
Fundamentals of Image Processing

hany.farid@dartmouth.edu

http://www.cs.dartmouth.edu/~farid

0. Mathematical Foundations . 3
0.1: Vectors
0.2: Matrices
0.3: Vector Spaces
0.4: Basis
0.5: Inner Products and Projections [*]
0.6: Linear Transforms [*]

1. Discrete-Time Signals and Systems .14
1.1: Discrete-Time Signals
1.2: Discrete-Time Systems
1.3: Linear Time-Invariant Systems

2. Linear Time-Invariant Systems . 17
2.1: Space: Convolution Sum
2.2: Frequency: Fourier Transform

3. Sampling: Continuous to Discrete (and back) . 29
3.1: Continuous to Discrete: Space
3.2: Continuous to Discrete: Frequency
3.3: Discrete to Continuous

4. Digital Filter Design . 34
4.1: Choosing a Frequency Response
4.2: Frequency Sampling
4.3: Least-Squares
4.4: Weighted Least-Squares

5. Photons to Pixels . 39
5.1: Pinhole Camera
5.2: Lenses
5.3: CCD

6. Point-Wise Operations . 43
6.1: Lookup Table
6.2: Brightness/Contrast
6.3: Gamma Correction
6.4: Quantize/Threshold
6.5: Histogram Equalize

7. Linear Filtering . 47
7.1: Convolution
7.2: Derivative Filters
7.3: Steerable Filters
7.4: Edge Detection
7.5: Wiener Filter

8. Non-Linear Filtering . 60
8.1: Median Filter
8.2: Dithering

9. Multi-Scale Transforms [*] . 63
10. Motion Estimation .64

10.1: Differential Motion
10.2: Differential Stereo

11. Useful Tools . 69
11.1: Expectation/Maximization
11.2: Principal Component Analysis [*]
11.3: Independent Component Analysis [*]

[*] In progress

0. Mathematical Foundations

0.1 Vectors

0.2 Matrices

0.3 Vector Spaces

0.4 Basis

0.5 Inner Products

and
Projections

0.6 Linear Trans-

forms

0.1 Vectors

From the preface of Linear Algebra and its Applications:

“Linear algebra is a fantastic subject. On the one hand

it is clean and beautiful.” – Gilbert Strang

This wonderful branch of mathematics is both beautiful and use-
ful. It is the cornerstone upon which signal and image processing

is built. This short chapter can not be a comprehensive survey
of linear algebra; it is meant only as a brief introduction and re-

view. The ideas and presentation order are modeled after Strang’s
highly recommended Linear Algebra and its Applications.

x

y

x+y=5

2x−y=1

(x,y)=(2,3)

Figure 0.1 “Row” solu-

tion

(2,1)(−1,1)

(1,5)

(4,2)

(−3,3)

Figure 0.2 “Column”

solution

At the heart of linear algebra is machinery for solving linear equa-
tions. In the simplest case, the number of unknowns equals the
number of equations. For example, here are a two equations in

two unknowns:

2x− y = 1

x + y = 5. (1)

There are at least two ways in which we can think of solving these

equations for x and y. The first is to consider each equation as
describing a line, with the solution being at the intersection of the

lines: in this case the point (2, 3), Figure 0.1. This solution is
termed a “row” solution because the equations are considered in

isolation of one another. This is in contrast to a “column” solution
in which the equations are rewritten in vector form:

(

2
1

)

x +

(−1
1

)

y =

(

1
5

)

. (2)

The solution reduces to finding values for x and y that scale the
vectors (2, 1) and (−1, 1) so that their sum is equal to the vector
(1, 5), Figure 0.2. Of course the solution is again x = 2 and y = 3.

These solutions generalize to higher dimensions. Here is an exam-
ple with n = 3 unknowns and equations:

2u + v + w = 5

4u− 6v + 0w = −2 (3)

−2u + 7v + 2w = 9.

3

Each equation now corresponds to a plane, and the row solution

corresponds to the intersection of the planes (i.e., the intersection
of two planes is a line, and that line intersects the third plane at

a point: in this case, the point u = 1, v = 1, w = 2). In vector
form, the equations take the form:

(5,−2,9)

Figure 0.3 “Column”

solution





2
4

−2



 u +





1
−6

7



 v +





1
0

2



w =





5
−2

9



 . (4)

The solution again amounts to finding values for u, v, and w that
scale the vectors on the left so that their sum is equal to the vector

on the right, Figure 0.3.

In the context of solving linear equations we have introduced the
notion of a vector, scalar multiplication of a vector, and vector

sum. In its most general form, a n-dimensional column vector is
represented as:

~x =











x1

x2
...

xn











, (5)

and a n-dimensional row vector as:

~y = (y1 y2 . . . yn) . (6)

Scalar multiplication of a vector ~x by a scalar value c, scales the

length of the vector by an amount c (Figure 0.2) and is given by:

c~v =







cv1
...

cvn






. (7)

The vector sum ~w = ~x + ~y is computed via the parallelogram

construction or by “stacking” the vectors head to tail (Figure 0.2)
and is computed by a pairwise addition of the individual vector
components:











w1

w2
...

wn











=











x1 + y1

x2 + y2
...

xn + yn











. (8)

The linear combination of vectors by vector addition and scalar
multiplication is one of the central ideas in linear algebra (more

on this later).

4

0.2 Matrices

In solving n linear equations in n unknowns there are three quan-

tities to consider. For example consider again the following set of
equations:

2u + v + w = 5

4u− 6v + 0w = −2 (9)

−2u + 7v + 2w = 9.

On the right is the column vector:





5

−2
9



 , (10)

and on the left are the three unknowns that can also be written
as a column vector:





u

v
w



 . (11)

The set of nine coefficients (3 rows, 3 columns) can be written in
matrix form:





2 1 1
4 −6 0

−2 7 2



 (12)

Matrices, like vectors, can be added and scalar multiplied. Not
surprising, since we may think of a vector as a skinny matrix: a

matrix with only one column. Consider the following 3×3 matrix:

A =





a1 a2 a3

a4 a5 a6

a7 a8 a9



 . (13)

The matrix cA, where c is a scalar value, is given by:

cA =





ca1 ca2 ca3

ca4 ca5 ca6

ca7 ca8 ca9



 . (14)

And the sum of two matrices, A = B + C, is given by:





a1 a2 a3

a4 a5 a6

a7 a8 a9



 =





b1 + c1 b2 + c2 b3 + c3

b4 + c4 b5 + c5 b6 + c6

b7 + c7 b8 + c8 b9 + c9



 . (15)

5

With the vector and matrix notation we can rewrite the three

equations in the more compact form of A~x = ~b:




2 1 1
4 −6 0

−2 7 2









u
v

w



 =





5
−2

9



 . (16)

Where the multiplication of the matrix A with vector ~x must be

such that the three original equations are reproduced. The first
component of the product comes from “multiplying” the first row

of A (a row vector) with the column vector ~x as follows:

(2 1 1)





u
v

w



 = (2u + 1v + 1w) . (17)

This quantity is equal to 5, the first component of ~b, and is simply
the first of the three original equations. The full product is com-

puted by multiplying each row of the matrix A with the vector ~x
as follows:




2 1 1
4 −6 0

−2 7 2









u
v

w



 =





2u + 1v + 1w
4u− 6v + 0w

−2u + 7v + 2w



 =





5
−2

9



 . (18)

In its most general form the product of a m × n matrix with a

n dimensional column vector is a m dimensional column vector
whose ith component is:

n
∑

j=1

aijxj , (19)

where aij is the matrix component in the ith row and jth column.

The sum along the ith row of the matrix is referred to as the inner
product or dot product between the matrix row (itself a vector) and
the column vector ~x. Inner products are another central idea in

linear algebra (more on this later). The computation for multi-
plying two matrices extends naturally from that of multiplying a

matrix and a vector. Consider for example the following 3×4 and
4× 2 matrices:

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



 and B =









b11 b12

b21 b22

b31 b32

b41 b42









. (20)

The product C = AB is a 3× 2 matrix given by:
(

a11b11 + a12b21 + a13b31 + a14b41 a11b12 + a12b22 + a13b32 + a14b42
a21b11 + a22b21 + a23b31 + a24b41 a21b12 + a22b22 + a23b32 + a24b42
a31b11 + a32b21 + a33b31 + a34b41 a31b12 + a32b22 + a33b32 + a34b42

)

.(21)

6

That is, the i, j component of the product C is computed from

an inner product of the ith row of matrix A and the jth column
of matrix B. Notice that this definition is completely consistent

with the product of a matrix and vector. In order to multiply
two matrices A and B (or a matrix and a vector), the column
dimension of A must equal the row dimension of B. In other words

if A is of size m× n, then B must be of size n× p (the product is
of size m× p). This constraint immediately suggests that matrix

multiplication is not commutative: usually AB 6= BA. However
matrix multiplication is both associative (AB)C = A(BC) and

distributive A(B + C) = AB + AC.

The identity matrix I is a special matrix with 1 on the diagonal

and zero elsewhere:

I =











1 0 . . . 0 0

0 1 . . . 0 0
...

. . .
...

0 0 . . . 0 1











. (22)

Given the definition of matrix multiplication, it is easily seen that

for any vector ~x, I~x = ~x, and for any suitably sized matrix, IA = A
and BI = B.

In the context of solving linear equations we have introduced the
notion of a vector and a matrix. The result is a compact notation

for representing linear equations, A~x = ~b. Multiplying both sides
by the matrix inverse A−1 yields the desired solution to the linear

equations:

A−1A~x = A−1~b

I~x = A−1~b

~x = A−1~b (23)

A matrix A is invertible if there exists 1 a matrix B such that

BA = I and AB = I , where I is the identity matrix. The ma-
trix B is the inverse of A and is denoted as A−1. Note that this

commutative property limits the discussion of matrix inverses to
square matrices.

Not all matrices have inverses. Let’s consider some simple exam-
ples. The inverse of a 1 × 1 matrix A = (a) is A−1 = (1/a);

but the inverse does not exist when a = 0. The inverse of a 2× 2

1The inverse of a matrix is unique: assume that B and C are both the
inverse of matrix A, then by definition B = B(AC) = (BA)C = C, so that B
must equal C.

7

matrix can be calculated as:

(

a b
c d

)−1

=
1

ad− bc

(

d −b
−c a

)

, (24)

but does not exist when ad − bc = 0. Any diagonal matrix is
invertible:

A =







a1
. . .

an






and A−1 =







1/a1

. . .

1/an






, (25)

as long as all the diagonal components are non-zero. The inverse

of a product of matrices AB is (AB)−1 = B−1A−1. This is easily
proved using the associativity of matrix multiplication. 2 The

inverse of an arbitrary matrix, if it exists, can itself be calculated
by solving a collection of linear equations. Consider for example a

3× 3 matrix A whose inverse we know must satisfy the constraint
that AA−1 = I :




2 1 1
4 −6 0
−2 7 2







 ~x1 ~x2 ~x3



 =



~e1 ~e2 ~e3



 =





1 0 0
0 1 0
0 0 1



 .(26)

This matrix equation can be considered “a column at a time”
yielding a system of three equations A ~x1 = ~e1, A ~x2 = ~e2, and

A ~x3 = ~e3. These can be solved independently for the columns
of the inverse matrix, or simultaneously using the Gauss-Jordan

method.

A system of linear equations A~x = ~b can be solved by simply

left multiplying with the matrix inverse A−1 (if it exists). We
must naturally wonder the fate of our solution if the matrix is not

invertible. The answer to this question is explored in the next
section. But before moving forward we need one last definition.

The transpose of a matrix A, denoted as At, is constructed by
placing the ith row of A into the ith column of At. For example:

A =

(

1 2 1
4 −6 0

)

and At =





1 4

2 −6
1 0



 (27)

In general, the transpose of a m×n matrix is a n×m matrix with
(At)ij = Aji. The transpose of a sum of two matrices is the sum of

2In order to prove (AB)−1 = B−1A−1, we must show (AB)(B−1A−1) =
I: (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I, and that
(B−1A−1)(AB) = I: (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B =
I.

8

the transposes: (A+B)t = At +Bt. The transpose of a product of

two matrices has the familiar form (AB)t = BtAt. And the trans-
pose of the inverse is the inverse of the transpose: (A−1)t = (At)−1.

Of particular interest will be the class of symmetric matrices that
are equal to their own transpose At = A. Symmetric matrices are
necessarily square, here is a 3× 3 symmetric matrix:

A =





2 1 4
1 −6 0

4 0 3



 , (28)

notice that, by definition, aij = aji.

0.3 Vector Spaces

The most common vector space is that defined over the reals, de-

noted as Rn. This space consists of all column vectors with n
real-valued components, with rules for vector addition and scalar

multiplication. A vector space has the property that the addi-
tion and multiplication of vectors always produces vectors that lie

within the vector space. In addition, a vector space must satisfy
the following properties, for any vectors ~x, ~y, ~z, and scalar c:

1. ~x + ~y = ~y + ~x
2. (~x + ~y) + ~z = ~x + (~y + ~z)
3. there exists a unique “zero” vector ~0 such that ~x + ~0 = ~x
4. there exists a unique “inverse” vector −~x such that

~x + (−~x) = ~0
5. 1~x = ~x
6. (c1c2)~x = c1(c2~x)
7. c(~x + ~y) = c~x + c~y
8. (c1 + c2)~x = c1~x + c2~x

Vector spaces need not be finite dimensional, R∞ is a vector space.
Matrices can also make up a vector space. For example the space

of 3 × 3 matrices can be thought of as R9 (imagine stringing out
the nine components of the matrix into a column vector).

A subspace of a vector space is a non-empty subset of vectors that
is closed under vector addition and scalar multiplication. That

is, the following constraints are satisfied: (1) the sum of any two
vectors in the subspace remains in the subspace; (2) multiplication
of any vector by a scalar yields a vector in the subspace. With

the closure property verified, the eight properties of a vector space
automatically hold for the subspace.

Example 0.1 Consider the set of all vectors in R2 whose com-

ponents are greater than or equal to zero. The sum of any two

9

vectors in this space remains in the space, but multiplication of,

for example, the vector

(

1
2

)

by −1 yields the vector

(

−1
−2

)

which is no longer in the space. Therefore, this collection of

vectors does not form a vector space.

Vector subspaces play a critical role in understanding systems of

linear equations of the form A~x = ~b. Consider for example the
following system:





u1 v1

u2 v2

u3 v3





(

x1

x2

)

=





b1

b2

b3



 (29)

Unlike the earlier system of equations, this system is over-constrained,

there are more equations (three) than unknowns (two). A solu-
tion to this system exists if the vector ~b lies in the subspace of the
columns of matrix A. To see why this is so, we rewrite the above

system according to the rules of matrix multiplication yielding an
equivalent form:

x1





u1

u2

u3



+ x2





v1

v2

v3



 =





b1

b2

b3



 . (30)

In this form, we see that a solution exists when the scaled columns

of the matrix sum to the vector ~b. This is simply the closure
property necessary for a vector subspace.

The vector subspace spanned by the columns of the matrix A is
called the column space of A. It is said that a solution to A~x = ~b
exists if and only if the vector ~b lies in the column space of A.

Example 0.2 Consider the following over-constrained system:

A~x = ~b
(

1 0
5 4
2 4

)

(

u
v

)

=

(

b1
b2
b3

)

The column space of A is the plane spanned by the vectors

(1 5 2)t and (0 4 4)t. Therefore, the solution ~b can not

be an arbitrary vector in R3, but is constrained to lie in the

plane spanned by these two vectors.

At this point we have seen three seemingly different classes of
linear equations of the form A~x = ~b, where the matrix A is either:

1. square and invertible (non-singular),

10

2. square but not invertible (singular),
3. over-constrained.

In each case solutions to the system exist if the vector ~b lies in the
column space of the matrix A. At one extreme is the invertible

n×n square matrix whose solutions may be any vector in the whole
of Rn. At the other extreme is the zero matrix A = 0 with only

the zero vector in it’s column space, and hence the only possible
solution. In between are the singular and over-constrained cases,

where solutions lie in a subspace of the full vector space.

The second important vector space is the nullspace of a matrix.

The vectors that lie in the nullspace of a matrix consist of all
solutions to the system A~x = ~0. The zero vector is always in the
nullspace.

Example 0.3 Consider the following system:

A~x = ~0
(

1 0 1
5 4 9
2 4 6

)(

u
v
w

)

=

(

0
0
0

)

The nullspace of A contains the zero vector (u v w)t = (0 0 0)t.

Notice also that the third column of A is the sum of the first two

columns, therefore the nullspace of A also contains all vectors of

the form (u v w)t = (c c −c)t (i.e., all vectors lying on a

one-dimensional line in R3).

(2,2)

(−1,−1)

(2,2)

(−2,0)

(2,2)

(−2,0)

(−1,2)

Figure 0.4 Linearly de-

pendent

(top/bottom) and inde-

pendent (middle).

0.4 Basis

Recall that if the matrix A in the system A~x = ~b is invertible, then
left multiplying with A−1 yields the desired solution: ~x = A−1~b.

In general it is said that a n× n matrix is invertible if it has rank
n or is full rank, where the rank of a matrix is the number of

linearly independent rows in the matrix. Formally, a set of vectors
~u1, ~u2, ..., ~un are linearly independent if:

c1~u1 + c2~u2 + ... + cn~un = ~0 (31)

is true only when c1 = c2 = ... = cn = 0. Otherwise, the vectors

are linearly dependent. In other words, a set of vectors are linearly
dependent if at least one of the vectors can be expressed as a sum
of scaled copies of the remaining vectors.

Linear independence is easy to visualize in lower-dimensional sub-
spaces. In 2-D, two vectors are linearly dependent if they lie along

a line, Figure 0.4. That is, there is a non-trivial combination of the

11

vectors that yields the zero vector. In 2-D, any three vectors are

guaranteed to be linearly dependent. For example, in Figure 0.4,
the vector (−1 2) can be expressed as a sum of the remaining

linearly independent vectors: 3
2 (−2 0) + (2 2). In 3-D, three

vectors are linearly dependent if they lie in the same plane. Also
in 3-D, any four vectors are guaranteed to be linearly dependent.

Linear independence is directly related to the nullspace of a ma-
trix. Specifically, the columns of a matrix are linearly independent

(i.e., the matrix is full rank) if the matrix nullspace contains only
the zero vector. For example, consider the following system of

linear equations:





u1 v1 w1

u2 v2 w2

u3 v3 w3









x1

x2

x3



 =





0

0
0



 . (32)

Recall that the nullspace contains all vectors ~x such that x1~u +
x2~v + x3 ~w = 0. Notice that this is also the condition for linear

independence. If the only solution is the zero vector then the
vectors are linearly independent and the matrix is full rank and

invertible.

Linear independence is also related to the column space of a ma-

trix. If the column space of a n × n matrix is all of Rn, then the
matrix is full rank. For example, consider the following system of

linear equations:





u1 v1 w1

u2 v2 w2

u3 v3 w3









x1

x2

x3



 =





b1

b2

b3



 . (33)

If the the matrix is full rank, then the solution ~b can be any vector
in R3. In such cases, the vectors ~u, ~v, ~w are said to span the space.

Now, a linear basis of a vector space is a set of linearly independent
vectors that span the space. Both conditions are important. Given
an n dimensional vector space with n basis vectors ~v1, ..., ~vn, any

vector ~u in the space can be written as a linear combination of
these n vectors:

~u = a1 ~v1 + ... + an ~vn. (34)

In addition, the linear independence guarantees that this linear

combination is unique. If there is another combination such that:

~u = b1 ~v1 + ... + bn ~vn, (35)

12

then the difference of these two representations yields

~0 = (a1 − b1)~v1 + ... + (an − bn) ~vn

= c1 ~v1 + ... + cn ~vn (36)

which would violate the linear independence condition. While

the representation is unique, the basis is not. A vector space has
infinitely many different bases. For example in R2 any two vectors

that do not lie on a line form a basis, and in R3 any three vectors
that do not lie in a common plane or line form a basis.

Example 0.4 The vectors (1 0) and (0 1) form the canonical

basis for R2. These vectors are both linearly independent and

span the entire vector space.

Example 0.5 The vectors (1 0 0), (0 1 0) and (−1 0 0)

do not form a basis for R3. These vectors lie in a 2-D plane and

do not span the entire vector space.

Example 0.6 The vectors (1 0 0), (0 −1 0), (0 0 2),

and (1 −1 0) do not form a basis. Although these vectors

span the vector space, the fourth vector is linearly dependent on

the first two. Removing the fourth vector leaves a basis for R3.

0.5 Inner Products and Projections

0.6 Linear Transforms

13

1. Discrete-Time Signals and Systems

1.1 Discrete-Time
Signals

1.2 Discrete-Time
Systems

1.3 Linear Time-

Invariant Sys-
tems

1.1 Discrete-Time Signals

A discrete-time signal is represented as a sequence of numbers, f ,

where the xth number in the sequence is denoted as f [x]:

f = {f [x]}, −∞ < x < ∞, (1.1)

where x is an integer. Note that from this definition, a discrete-
time signal is defined only for integer values of x. For example,

the finite-length sequence shown in Figure 1.1 is represented by

f[x]

x

Figure 1.1

Discrete-time signal

the following sequence of numbers

f = { f [1] f [2] ... f [12]}
= { 0 1 2 4 8 7 6 5 4 3 2 1 }. (1.2)

For notational convenience, we will often drop the cumbersome
notation of Equation (1.1), and refer to the entire sequence sim-

ply as f [x]. Discrete-time signals often arise from the periodic
sampling of continuous-time (analog) signals, a process that we

will cover fully in later chapters.

1.2 Discrete-Time Systems

In its most general form, a discrete-time system is a transformation

f[x] g[x]T

Figure 1.2

Discrete-time system

that maps a discrete-time signal, f [x], onto a unique g[x], and is

denoted as:

g[x] = T{f [x]} (1.3)

Example 1.1 Consider the following system:

g[x] =
1

2N + 1

N
∑

k=−N

f [x + k].

In this system, the kth number in the output sequence is com-

f[x]

x
3 5 7

Figure 1.3 Moving Av-
erage

puted as the average of 2N +1 elements centered around the kth

input element. As shown in Figure 1.3, with N = 2, the output

value at k = 5 is computed as 1/5 times the sum of the five input

elements between the dotted lines. Subsequent output values are

computed by sliding these lines to the right.

Although in the above example, the output at each position k

depended on only a small number of input values, in general, this
may not be the case, and the output may be a function of all input

values.

14

1.3 Linear Time-Invariant Systems

Of particular interest to us will be a class of discrete-time systems

that are both linear and time-invariant. A system is said to be
linear if it obeys the rules of superposition, namely:

T{af1[x] + bf2[x]} = aT{f1[x]}+ bT{f2[x]}, (1.4)

for any constants a and b. A system, T{·} that maps f [x] onto g[x]
is shift- or time-invariant if a shift in the input causes a similar
shift in the output:

g[x] = T{f [x]} =⇒ g[x− x0] = T{f [x− x0]}. (1.5)

Example 1.2 Consider the following system:

g[x] = f [x]− f [x− 1], −∞ < x < ∞.

In this system, the kth number in the output sequence is com-

f[x]

x

x

g[x]

Figure 1.4 Backward
difference

puted as the difference between the kth and kth-1 elements in
the input sequence. Is this system linear? We need only show
that this system obeys the principle of superposition:

T{af1[x] + bf2[x]} = (af1[x] + bf2[x])− (af1[x− 1] + bf2[x− 1])

= (af1[x]− af1[x− 1]) + (bf2[x]− bf2[x− 1])

= a(f1[x]− f1[x− 1]) + b(f2[x]− f2[x− 1])

which, according to Equation (1.4), makes T{·} linear. Is this
system time-invariant? First, consider the shifted signal, f1[x] =
f [x− x0], then:

g1[x] = f1[x]− f1[x− 1] = f [x− x0]− f [x− 1 − x0],

and,

g[x − x0] = f [x− x0]− f [x− 1− x0] = g1[x],

so that this system is time-invariant.

Example 1.3 Consider the following system:

g[x] = f [nx], −∞ < x < ∞,

where n is a positive integer. This system creates an output
sequence by selecting every nth element of the input sequence.
Is this system linear?

T{af1[x] + bf2[x]} = af1[nx] + bf2[nx]

which, according to Equation (1.4), makes T{·} linear. Is this
system time-invariant? First, consider the shifted signal, f1[x] =
f [x− x0], then:

g1[x] = f1[nx] = f [nx− x0],

but,

g[x − x0] = f [n(x− x0)] 6= g1[x],

so that this system is not time-invariant.

15

The precise reason why we are particularly interested in linear

time-invariant systems will become clear in subsequent chapters.
But before pressing on, the concept of discrete-time systems is

reformulated within a linear-algebraic framework. In order to ac-
complish this, it is necessary to first restrict ourselves to consider
input signals of finite length. Then, any discrete-time linear sys-

tem can be represented as a matrix operation of the form:

~g = M ~f, (1.6)

where, ~f is the input signal, ~g is the output signal, and the matrix

M embodies the discrete-time linear system.

Example 1.4 Consider the following system:

g[x] = f [x− 1], 1 < x < 8.

The output of this system is a shifted copy of the input signal,
and can be formulated in matrix notation as:





















g[1]
g[2]
g[3]
g[4]
g[5]
g[6]
g[7]
g[8]





















=





















0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0









































f [1]
f [2]
f [3]
f [4]
f [5]
f [6]
f [7]
f [8]





















Note that according to the initial definition of the system, the

output signal at x = 1 is undefined (i.e., g[1] = f [0]). In the

above matrix formulation we have adopted a common solution

to this problem by considering the signal as wrapping around

itself and setting g[1] = f [8].

Any system expressed in the matrix notation of Equation (1.6) is
a discrete-time linear system, but not necessarily a time-invariant
system. But, if we constrain ourselves to Toeplitz matrices, then

the resulting expression will be a linear time-invariant system. A
Toeplitz matrix is one in which each row contains a shifted copy

of the previous row. For example, a 5×5 Toeplitz matrix is of the
form

M =















m1 m2 m3 m4 m5

m5 m1 m2 m3 m4

m4 m5 m1 m2 m3

m3 m4 m5 m1 m2

m2 m3 m4 m5 m1















(1.7)

It is important to feel comfortable with this formulation because
later concepts will be built upon this linear algebraic framework.

16

2. Linear Time-Invariant Systems

2.1 Space: Convo-
lution Sum

2.2 Frequency:
Fourier Trans-

form

Our interest in the class of linear time-invariant systems (LTI) is

motivated by the fact that these systems have a particularly con-
venient and elegant representation, and this representation leads

us to several fundamental tools in signal and image processing.

2.1 Space: Convolution Sum

In the previous section, a discrete-time signal was represented as
a sequence of numbers. More formally, this representation is in

x

1

Figure 2.1 Unit impulse

terms of the discrete-time unit impulse defined as:

δ[x] =

{

1, x = 0
0, x 6= 0.

(2.1)

Any discrete-time signal can be represented as a sum of scaled and
shifted unit-impulses:

f [x] =
∞
∑

k=−∞

f [k]δ[x− k], (2.2)

where the shifted impulse δ[x − k] = 1 when x = k, and is zero

elsewhere.

Example 2.1 Consider the following discrete-time signal, cen-
tered at x = 0.

f [x] = (. . . 0 0 2 −1 4 0 0 . . .) ,

this signal can be expressed as a sum of scaled and shifted unit-
impulses:

f [x] = 2δ[x + 1] − 1δ[x] + 4δ[x− 1]

= f [−1]δ[x + 1] + f [0]δ[x] + f [1]δ[x− 1]

=

1
∑

k=−1

f [k]δ[x− k].

Let’s now consider what happens when we present a linear time-
invariant system with this new representation of a discrete-time

signal:

g[x] = T{f [x]}

= T







∞
∑

k=−∞

f [k]δ[x− k]







. (2.3)

17

By the property of linearity, Equation (1.4), the above expression

may be rewritten as:

g[x] =
∞
∑

k=−∞

f [k]T{δ[x− k]}. (2.4)

Imposing the property of time-invariance, Equation (1.5), if h[x] is
the response to the unit-impulse, δ[x], then the response to δ[x−k]

is simply h[x−k]. And now, the above expression can be rewritten
as:

g[x] =
∞
∑

k=−∞

f [k]h[x− k]. (2.5)

Consider for a moment the implications of the above equation.

The unit-impulse response, h[x] = T{δ[x]}, of a linear time-invariant
system fully characterizes that system. More precisely, given the

unit-impulse response, h[x], the output, g[x], can be determined
for any input, f [x].

The sum in Equation (2.5) is commonly called the convolution
sum and may be expressed more compactly as:

g[x] = f [x] ? h[x]. (2.6)

A more mathematically correct notation is (f ?h)[x], but for later

notational considerations, we will adopt the above notation.

Example 2.2 Consider the following finite-length unit-impulse
response:

h[x]
0

f[x]
0

g[−2]

Figure 2.2 Convolution:
g[x] = f [x] ? h[x]

h[x] = (−2 4 −2) ,

and the input signal, f [x], shown in Figure 2.2. Then the output
signal at, for example, x = −2, is computed as:

g[−2] =

−1
∑

k=−3

f [k]h[−2− k]

= f [−3]h[1] + f [−2]h[0] + f [−1]h[−1].

The next output sum at x = −1, is computed by “sliding” the

unit-impulse response along the input signal and computing a

similar sum.

Since linear time-invariant systems are fully characterized by con-
volution with the unit-impulse response, properties of such sys-

tems can be determined by considering properties of the convolu-
tion operator. For example, convolution is commutative:

f [x] ? h[x] =
∞
∑

k=−∞

f [k]h[x− k], let j = x− k

18

=
∞
∑

j=−∞

f [x− j]h[j] =
∞
∑

j=−∞

h[j]f [x− j]

= h[x] ? f [x]. (2.7)

Convolution also distributes over addition:

f [x] ? (h1[x] + h2[x]) =
∞
∑

k=−∞

f [k](h1[x− k] + h2[x− k])

=
∞
∑

k=−∞

f [k]h1[x− k] + f [k]h2[x− k]

=
∞
∑

k=−∞

f [k]h1[x− k] +
∞
∑

k=−∞

f [k]h2[x− k]

= f [x] ? h1[x] + f [x] ? h2[x]. (2.8)

A final useful property of linear time-invariant systems is that

f[x] g[x]h1[x] h2[x]

f[x] g[x]h1[x] * h2[x]

Figure 2.3 Identical

LTIs

a cascade of systems can be combined into a single system with

impulse response equal to the convolution of the individual impulse
responses. For example, for a cascade of two systems:

(f [x] ? h1[x]) ? h2[x] = f [x] ? (h1[x] ? h2[x]). (2.9)

This property is fairly straight-forward to prove, and offers a good

exercise in manipulating the convolution sum:

g1[x] = f [x] ? h1[x]

=
∞
∑

k=−∞

f [k]h1[x− k] and,

(2.10)

g2[x] = (f [x] ? h1[x]) ? h2[x]

= g1[x] ? h2[x]

=
∞
∑

j=−∞

g1[j]h2[x− j] substituting for g1[x],

=
∞
∑

j=−∞





∞
∑

k=−∞

f [k]h1[j − k]



 h2[x− j]

=
∞
∑

k=−∞

f [k]





∞
∑

j=−∞

h1[j − k]h2[x− j]



 let i = j − k,

=
∞
∑

k=−∞

f [k]





∞
∑

i=−∞

h1[i]h2[x− i− k]





= f [x] ? (h1[x] ? h2[x]). (2.11)

Let’s consider now how these concepts fit into the linear-algebraic
framework. First, a length N signal can be thought of as a point

19

in a N−dimensional vector space. As a simple example, consider
the length 2 signal shown in Figure 2.4, represented as a vector
in a 2-dimensional space. Earlier, the signal f [x] was expressed

f[x]

x

9

4

(0,1)

(1,0)
(9,0)

(0,4)
f = (9,4)

Figure 2.4

Signal and vector repre-

sentation

as a sum of weighted and shifted impulses, f [x] = 9δ[x] + 4δ[x−
1], and in the vector space, it is expressed with respect to the

canonical basis as ~f = 9 (1 0)+4 (0 1). The weighting of each

basis vector is determined by simply projecting the vector ~f onto
each axis. With this vector representation, it is then natural to
express the convolution sum (i.e., a linear time-invariant system)
as a matrix operation. For example, let h[x] = (h−1 h0 h1) be
the finite-length unit-impulse response of a linear time-invariant
system, T{·}, then the system g[x] = T{f [x]} can be expressed as

~g = M ~f , where the matrix M is of the form:

M =





















h0 h
−1 0 0 . . . 0 0 0 h1

h1 h0 h
−1 0 . . . 0 0 0 0

0 h1 h0 h
−1 . . . 0 0 0 0

...
. . .

...
0 0 0 0 . . . h1 h0 h

−1 0
0 0 0 0 . . . 0 h1 h0 h

−1

h
−1 0 0 0 . . . 0 0 h1 h0





















,(2.12)

where each row contains a shifted and time-reversed copy of the

unit-impulse response, h[x]. The convolution matrix can then be
thought of as simply transforming the basis set. As expected,

this matrix is a Toeplitz matrix of the form given earlier in Equa-
tion (1.7). The reason for the time-reversal can be seen directly

from the convolution sum of Equation (2.5). More specifically,
the output signal g[x] at a fixed x, is determined by summing the

products of f [k]h[x−k] for all k. Note that the signal h[x−k] can
be equivalently written as h[−k +x], which is a shifted (by x) and
time-reversed (because of the −k) copy of the impulse response.

Note also that when expressed in matrix form, it becomes imme-
diately clear that the convolution sum is invertible, when h is not

identically zero: ~g = M ~f and ~f = M−1~g.

Before pressing on, let’s try to combine the main ideas seen so far

into a single example. We will begin by defining a simple discrete-
time system, show that it is both linear and time-invariant, and

compute its unit-impulse response

Example 2.3 Define the discrete-time system, T{·} as:

f[x]

g[x]

f[x]

g[x]

Figure 2.5 g[x] = f [x] ?
h[x]

g[x] = f [x + 1]− f [x− 1].

This system is linear because it obeys the rule of superposition:

T{af1[x] + bf2[x]} = (af1[x + 1] + bf2[x + 1])− (af1[x− 1] + bf2[x− 1])

= (af1[x + 1] − af1[x− 1]) + (bf2[x + 1] − bf2[x− 1])

= a(f1[x + 1] − f1[x− 1]) + b(f2[x + 1]− f2[x− 1])

20

This system is also time-invariant because a shift in the input,
f1[x] = f [x− x0], leads to a shift in the output:

g1[x] = f1[x + 1] − f1[x− 1]

= f [x + 1 − x0]− f [x− 1 − x0] and,

g[x − x0] = f [x + 1 − x0]− f [x− 1 − x0]

= g1[x].

The unit-impulse response is given by:

h[x] = T{δ[x]}

= δ[x + 1] − δ[x− 1]

= (. . . 0 1 0 −1 0 . . .) .

So, convolving the finite-length impulse response h[x] = (1 0 −1)
with any input signal, f [x], gives the output of the linear time-
invariant system, g[x] = T{f [x]}:

g[x] =

∞
∑

k=−∞

f [k]h[x− k] =

x+1
∑

k=x−1

f [k]h[x− k].

And, in matrix form, this linear time-invariant system is given
by ~g = M ~f , where:

M =



















0 1 0 0 . . . 0 0 0 −1
−1 0 1 0 . . . 0 0 0 0
0 −1 0 1 . . . 0 0 0 0
...

. . .
...

0 0 0 0 . . . −1 0 1 0
0 0 0 0 . . . 0 −1 0 1
1 0 0 0 . . . 0 0 −1 0



















.

2.2 Frequency: Fourier Transform

−1

0

1

−1

0

1

−1

0

1

Figure 2.6

f [x] = A cos[ωx + φ]

In the previous section the expression of a discrete-time signal as

a sum of scaled and shifted unit-impulses led us to the convolution
sum. In a similar manner, we will see shortly how expressing a
signal in terms of sinusoids will lead us to the Fourier transform,

and then to a new way to think about discrete-time systems. The
basic signal used as the building block is the sinusoid:

A cos[ωx + φ], −∞ < x < ∞, (2.13)

where A is the amplitude, ω is the frequency, and φ is the phase of
the sinusoid. Shown in Figure 2.6, from top to bottom, are cos[x],

cos[2x], and cos[x + π/2]. Consider next the following, seemingly
unrelated, complex exponential eiωx with frequency ω, and i the

complex value
√
−1. This function is simply a compact notation

for describing a sum of the sine and cosine function:

Aeiωx = A cos(ωx) + iA sin(ωx). (2.14)

21

The complex exponential has a special relationship with linear

time-invariant systems - the output of a linear time-invariant sys-
tem with unit-impulse response h[x] and a complex exponential as

input is:

g[x] = eiωx ? h[x]

=
∞
∑

k=−∞

h[k]eiω(x−k)

= eiωx
∞
∑

k=−∞

h[k]e−iωk (2.15)

Defining H [ω] to be the summation component, g[x] can be ex-

pressed as:

g[x] = H [ω]eiωx, (2.16)

that is, given a complex exponential as input, the output of a

Real

Imaginary

H = R + I

H

| H |

Figure 2.7 Magnitude

and phase

linear time-invariant system is again a complex exponential of the

same frequency scaled by some amount. 3 The scaling of the com-
plex exponential, H [w], is called the frequency response and is

generally a complex-valued function expressed in terms of its real
and imaginary components:

H [ω] = HR[ω] + iHI [ω], (2.17)

or more commonly in terms of the magnitude and phase:

|H [ω]| =
√

HR[ω]2 + HI [ω]2 and ≺ H [ω] = tan−1
(

HI [(ω]

HR[ω]

)

.

Example 2.4 Consider the following linear time-invariant sys-
tem, T{·}:

g[x] = f [x− x0].

This system outputs a time-delayed copy of the input signal.
The frequency response of this system can be determined by
considering the input signal f [x] = eiωx:

g[x] = eiω(x−x0)

= e−iωx0eiωx,

which is of the same form as Equation (2.16), with frequency
response H[ω] = e−iωx0 . Decomposing this response in terms of
the real and imaginary components gives:

HR[ω] = cos[ωx0] and HI [ω] = − sin[ωx0],

3In linear algebraic terms, the complex exponentials are said to be the
eigenfunctions of LTIs, and H[ω] the eigenvalue.

22

or in terms of the magnitude and phase:

|H[ω]| =
√

cos2[ωx0] + − sin2[ωx0]

= 1

≺ H[ω] = tan−1

(

− sin[ωx0]

cos[ωx0]

)

= −ωx0.

Intuitively, this should make perfect sense. This system simply

takes an input signal and outputs a delayed copy, therefore, there

is no change in the magnitude of each sinusoid, while there is a

phase shift proportional to the delay, x0.

So, why the interest in sinusoids and complex exponentials? As

we will show next, a broad class of signals can be expressed as a
linear combination of complex exponentials, and analogous to the

impulse response, the frequency response completely characterizes
the system.

Let’s begin by taking a step back to the more familiar sinusoids,
and then work our way to the complex exponentials. Any periodic

discrete-time signal, f [x], can be expressed as a sum of scaled,
phase-shifted sinusoids of varying frequencies:

f [x] =
1

2π

π
∑

k=−π

ck cos [kx + φk] −∞ < x < ∞, (2.18)

For each frequency, k, the amplitude is a real number, ck ∈ R,

and the phase, φk ∈ [0, 2π]. This expression is commonly referred
to as the Fourier series.

Example 2.5 Shown below is a signal, f [x] (left) represented as
a sum of the first four sinusoids: f [x] = c0 cos[0x + φ0] + ... +
c3 cos[3x + φ3].

= c0 + c1

+ c2 + c3

.

In the language of linear algebra, the sinusoids are said to form
a basis for the set of periodic signals, that is, any periodic signal

can be written as a linear combination of the sinusoids. Recall

23

that in deriving the convolution sum, the basis consisted of shifted

copies of the unit-impulse. But note now that this new basis is
not fixed because of the phase term, φk . It is, however, possible

to rewrite the Fourier series with respect to a fixed basis of zero-
phase sinusoids. With the trigonometric identity cos(A + B) =
cos(A) cos(B)−sin(A) sin(B), the Fourier series of Equation (2.18)

may be rewritten as:

f [x] =
1

2π

π
∑

k=−π

ck cos[kx + φk]

=
1

2π

π
∑

k=−π

ck cos[φk] cos[kx] + ck sin[φk] sin[kx]

=
1

2π

π
∑

k=−π

ak cos[kx] + bk sin[kx] (2.19)

In this expression, the constants ak and bk are the Fourier coef-
ficients and are determined by the Fourier transform. In other

words, the Fourier transform simply provides a means for express-
ing a signal in terms of the sinusoids. The Fourier coefficients are

given by:

ak =
∞
∑

j=−∞

f [j] cos[kj] and bk =
∞
∑

j=−∞

f [j] sin[kj] (2.20)

Notice that the Fourier coefficients are determined by projecting
the signal onto each of the sinusoidal basis. That is, consider both

the signal f [x] and each of the sinusoids as T -dimensional vectors,
~f and ~b, respectively. Then, the projection of ~f onto ~b is:

f0b0 + f1b1 + ... =
∑

j

fjbj, (2.21)

where the subscript denotes the jth entry of the vector.

Often, a more compact notation is used to represent the Fourier

series and Fourier transform which exploits the complex exponen-
tial and its relationship to the sinusoids:

eiωx = cos(ωx) + i sin(ωx), (2.22)

where i is the complex value
√
−1. Under the complex exponential

notation, the Fourier series and transform take the form:

f [x] =
1

2π

π
∑

k=−π

cke
ikx and ck =

∞
∑

j=−∞

f [j]e−ikj , (2.23)

24

where ck = ak − ibk. This notation simply bundles the sine and

cosine terms into a single expression. A more common, but equiv-
alent, notation is:

f [x] =
1

2π

π
∑

ω=−π

F [ω]eiωx and F [ω] =
∞
∑

k=−∞

f [k]e−iωk. (2.24)

d[x]

h[x]

LTI

g[x]=f[x]*h[x] G[w]=F[w]H[w]

LTI

Fourier

Transform

exp(iwx)

H[w]exp(iwx)

Figure 2.8 LTI: space

and frequency

Comparing the Fourier transform (Equation (2.24)) with the fre-
quency response (Equation (2.16)) we see now that the frequency

response of a linear time-invariant system is simply the Fourier
transform of the unit-impulse response:

H [ω] =
∞
∑

k=−∞

h[k]e−iωk . (2.25)

In other words, linear time-invariant systems are completely char-
acterized by their impulse response, h[x], and, equivalently, by

their frequency response, H [ω], Figure 2.8.

Example 2.6 Consider the following linear time-invariant sys-
tem, T{·}:

g[x] =
1

4
f [x− 1] +

1

2
f [x] +

1

4
f [x + 1].

The output of this system at each x, is a weighted average of
the input signal centered at x. First, let’s compute the impulse

response:

h[x] =
1

4
δ[x− 1] +

1

2
δ[x] +

1

4
δ[x + 1]

= (. . . 0 0 1
4

1
2

1
4

0 0 . . .) .

Then, the frequency response is the Fourier transform of this
impulse response:

H[ω] =

∞
∑

k=−∞

h[k]e−iωk

=

1
∑

k=−1

h[k]e−iωk

=
1

4
eiω +

1

2
e0 +

1

4
e−iω

=
1

4
(cos(ω) + i sin(ω)) +

1

2
+

1

4
(cos(ω) − i sin(ω))

= |
1

2
+

1

2
cos(ω) |.

In this example, the frequency response is strictly real (i.e., HI[ω] =
0) and the magnitude and phase are:

|H[ω]| =
√

HR[ω]2 + HI [ω]2

=
1

2
+

1

2
cos(ω)

≺ H[ω] = tan−1

(

HI[ω]

Hr[ω]

)

= 0

25

Both the impulse response and the magnitude of the frequency
response are shown below, where for clarity, the frequency re-
sponse was drawn as a continuous function.

Space (h[x]) Frequency (|H[ω]|)

−1 0 1
0

0.25

0.5

−pi 0 pi
0

1

Example 2.7 Consider the following linear time-invariant sys-
tem, T{·}:

g[x] =
1

2
f [x + 1]−

1

2
f [x− 1].

The output of this system at each x, is the difference between
neighboring input values. The impulse response of this system
is:

h[x] =
1

2
δ[x + 1]−

1

2
δ[x− 1]

= (. . . 0 0 1
2 0 − 1

2 0 0 . . .) .

Then, the frequency response is the Fourier transform of this
impulse response:

H[ω] =

∞
∑

k=−∞

h[k]e−iωk

=

1
∑

k=−1

h[k]e−iωk

=
1

2
eiω + 0e0 −

1

2
e−iω

=
1

2
(cos(ω) + i sin(ω))−

1

2
(cos(ω) − i sin(ω))

= i sin(ω).

In this example, the frequency response is strictly imaginary
(i.e., HR[ω] = 0) because the impulse response is anti-symmetric,
and the magnitude and phase are:

|H[ω]| =
√

HR[ω]2 + HI [ω]2

= | sin(ω) |

≺ H[ω] = tan−1

(

HI[ω]

Hr[ω]

)

=
π

2
.

Both the impulse response and the magnitude of the frequency
response are shown below, where for clarity, the frequency re-
sponse was drawn as a continuous function.

26

Space (h[x]) Frequency (|H[ω]|)

−1 0 1

−0.5

0

0.5

−pi 0 pi
0

1

This system is an (approximate) differentiator, and can be seen
from the definition of differentiation:

df(x)

dx
= lim

ε→0

f(x + ε)− f(x− ε)

ε
,

where, in the case of the system T{·}, ε is given by the dis-

tance between samples of the discrete-time signal f [x]. Let’s

see now if we can better understand the frequency response of

this system, recall that the magnitude was given by | sin(ω)| and

the phase by π

2 . Consider now the derivative of a fixed fre-

quency sinusoid sin(ωx), differentiating with respect to x gives

ω cos(ωx) = ω sin(ωx − π/2). Note that differentiation causes a

phase shift of π/2 and a scaling by the frequency of the sinusoid.

Notice that this is roughly in-line with the Fourier transform, the

difference being that the amplitude is given by | sin(ω)| instead

of ω. Note though that for small ω, | sin(ω)| ≈ ω. This dis-

crepancy makes the system only an approximate, not a perfect,

differentiator.

Linear time-invariant systems can be fully characterized by their
impulse, h[x], or frequency responses, H [ω], both of which may be
used to determine the output of the system to any input signal,

f [x]:

g[x] = f [x] ? h[x] and G[ω] = F [ω]H [ω], (2.26)

where the output signal g[x] can be determined from its Fourier
transform G[ω], by simply applying the inverse Fourier transform.

This equivalence illustrates an important relationship between the
space and frequency domains. Namely, convolution in the space

domain is equivalent to multiplication in the frequency domain.
This is fairly straight-forward to prove:

g[x] = f [x] ? h[x] Fourier transforming,
∞
∑

k=−∞

g[k]e−iωk =
∞
∑

k=−∞

(f [k] ? h[k])e−iωk

G[ω] =
∞
∑

k=−∞





∞
∑

j=−∞

f [j]h[k− j]



 e−iωk

27

=
∞
∑

j=−∞

f [j]
∞
∑

k=−∞

h[k − j]e−iωk let l = k − j,

=
∞
∑

j=−∞

f [j]
∞
∑

l=−∞

h[l]e−iω(l+j)

=
∞
∑

j=−∞

f [j]e−iωj
∞
∑

l=−∞

h[l]e−iωl

= F [ω]H [ω]. (2.27)

Like the convolution sum, the Fourier transform can be formulated
as a matrix operation:















F [0]
F [ω]

F [2ω]
...

F [Tω]















=















1 1 1 . . . 1

e−0i e−i e−2i . . . e−T i

e−0i e−2i e−4i . . . e−2T i

...
. . .

...

e−0i e−T i e−2T i . . . e−T 2i





























f [0]
f [1]

f [2]
...

f [T]















~F = M ~f. (2.28)

Notice that this equation embodies both the Fourier transform and

the Fourier series of Equation (2.24). The above form is the Fourier
transform, and the Fourier series is gotten by left-multiplying with

the inverse of the matrix, M−1 ~F = ~f .

28

3. Sampling: Continuous to Discrete (and back)

3.1 C/D: Space

3.2 C/D:
Frequency

3.3 D/C

f[x]

f(x)

C/D

T

g[x]

D/C

g(x)

Figure 3.1 Processing

block diagram

It is often more convenient to process a continuous-time signal
with a discrete-time system. Such a system may consist of three

distinct stages: (1) the conversion of a continuous-time signal to a
discrete-time signal (C/D converter); (2) the processing through a

discrete-time system; and (3) the conversion of the output discrete-
time signal back to a continuous-time signal (D/C converter). Ear-
lier we focused on the discrete-time processing, and now we will

concentrate on the conversions between discrete- and continuous-
time signals. Of particular interest is the somewhat remarkable

fact that under certain conditions, a continuous-time signal can
be fully represented by a discrete-time signal!

3.1 Continuous to Discrete: Space

A discrete-time signal, f [x], is formed from a continuous-time sig-
nal, f(x), by the following relationship:

f [x] = f(xT) −∞ < x < ∞, (3.1)

for integer values x. In this expression, the quantity T is the

sampling period. In general, continuous-time signals will be de-
noted with rounded parenthesis (e.g., f(·)), and discrete-time sig-

nals with square parenthesis (e.g., f [·]). This sampling operation

x

f(x)

f[x]

Figure 3.2 Sampling:

space

may be considered as a multiplication of the continuous time sig-

nal with an impulse train, Figure 3.2. The impulse train is defined
as:

s(x) =
∞
∑

k=−∞

δ(x− kT), (3.2)

where δ(·) is the unit-impulse, and T is the sampling period - note
that the impulse train is a continuous-time signal. Multiplying

the impulse train with a continuous-time signal gives a sampled
signal:

fs(x) = f(x)s(x), (3.3)

Note that the sampled signal, fs(x), is indexed on the continuous

variable x, while the final discrete-time signal, f [x] is indexed on
the integer variable x. It will prove to be mathematically conve-

nient to work with this intermediate sampled signal, fs(x).

29

3.2 Continuous to Discrete: Frequency

w

S(w)

w ss−w 0

w

F(w)

−w n w n

w

Fs(w)

w s− w n

Figure 3.3 Sampling:

no aliasing

In the space domain, sampling was described as a product between

the impulse train and the continuous-time signal (Equation (3.3)).
In the frequency domain, this operation amounts to a convolution
between the Fourier transform of these two signals:

Fs(ω) = F (ω) ? S(ω) (3.4)

For example, shown in Figure 3.3 (from top to bottom) are the

Fourier transforms of the continuous-time function, F (ω), the im-
pulse train, S(ω), itself an impulse train, and the results of con-

volving these two signals, Fs(ω). Notice that the Fourier trans-
form of the sampled signal contains multiple (yet exact) copies

of the Fourier transform of the original continuous signal. Note
however the conditions under which an exact replica is preserved

depends on the maximum frequency response ωn of the original
continuous-time signal, and the sampling interval of the impulse

train, ωs which, not surprisingly, is related to the sampling pe-
riod T as ωs = 2π/T . More precisely, the copies of the frequency
response will not overlap if:

w

S(w)

w ss−w 0

w

Fs(w)

w

F(w)

−w n w n

Figure 3.4 Sampling:

aliasing

ωn < ωs − ωn or

ωs > 2ωn, (3.5)

The frequency ωn is called the Nyquist frequency and 2ωn is called

the Nyquist rate. Shown in Figure 3.4 is another example of
this sampling process in the frequency domain, but this time, the

Nyquist rate is not met, and the copies of the frequency response
overlap. In such a case, the signal is said to be aliased.

Not surprisingly, the Nyquist rate depends on both the character-
istics of the continuous-time signal, and the sampling rate. More

precisely, as the maximum frequency, ωn, of the continuous-time
signal increases, the sampling period, T must be made smaller

(i.e., denser sampling), which in turn increases ωs, preventing
overlap of the frequency responses. In other words, a signal that

changes slowly and smoothly can be sampled fairly coarsely, while
a signal that changes quickly requires more dense sampling.

3.3 Discrete to Continuous

If the Nyquist rate is met, then a discrete-time signal fully charac-

terizes the continuous-time signal from which it was sampled. On
the other hand, if the Nyquist rate is not met, then the sampling
leads to aliasing, and the discrete-time signal does not accurately

represent its continuous-time counterpart. In the former case, it

30

is possible to reconstruct the original continuous-time signal, from

the discrete-time signal. In particular since the frequency response
of the discrete-time signal contains exact copies of the original

continuous-time signals frequency response, we need only extract
one of these copies, and inverse transform the result. The result
will be identical to the original signal. In order to extract a single

w

Fs(w)

pi/T

Figure 3.5

Reconstruction

copy, the Fourier transform of the sampled signal is multiplied by
an ideal reconstruction filter as shown in Figure 3.5. This filter has

unit value between the frequencies −π/T to π/T and is zero else-
where. This frequency band is guaranteed to be greater than the

Nyquist frequency, ωn (i.e., ωs = 2π/T > 2ωn, so that π/T > ωn).
In the space domain, this ideal reconstruction filter has the form:

0

0

1

Figure 3.6 Ideal sync

h(x) =
sin(πx/T)

πx/T
, (3.6)

and is often referred to as the ideal sync function. Since recon-

struction in the frequency domain is accomplished by multipli-
cation with the ideal reconstruction filter, we could equivalently

reconstruct the signal by convolving with the ideal sync in the
space domain.

Example 3.1 Consider the following continuous-time signal:

f(x) = cos(ω0x),

a sinusoid with frequency ω0. We will eventually be interested
in sampling this function and seeing how the effects of aliasing
are manifested. But first, let’s compute the Fourier transform of
this signal:

F (ω) =

∞
∑

k=−∞

f(k)e−iωk

=

∞
∑

k=−∞

cos(ω0k)(cos(ωk)− i sin(ωk))

=

∞
∑

k=−∞

cos(ω0k) cos(ωk) − i cos(ω0k) sin(ωk)

First let’s consider the product of two cosines. It is easy to show
from basic trigonometric identities that cos(A) cos(B) = 0 when
A 6= B, and is equal to π when |A| = |B|. Similarly, one can
show that cos(A) sin(B) = 0 for all A and B. So, the Fourier
transform of cos(ω0x) = π for |ω| = ω0, and is 0 otherwise (see
below). If the sampling rate is greater than 2ω0, then there will
be no aliasing, but if the sampling rate is less than 2ω0, then
the reconstructed signal will be of the form cos((ωs−ω0)x), that
is, the reconstructed signal will be appear as a lower frequency
sinusoid - it will be aliased.

31

w

F(w)

−w 0 w 0

Sampling

No Aliasing

w

Fs(w)

−w 0 w 0

Aliasing

w

Fs(w)

−w 0 w 0

We will close this chapter by drawing on the linear algebraic frame-
work for additional intuition on the sampling and reconstruction

process. First we will need to restrict ourselves to the sampling of
an already sampled signal, that is, consider a m-dimensional sig-

nal sub-sampled to a n-dimensional signal. We may express this
operation in matrix form as follows:







g1
...

gn






=















1 0 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
...

. . .
...

0 0 0 0 . . . 0 1 0 0
1 0 0 0 . . . 0 0 0 1





























f1

f2
...

fm−1

fm















~gn = Sn×m
~fm, (3.7)

where the subscripts denote the vector and matrix dimensions,

and in this example n = m/2. Our goal now is to determine when
it is possible to reconstruct the signal ~f , from the sub-sampled

signal ~g. The Nyquist sampling theory tells us that if a signal is
band-limited (i.e., can be written as a sum of a finite number of

sinusoids), then we can sample it without loss of information. We
can express this constraint in matrix notation:

~fm = Bm×n ~wn, (3.8)

where the columns of the matrix B contains the basis set of si-

nusoids - in this case the first n sinusoids. Substituting into the
above sampling equation gives:

~gn = Sn×mBm×n ~wn

= Mn×n ~wn. (3.9)

If the matrix M is invertible, then the original weights (i.e., the
representation of the original signal) can be determined by sim-

ply left-multiplying the sub-sampled signal ~g by M−1. In other

32

words, Nyquist sampling theory can be thought of as simply a

matrix inversion problem. This should not be at all surprising,
the trick to sampling and perfect reconstruction is to simply limit

the dimensionality of the signal to at most twice the number of
samples.

33

4. Digital Filter Design

4.1 Choosing a

Frequency Re-
sponse

4.2 Frequency
Sampling

4.3 Least-Squares

4.4 Weighted

Least-Squares

Recall that the class of linear time-invariant systems are fully char-
acterized by their impulse response. More specifically, the output

of a linear time-invariant system to any input f [x] can be deter-
mined via a convolution with the impulse response h[x]:

g[x] = f [x] ? h[x]. (4.1)

Therefore the filter h[x] and the linear-time invariant system are

synonymous. In the frequency domain, this expression takes on
the form:

G[ω] = F [ω]H [ω]. (4.2)

In other words, a filter modifies the frequencies of the input signal.

It is often the case that such filters pass certain frequencies and
attenuate others (e.g., a lowpass, bandpass, or highpass filters).

The design of such filters consists of four basic steps:

1. choose the desired frequency response

2. choose the length of the filter

3. define an error function to be minimized

4. choose a minimization technique and solve

The choice of frequency response depends, of course, on the design-

ers particular application, and its selection is left to their discre-
tion. We will however provide some general guidelines for choosing

a frequency response that is amenable to a successful design. In
choosing a filter size there are two conflicting goals, a large filter al-

lows for a more accurate match to the desired frequency response,
however a small filter is desirable in order to minimize computa-

tional demands 4. The designer should experiment with varying
size filters until an equitable balance is found. With a frequency

response and filter size in hand, this chapter will provide the com-
putational framework for realizing a finite length filter that “best”
approximates the specified frequency response. Although there are

numerous techniques for the design of digital filters we will cover
only two such techniques chosen for their simplicity and generally

good performance (see Digital Filter Design by T.W. Parks and
C.S. Burrus for a full coverage of many other approaches).

4In multi-dimensional filter design, separability is also a desirable property.

34

4.1 Choosing a Frequency Response

w

 | H(w) |

Stopband

Passband

0 pi

Figure 4.1

Ideal lowpass, bandpass,

and highpass

A common class of filters are bandpass in nature, that is, they pass

certain frequencies and attenuate others. An ideal lowpass, band-
pass, and highpass filter are illustrated in Figure 4.1 Shown is the

magnitude of the frequency response in the range [0, π], since we
are typically interested in designing real-valued, linear-phase fil-

ters, we need only specify one-half of the magnitude spectrum (the
response is symmetric about the origin). The responses shown in
Figure 4.1 are often referred to as brick wall filters because of their

abrupt fall-off. A finite-length realization of such a filter produces
undesirable “ringing” known as Gibbs phenomena as shown below

in the magnitude of the frequency response of ideal lowpass filters
of length 64, 32, and 16 (commonly referred to as the filter tap

size).

64 taps 32 taps 16 taps

0 pi/2 pi
0

0.5

1

0 pi/2 pi
0

0.5

1

0 pi/2 pi
0

0.5

1

w

 | H(w) |

0 pi

Figure 4.2 Soft lowpass,

bandpass, and highpass

These effects are particularly undesirable because neighboring fre-

quencies may be passed or attenuated by wildly varying amounts,
leading to general instabilities. To counter this problem, the de-

signer is resigned to sacrificing the ideal response for a “softer”
frequency response, Figure 4.2. Such a frequency response is
amenable to a small finite-length filter free of significant ringing

artifacts. The specific functional form of the soft falloff is some-
what arbitrary, however one popular form is a raised cosine. In

its most general form, the frequency response takes the follow-
ing form, where the bandpass nature of the response is controlled

through ω0, ω1, ∆ω0, and ∆ω1.

0 pi
0

0.5

1

ω
0

ω
1

∆ω
0

∆ω
1

Figure 4.3 Frequency

response

H(ω) =



























0, ω < ω0
1
2 [1− cos(π(ω − ω0)/∆ω0)] , ω0 ≤ ω < ω0 + ∆ω0

1, ω0 + ∆ω0 ≤ ω < ω1 −∆ω1
1
2 [1 + cos(π(ω − (ω1 −∆ω1))/∆ω1)] , ω1 −∆ω1 ≤ ω < ω1

0, ω1 ≤ ω.

In general, a larger transition width (i.e., ∆ω0, and ∆ω1) allows

for smaller filters with minimal ringing artifacts. The tradeoff,
of course, is that a larger transition width moves the frequency

response further from the ideal brick-wall response. In specifying
only half the frequency response (from [0, π]) we are implicitly

imposing a symmetric frequency response and thus assuming that
the desired filter is symmetric.

35

4.2 Frequency Sampling

Once the desired frequency response has been chosen, the more

difficult task of designing a finite-length filter that closely approx-
imates this response begins. In general this problem is hard be-

cause by restricting ourselves to a small finite-length filter we are
in effect asking to fit an arbitrarily complex function (the desired

frequency response) with the sum of a small number of sinusoids.

We begin with the most straight-forward design method - fre-

quency sampling. Our goal is to design a filter h whose Fourier
transform best approximates the specified response H , that is:

F(h) = H (4.3)

where F is the Fourier transform operator. By applying the inverse

Fourier transform we obtain a solution:

F−1(F(h)) = F−1(H)

h = F−1(H). (4.4)

In other words, the design simply involves inverse Fourier trans-
forming the specified frequency response. This series of steps can

be made more explicit and practical for computer implementation
by expressing the initial constraint (Equation (4.3)) in matrix no-

tation:

M~h = ~H (4.5)

where ~H is the n-dimensional sampled frequency response, M is
the n × n Fourier matrix (Equation (2.28)), and n is the chosen

filter size. The filter h can be solved for by left multiplying both
sides of Equation (4.5) by the inverse of the matrix F :

~h = M−1 ~H. (4.6)

Since the matrix M is square, this design is equivalent to solv-
ing for n unknowns (the filter taps) from n linearly independent

equations. This fact illustrates the shortcomings of this approach,
namely, that this method produces a filter with a frequency re-
sponse that exactly matches the sampled response, but places no

constraints on the response between sampled points. This restric-
tion can often lead to poor results that are partially alleviated by

the least-squares design presented next.

36

4.3 Least-Squares

Our goal is to design a filter ~h that “best” approximates a specified
frequency response. As before this constraint can be expressed as:

M~h = ~H, (4.7)

where M is the N × n Fourier matrix (Equation (2.28)), ~H is the
N sampled frequency response, and the filter size is n. Note that

unlike before, this equation is over constrained, having n unknowns
in N > n equations. We can solve this system of equations in a
least-squares sense by first writing a squared error function to be

minimized:

E(~h) = | M~h− ~H |2 (4.8)

In order to minimize 5, we differentiate with respect to the un-
known ~h:

dE(~h)

d~h
= 2M t| M~h − ~H |

= 2M tM~h − 2M t ~H, (4.9)

then set equal to zero, and solve:

0 pi/2 pi
0

0.5

1

0 pi/2 pi
0

0.5

1

0 pi/2 pi
0

0.5

1

Figure 4.4 Least-

squares: lowpass, band-

pass, and highpass

~h = (M tM)−1M t ~H (4.10)

Shown in Figure 4.4 are a set of lowpass, bandpass, and highpass

16-tap filters designed using this technique. In this design, the
frequency response was of the form given in Equation (4.3), with
start and stop bands of [ω0, ω1] = [0, π/2], [π/4, 3π/4], and [π/2, π],

and a transition width of ∆ω0 = ∆ω1 = π/4. The frequency
response was sampled at a rate of N = 512.

Finally, note that the previous frequency sampling design is equiv-
alent to the least-squares design when the sampling of the Fourier

basis is the same as the filter size (i.e., N = n).

4.4 Weighted Least-Squares

One drawback of the least-squares method is that the error func-
tion (Equation (4.8)) is uniform across all frequencies. This is

easily rectified by introducing a weighting on the least-squares er-
ror function:

E(~h) = W | M~h− ~H |2 (4.11)

5Because of Parseval’s theorem (which amounts to the orthonormality of
the Fourier transform), the minimal error in the frequency domain equates to
a minimal error in the space domain.

37

where W is a diagonal weighting matrix. That is, the diagonal

of the matrix contains the desired weighting of the error across
frequency. As before, we minimize by differentiating with respect

to ~h:

dE(~h)

d~h
= 2M tW | M~h− ~H |

= 2M tWM~h − 2WM t ~H, (4.12)

then set equal to zero, and solve:

0 pi/2 pi
0

0.5

1

0 pi/2 pi
0

0.5

1

Figure 4.5

Least-squares and

weighted least squares

~h = (M tWM)−1M tW ~H. (4.13)

Note that this solution will be equivalent to the original least-
squares solution (Equation (4.10)) when W is the identity matrix

(i.e., uniform weighting).

Shown in Figure 4.5 is a comparison of an 8-tap lowpass filter

designed with a uniform weighting, and with a weighting that
emphasizes the errors in the low frequency range, W (ω) = 1

(|ω|+1)8
.

Note that in the case of the later, the errors in the low frequencies
are smaller, while the errors in the high frequencies have increased.

38

5. Photons to Pixels

5.1 Pinhole Cam-
era

5.2 Lenses

5.3 CCD

5.1 Pinhole Camera

The history of the pinhole camera (or camera obscura) dates back
as early as the fifth century B.C., and continues to be popular to-

day among students, artists, and scientists. The Chinese philoso-
pher Mo Ti is believed to be the first to notice that objects reflect

light in all directions and that the light rays that pass through
a small hole produce an inverted image. In its simplest form a

Figure 5.1 Pinhole im-

age formation

pinhole camera is a light-tight box with a tiny hole in one end and
a photo-sensitive material on the other. Remarkably, this simple

device is capable of producing a photograph. However, the pinhole
camera is not a particularly efficient imaging system (often requir-

ing exposure times as long as several hours) and is more popular
for its artistic value than for its practical value. Nevertheless, the
pinhole camera is convenient because it affords a simple model of

more complex imaging systems. That is, with a pinhole camera
model, the projection of points from the three-dimensional world

onto the two-dimensional sensor takes on a particularly simple
form.

Denote a point in the three-dimensional world as a column vector,
~P = (X Y Z)t and the projection of this point onto the two

dimensional image plane as ~p = (x y)t. Note that the world
and image points are expressed with respect to their own coordi-

nate systems, and for convenience, the image coordinate system
is chosen to be orthogonal to the Z-axis, i.e., the origins of the

Y

X

Z

x

y

P

p

Figure 5.2 Perspective

projection

two systems are related by a one-dimensional translation along
the Z−axis or optical axis. It is straight-forward to show from a

similar triangles argument that the relationship between the world
and image point is:

x = −dX

Z
and y = −dY

Z
, (5.1)

where d is the displacement of the image plane along the Z-axis 6

These equations are frequently referred to as the perspective pro-
jection equations. Although non-linear in their nature, the per-

spective projection equations may be expressed in matrix form

6The value d in Equation (5.1) is often referred to as the focal length. We
do not adopt this convention primarily because it is a misnomer, under the
pinhole model all points are imaged in perfect focus.

39

using the homogeneous equations:





xs

ys

s



 =





−d 0 0 0

0 −d 0 0
0 0 1 0













X
Y

Z
1









, (5.2)

where the final image coordinates are given by (x y)t = (xs

s
ys

s)t.

An approximation to the above perspective projection equations
is orthographic projection, where light rays are assumed to travel

from a point in the world parallel to the optical axis until they
intersect the image plane. Unlike the pinhole camera and perspec-

tive projection equations, this model is not physically realizable
and is used primarily because the projection equations take on a

particularly simple linear form:

Y

X

Z

x

y

P
p

Figure 5.3 Orthographic

projection

x = X and y = Y. (5.3)

And in matrix form:

(

x

y

)

=

(

1 0 0

0 1 0

)





X

Y
Z



 (5.4)

Orthographic projection is a reasonable approximation to perspec-
tive projection when the difference in depth between points in the

world is small relative to their distance to the image plane. In
the special case when all the points lie on a single frontal-parallel

surface relative to the image plane (i.e., d
Z is constant in Equa-

tion (5.1)), the difference between perspective and orthographic is

only a scale factor.

5.2 Lenses

It is important to remember that both the perspective and or-

thographic projection equations are only approximations of more
complex imaging systems. Commercial cameras are constructed

with a variety of lenses that collect and focus light onto the im-
age plane. That is, light emanates from a point in the world

Y

Z

P
y

Figure 5.4 Thin lens

in all directions and, whereas a pinhole camera captures a single
light ray, a lens collects a multitude of light rays and focuses the

light to a small region on the image plane. Such complex imaging
systems are often described with the simpler thin-lens model. Un-

der the thin-lens model the projection of the central or principal
ray obeys the rules of perspective projection, Equation (5.1): the
point ~P = (X Y Z)t is projected onto the image plane cen-

tered about the point (x y)t = (−dX
Z

−dY
Z)t. If the point ~P

40

is in perfect focus, then the remaining light rays captured by the

lens also strike the image plane at the point ~p. A point is imaged
in perfect focus if its distance from the lens satisfies the following

thin-lens equation:

1

Z
+

1

d
=

1

f
, (5.5)

where d is the distance between the lens and image plane along the
optical axis, and f is the focal length of the lens. The focal length
is defined to be the distance from the lens to the image plane such

that the image of an object that is infinitely far away is imaged
in perfect focus. Points at a depth of Zo 6= Z are imaged onto a

small region on the image plane, often modeled as a blurred circle
with radius r:

r =
R

1
f − 1

Zo

∣

∣

∣

∣

(

1

f
− 1

Zo

)

− 1

d

∣

∣

∣

∣

, (5.6)

where R is the radius of the lens. Note that when the depth of a

point satisfies Equation (5.5), the blur radius is zero. Note also
that as the lens radius R approaches 0 (i.e., a pinhole camera),
the blur radius also approaches zero for all points independent of

its depth (referred to as an infinite depth of field).

Alternatively, the projection of each light ray can be described in

the following more compact matrix notation:
(

l2
α2

)

=

(

1 0
− 1

R

(

n2−n1
n2

)

n1
n2

)(

l1
α1

)

, (5.7)

where R is the radius of the lens, n1 and n2 are the index of
refraction for air and the lens material, respectively. l1 and l2 are
the height at which a light ray enters and exits the lens (the thin

lens idealization ensures that l1 = l2). α1 is the angle between the
entering light ray and the optical axis, and α2 is the angle between

the exiting light ray and the optical axis. This formulation is
particularly convenient because a variety of lenses can be described

in matrix form so that a complex lens train can then be modeled
as a simple product of matrices.

Y

X

Z

x

y

p

P1 P2 P3

Figure 5.5

Non-invertible projection

Image formation, independent of the particular model, is a three-
dimensional to two-dimensional transformation. Inherent to such

a transformation is a loss of information, in this case depth infor-
mation. Specifically, all points of the form ~Pc = (cX cY cZ)t,

for any c ∈ R, are projected to the same point (x y)t - the pro-
jection is not one-to-one and thus not invertible. In addition to
this geometric argument for the non-invertibility of image forma-

tion, a similarly straight-forward linear algebraic argument holds.

41

In particular, we have seen that the image formation equations

may be written in matrix form as, ~p = Mn×m
~P , where n < m

(e.g., Equation (5.2)). Since the projection is from a higher di-

mensional space to a lower dimensional space, the matrix M is
not invertible and thus the projection is not invertible.

5.3 CCD

To this point we have described the geometry of image formation,

how light travels through an imaging system. To complete the im-
age formation process we need to discuss how the light that strikes

the image plane is recorded and converted into a digital image.
The core technology used by most digital cameras is the charge-

coupled device (CCD), first introduced in 1969. A basic CCD

Depletion
 region

Ground

VLight

MOS

Figure 5.6 MOS capaci-

tor

consists of a series of closely spaced metal-oxide-semiconductor

capacitors (MOS), each one corresponding to a single image pixel.
In its most basic form a CCD is a charge storage and transport de-

vice: charge is stored on the MOS capacitors and then transported
across these capacitors for readout and subsequent transformation

to a digital image. More specifically, when a positive voltage, V , is
applied to the surface of a P-type MOS capacitor, positive charge
migrates toward ground. The region depleted of positive charge

is called the depletion region. When photons (i.e., light) enter the
depletion region, the electrons released are stored in this region.

The value of the stored charge is proportional to the intensity of
the light striking the capacitor. A digital image is subsequently

formed by transferring the stored charge from one depletion re-
gion to the next. The stored charge is transferred across a series

of MOS capacitors (e.g., a row or column of the CCD array) by
sequentially applying voltage to each MOS capacitor. As charge

passes through the last capacitor in the series, an amplifier con-
verts the charge into a voltage. An analog-to-digital converter
then translates this voltage into a number (i.e., the intensity of an

image pixel).

42

6. Point-Wise Operations

6.1 Lookup Table

6.2 Brightness

/Contrast

6.3 Gamma

Correction

6.4 Quantize
/Threshold

6.5 Histogram
Equalize

6.1 Lookup Table

The internal representation of a digital image is simply a matrix
of numbers representing grayscale or color values. But when an

image is displayed on a computer monitor we typically do not see
a direct mapping of the image. An image is first passed through a

lookup table (LUT) that maps the image intensity values to bright-
ness values, Figure 6.1. If the lookup table is linear with unit

0 255

white

black

Figure 6.1 Lookup table

white

black

min max

Figure 6.2 Autoscale

slope and zero intercept then the image is directly mapped to the

display, otherwise, the displayed image will not be an exact rep-
resentation of the underlying image. For example, most computer

monitors intentionally impose a non-linear LUT of the general
form D = Iα (i.e., gamma correction), where α is a real num-

ber, and D and I are the displayed and image values. A variety
of interesting visual effects can be achieved by simple manipula-

tions of the functional form of the LUT. Keep in mind though
that in manipulating the lookup table, the underlying image is

left untouched, it is only the mapping from pixel value to display
brightness that is being effected.

6.2 Brightness/Contrast

Perhaps the most common and familiar example of a LUT ma-

nipulation is to control the brightness or darkness of an image as
shown in Figure 6.3. The bright and dark images of Einstein were

created by passing the middle image through the LUTs shown in
the same figure. The functional form of the LUT is a unit-slope

line with varying intercepts: g(u) = u + b, with the image inten-
sity values u ∈ [0, 1]. A value of b > 0 results in a brightening

of the image and b < 0 a darkening of the image. Another com-
mon manipulation is that of controlling the contrast of an image

as shown in Figure 6.4. The top image is said to be high contrast
and the bottom image low contrast, with the corresponding LUTs
shown in the same figure. The functional form of these LUTs is

linear: g(u) = mu + b, where the relationship between the slope
and intercept is b = 1/2(1−m). The image contrast is increased

with a large slope and negative intercept (in the limit, m → ∞
and b → −∞), and the contrast is reduced with a small slope and

positive intercept (m → 0 and b → 1/2). The image is inverted
with m = −1 and b = 1, that is white is mapped to black, and

black is mapped to white. Of course, an image can be both con-
trast enhanced and brightened or darkened by simply passing the

image through two (or more) LUTs.

43

Dark

Bright

Figure 6.3 Brightness

High

Low

Figure 6.4 Contrast

Autoscaling is a special case of contrast enhancement where the

minimum image intensity value is mapped to black and the maxi-
mum value is mapped to white, Figure 6.2. Autoscaling maximizes

the contrast without saturating at black or white. The problem
with this sort of autoscaling is that a few stray pixels can dictate

the contrast resulting in a low-contrast image. A less sensitive ap-
proach is to sort the intensity values in increasing order and map
the 1% and 99% intensity values to black and white, respectively.

Although this will lead to a small amount of saturation, it rarely
fails to produce a high-contrast image.

6.3 Gamma Correction

Typically, high contrast images are visually more appealing. How-
ever a drawback of linear contrast enhancement described above is

that it leads to saturation at both the low and high end of the in-
tensity range. This may be avoided by employing a non-linear con-

trast adjustment scheme, also realizable as a lookup table (LUT)
manipulation. The most standard approach is gamma correction,

where the LUT takes the form:

g(u) = uα, (6.1)

where α > 1 increases contrast, and α < 1 reduces contrast.
Shown in Figure 6.5 are contrast enhanced (top: α = 2) and

contrast reduced (bottom: α = 1/2) images. Note that with the
intensity values u scaled into the range [0, 1], black (0) and white

(1) are mapped to themselves. That is, there is no saturation
at the low or high end. Gamma correction is widely used in a

number of devices because it yields reasonable results and is eas-
ily parameterized. One drawback to this scheme is that the gray
values are mapped in an asymmetric fashion with respect to mid-

level gray (0.5). This may be alleviated by employing a sigmoidal
non-linearity of the form

g(u) =
1

1 + eαu+β
. (6.2)

In order that g(u) be bound by the interval [0, 1], it must be
scaled as follows: c2(g(u)− c1), where c1 = 1/(1 + eβ) and c2 =

(1 + e−α+β)− c1. This non-linearity, with its two degrees of free-
dom, is more versatile and can produce a more balanced contrast

enhancement. Shown in Figure 6.6 is a contrast enhanced image
with α = 12 and β = 6.

44

6.4 Quantize/Threshold

A digital image, by its very nature, is quantized to a discrete num-
ber of intensity values. For example an image quantized to 8-bits

contains 28 = 256 possible intensity values, typically in the range
[0, 255]. An image can be further quantized to a lower number of

bits (b) or intensity values (2b). Quantization can be accomplished
by passing the image through a LUT containing a step function,

Figure 6.7, where the number of steps governs the number of inten-
sity values. Shown in Figure 6.7 is an image of Einstein quantized

to five intensity values, notice that all the subtle variations in the
curtain and in his face and jacket have been eliminated. In the

limit, when an image is quantized to one bit or two intensity val-
ues, the image is said to be thresholded. Shown in Figure 6.8 is a
thresholded image of Einstein and the corresponding LUT, a two-

step function. The point at which the step function transitions
from zero to one is called the threshold and can of course be made

to be any value (i.e., slid left or right).

Figure 6.5 Contrast:

Gamma

Figure 6.6 Contrast:

Sigmoid

6.5 Histogram Equalize

The intensity values of a typical image are often distributed un-

evenly across the full range of 0 to 255 (for an 8-bit image), with
most the mass near mid-gray (128) and falling off on either side,
Figure 6.9. An image can be transformed so that the distribution

of intensity values is flat, that is, each intensity value is equally
represented in the image. This process is known has histogram

equalization 7. Although it may not be immediately obvious an
image is histogram equalized by passing it through a LUT with

the functional form of the cumulative distribution function. More
specifically, define N(u) as the number of pixels with intensity

value u, this is the image histogram and a discrete approximation
to the probability distribution function. Then, the cumulative

distribution function is defined as:

C(y) =
u
∑

i=0

N(i), (6.3)

that is, C(u) is the number of pixels with intensity value less than
or equal to u. Histogram equalization then amounts to simply in-
serting this function into the LUT. Shown in Figure 6.9 is Einstein

before and after histogram equalization. Notice that the effect is
similar to contrast enhancement, which intuitively should make

sense since we increased the number of black and white pixels.

7Why anyone would want to histogram equalize an image is a mystery to
me, but here it is in case you do.

45

In all of these examples the appearance of an image was altered by

simply manipulating the LUT, the mapping from image intensity
value to display brightness value. Such a manipulation leaves the

image content intact, it is a non-destructive operation and thus
completely invertible. These operations can be made destructive
by applying the LUT operation directly to the image. For example

an image can be brightened by adding a constant to each pixel,
and then displaying with a linear LUT. Since such an operation

is destructive it may not be inveritble, for example when bright-
ening an 8-bit image, all pixels that exceed the value 255 will be

truncated to 255.
Figure 6.7 Quantize

Figure 6.8 Threshold

0 100 200
0

5000

10000

15000

0 100 200
0

5000

10000

15000

Figure 6.9 Histogram

equalize

46

7. Linear Filtering

7.1 Convolution

7.2 Derivative Fil-

ters

7.3 Steerable

Filters

7.4 Edge Detection

7.5 Wiener Filter

7.1 Convolution

ωx

ωy

Figure 7.1 2-D

Frequency

Figure 7.2 Low-, Band-,

High-pass

The one-dimensional convolution sum, Equation (2.5), formed the

basis for much of our discussion on discrete-time signals and sys-
tems. Similarly the two-dimensional convolution sum will form

the basis from which we begin our discussion on image processing
and computer vision.

The 1-D convolution sum extends naturally to higher dimensions.
Consider an image f [x, y] and a two-dimensional filter h[x, y]. The

2-D convolution sum is then given by:

g[x, y] =
∞
∑

k=−∞

∞
∑

l=−∞

f [k, l]h[x− k, y − l]. (7.1)

In 1-D, the intuition for a convolution is that of computing inner
products between the filter and signal as the filter “slides” across

the signal. The same intuition holds in 2-D. Inner products are
computed between the 2-D filter and underlying image as the filter

slides from left-to-right/top-to-bottom.

In the Fourier domain, this convolution is equivalent to multiplying

the, now 2-D, Fourier transforms of the filter and image, where the
2-D Fourier transform is given by:

F [ωx, ωy] =
∞
∑

k=−∞

∞
∑

l=−∞

f [k, l]e−i(ωxk+ωyl). (7.2)

The notion of low-pass, band-pass, and high-pass filtering extends

naturally to two-dimensional images. Shown in Figure 7.1 is a
simplified decomposition of the 2-D Fourier domain parameterized

by ωx and ωy ∈ [−π, π]. The inner disc corresponds to the lowest
frequencies, the center annulus to the middle (band) frequencies,

and the outer dark area to the highest frequencies.

Two of the most common (and opposing) linear filtering opera-

tions are blurring and sharpening. Both of these operations can
be accomplished with a 2-D filter and 2-D convolution, or more

efficiently with a 1-D filter and a pair of 1-D horizontal and ver-
tical convolutions. For example, a 2-D convolution with the blur

filter:




0.0625 0.1250 0.0625

0.1250 0.2500 0.1250
0.0625 0.1250 0.0625





47

can be realized by convolving in the horizontal and vertical direc-

tions with the 1-D filter:

blur = (0.25 0.50 0.25) . (7.3)

That is, an outer-product of the 1-D filter with itself yields the

2-D filter - the filters are xy-separable. The separability of 2-D
filters is attractive for two reasons: (1) it is computationally more

efficient and (2) it simplifies the filter design. A generic blur filter
may be constructed from any row of the binomial coefficients:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

Figure 7.3 Blur and

Sharpen

where each row (filter) should be normalized by it’s sum (i.e., blur
filters should always be unit-sum so as not to increase or decrease

the mean image intensity). The amount of blur is then directly
proportional to the size of the filter. Blurring simply reduces

the high-frequency content in an image. The opposing operation,
sharpening, is meant to enhance the high-frequencies. A generic

separable sharpening filter is of the form:

sharp = (0.08 −1.00 0.08) . (7.4)

This filter leaves the low-frequencies intact while enhancing the

contribution of the high-frequencies. Shown in Figure 7.3 are re-
sults from blurring and sharpening.

7.2 Derivative Filters

Discrete differentiation forms the foundation for many applications

in image processing and computer vision. We are all familiar with
the definition of the derivative of a continuous signal f(x):

D{f(x)} = lim
ε→0

f(x + ε)− f(x)

ε
. (7.5)

This definition requires that the signal f(x) be well defined for all
x ∈ R. So, does it make sense to differentiate a discretely sampled

signal, D{f [x]}, which is only defined over an integer sampling
lattice? Strictly speaking, no. But our intuition may be that this

is not such an unreasonable request. After all, we know how to
differentiate f(x), from which the sampled signal f [x] was derived,
so why not just differentiate the continuous signal f(x) and then

sample the result? Surely this is what we have in mind when we

48

ask for the derivative of a sampled signal. But one should not be

fooled by the seeming simplicity of our intuition, as we will soon
discover the design of an accurate and efficient discrete derivative

operator will prove to be sufficiently challenging.

Recall from earlier chapters that under certain conditions (Nyquist
theory), the relationship between the continuous and sampled sig-

nals can be expressed precisely as:

f(x) = f [x] ? h(x), (7.6)

where h(x) = sin(πx/T)/(πx/T) is the ideal sync, and ? is the
convolution operator. Now, applying the continuous differential

operator to both sides yields:

D{f(x)} = D{f [x] ? h(x)}, (7.7)

and expressing the right-hand side in terms of the convolution
sum:

D{f(x)} = D







∞
∑

k=−∞

f [k]h(x− k)







=
∞
∑

k=−∞

f [k]D{h(x− k)}

= f [x] ? D{h(x)}. (7.8)

Notice that the derivative operator D{·} is being applied only

to continuous entities. Having computed the desired derivatives,
we need only sample the results, denoting S{·} as the sampling

operator:

0

0

1

0

0

Figure 7.4 Ideal sync

and its derivative

S{ D{f(x)} } = f [x] ? S{ D{h(x)} }
S{f ′(x)} = f [x] ? S{h′(x)}

f ′[x] = f [x] ? h′[x]. (7.9)

On the left-hand side of the above equation is the desired quan-
tity, the derivative of the sampled signal. On the right-hand side

is a discrete convolution between two known quantities, the sam-
pled derivative of the sync and the original sampled signal. The
derivative of the sync can be expressed analytically by simply dif-

ferentiating the sync function:

h′(x) =
π2x/T 2 cos(πx/T)− π/T sin(πx/T)

(πx/T)2
, (7.10)

where T is the sampling period at which f(x) was sampled. So,

if the signal f(x) is sampled above the Nyquist rate and if it is in

49

fact differentiable, then Equation (7.9) tells us that we can exactly

compute the derivative of the sampled signal f [x], an altogether
happy ending.

If you are feeling a bit uneasy it is for a good reason. Although
mathematically correct, we have a solution for differentiating a

discretely sampled signal that is physically unrealizable. In partic-
ular the derivative of the sync, h′(x), is spatially infinite in extent,

meaning that it cannot be implemented on a finite machine. And
even worse, h′(x) falls off slowly from the origin so that truncation
will cause significant inaccuracies. So we are going to have to part

with mathematical perfection and design a finite-length filter.

To begin we need to compute the frequency response of the ideal
derivative filter. We can compute the response indirectly by first

expressing f [x] in terms of its Fourier series:

f [x] =
1

2π

π
∑

ω=−π

F [ω]eiωx, (7.11)

and then differentiating both sides with respect to x:

D{f [x]} =
1

2π

π
∑

ω=−π

F [ω]D{eiωx}

=
1

2π

π
∑

ω=−π

iωF [ω]eiωx. (7.12)

Differentiation in the space domain is then seen to be equivalent to

multiplying the Fourier transform F [ω] by an imaginary ramp iω.
And since multiplication in the frequency domain is equivalent

to convolution in the space domain, an imaginary ramp is the
frequency response of the ideal derivative filter. Trying to directly

−pi 0 pi
−pi

 0

 pi

Figure 7.5 Ideal and ap-

proximate derivative fre-

quency response

design a finite length filter to this response is futile because of the

discontinuity at −π/π, which of course accounts for the spatially
infinite extent of h′(x). So we are resigned to designing a filter with

a periodic frequency response that “best” approximates a ramp.
The simplest such approximation is that of a sinusoid where, at

least in the low-frequency range, the match is reasonably good
(i.e., sin(ω) = ω, for small ω). Employing the least-squares filter

design technique (Equation (4.8)) we formulate a quadratic error
function to be minimized:

E(~h) = | M~h− ~H |2, (7.13)

where M is the N × n Fourier matrix (Equation (2.28)), ~H is the

N sampled desired frequency response, and n the filter size is.

50

To minimize we differentiate, set equal to zero and solve for the

minimal solution:

~h = (M tM)−1M t ~H (7.14)

Since the desired frequency response, a sinusoid, has only two de-
grees of freedom, amplitude and phase, a 2-tap filter will suffice
(i.e., n = 2). The resulting filter is of the form ~h = (0.5 −0.5).

Intuitively this is exactly what we should have expected - for ex-
ample, applying this filter via a convolution and evaluating at,

arbitrarily, n = 0 yields:

f ′[x] = h[x] ? f [x]

=
∞
∑

k=−∞

h[x− k]f [k]

f ′[0] = h[1]f [−1] + h[0]f [0]

= 0.5f [0]− 0.5f [−1]. (7.15)

Note that the derivative is being approximated with a simple two-

point difference, that is, a discrete approximation to the continu-
ous definition in Equation (7.5). We could of course greatly im-

prove on this filter design. But since we are really interested in
multi-dimensional differentiation, let’s put aside further analysis
of the one-dimensional case and move on to the two-dimensional

case.

It has been the tendency to blindly extend the one-dimensional

design to higher-dimensions, but, as we will see shortly, in higher-
dimensions the story becomes slightly more complicated. In the

context of higher-dimensional signals we first need to consider par-
tial derivatives. For example the partial derivative of a two dimen-

sional signal f(x, y) in it’s first argument is defined as:

fx(x, y) ≡ ∂f(x, y)

∂x

= lim
ε→0

f(x + ε, y)− f(x, y)

ε
. (7.16)

According to the Nyquist theory, the continuous and discrete sig-
nals (if properly sampled) are related by the following equality:

f(x, y) = f [x, y] ? h(x, y), (7.17)

where h(x, y) = sin(πx/T) sin(πy/T)
π2xy/T 2 is the two-dimensional ideal sync.

As before we apply the continuous partial differential operator to
both sides:

Dx{f(x, y)} = f [x, y] ? Dx{h(x, y)}, (7.18)

51

noting again that the differential operator is only applied to contin-

uous entities. Since the two-dimensional sync is separable (i.e., h(x, y) =
h(x) ? h(y)), the above equation can be rewritten as:

fx(x, y) = f [x, y] ? Dx{h(x) ? h(y)}
= f [x, y] ? Dx{h(x)} ? h(y)

= f [x, y] ? h′(x) ? h(y). (7.19)

And finally, sampling both sides gives an expression for the partial

derivative of the discretely sampled two-dimensional signal:

S{fx(x, y)} = f [x, y] ? S{h′(x)} ? S{h(y)}
fx[x, y] = f [x, y] ? h′[x] ? h[y]. (7.20)

Notice that calculating the partial derivative requires a pair of

f’[x]

f[y]

Figure 7.6 Horizontal

partial differentiation

one-dimensional convolutions: a derivative filter, h′[x], in the di-

mension of differentiation, and an interpolation filter, h[y], in
the other dimension (for multi-dimensional signals, all remain-

ing dimensions would be convolved with the interpolation filter).
Since two-dimensional differentiation reduces to a pair of one-

dimensional convolutions it is tempting to simply employ the same
differentiation filter used in the one-dimensional case. But since a

pair of filters are now required perhaps we should give this some
additional thought.

In some ways the choice of filters seems trivial: chose an interpo-
lation function h(x), differentiate it to get the derivative function

h′(x), and sample these functions to get the final digital filters
h[x] and h′[x]. So how is this different from the one-dimensional

case? In the one-dimensional case only the derivative filter is em-
ployed, whereas in the two-dimensional case we require the pair

of filters. And by our formulation we know that the pair of fil-
ters should satisfy the relationship that one is the derivative of
the other h′(x) = D(h(x)). And in fact this constraint is au-

tomatically enforced by the very nature in which the continu-
ous functions are chosen, but in the final step, these functions

are sampled to produce discrete filters. This sampling step typi-

−pi 0 pi

Figure 7.7

Sobel frequency response

cally destroys the required derivative relationship, and, although

a seemingly subtle point, has dramatic effects on the accuracy of
the resulting derivative operator. For example consider the often

used Sobel derivative filters with h[x] = (1
√

2 1) /(2 +
√

2)
and h′[x] = (1 0 −1) /3. Shown in Figure 7.7 are the magni-

tudes of the Fourier transform of the derivative filter (solid line)
and the interpolation filter times iω (i.e., frequency domain differ-
entiation). If the filters obeyed the required derivative relationship

than these curves would be exactly matched, which they clearly

52

are not. The mismatching of the filters results in gross inaccura-

cies in derivative measurements. Let’s see then if we can design a
better set of filters.

We begin by writing down the desired relationship between the
derivative and interpolation filters, most conveniently expressed
in the frequency domain:

H ′(ω) = iωH(ω), (7.21)

from which we can write a weighted least-squares error functional
to be minimized:

E(H, H ′) =

∫

dω
[

W (ω)(iωH(ω)−H ′(ω))
]2

, (7.22)

where W (ω) is a frequency weighting function. Next, we write a

discrete approximation of this continuous error functional over the
n-vectors ~h and ~h′ containing the sampled derivative and interpo-
lation filters, respectively:

E(~h, ~h′) = |W (F ′~h− F ~h′)|2, (7.23)

where the columns of the matrix Fm×n contain the first n Fourier
basis functions (i.e., a discrete-time Fourier transform), the matrix

F ′
m×n = iωFm×n, and Wm×m is a diagonal frequency weighting

matrix. Note that the dimension n is determined by the filter size

and the dimension m is the sampling rate of the continuous Fourier
basis functions, which should be chosen to be sufficiently large to
avoid sampling artifacts. This error function can be expressed

more concisely as:

E(~u) = |M~u|2, (7.24)

where the matrix M and the vector ~u are constructed by “packing

together” matrices and vectors:

M = (WF ′ | −WF) and ~u =

(~h
~h′

)

. (7.25)

The minimal unit vector ~u is then simply the minimal-eigenvalue

eigenvector of the matrix M tM . After solving for ~u, the derivative
and interpolation filters can be “unpacked” and normalized so that

the interpolation filter is unit sum. Below are the resulting filter
values for a 3-tap and 5-tap filter pair.

53

Shown in Figure 7.8 are the matching of these filters in the fre-

quency domain. Notice that the 5-tap filters are nearly perfectly
matched.

−pi 0 pi

−pi 0 pi

Figure 7.8

Frequency response of

matched derivative filters

h 0.223755 0.552490 0.223755
h′ 0.453014 0.0 -0.453014

h 0.036420 0.248972 0.429217 0.248972 0.036420

h′ 0.108415 0.280353 0.0 -0.280353 -0.108415

Higher-order derivative filters can be designed by replacing the
initial constraint in Equation (7.21) with H ′(ω) = (iω)kH(ω) for

a kth order derivative.

A peculiar aspect of this filter design is that nowhere did we ex-

plicitly try to model a specified frequency response. Rather, the
design fell naturally from the relationship between the continuous-
and discrete-time signals and the application of the continuous

derivative operator, and in this way is quite distinct from the one-
dimensional case. The proper choice of derivative filters can have

a dramatic impact on the applications which utilize them. For

Figure 7.9

Differential motion esti-

mation

example, a common application of differential measurements is in

measuring motion from a movie sequence f(x, y, t). The standard
formulation for motion estimation is:

fx(x, y, t)vx(x, y) + fy(x, y, t)vy(x, y) + ft(x, y, t) = 0, (7.26)

where the motion vector is ~v = (vx vy)t, and fx(·), fy(·), and
ft(·) are the partial derivatives with respect to space and time.

Shown in Figure 7.9 are the resulting motion fields for a sim-
ple translational motion with the Sobel (top panel) and matched

(bottom) derivative filters used to compute the various derivatives.
Although these filters are the same size, the difference in accuracy

is significant.

7.3 Steerable Filters

In the previous section we showed how to compute horizontal and
vertical partial derivatives of images. One may naturally wonder

how to compute a derivative in an arbitrary direction. Quite re-
markably it turns out that we need not design a new set of filters

for each possible direction because the derivative in any direction
can be synthesized from a linear combination of the horizontal and

vertical derivatives. This property of derivatives has been termed
steerability. There are several formulations of this property, we
chose to work in the frequency domain where differentiation takes

on a particularly simple form.

54

To begin, we express a two-dimensional image with respect to its

Fourier series:

f(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

F (ωx, ωy)e
−j(ωxx+ωyy). (7.27)

Differentiating 8 both sides with respect to x gives:

fx(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωxF (ωx, ωy)e
−j(ωxx+ωyy).(7.28)

That is, in the frequency domain differentiation in the horizon-
tal direction u is equivalent to multiplying the Fourier transform

F (ωx, ωy) by an imaginary horizontal ramp, −jωx. Similarly, the
vertical partial derivative in v is:

fy(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωyF (ωx, ωy)e
−j(ωxx+ωyy).(7.29)

Now, differentiation in the vertical direction v is equivalent to

multiplying the Fourier transform by an imaginary vertical ramp.
This trend generalizes to arbitrary directions, that is, the partial
derivative in any direction α can be computed by multiplying the

Fourier transform by an imaginary oriented ramp −jωα:

fα(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωαF (ωx, ωy)e
−j(ωxx+ωyy),(7.30)

where the oriented ramp can be expressed in terms of the horizon-
tal and vertical ramps:

ωα = cos(α)ωx + sin(α)ωy . (7.31)

Substituting this definition back into the partial derivative in α,

Equation (7.30), gives:

fα(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−j[cos(α)ωx + sin(α)ωy]F (ωx, ωy)e
−j(ωxx+ωyy)

= cos(α)
π
∑

ωx=−π

π
∑

ωy=−π

−jωxF (ωx, ωy)e
−j(ωxx+ωyy)

+ sin(α)
π
∑

ωx=−π

π
∑

ωy=−π

−jωyF (ωx, ωy)e
−j(ωxx+ωyy)

= cos(α)fx(x, y) + sin(α)fy(x, y). (7.32)

8Recall that the derivative of an exponential is an exponential, so that
according to the chain rule, Dx{e

ax} = aeax.

55

Notice that we obtain the horizontal and vertical derivatives when

α = 0 and α = 90. This equation embodies the principle of steer-
ability - the derivative in any direction α can be synthesized from

a linear combination of the partial horizontal and vertical deriva-
tives, fx(x, y) and fy(x, y). Pause to appreciate how remarkable
this is, a pair of directional derivatives is sufficient to represent an

infinite number of other directional derivatives, i.e., α can take on
any real-valued number.

Figure 7.10 Steerability

From the previous section we know how to compute the horizon-
tal and vertical derivatives via convolutions with an interpolation

and derivative filter. To compute any other directional derivative
no more convolutions are required, simply take the appropriate

linear combinations of the horizontal and vertical derivatives as
specified in Equation (7.32). Shown in Figure 7.10 from top to

bottom is a disc f(x, y), its horizontal derivative fx(x, y), its ver-
tical derivative fy(x, y), and its steered derivative f45(x, y), where
the steered derivative was synthesized from the appropriate linear

combinations of the horizontal and vertical derivatives. The ob-
vious benefit of steerability is that the derivative in any direction

can be synthesized with minimal computational costs.

Steerability is not limited to first-order derivatives. Higher-order

derivatives are also steerable; the N th-order derivative is steerable
with a basis set of size N + 1. For example, the second-order

derivative in an arbitrary direction can be synthesized as follows:

fαα = cos2(α)fxx + 2 cos(α) sin(α)fxy + sin2(α)fyy , (7.33)

where for notational simplicity the spatial arguments (x, y) have

been dropped, and the multiple subscripts denote higher-order
differentiation. Note that three partial derivatives are now needed

to steer the second-order derivative. Similarly, the third-order
derivative can be steered with a basis of size four:

fααα = cos3(α)fxxx + 3 cos2(α) sin(α)fxxy

+3 cos(α) sin2(α)fxyy + sin3(α)fyyy . (7.34)

You may have noticed that the coefficients needed to steer the basis

set look familiar, they are the binomial coefficients that come from
a polynomial expansion. More specifically, as in Equation(7.30)

the N th-order derivative in the frequency domain is computed by
multiplying the Fourier transform by an imaginary oriented ramp

raised to the N th power, (−jωα)N . Expressing this oriented ramp
in terms of the horizontal and vertical ramps provides the basis

and coefficients needed to steer derivatives of arbitrary order:

(ωα)N = (cos(α)ωx + sin(α)ωy)
N . (7.35)

56

Although presented in the context of derivatives, the principle of

steerability is not limited to derivatives. In the most general case,
a two-dimensional filter f(x, y) is steerable in orientation if it can

be expressed as a polar-separable function, g(r)h(θ), where h(θ) is
band-limited. More specifically, for an arbitrary radial component
g(r), and for h(θ) expressed as:

h(θ) =
N
∑

n=1

an cos(nθ) + bn sin(nθ) (7.36)

then the filter is steerable with a basis size of 2N .

7.4 Edge Detection

Figure 7.11 Edges

Discrete differentiation forms the foundation for many applica-
tions in computer vision. One such example is edge detection - a

topic that has received an excessive amount of attention, but is
only briefly touched upon here. An edge is loosely defined as an

extended region in the image that undergoes a rapid directional
change in intensity. Differential techniques are the obvious choice

for measuring such changes. A basic edge detector begins by com-
puting first-order spatial derivatives of an image f [x, y]:

fx[x, y] = (f [x, y] ? h′[x]) ? h[y] (7.37)

fy [x, y] = (f [x, y] ? h[x]) ? h′[y], (7.38)

where h′[·] and h[·] are the derivative and prefilter defined in Sec-
tion 7.2. The “strength” of an edge at each spatial location is
defined to be the magnitude of the gradient vector 5[x, y] =

(fx[x, y] fy [x, y]), defined as:

| 5 [x, y]| =
√

f2
x [x, y] + f2

y [x, y]. (7.39)

As shown in Figure 7.11, the gradient magnitude is only the begin-
ning of a more involved process (not discussed here) of extracting

and localizing the salient and relevant edges.

7.5 Wiener Filter

+

n

s s

Figure 7.12 Additive

noise

For any of a number of reasons a digital signal may become cor-
rupted with noise. The introduction of noise into a signal is often

modeled as an additive process, ŝ = s+n. The goal of de-noising is
to recover the original signal s from the corrupted signal ŝ. Given

a single constraint in two unknowns this problem is equivalent to
my asking you “37 is the sum of two numbers, what are they?”
Lacking clairvoyant powers or knowledge of how the individual

numbers were selected we have little hope of a solution. But by

57

making assumptions regarding the signal and noise characteris-

tics and limiting ourselves to a linear approach, a solution can be
formulated known as the Wiener filter, of famed Mathematician

Norbert Wiener (1894-1964).

−pi 0 pi
0

1

Figure 7.13 Wiener fil-

ter

Figure 7.14 Einstein

plus noise

Having restricting ourselves to a linear solution, our goal is to
design a filter h[x] such that:

s[x] = h[x] ? ŝ[x]

= h[x] ? (s[x] + n[x]), (7.40)

that is, when the filter is convolved with the corrupted signal the

original signal is recovered. With this as our goal, we reformulate
this constraint in the frequency domain and construct a quadratic

error functional to be minimized:

E(H(ω)) =

∫

dω [H(ω)(S(ω)+ N(ω))− S(ω)]2. (7.41)

For notational simplicity we drop the frequency parameter ω and
express the integral with respect to the expected value operator

E{·}:

E(H) = E
{

(H(S + N)− S)2
}

= E
{

H2(S + N)2 − 2HS(S + N) + S2
}

= E
{

H2(S2 + 2SN + N2)− 2H(S2 + SN) + S2
}

(7.42)

In order to simplify this expression we can assume that the signal
and noise are statistically independent (i.e., E{SN} = 0), yielding:

E(H) = E
{

H2(S2 + N2)− 2HS2 + S2
}

. (7.43)

To minimize, we differentiate:

dE(H)

dH
= 2H(S2 + N2)− 2S2, (7.44)

set equal to zero and solve:

H(ω) =
S2(ω)

S2(ω) + N2(ω)
. (7.45)

At an intuitive level this frequency response makes sense - when

the signal is strong and the noise is weak the response is close to
1 (i.e., frequencies are passed), and when the signal is weak and
the noise is strong the response is close to 0 (i.e., frequencies are

stopped). So we now have an optimal (in the least-squares sense)

58

frequency response in terms of the signal and noise characteris-

tics, but of course we don’t typically know what those are. But
we can instantiate them by making assumptions about the general

statistical nature of the signal and noise, for example a common
choice is to assume white noise, N(ω) is constant for all ω, and,
for natural images, to assume that S(ω) = 1/ωp. The frequency

response in the top panel of Figure 7.13 was constructed under
these assumptions. Shown in the bottom panel is a 7-tap filter

derived from a least-squares design. This one-dimensional formu-
lation can easily be extended to two or more dimensions. Shown

in Figure 7.14 from top to bottom, is Einstein, Einstein plus noise,
and the results of applying a 7 × 7 Wiener filter. Note that the

noise levels are reduced but that much of the sharp image struc-
ture has also been lost, which is an unfortunate but expected side

effect given that the Wiener filter is low-pass in nature.

59

8. Non-Linear Filtering

8-1 Median Filter

8-2 Dithering

8.1 Median Filter

Salt & Pepper Noise

Wiener

Median

Figure 8.1 Median filter

Noise may be introduced into an image in a number of different
ways. In the previous section we talked about how to remove

noise that has been introduced in an additive fashion. Here we
look at a different noise model, one where a small number of pix-

els are corrupted due to, for example, a faulty transmission line.
The corrupted pixels randomly take on a value of white or black,

hence the name salt and pepper used to describe such noise pat-
terns (Figure 8.1). Shown in the middle panel of Figure 8.1 is the
disastrous result of applying the solution from the additive noise

model (Wiener filter) to the salt and pepper noise image in the
top panel. Trying to average out the noise in this fashion is equiv-

alent to asking for the average salary of a group of eight graduate
students and Bill Gates. As the income of Gates will skew the av-

erage salary so does each noise pixel when its value is so disparate
from its neighbors. In such cases, the mean is best replaced with

the median, computed by sorting the set of numbers and report-
ing on the value that lies midway. Shown in the bottom panel of

Figure 8.1 is the much improved result of applying a 3 × 3 me-
dian filter to the salt and pepper noise image. More specifically,
the center pixel of each 3 × 3 neighborhood is replaced with the

median of the nine pixel values in that neighborhood.

Figure 8.2 15 × 15 me-

dian filter

Depending on the density of the noise the median filter may need

to be computed over a larger neighborhood. The tradeoff being
that a larger neighborhood leads to a loss of detail, however this

loss of detail is quite distinct from that of averaging. For example,
shown in Figure 8.2 is the result of applying a 15×15 median filter.

Notice that although many of the internal details have been lost
the boundary contours (edges) have been retained, this is often

referred to as posterization. This effect could never be achieved
with an averaging filter which would indiscriminately smooth over
all image structures.

Because of the non-linear sorting step of a median filter it cannot
be implemented via a simple convolution and is thus often more

costly to implement. Outside the scope of this presentation there
are a number of tricks for reducing the computational demands of

a median filter.

60

8.2 Dithering

Figure 8.3 Thresholding

and Dithering

Dithering is a process by which a digital image with a finite num-
ber of gray levels is made to appear as a continuous-tone image.

For example, shown at the top of Figure 8.3 is an 8-bit (i.e., 256
gray values) grayscale image of Richard P. Feynman. Shown below
are two 1 bit (i.e., 2 gray values) images. The first was produced

by thresholding, and the second by dithering. Although in both
images each pixel takes on only one of two gray values (black or

white), it is clear that the final image quality is critically depen-
dent on the way in which pixels are quantized.

There are numerous dithering algorithms (and even more vari-
ants within each algorithm). Sadly there are few quantitative

metrics for measuring the performance of these algorithms. A
standard and reasonably effective algorithm is a stochastic error

diffusion algorithm based on the Floyd/Steinberg algorithm. The
basic Floyd/Steinberg error diffusion dithering algorithm tries to
exploit local image structure to reduce the effects of quantization.

For simplicity, a 1-bit version of this algorithm is described here,
the algorithm extends naturally to an arbitrary number of gray

levels.

This algorithm operates by scanning through the image, left to

right and top to bottom. At each pixel, the gray value is first
thresholded into “black” or “white”, the difference between the

new pixel value and the original value is then computed and dis-
tributed in a weighted fashion to its neighbors. Typically, the error

is distributed to four neighbors with the following weighting:

1
16 ×

(• 7
3 5 1

)

,

where the • represents the thresholded pixel, and the position of
the weights represent spatial position on a rectangular sampling

lattice. Since this algorithm makes only a single pass through
the image, the neighbors receiving a portion of the error must

consist only of those pixels not already visited (i.e., the algorithm
is casual). Note also that since the weights have unit sum, the

error is neither amplified nor reduced. As an example, consider
the quantization of an 8-bit image to a 1-bit image. An 8-bit

image has 255 gray values, so all pixels less than 128 (mid-level
gray) are thresholded to 0 (black), and all values greater than 128

are thresholded to 255 (white). A pixel at position (x, y) with
intensity value 120 is thresholded to 0. The error, 120-0 = 120,
is distributed to four neighbors as follows: (7/16)120 is added to

the pixel at position (x + 1, y), (3/16)120 is added to the pixel at

61

position (x− 1, y + 1), (5/16)120 to pixel (x, y + 1) and (1/16)120

to pixel (x + 1, y + 1). The intuition behind this algorithm is
that when the pixel value of 120 is thresholded to 0 that pixel is

made darker. By propagating this error the surrounding pixels are
brightened making it more likely that they will be thresholded to
something brighter. As a result the local neighborhood maintains

it’s average gray value.

Qualitatively, the error diffusion algorithm reduces the effects of

quantization via simple thresholding. However this algorithm does
introduce correlated artifacts due to the deterministic nature of

the algorithm and scanning order. These problems may be par-
tially alleviated by introducing a stochastic process in a variety

of places. Two possibilities include randomizing the error before
distributing it to its neighbors (e.g., randomly scaling the error

in the range 0.9 to 1.1), and alternating the scanning direction
(e.g., odd lines are scanned left to right, and even lines from right
to left).

62

9. Multi-Scale Transforms

63

10. Motion Estimation

10-1 Differential
Motion

10-2 Differential
Stereo

10.1 Differential Motion

Our visual world is inherently dynamic. People, cars, dogs, etc.
are (usually) moving. These may be gross motions, walking across
the room, or smaller motions, scratching behind your ear. Our

task is to estimate such image motions from two or more images
taken at different instances in time.

�
�

�

�������
�������
�������
�������

��

���������
���������
���������
���������

Figure 10.1 Flow field

With respect to notation, an image is denoted as f(x, y) and an
image sequence is denoted as f(x(t), y(t), t), where x(t) and y(t)

are the spatial parameters and t is the temporal parameter. For
example, a sequence of N images taken in rapid succession may be

represented as f(x(t), y(t), t+ i∆t) with i ∈ [0, N−1], and ∆t rep-
resenting the amount of time between image capture (typically on

the order of 1/30th of a second). Given such an image sequence,
our task is to estimate the amount of motion at each point in the

image. For a given instant in space and time, we require an esti-
mate of motion (velocity) ~v = (vx vy), where vx and vy denote
the horizontal and vertical components of the velocity vector ~v.

Shown in Figure 10.1 are a pair of images taken at two moments
in time as a textured square is translating uniformly across the

image. Also shown is the corresponding estimate of motion often
referred to as a flow field. The flow field consists of a velocity vec-

tor at each point in the image (shown of course are only a subset
of these vectors).

In order to estimate motion, an assumption of brightness constancy
is made. That is, it is assumed that as a small surface patch is

moving, its brightness value remains unchanged. This constraint
can be expressed with the following partial differential equation:

∂f(x(t), y(t), t)

∂t
= 0. (10.1)

This constraint holds for each point in space and time. Expanding
this constraint according to the chain rule yields:

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂t
= 0, (10.2)

where the partials of the spatial parameters x and y with respect

to time correspond to the velocity components:

fxvx + fyvy + ft = 0. (10.3)

64

The subscripts on the function f denote partial derivatives. Note

again that this constraint holds for each point in space and time
but that for notational simplicity the spatial/temporal parameters

are dropped. This transformed brightness constancy constraint is
rewritten by packing together the partial derivatives and velocity
components into row and column vectors.

(fx fy)

(

vx

vy

)

+ ft = 0

~f t
s~v + ft = 0. (10.4)

The space/time derivatives ~fs and ft are measured quantities, leav-
ing us with a single constraint in two unknowns (the two compo-
nents of the velocity vector, ~v). The constraint can be solved by

assuming that the motion is locally similar, and integrating this
constraint over a local image neighborhood. A least-squares error

function takes the form:

E(~v) =

[

∑

x,y

~f t
s~v +

∑

x,y

ft

]2

, (10.5)

To solve for the motion this error function is first differentiated

∂E(~v)

∂~v
= 2

∑

~fs

[

∑

~f t
s~v +

∑

ft

]

= 2
∑

~fs
~f t
s~v + 2

∑

~fsft. (10.6)

Setting equal to zero and recombining the terms into matrix form

yields:

(∑

fx
∑

fy

)

(
∑

fx
∑

fy)

(

vx

vy

)

= −
(∑

fxft
∑

fyft

)

(∑

f2
x

∑

fxfy
∑

fxfy
∑

f2
y

)(

vx

vy

)

= −
(∑

fxft
∑

fyft

)

M~v = −~b. (10.7)

If the matrix M is invertible (full rank), then the velocity can be

estimated by simply left multiplying by the inverse matrix:

~v = −M−1~b (10.8)

The critical question then is, when is the matrix M invertible?

Generally speaking the matrix is rank deficient, and hence not
invertible, when the intensity variation in a local image neighbor-

hood varies only one-dimensionally (e.g., fx = 0 or fy = 0) or
zero-dimensionally (fx = 0 and fy = 0). These singularities are
sometimes referred to as the aperture and blank wall problem.

The motion at such points simply can not be estimated.

65

Motion estimation then reduces to computing, for each point in

space and time, the spatial/temporal derivatives fx, fy , and ft. Of
course the temporal derivative requires a minimum of two images,

and is typically estimated from between two and seven images.
The spatial/temporal derivatives are computed as follows. Given
a temporal sequence of N images, the spatial derivatives are com-

puted by first creating a temporally prefiltered image. The spatial
derivative in the horizontal direction fx is estimated by prefiltering

this image in the vertical y direction and differentiating in x. Simi-
larly, the spatial derivative in the vertical direction fy is estimated

by prefiltering in the horizontal x direction and differentiating in
y. Finally, the temporal derivative is estimated by temporally dif-

ferentiating the original N images, and prefiltering the result in
both the x and y directions. The choice of filters depends on the

image sequence length: an N tap pre/derivative filter pair is used
for an image sequence of length N (See Section 7).

10.2 Differential Stereo

V

D

Figure 10.2 Motion and

Stereo

Motion estimation involves determining, from a single stationary
camera, how much an object moves over time (its velocity). Stereo

estimation involves determining the displacement disparity of a
stationary object as it is imaged onto a pair of spatially offset

cameras. As illustrated in Figure 10.2, these problems are virtu-
ally identical: velocity (~v) ≡ disparity (∆). Motion and stereo
estimation are often considered as separate problems. Motion is

thought of in a continuous (differential) framework, while stereo,
with its discrete pair of images, is thought of in terms of a dis-

crete matching problem. This dichotomy is unnecessary: stereo
estimation can be cast within a differential framework.

Stereo estimation typically involves a pair of cameras spatially

offset in the horizontal direction such that their optical axis remain
parallel (Figure 10.2). Denoting an image as f(x, y), the image

that is formed by translating the camera in a purely horizontal
direction is given by f(x + ∆(x, y), y). If a point in the world

(X, Y, Z) is imaged to the image position (x, y), then the shift
∆(x, y) is inversely proportional to the distance Z (i.e., nearby
objects have large disparities, relative to distant objects). Given

this, a stereo pair of images is denoted as:

fL(x + δ(x, y), y) and fR(x− δ(x, y), y), (10.9)

where the disparity ∆ = 2δ. Our task is to determine, for each
point in the image, the disparity (δ) between the left and right

images. That is, to find the shift that brings the stereo pair back

66

into register. To this end, we write a quadratic error function to

be minimized:

E(δ(x, y)) = [fL(x + δ(x, y), y)− fR(x− δ(x, y), y)]2. (10.10)

In this form, solving for δ is non-trivial. We may simplify things
by expressing the image pair in terms of their truncated first-order

Taylor series expansion:

f(x + δ(x, y), y) = f(x, y) + δ(x, y)fx(x, y), (10.11)

where fx(x, y) denotes the partial derivative of f with respect to

x. With this first-order approximation, the error function to be
minimized takes the form:

E(δ) = [(fL + δ(fL)x)− (fR − δ(fR)x)]2

= [(fL − fR) + δ(fL + fR)x]2, (10.12)

where for notational convenience, the spatial parameters have been

dropped. Differentiating, setting the result equal to zero and solv-
ing for δ yields:

dE(δ)

dδ
= 2(fL + fR)x[(fL − fR) + δ(fL + fR)x]

= 0

δ = − fL − fR

(fL + fR)x
(10.13)

Stereo estimation then reduces to computing, for each point in the
image, spatial derivatives and the difference between the left and

right stereo pair (a crude derivative with respect to viewpoint).

Why, if motion and stereo estimation are similar, do the math-

ematical formulations look so different? Upon closer inspection
they are in fact quite similar. The above formulation amounts to

a constrained version of motion estimation. In particular, because
of the strictly horizontal shift of the camera pair, the disparity

was constrained along the horizontal direction. If we reconsider
the motion estimation formulation assuming motion only along
the horizontal direction, then the similarity of the formulations

becomes evident. Recall that in motion estimation the brightness
constancy assumption led to the following constraint:

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂t
= 0, (10.14)

Constraining the motion along the vertical y direction to be zero
yields:

∂f

∂x

∂x

∂t
+

∂f

∂t
= 0, (10.15)

67

where the partial derivative of the spatial parameter x with re-

spect to time correspond to the motion (speed) in the horizontal
direction:

fxvx + ft = 0. (10.16)

Unlike before, this leads to a single constraint with a single un-

known which can be solved for directly:

vx = − ft

fx
. (10.17)

This solution now looks very similar to the solution for differential

stereo in Equation 10.13. In both solutions the numerator is a
derivative, in one case with respect to time (motion) and in the
other with respect to viewpoint (stereo). Also in both solutions,

the denominator is a spatial derivative. In the stereo case, the
denominator consists of the spatial derivative of the sum of the

left and right image pair. This may seem odd, but recall that
differentiation of a multi-dimensional function requires differenti-

ating along the desired dimension and prefiltering along all other
dimensions (in this case the viewpoint dimension).

In both the differential motion and stereo formulations there exists
singularities when the denominator (spatial derivative) is zero. As

with the earlier motion estimation this can be partially alleviated
by integrating the disparities over a local image neighborhood.

However, if the spatial derivative is zero over a large area, corre-
sponding to a surface in the world with no texture, then disparities
at these points simply can not be estimated.

68

11. Useful Tools

11-1 Expectation/
Maximization

11-2 Principal

Component
Analysis

11-3 Independent
Component

Analysis

11.1 Expectation/Maximization

The Expectation/Maximization (EM) algorithm simultaneously seg-

ments and fits data generated from multiple parametric models.
For example, shown in Figure 11.1 are a collection of data points
(x, y) generated from one of two linear models of the form:

Figure 11.1 Data from

two models

y(i) = a1x(i) + b1 + n1(i) or y(i) = a2x(i) + b2 + n2(i),(11.1)

where the model parameters are a1, b1 and a2, b2, and the system

is modeled with additive noise n1(i) and n2(i).

If we are told the model parameters, then determining which data
point was generated by which model would be a simple matter of

choosing, for each data point i, the model k that minimizes the
error between the data and the model prediction:

rk(i) = |akx(i) + bk − y(i))|, (11.2)

for k = 1, 2 in our current example. On the other hand, if we are
told which data points were generated by which model, then esti-

mating the model parameters reduces to solving, for each model
k, an over-constrained set of linear equations:











xk(1) 1

xk(2) 1
...

...

xk(n) 1











(

ak

bk

)

=











yk(1)

yk(2)
...

yk(n)











, (11.3)

where the xk(i) and yk(i) all belong to model k. In either case,
knowing one piece of information (the model assignment or param-

eters) makes determining the other relatively easy. But, lacking
either piece of information makes this a considerably more difficult

estimation problem. The EM algorithm is an iterative two step
algorithm that estimates both the model assignment and param-

eters.

The “E-step” of EM assumes that the model parameters are known
(initially, the model parameters can be assigned random values)

and calculates the likelihood of each data point belonging to each
model. In so doing the model assignment is made in a “soft”
probabilistic fashion. That is, each data point is not explicitly

assigned a single model, instead each data point i is assigned a

69

probability of it belonging to each model k. For each model the

residual error is first computed as:

rk(i) = akx(i) + bk − y(i) (11.4)

from which the likelihoods are calculated. We ask, what is the

likelihood of point i belonging to model k given the residual error.
For our two model example:

P (ak , bk|rk(i)) =
P (rk(i)|ak, bk)P (ak , bk)

P (rk(i))

=
P (rk(i)|ak, bk)

P (r1(i)|ak, bk) + P (r2(i)|ak, bk)
, (11.5)

for k = 1, 2. The expansion of the conditional probability is from

Bayes rule: P (B|Ak) = P (Ak |B)P (B)
∑

l
P (Al |B)P (B)

. If we assume a Gaussian

probability distribution, then the likelihood takes the form:

wk(i) =
e−rk(i)2/σN

e−r1(i)2/σN + e−r2(i)2/σN
(11.6)

where, σN is proportional to the amount of noise in the data, and
for each data point i,

∑

k wk(i) = 1.

The “M-step” of EM takes the likelihood of each data point be-
longing to each model, and re-estimates the model parameters

using weighted least-squares. That is, the following weighted error
function on the model parameters is minimized:

Ek(ak, bk) =
∑

i

wk(i)[akx(i) + bk − y(i)]2. (11.7)

The intuition here is that each data point contributes to the esti-

mation of each model’s parameters in proportion to the belief that
it belongs to that particular model. This quadratic error function

is minimized by computing the partial derivatives with respect to
the model parameters, setting the result equal to zero and solving

for the model parameters. Differentiating:

∂Ek(ak, bk)

∂ak
=

∑

i

2wk(i)x(i)[akx(i) + bk − y(i)]

∂Ek(ak, bk)

∂bk
=

∑

i

2wk(i)[akx(i) + bk − y(i)], (11.8)

setting both equal to zero yields the following set of linear equa-

tions:

ak

∑

i

wk(i)x(i)2 + bk

∑

i

wk(i)x(i) =
∑

i

wk(i)x(i)y(i)(11.9)

ak

∑

i

wk(i)x(i) + bk

∑

i

wk(i) =
∑

i

wk(i)y(i). (11.10)

70

Rewriting in matrix form:

(∑

i wk(i)x(i)2
∑

i wk(i)x(i)
∑

i wk(i)x(i)
∑

i wk(i)

)(

ak

bk

)

=

(∑

i wk(i)x(i)y(i)
∑

i w(i)y(i)

)

A ~xk = ~b

~xk = A−1~b, (11.11)

yields a weighted least squares solution for the model parameters.

Figure 11.2 Six

iterations of EM

Note that this solution is identical to solving the set of linear

equations in Equation (11.3) using weighted least-squares.

The EM algorithm iteratively executes the “E” and “M” step,

repeatedly estimating and refining the model assignments and pa-
rameters. Shown in Figure 11.2 are several iterations of EM ap-

plied to fitting data generated from two linear models. Initially,
the model parameters are randomly assigned, and after six itera-
tions, the algorithm converges to a solution. Beyond the current

scope are proofs on the convergence and rate of convergence of
EM. At the end of this chapter is a Matlab implementation of

EM for fitting multiple linear models to two-dimensional data.

11.2 Principal Component Analysis

11.3 Independent Component Analysis

71

%%% THE EM ALGORITHM

clear;

NumModel = 2;

NumData = 64;

Sigma = 0.1; % IN E-STEP

Noise = 0.1; % IN DATA

NIterate = 10;

%%% MAKE SYNTHETIC DATA

A = 2*rand(1,NumModel) - 1;

B = 2*rand(1,NumModel) - 1;

X = [];

Y = [];

for i = 1 : NumModel

x = 2*rand(1,NumData) - 1;

y = A(i) * x + B(i) + Noise*(rand(1,NumData)-0.5);

X = [X x];

Y = [Y y];

end

%%% INITIALIZE MODEL

a = 2*rand(1,NumModel) - 1;

b = 2*rand(1,NumModel) - 1;

for j = 1 : NIterate

%%% E-STEP

for i = 1 : NumModel

r(i,:) = a(i)*X + b(i) - Y;

end

den = sum(exp(-(r.^2)/Sigma^2));

for i = 1 : NumModel

w(i,:) = exp((-(r(i,:).^2)/Sigma^2)) ./ (den+eps);

end

%%% M-STEP

for i = 1 : NumModel

M = [sum(w(i,:).*X.^2) sum(w(i,:).*X) ; sum(w(i,:).*X) sum(w(i,:))];

V = [sum(w(i,:).*X.*Y) ; sum(w(i,:).*Y)];

U = pinv(M) * V;

a(i) = U(1);

b(i) = U(2);

end

%%% SHOW MODEL FIT AND ASSIGNMENT

xc = [-1 : 0.1 : 1];

subplot(2,1,1); cla; hold on;

plot(X, Y, ’bo’);

for i = 1 : NumModel

yc = a(i)*xc + b(i);

plot(xc, yc, ’r’);

end

hold off;

subplot(2,1,2); cla; imagesc(w); colormap gray; pause(1);

end

72

