:426�10�02 1:860�10�02

1� 2 1:568�10�03 3:707�10�03 6:697�10�03 2:745�10�03

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 2:083�10�04 1:498�10�03 5:325�10�04 4:741�10�03

1� 2 5:203�10�05 1:878�10�04 1:218�10�04 1:800�10�03

MIN. j4�j 0� 1 2:910�10�04 1:366�10�03 9:416�10�05 9:583�10�03

1� 2 9:835�10�07 1:451�10�04 7:940�10�05 2:971�10�04

MAX . 4�% 0� 1 0:430 3:980 �0:890 0:610
1� 2 �0:110 �0:500 0:200 0:230

MIN. 4�% 0� 1 �0:390 2:790 0:920 1:180
1� 2 0:000 �0:300 0:780 0:040

Table B.17: Effect of refining the lung surfaces on the torso surface potentials using an ac-
tivation source. All regions, except the lung surfaces, were maintained at refinement level

specified by the reference model.
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Effect of Refining the Torso Surface on Epicardial Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 1:651�10�02 1:898�10�02 3:327�10�02 2:804�10�02

1� 2 3:592�10�03 9:129�10�03 7:274�10�03 5:332�10�03

SI 0� 1 1:000 1:000 1:000 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 6:268�10�04 6:946�10�04 1:548�10�03 2:118�10�02

1� 2 3:407�10�04 1:727�10�04 4:951�10�04 4:501�10�03

MIN. j4�j 0� 1 8:276�10�04 4:805�10�04 9:144�10�05 1:414�10�02

1� 2 1:060�10�04 2:158�10�04 7:657�10�06 4:103�10�03

MAX . 4�% 0� 1 �0:510 �0:730 �1:350 �1:210
1� 2 0:280 �0:180 0:430 0:260

MIN. 4�% 0� 1 0:820 �0:350 �0:420 0:630
1� 2 �0:110 �0:160 �0:030 �0:180

Table B.18: Effect of refining the torso surface on the epicardial surface potentials using an
activation source. All regions, except the torso surface, were maintained at refinement level

specified by the reference model.

Effect of Refining the Torso Surface on Torso Surface Potentials
Using an Activation Source

MEASURE REFINEMENT
LEVEL PEAK Q PEAK R PEAK S QRS INTEGRAL

REL. RMS 0� 1 1:686�10�02 3:412�10�02 4:229�10�02 2:918�10�02

1� 2 3:309�10�03 9:713�10�03 8:361�10�03 4:965�10�03

SI 0� 1 1:000 0:999 0:999 1:000
1� 2 1:000 1:000 1:000 1:000

MAX . j4�j 0� 1 6:110�10�04 7:038�10�04 1:614�10�03 2:784�10�02

1� 2 2:973�10�04 4:538�10�04 4:743�10�04 6:201�10�03

MIN. j4�j 0� 1 9:267�10�04 9:402�10�04 3:216�10�04 3:724�10�02

1� 2 2:981�10�04 7:091�10�04 1:533�10�04 5:754�10�03

MAX . 4�% 0� 1 �1:270 �1:870 �2:690 �3:600
1� 2 0:620 �1:210 0:790 0:800

MIN. 4�% 0� 1 1:260 1:920 3:150 4:580
1� 2 �0:400 �1:450 �1:500 �0:710

Table B.19: Effect of refining the torso surface on the torso surface potentials using an ac-
tivation source. All regions, except the torso surface, were maintained at refinement level

specified by the reference model.





C Inverse Simulation Results

Presented in this appendix are the results from the simulation study examining the effects of exper-

imental and modelling errors on the activation and potential based inverse algorithms.

The errors are divided into three classes: data errors, material property errors and geometrical

errors. The results for each simulation are displayed in tabular form in Sections (C.1)–(C.4) using

the RMS error metric defined in Equation (3.7) and the similarity index error metric defined in

Equation (3.9). The shaded columns correspond to the simulation which corresponds to control

conditions (except for the electrical noise simulations, where this corresponds to a minimal noise

level of 1 �V RMS noise) and should theoretically have the most accurate results. These results

are analysed and presented graphically in Chapter 7.

227



228 INVERSE SIMULATION RESULTS

C.1 Effect of Signal Errors
Gaussian Electrical Noise – RMS

APPROACH TECHNIQUE 1 5 10 50 100

ACTIVATION

REG-0 4:3 4:6 5:1 6:4 8:0
REG-5 4:1 4:7 5:4 6:2 8:0
REG-50 4:4 4:6 5:4 6:4 7:9
REG-500 4:2 4:9 5:4 6:5 9:0

TSVD
GREENSITE

OPTIMAL 4:1 3:2 5:5 6:2 8:5

TSVD
STANDARD

OPTIMAL 3:7 3:8 4:0 5:8 7:1

TIKHONOV

GREENSITE

CRESO 4:7 4:5 5:0 6:4 8:5
L-CURVE 2:9 4:8 5:3 8:3 8:8
OPTIMAL 3:0 4:5 4:6 5:9 8:3
ZCROSS 2:5 5:0 5:4 8:4 8:2

TIKHONOV

STANDARD

CRESO 3:2 3:5 4:3 8:0 7:9
L-CURVE 3:1 3:6 4:8 6:6 7:2
OPTIMAL 3:2 3:9 4:3 5:9 7:0
ZCROSS 3:2 4:5 4:9 7:2 8:5

Table C.1: Effect of Gaussian electrical noise on inverse simulations using the RMS error
metric defined in Section 3.2.3.

Gaussian Electrical Noise – Similarity Index

APPROACH TECHNIQUE 1 5 10 50 100

ACTIVATION

REG-0 0:94 0:94 0:92 0:87 0:79
REG-5 0:95 0:93 0:91 0:88 0:78
REG-50 0:94 0:94 0:91 0:87 0:79
REG-500 0:96 0:93 0:92 0:87 0:71

TSVD
GREENSITE

OPTIMAL 0:95 0:97 0:92 0:89 0:80

TSVD
STANDARD

OPTIMAL 0:96 0:96 0:95 0:90 0:85

TIKHONOV

GREENSITE

CRESO 0:94 0:94 0:93 0:88 0:80
L-CURVE 0:98 0:93 0:92 0:81 0:78
OPTIMAL 0:97 0:94 0:94 0:91 0:81
ZCROSS 0:98 0:93 0:92 0:80 0:80

TIKHONOV

STANDARD

CRESO 0:97 0:97 0:95 0:81 0:81
L-CURVE 0:97 0:96 0:93 0:87 0:85
OPTIMAL 0:97 0:96 0:95 0:90 0:85
ZCROSS 0:97 0:94 0:93 0:84 0:77

Table C.2: Effect of Gaussian electrical noise on inverse simulations using the similarity index
error metric defined in Section 3.2.3.
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Uncorrelated Electrode Displacement – RMS

APPROACH TECHNIQUE 0 5 10 15

ACTIVATION

REG-0 5:1 5:4 6:6 7:6
REG-5 5:4 5:6 6:7 7:7
REG-50 5:4 5:5 6:8 7:2
REG-500 5:4 5:5 5:9 6:2

TSVD
GREENSITE

OPTIMAL 5:5 6:7 8:9 9:7

TSVD
STANDARD

OPTIMAL 4:0 7:3 9:6 9:5

TIKHONOV

GREENSITE

CRESO 5:0 6:9 9:6 10:2
L-CURVE 5:3 7:8 10:9 10:7
OPTIMAL 4:6 6:9 8:2 9:3
ZCROSS 5:4 9:7 12:3 12:0

TIKHONOV

STANDARD

CRESO 4:3 6:7 7:9 9:3
L-CURVE 4:8 7:5 8:1 8:9
OPTIMAL 4:3 6:8 8:1 8:6
ZCROSS 4:9 7:4 8:1 10:5

Table C.3: Effect of Gaussian electrode displacement on inverse simulations using the RMS
error metric defined in Section 3.2.3.

Uncorrelated Electrode Displacement – Similarity Index

APPROACH TECHNIQUE 0 5 10 15

ACTIVATION

REG-0 0:92 0:91 0:86 0:81
REG-5 0:91 0:91 0:86 0:81
REG-50 0:91 0:91 0:85 0:83
REG-500 0:92 0:91 0:90 0:88

TSVD
GREENSITE

OPTIMAL 0:92 0:89 0:77 0:76

TSVD
STANDARD

OPTIMAL 0:95 0:85 0:72 0:75

TIKHONOV

GREENSITE

CRESO 0:93 0:87 0:79 0:77
L-CURVE 0:92 0:84 0:70 0:69
OPTIMAL 0:94 0:88 0:84 0:80
ZCROSS 0:92 0:77 0:73 0:73

TIKHONOV

STANDARD

CRESO 0:95 0:89 0:83 0:78
L-CURVE 0:93 0:85 0:83 0:80
OPTIMAL 0:95 0:88 0:83 0:81
ZCROSS 0:93 0:85 0:82 0:72

Table C.4: Effect of Gaussian electrode displacement on inverse simulations using the similar-
ity index error metric defined in Section 3.2.3.
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Correlated Electrode Displacement – RMS

APPROACH TECHNIQUE �10 �5 0 5 10

ACTIVATION

REG-0 6:3 5:4 5:1 5:7 7:0
REG-5 6:3 5:6 5:4 5:7 7:0
REG-50 6:4 5:9 5:4 5:8 7:1
REG-500 6:8 5:8 5:4 6:0 7:1

TSVD
GREENSITE

OPTIMAL 7:8 5:7 5:5 6:4 8:5

TSVD
STANDARD

OPTIMAL 9:1 6:3 4:0 5:6 8:6

TIKHONOV

GREENSITE

CRESO 13:3 6:1 5:0 8:7 11:6
L-CURVE 10:1 6:5 5:3 7:9 11:0
OPTIMAL 8:0 5:5 4:6 6:9 9:4
ZCROSS 14:3 7:7 5:4 8:9 9:6

TIKHONOV

STANDARD

CRESO 22:4 6:1 4:3 7:4 10:0
L-CURVE 10:0 6:5 4:8 7:5 9:6
OPTIMAL 8:1 5:1 4:3 6:2 8:8
ZCROSS 9:3 6:2 4:9 7:3 9:6

Table C.5: Effect of correlated electrode displacement on inverse simulations using the RMS
error metric defined in Section 3.2.3.

Correlated Electrode Displacement – Similarity Index

APPROACH TECHNIQUE �10 �5 0 5 10

ACTIVATION

REG-0 0:87 0:91 0:92 0:90 0:85
REG-5 0:87 0:90 0:91 0:90 0:84
REG-50 0:87 0:89 0:91 0:90 0:84
REG-500 0:85 0:90 0:92 0:90 0:85

TSVD
GREENSITE

OPTIMAL 0:85 0:91 0:92 0:90 0:80

TSVD
STANDARD

OPTIMAL 0:79 0:89 0:95 0:91 0:80

TIKHONOV

GREENSITE

CRESO 0:48 0:89 0:93 0:81 0:68
L-CURVE 0:76 0:88 0:92 0:84 0:66
OPTIMAL 0:85 0:92 0:94 0:87 0:75
ZCROSS 0:40 0:83 0:92 0:79 0:74

TIKHONOV

STANDARD

CRESO 0:12 0:90 0:95 0:85 0:75
L-CURVE 0:76 0:88 0:93 0:85 0:75
OPTIMAL 0:84 0:93 0:95 0:89 0:78
ZCROSS 0:80 0:90 0:93 0:86 0:75

Table C.6: Effect of correlated electrode displacement on inverse simulations using the simi-
larity index error metric defined in Section 3.2.3.
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C.2 Effect of Material Properties

Transmembrane Jump – RMS

APPROACH TECHNIQUE 80 90 100 110 120

ACTIVATION

REG-0 5:1 4:8 5:1 5:0 5:1
REG-5 5:0 5:1 5:4 5:5 5:5
REG-50 5:1 5:3 5:4 5:4 5:6
REG-500 5:1 5:5 5:4 5:7 5:9

Table C.7: Effect of transmembrane jump on inverse simulations using the RMS error metric
defined in defined in Section 3.2.3.

Transmembrane Jump – Similarity Index

APPROACH TECHNIQUE 80 90 100 110 120

ACTIVATION

REG-0 0:92 0:93 0:92 0:92 0:93
REG-5 0:92 0:92 0:91 0:91 0:91
REG-50 0:92 0:92 0:91 0:92 0:91
REG-500 0:92 0:92 0:92 0:92 0:91

Table C.8: Effect of transmembrane jump on inverse simulations using the similarity index
error metric defined in Section 3.2.3.

Width of Activation Upstroke – RMS

APPROACH TECHNIQUE 1 2 4 5 6 8

ACTIVATION

REG-0 5.5 5:1 5:1 5:1 4:9 5:1
REG-5 5.4 5:1 5:0 5:4 5:3 5:1
REG-50 5.9 5:2 5:3 5:4 5:4 5:4
REG-500 5.6 5:4 5:4 5:4 5:5 5:6

Table C.9: Effect of width of the activation upstroke on inverse simulations using the RMS
error metric defined in defined in Section 3.2.3.

Width of Activation Upstroke – Similarity Index

APPROACH TECHNIQUE 1 2 4 5 6 8

ACTIVATION

REG-0 0.92 0:92 0:92 0:92 0:93 0:92
REG-5 0.92 0:93 0:93 0:91 0:91 0:91
REG-50 0.90 0:92 0:92 0:91 0:91 0:91
REG-500 0.92 0:92 0:92 0:92 0:91 0:91

Table C.10: Effect of width of the activation upstroke on inverse simulations using the similar-
ity index error metric defined in Section 3.2.3.
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Lung Conductivities – RMS

APPROACH TECHNIQUE 0:01 0:03 0:05 0:10 0:15 0:22

ACTIVATION

REG-0 5:2 5:4 5:1 4:9 4:9 4:8
REG-5 5:5 5:4 5:4 4:9 4:8 4:9
REG-50 5:7 5:3 5:4 5:3 5:1 5:1
REG-500 5:6 5:6 5:4 5:5 5:4 5:2

TSVD
GREENSITE

OPTIMAL 6:4 5:0 5:5 5:0 5:3 4:6

TSVD
STANDARD

OPTIMAL 7:0 4:5 4:0 4:0 4:5 4:7

TIKHONOV

GREENSITE

CRESO 15:7 6:1 5:0 5:4 5:3 6:1
L-CURVE 6:8 5:5 5:3 5:4 6:1 6:3
OPTIMAL 5:3 4:4 4:6 4:6 4:8 5:0
ZCROSS 8:2 5:6 5:4 5:8 6:1 6:8

TIKHONOV

STANDARD

CRESO 10:2 5:1 4:3 4:9 4:6 5:3
L-CURVE 5:4 4:5 4:8 4:8 4:9 5:0
OPTIMAL 6:0 4:9 4:3 4:3 4:4 4:7
ZCROSS 5:5 4:9 4:9 5:0 5:2 5:2

Table C.11: Effect of lung conductivities on inverse simulations using the RMS error metric
defined in Section 3.2.3.

Lung Conductivities – Similarity Index

APPROACH TECHNIQUE 0:01 0:03 0:05 0:10 0:15 0:22

ACTIVATION

REG-0 0:92 0:91 0:92 0:93 0:92 0:93
REG-5 0:91 0:91 0:91 0:93 0:93 0:92
REG-50 0:91 0:92 0:91 0:91 0:92 0:92
REG-500 0:91 0:91 0:92 0:92 0:91 0:92

TSVD
GREENSITE

OPTIMAL 0:89 0:93 0:92 0:93 0:92 0:94

TSVD
STANDARD

OPTIMAL 0:87 0:94 0:95 0:95 0:94 0:94

TIKHONOV

GREENSITE

CRESO 0:40 0:89 0:93 0:92 0:92 0:90
L-CURVE 0:87 0:91 0:92 0:92 0:90 0:90
OPTIMAL 0:93 0:95 0:94 0:94 0:94 0:93
ZCROSS 0:81 0:91 0:92 0:91 0:90 0:88

TIKHONOV

STANDARD

CRESO 0:73 0:92 0:95 0:93 0:94 0:92
L-CURVE 0:91 0:94 0:93 0:93 0:93 0:93
OPTIMAL 0:90 0:93 0:95 0:95 0:95 0:94
ZCROSS 0:91 0:93 0:93 0:93 0:92 0:92

Table C.12: Effect of lung conductivities on inverse simulations using the similarity index error
metric defined in Section 3.2.3.
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C.3 Effect of Geometric Errors

Heart Translation in the Lateral Directions – RMS

APPROACH TECHNIQUE �30 �20 �10 0 10 20

ACTIVATION

REG-0 10:8 6:8 5:3 4:6 6:8 9:0
REG-5 10:7 6:7 5:5 4:6 6:9 9:1
REG-50 10:8 7:0 5:4 4:9 6:5 9:0
REG-500 10:8 6:8 5:5 5:2 6:5 9:0

TSVD
GREENSITE

OPTIMAL 14:7 11:8 7:5 4:5 10:2 11:3

TSVD
STANDARD

OPTIMAL 13:0 9:2 5:9 3:9 8:9 11:0

TIKHONOV

GREENSITE

CRESO 17:4 18:6 6:6 5:6 13:8 21:2
L-CURVE 14:2 16:4 6:8 5:0 13:8 17:4
OPTIMAL 10:8 9:3 6:1 4:8 9:0 11:4
ZCROSS 15:9 13:9 6:5 5:0 14:2 22:8

TIKHONOV

STANDARD

CRESO 11:8 14:0 15:6 3:6 11:4 26:7
L-CURVE 12:2 11:3 6:1 5:2 7:6 18:6
OPTIMAL 10:8 9:6 5:5 4:4 8:9 10:2
ZCROSS 11:1 10:9 6:2 5:3 8:7 12:9

Table C.13: Effect of heart translation in the lateral directions on inverse simulations using
RMS error metric defined in Section 3.2.3.

Heart Translation in the Lateral Directions – Similarity Index

APPROACH TECHNIQUE �30 �20 �10 0 10 20

ACTIVATION

REG-0 0:57 0:85 0:91 0:94 0:86 0:72
REG-5 0:58 0:85 0:90 0:94 0:85 0:72
REG-50 0:58 0:84 0:91 0:93 0:88 0:72
REG-500 0:58 0:85 0:91 0:93 0:88 0:74

TSVD
GREENSITE

OPTIMAL 0:45 0:71 0:84 0:94 0:68 0:69

TSVD
STANDARD

OPTIMAL 0:46 0:76 0:90 0:96 0:76 0:72

TIKHONOV

GREENSITE

CRESO 0:36 �0:18 0:87 0:91 0:24 0:06
L-CURVE 0:70 0:35 0:87 0:93 0:57 0:34
OPTIMAL 0:71 0:81 0:90 0:93 0:77 0:65
ZCROSS 0:65 0:57 0:88 0:93 0:53 �0:05

TIKHONOV

STANDARD

CRESO 0:47 0:32 0:49 0:96 0:58 0:18
L-CURVE 0:49 0:64 0:90 0:92 0:83 0:35
OPTIMAL 0:67 0:77 0:91 0:95 0:78 0:72
ZCROSS 0:69 0:69 0:90 0:92 0:78 0:54

Table C.14: Effect of heart translation in the lateral directions on inverse simulations using the
similarity index error metric defined in Section 3.2.3.
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Heart Translation in the Posterior-Anterior Directions – RMS

APPROACH TECHNIQUE �15 �10 �5 0 10 20 30

ACTIVATION

REG-0 6:7 5:7 4:6 4:6 7:6 10:3 11:7
REG-5 6:8 5:4 4:6 4:6 7:8 10:0 12:5
REG-50 6:7 5:8 5:0 4:9 7:6 10:2 11:8
REG-500 6:3 6:0 5:2 5:2 7:1 9:9 11:0

TSVD
GREENSITE

OPTIMAL 9:0 7:4 5:0 4:5 8:0 11:5 12:5

TSVD
STANDARD

OPTIMAL 8:4 7:1 5:4 3:9 9:1 11:1 18:1

TIKHONOV

GREENSITE

CRESO 13:8 9:1 7:8 5:6 20:3 15:0 16:3
L-CURVE 11:3 9:0 5:9 5:0 8:8 12:8 15:3
OPTIMAL 9:0 7:4 6:0 4:8 6:7 7:8 9:8
ZCROSS 11:7 8:3 6:1 5:0 10:2 12:1 16:8

TIKHONOV

STANDARD

CRESO 12:1 8:8 6:9 3:6 14:4 16:8 20:2
L-CURVE 9:5 8:3 5:3 5:2 12:9 15:1 20:4
OPTIMAL 8:3 7:6 5:7 4:4 7:4 9:2 11:9
ZCROSS 9:7 8:5 6:0 5:3 8:3 11:1 13:0

Table C.15: Effect of heart translation in the posterior-anterior directions on inverse simula-
tions using the RMS error metric defined in Section 3.2.3.

Heart Translation in the Posterior-Anterior directions – Similarity Index

APPROACH TECHNIQUE �15 �10 �5 0 10 20 30

ACTIVATION

REG-0 0:87 0:90 0:93 0:94 0:83 0:69 0:53
REG-5 0:86 0:91 0:93 0:94 0:82 0:69 0:49
REG-50 0:87 0:89 0:92 0:93 0:84 0:69 0:55
REG-500 0:88 0:88 0:92 0:93 0:88 0:75 0:64

TSVD
GREENSITE

OPTIMAL 0:85 0:88 0:93 0:94 0:81 0:69 0:58

TSVD
STANDARD

OPTIMAL 0:80 0:87 0:92 0:96 0:78 0:76 0:46

TIKHONOV

GREENSITE

CRESO 0:51 0:83 0:85 0:91 0:21 0:51 0:32
L-CURVE 0:75 0:85 0:91 0:93 0:79 0:54 0:37
OPTIMAL 0:84 0:88 0:91 0:93 0:87 0:84 0:74
ZCROSS 0:78 0:86 0:90 0:93 0:73 0:61 0:33

TIKHONOV

STANDARD

CRESO 0:50 0:81 0:88 0:96 0:45 0:52 0:21
L-CURVE 0:79 0:86 0:93 0:92 0:63 0:50 0:30
OPTIMAL 0:83 0:88 0:91 0:95 0:84 0:79 0:68
ZCROSS 0:78 0:85 0:91 0:92 0:83 0:72 0:61

Table C.16: Effect of heart translation in the posterior-anterior directions on inverse simula-
tions using the similarity index error metric defined in Section 3.2.3.



INVERSE SIMULATION RESULTS 235

Heart Translation in the Superior-Inferior Directions – RMS

APPROACH TECHNIQUE �30 �20 �10 0 10 20 30

ACTIVATION

REG-0 10:4 8:4 5:5 4:6 5:7 7:6 9:8
REG-5 10:5 8:2 5:4 4:6 5:9 7:7 9:7
REG-50 10:4 8:1 5:8 4:9 5:8 7:9 9:9
REG-500 10:1 8:2 5:9 5:2 6:3 8:2 9:8

TSVD
GREENSITE

OPTIMAL 13:4 10:9 7:6 4:5 6:5 9:9 11:8

TSVD
STANDARD

OPTIMAL 12:2 9:4 7:3 3:9 9:3 12:4 11:4

TIKHONOV

GREENSITE

CRESO 16:6 15:2 8:0 5:6 10:7 16:6 16:1
L-CURVE 18:1 12:2 6:5 5:0 7:3 15:1 19:7
OPTIMAL 12:1 9:7 6:9 4:8 6:2 8:6 9:3
ZCROSS 14:1 11:7 6:2 5:0 6:9 15:1 14:7

TIKHONOV

STANDARD

CRESO 13:1 12:1 9:8 3:6 9:7 13:6 15:3
L-CURVE 14:3 9:3 6:3 5:2 6:6 13:1 17:4
OPTIMAL 10:8 9:1 6:3 4:4 6:9 8:7 8:8
ZCROSS 12:2 9:0 6:4 5:3 6:3 10:9 14:5

Table C.17: Effect of heart translation in the superior-inferior directions on inverse simulations
using the RMS error metric defined in Section 3.2.3.
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Heart Translation in the Superior-Inferior Directions – Similarity Index

APPROACH TECHNIQUE �30 �20 �10 0 10 20 30

ACTIVATION

REG-0 0:62 0:76 0:90 0:94 0:91 0:84 0:74
REG-5 0:63 0:78 0:91 0:94 0:90 0:83 0:74
REG-50 0:62 0:78 0:89 0:93 0:91 0:83 0:73
REG-500 0:64 0:77 0:89 0:93 0:90 0:84 0:75

TSVD
GREENSITE

OPTIMAL 0:48 0:65 0:83 0:94 0:88 0:77 0:63

TSVD
STANDARD

OPTIMAL 0:53 0:73 0:85 0:96 0:74 0:53 0:61

TIKHONOV

GREENSITE

CRESO 0:18 0:34 0:82 0:91 0:70 0:24 0:16
L-CURVE 0:23 0:63 0:88 0:93 0:85 0:43 0:10
OPTIMAL 0:57 0:72 0:86 0:93 0:89 0:80 0:77
ZCROSS 0:26 0:64 0:88 0:93 0:86 0:32 0:16

TIKHONOV

STANDARD

CRESO 0:32 0:48 0:74 0:96 0:72 0:32 0:23
L-CURVE 0:23 0:71 0:88 0:92 0:88 0:53 0:15
OPTIMAL 0:64 0:76 0:88 0:95 0:86 0:78 0:78
ZCROSS 0:48 0:74 0:88 0:92 0:89 0:66 0:21

Table C.18: Effect of heart translation in the superior-inferior directions on inverse simulations
using the similarity index error metric defined in Section 3.2.3.
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Heart Rotation in the Sagittal Plane – RMS

APPROACH TECHNIQUE �45 �30 �15 0 15 30 45

ACTIVATION

REG-0 11:6 8:7 6:6 4:6 5:8 8:2 11:1
REG-5 11:6 8:8 7:0 4:6 5:8 8:1 10:9
REG-50 11:5 8:9 6:7 4:9 5:5 8:2 10:7
REG-500 11:1 8:7 6:6 5:2 5:8 8:1 10:8

TSVD
GREENSITE

OPTIMAL 12:1 10:2 6:4 4:5 7:9 14:3 12:1

TSVD
STANDARD

OPTIMAL 12:0 9:8 5:9 3:9 8:4 11:5 13:1

TIKHONOV

GREENSITE

CRESO 12:9 17:2 16:1 5:6 12:9 21:6 19:2
L-CURVE 14:0 10:2 6:6 5:0 8:4 13:0 15:8
OPTIMAL 13:7 10:7 6:0 4:8 9:1 14:4 15:5
ZCROSS 12:9 10:2 7:0 5:0 8:7 12:8 15:3

TIKHONOV

STANDARD

CRESO 13:1 11:6 5:3 3:6 8:4 17:1 18:1
L-CURVE 12:6 9:6 5:9 5:2 8:3 11:8 15:2
OPTIMAL 12:6 9:8 5:8 4:4 8:5 11:8 12:6
ZCROSS 12:6 9:6 5:5 5:3 8:4 11:9 15:6

Table C.19: Effect of heart rotation in the sagittal plane on inverse simulations using the RMS
error metric defined in Section 3.2.3.
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Heart Rotation in the Sagittal Plane – Similarity Index

APPROACH TECHNIQUE �45 �30 �15 0 15 30 45

ACTIVATION

REG-0 0:51 0:73 0:86 0:94 0:90 0:78 0:59
REG-5 0:51 0:73 0:84 0:94 0:90 0:78 0:60
REG-50 0:51 0:72 0:85 0:93 0:91 0:78 0:60
REG-500 0:53 0:73 0:86 0:93 0:90 0:78 0:58

TSVD
GREENSITE

OPTIMAL 0:53 0:67 0:88 0:94 0:82 0:50 0:62

TSVD
STANDARD

OPTIMAL 0:61 0:69 0:89 0:96 0:79 0:62 0:43

TIKHONOV

GREENSITE

CRESO 0:34 0:25 0:46 0:91 0:40 0:18 �0:01
L-CURVE 0:44 0:70 0:88 0:93 0:81 0:58 0:43
OPTIMAL 0:48 0:67 0:89 0:93 0:77 0:47 0:38
ZCROSS 0:52 0:70 0:87 0:93 0:80 0:60 0:47

TIKHONOV

STANDARD

CRESO 0:43 0:59 0:92 0:96 0:81 0:23 0:08
L-CURVE 0:54 0:72 0:90 0:92 0:81 0:64 0:45
OPTIMAL 0:53 0:70 0:90 0:95 0:78 0:59 0:51
ZCROSS 0:53 0:72 0:91 0:92 0:81 0:64 0:42

Table C.20: Effect of heart rotation in the sagittal plane on inverse simulations using the simi-
larity index error metric defined in Section 3.2.3.
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Heart Rotation in the Coronal Plane – RMS

APPROACH TECHNIQUE �15 0 15 30 45

ACTIVATION

REG-0 6:1 4:6 6:4 8:7 10:0
REG-5 6:1 4:6 6:5 8:7 10:0
REG-50 6:2 4:9 6:6 8:6 10:1
REG-500 5:7 5:2 6:7 8:5 9:9

TSVD
GREENSITE

OPTIMAL 7:7 4:5 6:7 11:8 12:4

TSVD
STANDARD

OPTIMAL 5:9 3:9 6:1 9:0 13:4

TIKHONOV

GREENSITE

CRESO 9:3 5:6 18:2 9:4 20:4
L-CURVE 7:7 5:0 6:7 9:6 10:8
OPTIMAL 7:4 4:8 7:4 11:3 13:5
ZCROSS 8:0 5:0 8:0 9:5 11:2

TIKHONOV

STANDARD

CRESO 8:0 3:6 13:4 9:1 16:1
L-CURVE 8:1 5:2 6:8 8:9 11:3
OPTIMAL 7:2 4:4 6:8 9:8 11:2
ZCROSS 7:8 5:3 6:8 9:0 11:6

Table C.21: Effect of heart rotation in the coronal plane on inverse simulations using the RMS
error metric defined in Section 3.2.3.

Heart Rotation in the Coronal Plane – Similarity Index

APPROACH TECHNIQUE �15 0 15 30 45

ACTIVATION

REG-0 0:89 0:94 0:87 0:74 0:66
REG-5 0:89 0:94 0:87 0:75 0:67
REG-50 0:88 0:93 0:86 0:76 0:66
REG-500 0:90 0:93 0:86 0:76 0:67

TSVD
GREENSITE

OPTIMAL 0:83 0:94 0:89 0:61 0:58

TSVD
STANDARD

OPTIMAL 0:90 0:96 0:90 0:79 0:54

TIKHONOV

GREENSITE

CRESO 0:77 0:91 0:13 0:75 0:11
L-CURVE 0:84 0:93 0:88 0:73 0:65
OPTIMAL 0:85 0:93 0:86 0:66 0:54
ZCROSS 0:82 0:93 0:84 0:73 0:65

TIKHONOV

STANDARD

CRESO 0:82 0:96 0:31 0:76 0:16
L-CURVE 0:81 0:92 0:88 0:77 0:64
OPTIMAL 0:85 0:95 0:87 0:73 0:68
ZCROSS 0:83 0:92 0:88 0:76 0:62

Table C.22: Effect of heart rotation in the coronal plane on inverse simulations using the simi-
larity index error metric defined in Section 3.2.3.
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Heart Size – RMS

APPROACH TECHNIQUE 0:65 0:81 1:00 1:21 1:43

ACTIVATION

REG-0 7:3 5:2 4:6 5:3 6:3
REG-5 7:4 5:2 4:6 5:4 6:4
REG-50 7:6 5:5 4:9 5:7 6:5
REG-500 7:2 5:3 5:2 6:1 7:1

TSVD
GREENSITE

OPTIMAL 12:1 6:8 4:5 6:9 9:8

TSVD
STANDARD

OPTIMAL 16:2 7:2 3:9 6:2 8:7

TIKHONOV

GREENSITE

CRESO 14:1 13:2 5:6 8:2 10:2
L-CURVE 10:9 5:2 5:0 6:3 8:6
OPTIMAL 8:2 6:9 4:8 6:6 8:3
ZCROSS 8:4 5:0 5:0 6:8 8:5

TIKHONOV

STANDARD

CRESO 12:8 8:7 3:6 6:9 10:4
L-CURVE 5:5 5:0 5:2 6:0 8:5
OPTIMAL 8:3 5:7 4:4 7:5 8:6
ZCROSS 6:1 5:3 5:3 5:9 8:2

Table C.23: Effect of Gaussian electrical noise on inverse simulations using the RMS error
metric defined in Section 3.2.3.

Heart Size – Similarity Index

APPROACH TECHNIQUE 0:65 0:81 1:00 1:21 1:43

ACTIVATION

REG-0 0:83 0:92 0:94 0:92 0:88
REG-5 0:82 0:92 0:94 0:92 0:88
REG-50 0:81 0:91 0:93 0:91 0:88
REG-500 0:82 0:91 0:93 0:91 0:87

TSVD
GREENSITE

OPTIMAL 0:62 0:87 0:94 0:86 0:72

TSVD
STANDARD

OPTIMAL 0:32 0:84 0:96 0:89 0:78

TIKHONOV

GREENSITE

CRESO 0:47 0:58 0:91 0:80 0:68
L-CURVE 0:68 0:92 0:93 0:88 0:78
OPTIMAL 0:81 0:86 0:93 0:87 0:79
ZCROSS 0:81 0:93 0:93 0:86 0:78

TIKHONOV

STANDARD

CRESO 0:49 0:79 0:96 0:86 0:59
L-CURVE 0:91 0:93 0:92 0:89 0:78
OPTIMAL 0:80 0:91 0:95 0:84 0:78
ZCROSS 0:89 0:92 0:92 0:89 0:79

Table C.24: Effect of heart size on inverse simulations using the similarity index error metric
defined in Section 3.2.3.



INVERSE SIMULATION RESULTS 241

Torso Size – RMS

APPROACH TECHNIQUE 0:69 0:81 1:00 1:32 1:72

ACTIVATION

REG-0 7:9 6:3 4:6 8:1 11:0
REG-5 8:2 6:0 4:6 8:1 10:8
REG-50 7:9 6:1 4:9 8:0 10:9
REG-500 7:8 6:2 5:2 7:8 10:4

TSVD
GREENSITE

OPTIMAL 9:4 8:7 4:5 12:8 11:8

TSVD
STANDARD

OPTIMAL 10:2 9:4 3:9 10:2 11:4

TIKHONOV

GREENSITE

CRESO 14:1 9:2 5:6 15:7 16:1
L-CURVE 12:6 8:5 5:0 12:5 13:5
OPTIMAL 9:5 7:7 4:8 7:5 10:9
ZCROSS 13:0 8:5 5:0 10:1 12:8

TIKHONOV

STANDARD

CRESO 12:4 7:6 3:6 15:7 19:4
L-CURVE 12:4 7:4 5:2 11:0 15:3
OPTIMAL 9:2 7:6 4:4 8:2 11:6
ZCROSS 11:6 8:4 5:3 9:6 15:0

Table C.25: Effect of torso size on inverse simulations using the RMS error metric defined in
Section 3.2.3.

Torso Size – Similarity Index

APPROACH TECHNIQUE 0:69 0:81 1:00 1:32 1:72

ACTIVATION

REG-0 0:82 0:88 0:94 0:80 0:62
REG-5 0:80 0:89 0:94 0:81 0:63
REG-50 0:82 0:89 0:93 0:81 0:61
REG-500 0:84 0:91 0:93 0:85 0:68

TSVD
GREENSITE

OPTIMAL 0:75 0:78 0:94 0:66 0:61

TSVD
STANDARD

OPTIMAL 0:71 0:75 0:96 0:74 0:65

TIKHONOV

GREENSITE

CRESO 0:49 0:76 0:91 0:48 0:50
L-CURVE 0:56 0:79 0:93 0:64 0:50
OPTIMAL 0:73 0:81 0:93 0:84 0:67
ZCROSS 0:53 0:78 0:93 0:74 0:59

TIKHONOV

STANDARD

CRESO 0:58 0:82 0:96 0:42 0:49
L-CURVE 0:58 0:84 0:92 0:76 0:60
OPTIMAL 0:74 0:83 0:95 0:81 0:67
ZCROSS 0:62 0:79 0:92 0:80 0:62

Table C.26: Effect of torso size on inverse simulations using the similarity index error metric
defined in Section 3.2.3.
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C.4 Typical Experimental Error

Typical Simulation with Double Point Source – RMS

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 4:3 9:2
REG-5 4:1 9:1
REG-50 4:4 8:9
REG-500 4:2 8:2

TSVD
GREENSITE

OPTIMAL 7:1 10:7

TSVD
STANDARD

OPTIMAL 6:4 10:2

TIKHONOV

GREENSITE

CRESO 6:0 11:8
L-CURVE 8:5 11:4
OPTIMAL 5:4 10:9
ZCROSS 7:9 11:3

TIKHONOV

STANDARD

CRESO 7:0 11:6
L-CURVE 6:6 10:6
OPTIMAL 6:0 11:4
ZCROSS 7:8 11:4

Table C.27: Effect of typical experimental errors with double point source using the RMS error
metric defined in Section 3.2.3.

Typical Simulation with Double Point Source – SI

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 0:94 0:73
REG-5 0:95 0:73
REG-50 0:94 0:73
REG-500 0:96 0:78

TSVD
GREENSITE

OPTIMAL 0:86 0:72

TSVD
STANDARD

OPTIMAL 0:88 0:74

TIKHONOV

GREENSITE

CRESO 0:90 0:62
L-CURVE 0:79 0:68
OPTIMAL 0:92 0:70
ZCROSS 0:82 0:69

TIKHONOV

STANDARD

CRESO 0:85 0:66
L-CURVE 0:87 0:72
OPTIMAL 0:89 0:65
ZCROSS 0:82 0:66

Table C.28: Effect of typical experimental errors with double point source using the similarity
index error metric defined in Section 3.2.3.
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Typical Simulation with Eikonal Source – RMS

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 10:6 10:9
REG-5 10:8 11:0
REG-50 11:0 11:7
REG-500 10:4 10:8

TSVD
GREENSITE

OPTIMAL 8:4 10:4

TSVD
STANDARD

OPTIMAL 7:8 15:5

TIKHONOV

GREENSITE

CRESO 8:2 14:0
L-CURVE 9:2 15:8
OPTIMAL 7:3 13:9
ZCROSS 9:3 16:7

TIKHONOV

STANDARD

CRESO 4:9 14:8
L-CURVE 7:6 14:3
OPTIMAL 7:1 14:3
ZCROSS 7:6 14:7

Table C.29: Effect of typical experimental errors with eikonal source using the RMS error
metric defined in Section 3.2.3.

Typical Simulation with Eikonal Source – SI

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 0:45 0:36
REG-5 0:44 0:40
REG-50 0:40 0:34
REG-500 0:48 0:39

TSVD
GREENSITE

OPTIMAL 0:45 0:47

TSVD
STANDARD

OPTIMAL 0:54 0:04

TIKHONOV

GREENSITE

CRESO 0:54 0:30
L-CURVE 0:48 0:23
OPTIMAL 0:60 0:29
ZCROSS 0:48 0:26

TIKHONOV

STANDARD

CRESO 0:80 0:18
L-CURVE 0:52 0:26
OPTIMAL 0:58 0:28
ZCROSS 0:53 0:24

Table C.30: Effect of typical experimental errors with eikonal source using the similarity error
metric defined in Section 3.2.3.
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Typical Simulation with Experimental Source - RMS

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 2:5 3:9
REG-5 2:6 3:9
REG-50 2:7 4:0
REG-500 2:3 3:7

TSVD
GREENSITE

OPTIMAL 2:9 4:7

TSVD
STANDARD

OPTIMAL 3:1 5:1

TIKHONOV

GREENSITE

CRESO 3:2 4:3
L-CURVE 2:8 4:4
OPTIMAL 3:0 4:1
ZCROSS 3:0 5:1

TIKHONOV

STANDARD

CRESO 3:2 4:7
L-CURVE 3:0 4:7
OPTIMAL 3:2 5:2
ZCROSS 3:4 4:7

Table C.31: Effect of typical experimental errors with experimentally derived source using the
RMS metric defined in Section 3.2.3.

Typical Simulation with Experimental Source – SI

APPROACH TECHNIQUE CONTROL TYPICAL

ACTIVATION

REG-0 0:76 0:51
REG-5 0:75 0:53
REG-50 0:72 0:51
REG-500 0:76 0:53

TSVD
GREENSITE

OPTIMAL 0:78 0:41

TSVD
STANDARD

OPTIMAL 0:74 0:32

TIKHONOV

GREENSITE

CRESO 0:71 0:50
L-CURVE 0:79 0:47
OPTIMAL 0:76 0:56
ZCROSS 0:76 0:34

TIKHONOV

STANDARD

CRESO 0:74 0:37
L-CURVE 0:70 0:39
OPTIMAL 0:71 0:30
ZCROSS 0:69 0:39

Table C.32: Effect of typical experimental errors with experimentally derived source using the
similarity error metric defined in Section 3.2.3.



D CMISS Routines & Command Files

All computations in this thesis were performed using theCMISS package.CMISS is a specialised

finite element and boundary element program developed over the last 20 years in the Bioengi-

neering Research Group at The University of Auckland.CMISS is capable of solving problems

using a variety of numerical methods which can be used across multiple regions within the so-

lution domain. It is especially suited to bioengineering problems.CMISS consists of two main

components: a computational kernel written primarily in Fortran 77/90 (CM) and a graphical front

end and user interface written in C/C++ (CMGUI). CMGUI incorporates a number of specialised

tools for visualising and manipulating certain types of data. One of these tools isUnEmap which

is designed for electrocardiographic signals. More information aboutCMISS can be obtained at

http://www.cmiss.org/.

Some of the command files used in the course of this thesis are listed in Sections (D.3)–(D.8).

They illustrate the different commands used to solve different problem types. The command files

to fit signals to a finite element field, perform host mesh fitting on a generic mode and geometric

surface fitting are further explained in Chapter 3. Section D.6 lists the command required for

a forward problem simulation using a dipole source. This is used in the convergence analysis in

Chapter 5. Section D.7 lists the commands used in an activation inverse problem where the analytic

activation sequences has been read in. Section D.8 contains the commands used in Chapter 7. This

comfile performs activation and potential inverses and applies typical experimental errors to the

simulations.
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D.1 Computer Systems

The forward convergence results, presented in Chapter 5, were obtained using a Silicon Graphics

Power Challenge (XL). This computer had16�196 MHz MIPS R10000 processors (Revision2:6)

with R10010 Floating Point Units (Revision0:0). Each processor had a32=32 kB data/instruction

level-1 (primary) cache and a2 MB level-2 (secondary) cache. There was a total of8 GB of Phys-

ical RAM (8-way interleaved) and8 GB virtual swap space. The operating system was IRIX6:2

64 bit SMP-based Unix.

The results for the simulation study presented in Chapter 7 was performed on a Silicon Graphics

Origin 2000. This computer had32 � 250 MHz MIPS R10000 processors (Revision3:4) with

R10010 Floating Point Units (Revision0:0). Each processor had a32=32 kB data/instruction level-

1 (primary) cache and a4 MB level-2 (secondary) cache. There was a total of10 GB of Physical

RAM (8-way interleaved) and50 GB virtual swap space. The operating system was IRIX6:5:10

64 bit SMP-based Unix.

More information can be obtained athttp://www.esc.auckland.ac.nz/HPC/.
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D.2 Commonly Used Routines in CMISS

D.2.1 General Routines

APNOIS Noise is applied to temporally varying signals. Gaussian electrical noise can

be applied to the potential values while geometric noise can be applied to the

electrode locations.

COMPDAT Data comparison using metrics defined in Section 3.2.3. Geometrical locations

of the data are compared with the keywordgeometry and field values associated

with data points are compared with the keywordfield.

COMPSIG Signal comparison using metrics defined in Section 3.2.3. The comparisons can

occur at a specifictime, an intervalstart time/end time or an integral of the entire

signal.

EVELEC Evaluates a signal file from a nodally based solution history file. The electrodes

can be evaluated atnodes or data.

EXNODE Exports nodal position and values toCMGUI. The values maybe temporally

varying potentials or activation times.

EXELEM Exports element based information toCMGUI

EXSIGN ExportsCMISS format signal files toUnEmap format signal files. Exports

individual and multiple signals to plain text data files and graphical traces to

CMGUI

UPSIGN Updates the geometric locations and element� positions within a signal file
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D.2.2 Fitting Routines

DEDATA Defines data position and any associated field values.

DEXI Calculates the� position of data points. The keywordorthogonal calculates or-

thogonal projections to the nearest surface. The keywordclosest calculates the

closest position of the data to an element. This may be a projection or a data

point embedded within an element.

FIT Fits geometric or field parameters to data points defined inDEDATA.

FITSIG Fits a temporally varying potential field from electrodes specified in a signal file.

D.2.3 Forward Problem Routines

APTRSF Applies the transfer matrix to the heart/epicardial nodes to create epicardial/-

torso potentials.

ASSEMBLE2 Assembles the global unreduced matrices GK, GD for static linear BEM prob-

lems.

DEACTI Computes an analytic activation field based on specified seed point locations.

EVTRSF Evaluates a transfer matrix. The type of transfer matrix (transmembrane to torso

surface/transmembrane to epicardial surface/epicardial surface to torso surface)

is defined inIPTRSF.

IPANA9 Generates analytical transmembrane solutions for the spherical test examples in

Section 5.5.2 given a dipole source and the appropriate coefficients.

IPACTV Generates analytical activation fields based on the point activation sites as used

for the double point heart activation source Section 6.4 and throughout Chap-

ter 7.
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D.2.4 Inverse Problem Routines

EVINVE Main routine for performing potential based inverses.

EVPHI Generates the� (y; t) array from a signal file

EVZCROSSING Calculates the zero crossing estimate of the activation field given the� (y; t)

matrix

INTERQRANK Computes the inter-equation truncation rank for Greensite’s potential method.

RESFUN Evaluates the residuals and Jacobian of the objective function being optimised.

SURFACELAPLACIAN Calculates the surface Laplacian for regularising inverse activation prob-

lems.

TIKHONOV Calculates the Tikhonov regularised solution.

TGSVD Calculates the Truncated SVD regularised solution.
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D.3 Signal Fitting Comfile

Fits discrete temporally varying signals to a finite element mesh. The fitted signals are exported to

CMGUI andUnEmap for visualisation.

#Example ea1 � Displaying p111 experimental results
# Fits the signals , customising the model,
# exports to cmgui and unemap
#

set fatal off # Force a crash with all errors
$FORMAT = ”binary” # Set a fileformat

$fINSIGNg = ”p111”

$fINSIGNg2 = ”p111 update”

fem def para;r ; full pig # Array size parameters for problem
fem realloc

fem def coor 3,1 # RC coordinates
fem def base;r; full pig # Bicubic Herm surfaces with sectors
fem def node;r;torso cust # P111 customised surface
fem def elem;r; torso cust

fem export node;porky as porky # Export the geometry to cmgui
fem export elem;porky as porky

#
# Adjusted raw p111 data to suit
# the new origin at the back
#
fem def data;r ;p111

fem change data translate by 15,�110,0 # Position electrode to suit origin system
fem def data;w;p111 trans

fem def data;r ;p111 trans # Define data
fem def xi ;c closest # Calculate xi positions on reg 1
fem export data;p111 as elec error offset 10500 # Outputs the data positions & error vectors

#
#
# Create the surface electrodes & export to CMGUI
#
fem def data;c from xi # Finds the global coords given xi
fem def data;w;p111 surf # Global coords of projections
fem export data;p111 surf as elec surf 5000

#
#
# Update the input signal & export to UNEMAP
#
fem def data;r ;p111 surf

fem up sig infile $INSIGN outfile $fINSIGNg2 $FORMAT

fem def export; r ;unemap

fem export sig ;$fINSIGNg2 elec signal $fINSIGNg2

#
#
# Fit the signal
#
fem def field ; r ; torso surface # Bicubic Hermite field
fem def elem;r;torso surface field # Element fields
fem def fit ; r ; torso surface signal class 2 #
fem fit sig class 2 $FORMAT tstart 0.10 tend 0.20 # Fit the signal between 0.1 and 0.2 s
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#
#
# Export the fitted ( nodally based) signals to UNEMAP
#
fem eva elec; fitted hist fitted fr node elec 13..213 $FORMAT us fit cl 2 # Evaluate nodally based signals
fem def export; r ;unemap

fem export sig; fitted elec signal fitted

#
# Export reconstructed signals ( from the input data pts)
# for a comparison
#
fem def data;r ;p111 surf # Read in surface electrode positions
fem def xi ; r ;p111 # Read in the xi coordinates
fem eva elec; fitted data hist fitted fr data $FORMAT us fit cl 2 # Evaluate the signals

#
# Compare the input/recorded signals and the fitted signals
# evaluted at the electrodes
#
fem comp sign mast $fINSIGNg2 comp fitted data $FORMAT time 0.15

fem comp sign mast $fINSIGNg2 comp fitted data $FORMAT integral

fem eva elec;p111 hist fitted fr node elec 13..213 $FORMAT us fit cl 2 # Export the nodally based signals to UnEmap
fem def export; r ;unemap

fem export sig;p111 elec signal p111

fem export node;pot hist fitted $FORMAT as potl us fit cl 2 # Export temporally varying potential field to
fem export elem;pot field as potl using fit class 2 # CMGUI

fem def export; r ; trace # Export a trace to cmgui
fem li export

fem export sign;trace signal fitted elec

quit
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D.4 Host Mesh Customisation Comfile

Performs a non-linear customisation of a generic model to a specific subject using host mesh fitting.

# Example e42: Tri�Cubic Hermite Host Mesh Customisation
#
#

#
# Input files and parameters for comfile
#
$SLAVEFILES = ”pig06” # Name of the input slave files
$CUSTFILES = ”pig06 cust” # Name of the output customised slave files
$SLAVE = ” 1..6” # Regions to read the slave files into
$HOST = ”7” # Region corresponding to the host mesh

#
# Logical controls for comfile [ truej false ]
#
$CALCXI = 1 # Calculate xi positions for the slave nodes
$FITTING = 1 # Fit the host mesh
$UPDATE = 1 # Update the slave mesh.
$OUTPUT = 1 # Write out customised ipnode/elem files.

fem def para;r ; fitting # Array size parameters for problem
fem def regi ; r ;seven # Seven regions (6 for slave , 1 for host)
fem def coor 3,1

fem def base;r; bicubic tricubic # Bicubic Hermite basis functions (generic slave mesh))
# Tricubic Hermite basis functions (host mesh)

fem def node;r;$SLAVEFILES reg $SLAVE # Define the generic slave mesh
fem def elem;r;$SLAVEFILES reg $SLAVE

fem export node;pig gen as pig gen offset 10000 reg $SLAVE # Export generic mesh to CMGUI
fem export elem;pig gen as pig gen offset elem 10000 reg $SLAVE

#
# Defines the host mesh and calculates the xi
# positions of the slave mesh nodes within the host mesh.
#
if ( $CALCXI==1 )

f

fem def node;r;host reg $HOST # Define host mesh (single element)
fem def elem;r;host reg $HOST

fem up node deriv 1 reg $HOST # Update the derivatives of host mesh
fem up node deriv 2 reg $HOST

fem up node deriv 3 reg $HOST

fem ref xi 3 reg $HOST # Refine the host mesh (now has 2 elements)

fem export node;host as host offset 1000 reg $HOST # Export host mesh to CMGUI
fem export elem;host as host offset elem 1000 reg $HOST

fem def data;r ;gen landmark9 reg $HOST # Calculate the xi positions for landmarks points
fem def xi ;c contain reg $HOST # within the elements define in region $HOST
fem export data;gen landmark as gen landmark error offset 16000 reg $HOST

fem def xi ;w;gen landmark reg $HOST

fem def xi ;c nodes contain of $SLAVE in $HOST # Calculate the xi positions of each node
fem def xi ;w;generic nodes contain of $SLAVE in $HOST # point of region $SLAVE within the elements

# defined in region $HOST
g #CALCXI

#
# Minimises the error between landmark points by adjusting the
# host mesh.
#
if ( $FITTING==1 )
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f

fem def data;r ;p111 landmark9 reg $HOST # Define the measured landmark positions
fem def xi ; r ;gen landmark reg $HOST

fem export data;p111 landmark as p111 landmark error offset 17500 reg $HOST

fem def field ; r ;host cub ref reg $HOST # Tricubic Hermite fields with 2 elements
fem def elem;r; host ref field reg $HOST

fem def fit ; r ; host tricub ref geom reg $HOST

fem list data error reg $HOST # Output starting error .
fem fit reg $HOST

fem update nodes reg $HOST

fem list data error reg $HOST # Output final error .

fem def node;w;host cust reg $HOST # Save the customised host mesh geometry
fem def elem;w;host cust reg $HOST

fem export nodes;host cust as host cust offset 2000 reg $HOST # Export the customised host mesh to CMGUI
fem export elements;host cust as host cust offset elem 2000 reg $HOST

fem export data;data cust as data cust error offset 18000 reg $HOST

g #FITTING

#
# Update the slave mesh according to the deformed host mesh.
#
if ( $UPDATE==1 )

f

fem def node;r;host cust reg $HOST

fem def elem;r;host cust reg $HOST

fem def node;r;$SLAVEFILES reg $SLAVE

fem def elem;r;$SLAVEFILES reg $SLAVE

fem def xi ; r ;generic nodes of $SLAVE in $HOST

fem up mesh posit of 1 in $HOST # Moves the nodes of region 1 & 6 ( effectively all nodes)
fem up mesh posit of 6 in $HOST # according to the xi positions in $HOST

fem export node;pig cust as pig cust offset 20000 reg $SLAVE # Export the customised slave meshes
fem export elem;pig cust as pig cust offset elem 20000 reg $SLAVE

fem export elem;skin as skin reg 1 offset elem 20000 elem 1281..2336

fem export elem;lungs as lungs reg 2..3 offset elem 20000

fem export elem;lvendo as lvendo reg 4 offset elem 20000

fem export elem;rvendo as rvendo reg 5 offset elem 20000

fem export elem;heart as heart reg 6 offset elem 20000

fem def data;r ;electrode reg 1 # Export the torso surface electrode positions
fem def xi ;c close reg 1 # measured by the FARO arm
fem list data error reg 1 # & their orthogonal projections
fem exp data;cust error as cust error error offset 24000 reg 1 # onto the customised mesh

g #UPDATE

if ( $OUTPUT==1 ) # Save the slave mesh for later use
f

fem def node;w;$CUSTFILES reg $SLAVE

fem def elem;w;$CUSTFILES reg $SLAVE

g #OUTPUT

quit
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D.5 Geometric Fitting Comfile

Geometric fitting by performing iterative linear fits. The orthogonal� projections and normalised

scale factors are updated after each fit.

# Example e43: Finite Element Geometric Fitting To Epicardial Data
#
#
#
#

$FITNAME = ”epi” # Base name for the fit#
$OUTPUT = ”epi ref0c” # Name of the initial input mesh
$FITNAME = ”epi” # Name of the fitted output mesh

fem def para;r ; fitting lin # Array size parameters for problem
fem def coor 3,1 # Rectangular Cartesian coordinates
fem def base;r; bicubic fit # Sets up three basis functions

# � 1 standard bicubic Hermite element
# � 2 simplex element collapsed at x2=0
# � 3 simplex element collapsed at x2=1

fem def node;r;$MODEL # Reads in an initial mesh and calculates
fem def elem;r;$MODEL # linear approximations for the derivatives
fem up node deriv 1 linear # in the xi=1 & 2 directions
fem up node deriv 2 linear

fem export node;$fFITNAMEg init as $fFITNAMEg init offset 40000

fem export elem;$fFITNAMEg init as $fFITNAMEg init offset elem 40000

#
# Calculate the intial xi projections
# � alternatively the command fem def xi;c orthog can be used
# it is slower but may produce better results in some cases
#
fem def data;r ;$FITNAME

fem def xi ;c close

fem li data err # Calculates the intial xi projections
fem export data;$fFITNAMEg data as $fFITNAMEg data error # & the keyword ERROR exports the projection vectors to CMGUI

#
# Setup the interpolation for the fitting problem �

# alternatively it may be easier use the commands
# ”fem up field from geoemtry” to setup these fields automatically
#
fem def field ; r ;epi

fem def elem;r;epi field

#
# Defines the fitting problem by setting smoothing parameters
# and setting some fixed nodes.
#
fem def fit ; r ;epi2 geometry

#
# First fit
#
fem fit

fem update node fit # Updates the nodal arrays then recalulates normalised scale factors
fem update scale factor normalise

fem def xi ;c close old # The OLD option on ‘def xi;c ’ means that the
fem li data err # last projections are used as initial estimates for

# the non�linear projection calculation .
#
# Second fit
#
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fem fit

fem update node fit

fem update scale factor normalise

fem def xi ;c close old

fem li data err

#
# Third fit
#
fem fit

fem update node fit

fem update scale factor normalise

fem def xi ;c close old

fem li data err

#
# Export the fitted geometry
#
fem export data;$fFITNAMEg data as $fFITNAMEg data error

fem export node;$FITNAME as $FITNAME offset 30000

fem export elem $FITNAME as $FITNAME offset elem 30000

quit
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D.6 Forward Problem With Dipole Source Comfile

Calculates the body surface potentials given a constant current dipole heart source by solving the

forward problem of electrocardiology. A coupled generalised Laplace’s equation is solved in the

four regions modelled. These include the epicardial, left and right lung and the skin surfaces.

set fatal off

$CMVER =”sp1”

$BATCHVER =”07”

$EXCMGUI =1

$BILINEAR =1

$INPUT = ” /xlv1/eng sci/cheng/porky/data/lungheart torso$BATCHVER”

$OUTPUT = ”tmp”

#
# Forward simulation for lungheart torso
#
fem def para;r ;big dense$BATCHVER

fem def reg;r ; four

fem def coor 3,1

fem def node;r;$INPUT reg all

if ($BILINEAR==0)
f

fem def base;r;bicubic

fem def elem;r;$INPUT reg all

g else

f

fem def base;r; bicubic bilinear

fem def elem;r;$fINPUTg lin reg all

g

#
# Group nodes for solve, initial conditions
# and electrode comparisons
#
if ( $MODEL eq ”01”) # Model 01
f

fem group node 804 as FIXEDNODE

fem group node 765,1018 as SURFENDS

fem group node 766..1017,1019..1798 as SURFNORM

$COMPNODES =”1..37,765..1018”

g elsif ( $MODEL eq ”05”) # Model 05
f

fem group node 1274 as FIXEDNODE

fem group node 1235,1488 as SURFENDS

fem group node 1236..1487,1489..5412 as SURFNORM

$COMPNODES = ”1..37,1235..1488”

g elsif ( $MODEL eq ”07”) # Model 07
f

fem group node 1274 as FIXEDNODE

fem group node 1235,1488 as SURFENDS

fem group node 1236..1487,1489..2268 as SURFNORM

$COMPNODES =”1..37,1235..1488”

g elsif ( $MODEL eq ”08”) # Model 08
f

fem group node 1896 as FIXEDNODE

fem group node 1855,2108 as SURFENDS

fem group node 1855..2108,2109..2888 as SURFNORM

$COMPNODES =”1..37,1855..2108”

g elsif ( $MODEL eq ”09”) # Model 09
f

fem group node 3162 as FIXEDNODE

fem group node 3123,3376 as SURFENDS

fem group node 3124..3375,3377..4156 as SURFNORM
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$COMPNODES =”1..37,3123..3376”

g elsif ($MODEL eq ”11”) # Model 11
f

fem group node 810 as FIXEDNODE

fem group node 771,1024 as SURFENDS

fem group node 772..1023,1025..1804 as SURFNORM

$COMPNODES =”1..37,771..1024”

g elsif ($MODEL eq ”12”) # Model 12
f

fem group node 689 as FIXEDNODE

fem group node 650,903 as SURFENDS

fem group node 651..902,904..1683 as SURFNORM

$COMPNODES =”1..37,650..903”

g elsif ($MODEL eq ”13”) # Model 13
f

fem group node 1274 as FIXEDNODE

fem group node 1235,1488 as SURFENDS

fem group node 1236..1487 as SURFNORM

$COMPNODES =”1..37,1235..1488”

g

if ($BILINEAR==0)

f

# using bicubic fields
fem def equ;r;forward reg4 reg all

fem def mat;r;forward reg4 reg all

fem def ini ; r ;forward reg4 reg all

fem def sour;r ;pig scale reg 4

fem def coup;r;forward

fem def solv; r ; forward reg4 coup reg all

g else

f

# using bilinear fields
fem def equ;r; forward reg4 lin reg all

fem def mat;r;forward reg4 reg all

fem def ini ; r ; forward reg4 lin reg all

fem def sour;r ;pig scale reg 4

fem def coup;r;forward

fem def solv; r ; forward reg4 lin coup reg all

g

# Solve the problem
fem solv coup

fem eval elec;$OUTPUT hist $OUTPUT from node elec $COMPNODES bin reg all

fem def export; r;291

fem export sign;$OUTPUT elec sign $OUTPUT

#
# Exporting to CMGUI
#
if ( $EXCMGUI==1)

f

fem exp node;pig as pig reg all

fem exp elem;skin as skin reg 1

fem exp elem;lungs as lungs reg 2,3

fem exp elem;heart as heart reg 4

$TMPDIR=”/tmp/cheng/dipole”

fem ex node;”$TMPDIR/$OUTPUT” history $OUTPUT binary as soln

fem ex elem;”$TMPDIR/$OUTPUT” field as soln
g

fem def para;w;/tmp/tmp minimal

quit
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D.7 Activation Inverse Problem Comfile

Performs an activation inverse solution from torso surface signals which have been generated from

a known activation sequence. The activation sequence has been derived from the eikonal cardiac

source described in Section 4.6.3. The zero-crossing estimates and optimised activation times and

torso surface signals are compared to the known activation times and torso surface signals as a

measure of validity of the solution.

# ���������������������������������������������������������#
# Generic Analytic Activation Inverse
# ���������������������������������������������������������#

set fatal off # Force a crash with all errors

$DESCRIPTION = ”noise 10 varying lapl ” # Description for run
$VARY = ”b100 500” # Regularisation and transmembrane jump variables

$BASEDIR = ” /xlv1/eng sci/cheng/porky/data model/” # Base directory for comfile
$OUT = ” ./ output6/” # Output directory for run specific files
$OUTTRSF = ” ./ common/” # Output directory for generated transfer matrices
$COMMON = ” ./ common/” # Output directory for common files

$EMAIL = 1 # Setup email notifications when job completes
$SUBJECT = ” refined eikonal” # Description for email
$EMAILFROM = ”Leo”

$EMAILADDR = ” l .chengn@auckland.ac.nz”

#
# Signal dependents
#
$CUTOFF = 0.00106 # Cutoff for phi SVD
$TSTART = 1 # remember to change ipopti
$TEND = 100 # and the comp sign
$TRSFMETH = ”method 3 win 5” # Transfer method
$ACTIV TYPE = ”eikonal 05”

$COMP1 = ” integral ” # Comparisons for torso signals & activation times
$COMP2 = ” start 0.03 end 0.09”

#
# Logical controls [ truej false ]
#
$ANALYSE = 1 # Analyse the results
$RM BINSIG = 1

$TRANS2TORSO = 0 # Generate the appropriate transfer matrices
$TRANS2EPI = 0

$EPI2TORSO = 0

$ZEROCROSS = 1 # Generate zcrossing estimate
$OPTIM = 1 # Optimise activation times
$ANALYTIC = 1 # Generate an analytic solution
$EXPORT = 1 # Export results and model to CMGUI
$FORMAT = ”binary” # Use binary file formats [binaryjascii ]

#
# Mesh dependents
#
$MODEL = $fBASEDIRgpig05 # Model to use
$TORSO = 1 # Assign region numbers
$LUNGS = ”2,3”

$LVENDO = 4

$RVENDO = 5

$HEART = 6
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$TORSONODES = ”765..1798” #Group nodes and elements
$TORSOELEMENTS = ”801..1856”

$HEARTNODES = ”1..37,440..466,467..504”

$EPINODES = ” 1..37”

system ”mkdir �p ”$OUT

system ”echo $fDESCRIPTIONg> $fOUTgSTART.txt”

#
# Start commands
#
fem def para;r ; transfer nr6 big # Array size parameters for problem
fem def coor 3,1 # Rectangular Cartesian coordinates
fem def reg;r ; six # Six region problem (epi , 2 endos, 2 lungs, skin)
fem def base;r; bicubic bilinear # Bicubic bases for geometry, Bilinear bases for dependant variables
fem def node;r;$MODEL reg all # Node and element files to define geometry
fem def elem;r;$MODEL lin reg all

if ( $EXPORT==1 )

f

fem export node;$fCOMMONgpig as pig reg all # Export geometry of model
fem export elem;$fCOMMONgskin as skin reg $TORSO

fem export elem;$fCOMMONgheart as heart reg $HEART

fem export elem;$fCOMMONglungs as lungs reg $LUNGS

fem export elem;$fCOMMONgrvendo as rvendo reg $RVENDO

fem export elem;$fCOMMONglvendo as lvendo reg $LVENDO

g #EXPORT

fem group node 804 as FIXEDNODE # Group the skin surfaces for boundary conditions
fem group node 765,1798 as SURFENDS

fem group node 766..1797 as SURFNORM

#
# ���������������������������#
# Setup equations
# ���������������������������#
#
fem def equ;r;poisson nr6 reg all # Laplace’s eqn for region 1..5, Poisson equation for region 6
fem def mat;r;mate nr6 reg all # Passive conductivities for regions 1..5 Bidomain conductivities for region 6
fem def init ; r ;noflux nr6 reg all # No flux BCs with reference node
fem def coup;r;laplace

fem def solv; r ;nosalu nr6 coup reg all

fem def inve; r ; lapl $VARY # Setup of inverse parameters (transmembrane jump for 100mV)
fem li inver

if ( $TRANS2TORSO==1 )

f

#
# Double Layer Transfer Matrix ( trans�mem to body)
#
fem def solv; r ;nosalu nr6 coup reg all

fem def tran; r ; trans2torso

fem eva tran svd

fem write matrix;$fOUTTRSFgtrans2torso matric T BH $FORMAT

g # TRANS2TORSO

if ( $TRANS2EPI==1 )

f

#
# Double Layer Transfer Matrix ( trans�mem to epi)
#
fem def solv; r ;nosalu nr6 coup reg all

fem def trans; r ;trans2epi

fem eva tran svd

fem write matrix;$fOUTTRSFgtrans2epi matric T BH $FORMAT

g

if ( $EPI2TORSO==1 )
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f

#
# Single Layer Transfer Matrix (epi to torso)
#
fem def solv; r ;nosalu nr6 coup reg all

fem def tran; r ;epi2torso

fem eva tran

fem write matrix;$fOUTTRSFgepi2torso matric T BH $FORMAT

g

if ( $ANALYTIC==1 )

f

#
# Setup analytic activation profile
#
fem def init ; r ;noflux nr6 reg all

fem def ini ; r ;$ACTIV TYPE reg $HEART # Read in an activation profile in the HEART region
fem up sol depen from ind 1 to ind 7 from clas 1 to clas 1 reg $HEART # Copy the activation sequence to the analytic index (7)
fem exp nod;$fOUTginput as input field us solv reg $HEART # Export the analytic / input activation profile
fem exp ele;$fOUTginput as input field us solv reg $HEART

#
# Create an input torso signal ( trans2torso)
#
fem def trans; r ;trans2torso

fem read matrix;$fOUTTRSFgtrans2torso $FORMAT

fem def init ; r ;noflux nr6 reg all

fem def ini ; r ;$ACTIV TYPE reg $HEART

fem app trans activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH # Create analytic torso surface signals
fem eva elec;$fOUTginput torso his $fOUTgtmp fr nod elect $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTginput torso elect signal $fOUTginput torso # Export the torso surface signals
fem eva elec;$fOUTginput activ hist $fOUTgtmp tend 0.001 from node $FORMAT reg $HEART # & Store the activation times in a signal

#
# Create some noisy signals
#
fem def noise;r ;noise 10micro # Apply gaussian electrical noise to the analytic signals
fem apply noise sign $fOUTginput torso $FORMAT outfil $fOUTginput torso noise

fem def export;r ;unemap 254

fem exp signal;$fOUTginput torso noise elect signal $fOUTginput torso noise

#
# Create epicardial signals ( trans2epi)
#
fem def trans; r ;trans2epi

fem read matrix;$fOUTTRSFgtrans2epi $FORMAT

fem def init ; r ;noflux nr6 reg all

fem def ini ; r ;$ACTIV TYPE reg $HEART

fem app trans activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH

fem eva elec;$fOUTginput epi his $fOUTgtmp fr nod elect $EPINODES $FORMAT reg $TORSO

fem def expo;r;unemap 37

fem exp sign;$fOUTginput epi elect signal $fOUTginput epi

#
# Create torso signals ( epi2torso)
#
fem def trans; r ;epi2torso

fem read matrix;$fOUTTRSFgepi2torso $FORMAT

fem def init ; r ;noflux nr6 reg all

fem def ini ; r ;$ACTIV TYPE reg $HEART

fem app trans hist infile $fOUTgtmp outf $fOUTgtmp2 $FORMAT

fem eva elec;$fOUTgepi2torso his $fOUTgtmp2 fr nod elect $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgepi2torso elect signal $fOUTgepi2torso

g #analytic

if ( $ZEROCROSS==1 )

f
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#
# Phi Processing
#
fem def trans; r ;trans2torso

fem def ini ; r ;$ACTIV TYPE reg $HEART

fem read matrix;$fOUTTRSFgtrans2torso $FORMAT

fem eva phi signal $fOUTginput torso noise $FORMAT # Evaluate the PHI matrix from
fem eva phi svd

fem eva phi svd cutoff $CUTOFF data $fOUTgphi # Evaluate the SVD of the PHI matrix

#
# Zeroxing Calculation
#
fem

fem eva zeroxing # Calculate the zero crossing estimation
fem up init from zcrossing

fem def export; r ;zeroxing # Export the zcrossing jumps and signals
fem exp sign;$fOUTgzeroxing zero crossing

fem def export; r ;zeroxing ranges

fem exp sign;$fOUTgzeroxing ranges zero crossing

fem exp node;$fOUTgzcross as zcross field using solv reg $HEART # Export the zcrossing activation profile
fem exp elem;$fOUTgzcross as zcross field using solv reg $HEART

#
# Create torso signals and zcross activation sequence
#
fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH

fem eva elec;$fOUTgzcross his $fOUTgtmp from node elec $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgzcross elect signal $fOUTgzcross

fem eva elec;$fOUTgzcross activ hist $fOUTgtmp tend 0.001 from node $FORMAT reg $HEART

g # ZEROCROSS

if ( $OPTIM==1 )

f

fem def optim;r ; inverse region $HEART # Optimises the torso surface signals by
fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH # adjusting the activation times
fem eva resid wrt pot list 1 tstart $TSTART tend $TEND

fem li optim summ

optimise

fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH #
fem eva resid wrt pot list 1 tstart $TSTART tend $TEND

fem li optim summ

fem ex node;$fOUTgoptim as optim field us solv reg $HEART # Export the optimised activation profile
fem ex elem;$fOUTgoptim as optim field us solv reg $HEART

#
# Create torso signals and optimised activation sequence
#
fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH

fem eva elec;$fOUTgoptim his $fOUTgtmp from node elec $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgoptim elect signal $fOUTgoptim

fem eva elec;$fOUTgoptim activ hist $fOUTgtmp tend 0.001 from node $FORMAT reg $HEART

g

if ( $ANALYSE==1)

f

fem comp sign mast $fOUTginput torso noise comp $fOUTgzcross bin $COMP1 # Compare the analytic & zcrossing torso surface signals
fem comp sign mast $fOUTginput torso noise comp $fOUTgzcross bin $COMP2
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fem comp sign mast $fOUTginput torso noise comp $fOUTgoptim bin $COMP1 # Compare the analytic & optimised torso surface signals
fem comp sign mast $fOUTginput torso noise comp $fOUTgoptim bin $COMP2

fem comp sign mast $fOUTginput activ comp $fOUTgzcross activ bin # Compare the analytic & zcrossing estimate activation times
fem comp sign mast $fOUTginput activ comp $fOUTgoptim activ bin # Compare the analytic & optimised activation times

fem check sol reg 6

g

#
# End of Computations
#

if ( $EMAIL == 1)

f

system ”echo n”Subject:$SUBJECT nnContent:text nn$DESCRIPTIONn” j /usr/lib/sendmail �F $EMAILFROM $EMAILADDR”

g # EMAIL

system ”echo $fDESCRIPTIONg> $fOUTgEND.txt” # Records the finishing time
system ”rm $fOUTgtmp.binhis” # Remove temporary files
system ”rm $fOUTgtmp2.binhis”

if ( $RM BINSIG==1)

f

#
# Tidies up the output directories � removes unneeded binsig files
#
system ”rm $fOUTgepi2torso.binsig”

system ”rm $fOUTginput epi.binsig”

system ”rm $fOUTginput torso.binsig”

system ”rm $fOUTginput torso noise.binsig”

system ”rm $fOUTginput activ.binsig”

system ”rm $fOUTgzcross.binsig”

system ”rm $fOUTgoptim.binsig”

g # RM BINSIG

=$OUT

=$DESCRIPTION

quit
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D.8 Activation and Potential Simulation Comfile

Commands used in the simulation studies in Chapter 7. Activation and potential inverse approaches

are used to reconstruct the activation sequence at the heart level from known heart sources and torso

surface potentials.

#���������������������������������������������������������#
# Double Point Activation & Potential Simulation
#���������������������������������������������������������#

set fatal off # Force a crash with all errors
itp set echo on

f

$EMAIL = 1 # Setup email information on simulation completion
$EMAILFROM = ”Leo”

$EMAILADDR = ” l .chengn@auckland.ac.nz”

$SUBJECT = ” typical errors � double points” # Brief description of simulation
$DESCRIPTION = ”noise 50 lapl 0.0”

$ACTIVATION = 0

$POTENTIAL = 0

# RUNA/RUNB are the varying parameters and are also
# the names of the output directories
#
# RUNA
# the varying parameter
# [0..1] where 0 is the control
#
# RUNB
# RUNB varys [0..3] corresponding to laplcian value 0,5,50,500
# for POTENTIAL approach this should always be [0]
#

$RUNA = 0

$RUNB = 5

@INDEXA = (0,1)

@INDEXB = (0,5,50,500,5000)

$VARY = $INDEXA[$RUNA]

if ($ACTIVATION==1)
f

$OUT = ” output activation /output$RUNA$RUNB/” # Output directory for activation sims
$INVER = ”b1$fVARYg0 $INDEXB[$RUNB]”

$CUTOFF = 0.028

g else

f

$OUT = ” output potential /output$RUNA/” # Output directory for potential sims
$INVER = ” null ”

$CUTOFF = 13

g

#
# Directory locations
#
$BASEDIR = ” /xlv1/eng sci/cheng/porky/data model/” # Base directory of sims
$COMMON = ” ./ common/” # Output location for common files
$OUTTRSF = $OUT # Output location for transfer matrices

#
# Signal dependents
#
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$TSTART = 1 #remember to change ipopti
$TEND = 100 # and the comp sign
$TRSFMETH = ”method 3 win 5”

$ACTIV TYPE = ” right epi double ”

$COMP1 = ” integral ” # Comparisons for torso signals & activation times
$COMP2 = ” start 0.03 end 0.06”

#
# Logical Controls [ truej false ]
#
$ANALYSE = 1

$RM BINSIG = 1

$TRANS2TORSO = 0 # Create correct transfer matrices
$TRANS2EPI = 0

$EPI2TORSO = 0

$TRANS2TORSO WRONG = 0 # Create incorrect transfer matrices
$TRANS2EPI WRONG = 0

$EPI2TORSO WRONG = 0

$ANALYTIC = 1 # Create the analytic signals
$EXPORT = 1 # Export results to CMGUI
$FORMAT = ”binary” # File formats

$ZEROCROSS = 1 # Controls for activation approach
$OPTIM = 1

$TIKHONOV = 1 # Controls for the potential approach
$TSVD = 1

#
# Mesh dependents
#
$MODEL = ”$fBASEDIRgfullheart01” # Model number to use
$TORSO = 1 # Assign region numbers
$LVENDO = 2

$RVENDO = 3

$HEART = 4

$TORSONODES = ”153..1186” # Group torso nodes & elements
$TORSOELEMENTS = ”1..1216”

if ( $ACTIVATION==1 )

f

$HEARTNODES = ”1..152,1187..1456” # Assign epicardial and endocardial nodes for activation map
g else

f

$HEARTNODES = ”1..152” # Assign epicardial nodes for activation map
g #activation
$EPINODES = ”1..152” # Assign the epicardial nodes

system ”mkdir �p $OUT”

system ”mkdir �p $COMMON”

system ”echo $fDESCRIPTIONg> $fOUTgSTART.txt ”

#
# Start commands
#
fem def para;r ; transfer nr4 big # Array size parameters for problem
fem def coor 3,1 # Rectangular Cartesian coordinates
fem def regi ; r ; four # Four region problem (lungs not included)
fem def base;r; bicubic bilinear # Bicubic bases for geometry, Bilinear bases for dependant variables
fem def node;r;$MODEL reg all # Node and element files to define geometry
fem def elem;r;$fMODELg lin reg all

if ( $EXPORT==1 ) # Export geometry of meshes
f

fem export node;$fCOMMONgpig as pig reg all

fem export elem;$fCOMMONgskin as skin reg $TORSO
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fem export elem;$fCOMMONgheart as heart reg $HEART

fem export elem;$fCOMMONgrvendo as rvendo reg $RVENDO

fem export elem;$fCOMMONglvendo as lvendo reg $LVENDO

g #export

fem group node 192 as FIXEDNODE # Group the skin surfaces for boundary conditions
fem group node 154..1185 as SURFNORM

fem group node 153,1186 as SURFENDS

#
# Setup equations
#
fem def equ;r;poisson nr4 reg all # Laplace’s eqn for region 1..3, Poisson equation for region 4
fem def mat;r;mate nr4 reg all # Passive conductivities for regions 1..3, Bidomain conductivities for region 4
fem def init ; r ;noflux nr4 reg all # No flux & reference potential boundary conditions
fem def coup;r;laplace

fem def solv; r ;nosalu nr4 coup reg all # Setup of inverse parameters (transmembrane jump for 100mV)
fem def inve; r ; lapl $INVER

fem li inver

#
# Calculate the correct transfer matrices
#
if ( $TRANS2TORSO==1 )

f

#
# Double Layer Transfer Matrix (trans�mem to body)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def tran; r ; trans2torso

fem eva tran svd

fem write matrix;$fCOMMONgtrans2torso matric T BH $FORMAT

g # trans2torso

if ( $TRANS2EPI==1 )

f

#
# Double Layer Transfer Matrix (trans�mem to epi)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def trans; r ;trans2epi

fem eva tran svd

fem write matrix;$fCOMMONgtrans2epi matric T BH $FORMAT

g # trans2epi

if ( $EPI2TORSO==1 )

f

#
# Single Layer Transfer Matrix (epi to torso)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def tran; r ;epi2torso

fem eva tran

fem write matrix;$fCOMMONgepi2torso matric T BH $FORMAT

g # trans2torso

#
# Calculate the analytic activation sequence and toros surface signals
#
if ( $ANALYTIC==1 )

f

#
# Setup analytic activation using correct trsf matrix
#
fem def analytic ; r ;$ACTIV TYPE activation region $HEART

fem list analytic activation region $HEART

fem def ini ;g activation region $HEART

fem exp nod;$fOUTginput as input field us solv reg $HEART
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fem exp ele;$fOUTginput as input field us solv reg $HEART

#
# Create an input torso signal ( trans2torso)
#
fem def trans; r ;trans2torso

fem read matrix;$fCOMMONgtrans2torso $FORMAT

fem def init ; r ;noflux nr4 reg all

fem def ini ;g activation region $HEART

cmiss(”fem app trans activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eva elec;$fOUTginput torso his $fOUTgtmp fr nod elect $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTginput torso elect signal $fOUTginput torso

fem eval elec;$fOUTginput activ hist $fOUTgtmp tend 0.005 elec $HEARTNODES from node $FORMAT reg $HEART

if ($VARY==1)

f

#
# Add gaussian positional errors to electrode locations
#
fem def noise;r ;noise 5mm

fem app noise sign $fOUTginput torso $FORMAT outfil $fOUTginput torso noise

fem def data;w;$fOUTgelec error reg $TORSO

fem def xi ;c closest elem $TORSOELEMENTS reg $TORSO

fem export data;$fOUTgelec error as elec error error offset 2000

#
# Create the surface electrodes
#
fem def data;c from xi

fem def data;w;$fOUTgprojections

fem export data;$fOUTgprojections as projections offset 6000

fem eval elec;$fOUTginput torso elec noise his $fOUTgtmp fr data $FORMAT reg $TORSO

#
# Add gaussian electrical noise to signals
#
fem def noise;r ;noise 50micro

fem apply noise sign $fOUTginput torso elec noise $FORMAT outfil $fOUTginput torso noise

fem def export;r ;unemap 254

fem exp signal;$fOUTginput torso noise elect signal $fOUTginput torso noise

g

else f

#
# Add gaussian electrical noise to signals
#
fem def noise;r ;noise 50micro

fem apply noise sign $fOUTginput torso $FORMAT outfil $fOUTginput torso noise

fem def export;r ;unemap 254

fem exp signal;$fOUTginput torso noise elect signal $fOUTginput torso noise

g

#
# Create epicardial signals ( trans2epi)
#
fem def trans; r ;trans2epi

fem read matrix;$fCOMMONgtrans2epi $FORMAT

fem def init ; r ;noflux nr4 reg all

fem def ini ;g activation region $HEART

cmiss(”fem app trans activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eva elec;$fOUTginput epi his $fOUTgtmp fr nod elect $EPINODES $FORMAT reg $TORSO

fem def expo;r;unemap 152

fem exp sign;$fOUTginput epi elect signal $fOUTginput epi

#
# Create torso signals (epi2torso)
#
fem def trans; r ;epi2torso
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fem read matrix;$fCOMMONgepi2torso $FORMAT

fem def init ; r ;noflux nr4 reg all

fem def ini ;g activation region $HEART

fem app trans hist infile $fOUTgtmp outf $fOUTgtmp2 $FORMAT

fem eva elec;$fOUTgepi2torso his $fOUTgtmp2 fr nod elect $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgepi2torso elect signal $fOUTgepi2torso

#
# Check we are getting consistent signals
# The rms should be 0.0 and the SI should be 1.0
#
# Epicardial approach should really use noisy signals created from
# epi2torso signal � however these should be theoretically be the same.
#
fem comp sign mast $fOUTginput torso comp $fOUTgepi2torso bin $COMP1

fem comp sign mast $fOUTginput torso comp $fOUTgepi2torso bin $COMP2

g #analytic

#
# Apply Typical Errors to Corrupt the Input & Create the “ Wrong” Transfer Matrices
#

if ( $VARY==1)

f

fem def inve; r ; lapl $INVER # Set the wrong transmembrane jump
fem li inver

fem change node scale by 1.1,1.05,1.05 reg $HEART # Scale the heart surface
fem li vol reg $HEART

$ABOUT = ”4.302431,�132.240637,58.610737” # Centre of mass # Rotate the heart about THETA
$AXIS = ”0,0,1” # THETA about z�axis
fem change node rotate by 10 about $ABOUT axis $AXIS reg $HEART

$ABOUT = ”4.302431,�132.240637,58.610737” # Centre of mass # Rotate the heart about PHI
$AXIS = ”0,1,0” # PHI about y�axis
fem change node rotate by 10 about $ABOUT axis $AXIS reg $HEART

fem change node trans by 5,8,�4 reg $HEART # Translate the heart

fem export node;$fOUTgpig vary as pig reg all # Export the new geometry to CMGUI
g

if ( $TRANS2TORSO WRONG==1 )

f

#
# Double Layer Transfer Matrix (trans�mem to body)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def tran; r ; trans2torso

fem eva tran svd

fem write matrix;$fOUTTRSFgtrans2torso matric T BH $FORMAT

g # trans2torso

if ( $TRANS2EPI WRONG==1 )

f

#
# Double Layer Transfer Matrix (trans�mem to epi)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def trans; r ;trans2epi

fem eva tran svd

fem write matrix;$fOUTTRSFgtrans2epi matric T BH $FORMAT

g # trans2epi
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if ( $EPI2TORSO WRONG==1 )

f

#
# Single Layer Transfer Matrix (epi to torso)
#
fem def solv; r ;nosalu nr4 coup reg all

fem def tran; r ;epi2torso

fem eva tran

fem write matrix;$fOUTTRSFgepi2torso matric T BH $FORMAT

g # trans2torso

#
# Apply the Activation Inverse Approaches
#
if ( $ACTIVATION == 1 )

f

fem def trans; r ;trans2torso

fem read matrix;$fOUTTRSFgtrans2torso $FORMAT

fem eval phi signal $fOUTginput torso noise $FORMAT # Assemble the PHI matrix from the signal
fem eval phi svd

fem eval phi svd cutoff $CUTOFF data $fOUTgphi # Remove small singular values

if ( $ZEROCROSS==1 )

f

#
# Zeroxing Calculation
#
fem eval zeroxing # Evaluate the zero�crossing estimate
fem up init from zcrossing

#
# Export the zcrossing jumps and ranges
#
fem def export;r ;zeroxing

fem exp sign;$fOUTgzeroxing zero crossing

fem def export;r ;zeroxing ranges

fem exp sign;$fOUTgzeroxing ranges zero crossing

#
# Export the zcross activation field
#
fem exp node;$fOUTgzcross as zcross field using solv reg $HEART

fem exp elem;$fOUTgzcross as zcross field using solv reg $HEART

#
# Create torso signals and zcross activation sequence
#
cmiss(”fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eva elec;$fOUTgzcross his $fOUTgtmp from node elec $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgzcross elect signal $fOUTgzcross

fem eval elec;$fOUTgzcross activ hist $fOUTgtmp tend 0.005 from node $FORMAT reg $HEART

g # ZEROCROSS

if ( $OPTIM==1 ) # Alter the activation sequence to minimise the
f # difference between measured and calculated torso signals

fem def optim;r ; inverse region $HEART

cmiss(”fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eval resid wrt pot list 1 tstart $TSTART tend $TEND

fem li optim summ

optimise

cmiss(”fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eval resid wrt pot list 1 tstart $TSTART tend $TEND

fem li optim summ
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#
# Export the optimised activation
#
fem ex node;$fOUTgoptim as optim field us solv reg $HEART

fem ex elem;$fOUTgoptim as optim field us solv reg $HEART

#
# Create torso signals and optimised activation sequence
#
cmiss(”fem app tran activ tstart $TSTART tend $TEND outf $fOUTgtmp $FORMAT $TRSFMETH”)

fem eva elec;$fOUTgoptim his $fOUTgtmp from node elec $TORSONODES $FORMAT reg $TORSO

fem def expo;r;unemap 254

fem exp sign;$fOUTgoptim elect signal $fOUTgoptim

fem eval elec;$fOUTgoptim activ hist $fOUTgtmp tend 0.005 from node $FORMAT reg $HEART

g #optim

if ( $ANALYSE==1)

f

#
# Compare analytic/input torso signals with the zerocrossing & optimised torso signals
#
fem comp sign mast $fOUTginput torso noise comp $fOUTgzcross bin $COMP1

fem comp sign mast $fOUTginput torso noise comp $fOUTgzcross bin $COMP2

fem comp sign mast $fOUTginput torso noise comp $fOUTgoptim bin $COMP1

fem comp sign mast $fOUTginput torso noise comp $fOUTgoptim bin $COMP2

#
# Compare analytic/input activation times with zerocrossing and optimised activation times
#
fem comp sign mast $fOUTginput activ comp $fOUTgzcross activ bin

fem comp sign mast $fOUTginput activ comp $fOUTgoptim activ bin

fem check sol reg $HEART

g

g else

f

#
# Apply Epicardial Potential Inverse Approachs
#
fem def trans; r ;epi2torso

fem read matrix;$fOUTTRSFgepi2torso $FORMAT

fem eval phi signal ” $fOUTginput epi” PHI H EXACT $FORMAT

fem eval phi signal ” $fOUTginput torso noise” $FORMAT

fem eval phi svd data $fOUTgphi

fem eval phi svd cutoff $CUTOFF

fem def export;r ;unemap 152

for $LOOP ( 1..2 )

f

#
# 2 Epicardial Inverse Approaches
#
$VALID = 0

if ( $LOOP==1 && $TIKHONOV==1 )

f

#
# GCV, L�curve, Quasi�opt Optimal, CRESO & Zero�crossing Tikhonov regularisation
#
$EPIAPPROACH = ”tikhonov”

@x = (1,2,4..7)

$VALID = 1

g elsif ( $LOOP==2 && $TSVD==1 )

f

#
# GCV, L�curve, Quasi�opt & Optimal TSVD regularisation
#
$EPIAPPROACH = ”tsvd”

@x = (1,2,4,5)

$VALID = 1

g #loop
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if ( $VALID==1 )

f

for $COUP ( 1..2 )

f

foreach $METHOD ( @x )

f

fem def inve; r ;$fEPIAPPROACHg $fCOUPg $fMETHODg

fem list inve

if ( $POTENTIAL==1 )

f

#
# Evaluate potential inverse
#
fem eval inve

fem eval elec;$fOUTg$fEPIAPPROACHg $fCOUPg $fMETHODg from PHI H bin

fem export sign;$fOUTg$fEPIAPPROACHg $fCOUPg $fMETHODg elec sign ”$fOUTg$fEPIAPPROACHg $fCOUPg $fMETHODg”

if ( $ANALYSE==1 )

f

#
# Compare epicardial signals
#
fem comp sign mast ”$fOUTginput epi” comp ”$fOUTg$fEPIAPPROACHg $fCOUPg $fMETHODg” basis both bin

g #analyse

if ( $RM BINSIG==1 )

f

system ”rm $fOUTg$fEPIAPPROACHg $fCOUPg $METHOD.binsig” # Files no longer required
g #RM BINSIG

g else

f

#
# Activation times defined by maximum �dV/dt. The events
# must be saved to the original signal in UnEmap
#
if ( $ANALYSE==1 )

f

#
# Compare activation times
#
fem def import; r ; epi activ

fem import signal;$fOUTg$fEPIAPPROACHg $fCOUPg $fMETHODg activation signal output ”$fOUTgtmp”

fem comp sign mast ”$fOUTginput activ” comp ”$fOUTgtmp” bin

system ”rm $fOUTgtmp.binsig”

g #analyse
g #potential

g #method
g #coup

g #valid
g #loop

g #activation / potential approach

#
# End of Computations
#

if ( $EMAIL == 1)

f

system ”echo n”Subject:$SUBJECT nnContent:text nn$DESCRIPTIONn” j /usr/lib/sendmail �F $EMAILFROM $EMAILADDR”

g # EMAIL

#
# Finish the comfile
#
system ”echo $fDESCRIPTIONg> $fOUTgEND.txt ”

if ( $ANALYTIC==1)

f

system ”rm $fOUTgtmp.binhis” # Remove temporary history files
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system ”rm $fOUTgtmp2.binhis”

g

if ( $RM BINSIG==1)

f

#
# Tidies up the output directories � removes unneeded binsig files
#
if ( $ANALYTIC==1 )

f

system ”rm $fOUTgepi2torso.binsig” # Remove files related to analytic approach
system ”rm $fOUTginput epi.binsig”

system ”rm $fOUTginput torso.binsig”

system ”rm $fOUTginput torso noise.binsig”

system ”rm $fOUTginput activ.binsig”

g

if ( $ACTIVATION==1)

f

system ”rm $fOUTgzcross.binsig” # Revmoe files related to activation approach
system ”rm $fOUTgoptim.binsig”

g

g # RM BINSIG

print ”$OUT nn”

print ”$DESCRIPTION nn”

g #itp set echo

quit
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