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Time series data on biochemical reactions reveal transient behavior, away from chemical equi-
librium, and contain information on the dynamic interactions among reacting components.
However, this information can be difficult to extract using conventional analysis techniques. We
present a new method to infer biochemical pathway mechanisms from time course data using a
global nonlinear modeling technique to identify the elementary reaction steps which constitute
the pathway. The method involves the generation of a complete dictionary of polynomial basis
functions based on the law of mass action. Using these basis functions, there are two approaches
to model construction, namely the general to specific and the specific to general approach. We
demonstrate that our new methodology reconstructs the chemical reaction steps and con-
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1 Introduction

In the biological sciences it is increasingly common for data
to be collected in high-throughput experiments on genomic,
proteomic, and metabolomic scales. These data hold great
promise for enabling researchers to identify and model the
components and interactions comprising regulatory bio-
chemical networks. However, systematic and comprehensive
profiling experiments produce large and complicated data
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sets for analysis. Therefore, these experimental advances
demand parallel development of computational approaches
for their analysis.

In recent years, there have been multiple attempts to
map biochemical pathways from experimental data, using
a variety of computational tools. Techniques which have
been adopted include sequence similarity [1, 2], identifica-
tion of common structural motifs [3], gene order [4], gene
fusion events [5], and correlated gene expression profiles
[6]. These approaches have proved to be very useful in
providing a static picture of protein function in a bio-
chemical pathway. However, biochemical systems are, by
their nature, dynamic. As a consequence, the focus is
changing toward the development of mathematical and
computational methods to predict function based on the
dynamic regulation of genes and proteins in networks [7].
The current advances in high-throughput measurement
technologies, combined with high performance computing,
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make possible the application of such methods to deter-
mine reaction pathways and kinetics from experimental
data on a system-wide scale.

Information about the biochemical pathway can be
obtained by studying the behavior of the system near to a
steady state. Data obtained in perturbation methods, in
which one or more of the species are disturbed from their
steady values and the transient response of the pathway is
monitored, can be used to identify the connectivity in the
pathway [8, 9]. An alternative approach for probing bio-
chemical pathways near to a kinetic steady state is to manip-
ulate system parameters, rather than the concentrations of
the reactants and reaction intermediates themselves [10, 11].
A qualitative form of impulse response analysis has also
been proposed to gather information on the connectivity of a
biochemical network [12]. Correlation based approaches for
identifying networks have been increasingly useful in ana-
lyzing gene networks from microarray experiments [13, 14].
Genetic network information can be obtained using the
reverse engineering approach [15, 16] and cellular networks
can be inferred using probabilistic graph models [17]. For a
comprehensive review of computational methods available
for deducing the biochemical reaction mechanism, we invite
the reader to consult Crampin et al. [18].

Experimental tools are available which provide powerful
strategies for identifying the structure of metabolic and pro-
teomic networks. Such tools include NMR [19, 20], MS, time-
resolved fluorescence spectroscopy, fluorescence labeling
combined with autoradiography on 2-D gels [21], protein
kinase phosphorylation [22], and tissue arrays [23] for simul-
taneous high throughput analysis of proteins in a tissue sec-
tion by means of antibody binding and MS. What is common
among these techniques is that they allow the simultaneous
measurement of the abundance of multiple metabolites or
proteins, either at one time point [24] or as a sequence of
measurements giving time series data. Currently, experi-
ments that give the concentration of metabolites as a func-
tion of time are limited in number. However, this situation is
rapidly changing, for example, with the emergence of in vivo
13C NMR experiments [19] and microarray time series
experiments [25].

Time series data can reveal transient behavior, away from
chemical equilibrium, and contain information on the dy-
namic interactions between reacting components. But this
information can be difficult to extract from time series data
sets using conventional analysis techniques. There is, there-
fore, a compelling need for the development of computa-
tional tools to extract mechanistic information from bio-
chemical time series data, in particular for situations in
which prior information on the biochemical steps in the
pathway is not available. Recently, there have been attempts
to identify metabolic networks from time series using S-sys-
tems approach [26, 27].

The task for identifying biochemical pathways from time
course data consists, firstly, of identifying the connectivity of
the pathway — the reaction diagram relating reactants and
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products — and, secondly, determining and parameterizing
the reaction mechanisms for each of the steps in the path-
way. These two steps require a good deal of chemical knowl-
edge about plausible interconversions for the species in the
pathway. Once the reaction steps and mechanisms are
known, techniques are available for the estimation of kinetic
parameters [28, 29]. However, for less well characterized
chemical components, or for more complicated networks,
this approach is not practicable. One strategy to tackle this
problem is to develop techniques which can reveal details of
the molecular interactions that constitute a complex reaction
mechanism or pathway by considering elementary reaction
steps.

In this paper, we present a new method to infer bio-
chemical pathway mechanisms from time course data using
a global nonlinear modeling technique to identify the ele-
mentary reaction steps which constitute the pathway. A sig-
nificant feature of our method is that we develop a global
nonlinear modeling technique based on the law of mass
action. This helps our procedure to arrive at chemically
plausible reaction steps and to identify pathway connectivity.
The method involves the generation of a complete dictionary
of possible chemical interactions (which we will refer to as
‘elementary reactions’) and applies a model selection tech-
nique to deduce the reaction mechanism from the data.
Model selection can be approached by two routes: the specific
to general approach and the general to specific approach.
The algorithm predicts the reaction mechanisms as a set of
kinetic equations describing the rates of change of each
chemical species in the pathway, reconstructed from the
time series data. In Section 2, we discuss the methodology in
detail followed, in Section 3, by some examples of its appli-
cation. A preliminary study was previously published in [30].

2 Methodology

A kinetic model for a biochemical pathway provides a
description for the rate of production of each species in
terms of the concentrations x = x(t)

dx;

5 = Filxa) )
The net production rate of each species F; can be expressed as
a weighted sum of K basis functions, ®;,

K
Fi (X, ai) = Z aii(Di (X7 b) (2)
=1

These basis functions are mathematical functions corre-
sponding to each of the elementary reactions, as described
above, and the weighted sum represents the contributions
from different elementary processes. Here b refers to the
parameters specific to elementary processes. If the basis
functions are kept fixed, however, and only the weights a;
varied (i.e. the parameters b are assumed to be known a
priori), then the model may be fitted to the data using least
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squares and singular value decomposition (SVD). The model
parameters a; = {aij}]-K:l can be determined by minimizing
the sum of squared residuals

2=y, — @ a|’ (3)

wherey; = {dx;i(tj)/ dt}l-i1 is the derivative of the time series,
and the matrix ®; = ®;(x(#)) is the model design matrix.
This is described in detail in the following section.

A drawback of this approach is that SVD will find non-
zero values for all weights a;; (for an overdetermined system;
while for an underdetermined system with N independent
data points, weights up to N-1 basis functions can be deter-
mined). In particular, for a noisy data set this approach will
tend to over-fit the data. If we choose basis functions which
represent elementary reactions between species, only a sub-
set of the potential reactions should be required to model the
time series data. Therefore, we wish to select only those basis
functions which represent genuine interactions underlying
the data. One strategy would be to perform an exhaustive
search over all models using g from K basis functions,
choosing the one which minimizes the model residuals, and
then using a model selection criterion to determine which
model size g gives the best model of the data. However, this
exhaustive search quickly becomes computationally intract-
able as the number of species, and basis functions, increases.

Our approach to this problem is to construct models
using q<K basis functions using an iterative method [31].
This determines how to select the optimal model comprising
g+1 basis functions, starting from the optimal model with g
basis functions, and vice versa. Model selection can be
approached by starting with one basis function and itera-
tively adding to the model (simple to general) or, if there are
more data points than basis functions, starting from a model
using the entire set of basis functions and removing basis
functions (general to specific). For both methods, the opti-
mal model size can then be selected by minimizing a cost
function which penalizes the use of more basis functions
unless there is sufficient payoff in reducing the model resi-
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duals. Formally, this is achieved using a cost function or a
penalty term called an information criterion (IC). After con-
siderable experimentation with different penalty terms from
various ICs, such as Akaike [32] and Schwarz [33] ICs, we
have adopted the following empirical IC, which was found to
provide the most reliable results. The cost function to be
minimized over the model size g is as follows:

1 T
-~ (g@ .g@
Cic = (E9"-E9) +¢ (4)

where E@ =y — @@ . a is the model residual vector for the
optimal model constructed from g basis functions.

In Fig. 1 we outline our method schematically, showing
how the different steps in the algorithm are integrated to
arrive at the reaction mechanism. The sequence of steps
involved in the method is (i) construction of the model
design matrix, (i) construction of the derivative matrix, (iii)
model selection module, and (iv) the ordinary differential
equation (ODE) reconstructor. The final output consists of
the predicted reaction steps and the reconstructed ODE
model for the pathway. In the following sections, each of
these steps is discussed.

2.1 Construction of the model design matrix

A key aspect of our method lies in the construction of a
model design matrix ®; appropriate for biochemical path-
ways. The model design matrix is a matrix with columns
representing unscaled velocities corresponding to all possi-
ble elementary reaction steps involving the different species
in the pathway. Therefore, the first step of our method is to
construct a complete dictionary of chemically feasible ele-
mentary reaction steps for a given number of species.

2.1.1 Law of mass action

Chemical reaction pathways are composed of a number of
elementary steps. Let us consider the general chemical ele-
mentary reaction

ODE
reconstructor

Figure 1. Block diagram of the
model selection method. The
basis function dictionary
depends on the number of spe-
cies in the time series and the
model design matrix is con-
structed accordingly. Once the
model is selected, the ODE
reconstructor generates a set of
differential rate equations as a
final output of the algorithm.

Differential
rate equations
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3
n*A+n*B — n°C + n°D (5)

Here, A is the rate constant of the reaction and n*, n®, nc,
and nP are the number of molecules of reactants A, B, C, and
D that participate in the reaction. The velocity or rate of the
above reaction is given, according to the law of mass action,
by

v="2 (xa)" (x5)" = L (xa, xp) (6)

where x5 and xp are the concentrations of species A and B,
respectively. This defines the unscaled velocity ¢ which
describes the functional dependence of the reaction velocity
on the concentration variables and which does not depend on
any further unknown parameters. The rates of change of the
species are given as follows:

7—1dxA7—1dx}37 1 dxci 1 d.’XJD
W= s T d wd %

This general framework can be used to construct a set of
chemically feasible elementary reactions if we restrict the
reactions to a maximum molecularity. For example, for two
species, the general elementary reaction (5) can produce up
to 18 chemically realistic schemes (18 choices of the integers
n*, n®, n¢, and nP) including bimolecular reactions, as
shown in Fig. 2. In the figure, indices given in square brack-
ets label the species, with zeroes indicating the absence of a
species. This is called the complete dictionary of basis func-
tions for two species. As the logic used to generate these
reactions is based on mass action kinetics, it can be
manipulated to generate reactions of any molecularity, for
any number of species. Note that we have restricted our
investigations to uni- and bimolecular elementary reactions
only.

For a species k, an element of the model design matrix is
then defined as CDE = o¥nidy(4). Here, nt is the molecularity
for species k in the ith reaction, and the element c¥ has unit
magnitude with a positive sign (o = +1) if k is a product
and negative sign (¥ = —1) if k is a reactant for the ith
reaction. ¢;(t;) is the unscaled velocity for the ith reaction, as
described in Eq. (6), evaluated at the jth time point. For
example, for the set of basis functions in Fig. 2,
Gy (ty) = —21(t) and ¢ 15 () = —x1(%) - x2(tj). The velocities
are evaluated from each point in the time course and the
model design matrix (Dﬁ is constructed for each species as
follows:

oinkd ()  oknkd,(t) o nk by (t)
ok — oinkdy () oknkd, () ol nk oy (12)
oinkd, (ty)  osnkd,(ty) ol nk oy (tn)

Only for those reactions in which species k takes part will n
be nonzero. The overall matrix for the biochemical pathway
is a concatenation of such matrices for each of the M species,
resulting in a matrix of dimensions NM x K, where N is the
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18 basis functions in set

1: 0 X[0] + 0 X[0] -= 1 X[1]1 + 0 X[0O]
2: 0 X[o] + 0 X[0] -= 1 X[2] + 0 X[0]
3: 1 X[1] + 0 X[0] -= 0 X[o] + 0 X[0]
4: 1 ¥X[1] + 0 X[0] -= 1 X[2] + 0 X[0O]
5: 1 X[1] + 0 X[0] -= 2 X[2] + 0 X[0]
6: 2 X[1] + 0 X[0] -= 1 X[2] + 0 X[0O]
7: 2 X[1] + 0 X[0] - 2 X[2] + 0 X[0O]
8: 2 ¥X[1] + 0 X[0] -= 1 X[1] + 1 X[2]
9: 2 X[11 + 0 X[0]l -= 1 X[1]1 + 2 X[2]
10: 1 X[2] + 0 X[0] - 0 X[0] + 0 X[0]
11: 1 X[2] + 0 X[0] -= 1 X[1] + 0 X[0]
12: 1 X[2] + 0 X[0] -= 2 X[1] + 0 X[0O]
13: 2 X[2] + 0 X[0] -= 1 X[1] + 0 X[0O]
14: 2 X[2] + 0 X[0] - 2 X[1] + 0 X[0]
15: 2 X[2] + 0 X[0] -> 1 X[1] + 1 X[z2]
16: 2 X[2] + 0 X[0] - 2 X[1] + 1 X[2]
17: 1 X[1] + 1 X[2] -> 2 X[1] + 0 X[o]
18: 1 X[1] + 1 X[2] -= 2 X[2]) + 0 X[0]

Figure 2. Set of possible elementary reactions generated for two
species for uni- and bimolecular interactions. The indices given
in square brackets indicate the species and the zero index implies
the absence of any species. The numbers beside the species
indicate the molecularity of the species.

number of time points in the time series and K is the num-
ber of elementary reactions from which the model is to be
constructed.

Selecting different sets of possible reactions (different
basis sets) will, in turn, alter the model determined by the
algorithm from the data. A complete dictionary is a compre-
hensive description of all the chemically feasible elementary
reactions. If, however, one is interested only in the con-
nectivity of a pathway, then a subset of this complete dic-
tionary can be used. For example, the subset of the complete
dictionary which consists solely of interconversions between
species is particularly useful for identifying a metabolic
pathway diagram. The basis set used here would be confined
to interactions of the type n;X; — njX; only. Having con-
structed the model design matrix, the next step is the appli-
cation of the iterative model selection method to deduce the
mechanism.

2.2 Construction of the derivative matrix
Time course data on the biochemical pathway are used to

calculate the derivative matrix. For the time series x(t;), the
derivative vector y of the points is calculated according to
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¥ = (x(41) — %(t))/(t1 — ) for each species. The data
points are interpolated if the time series contains few time
points.

2.3 Model selection

The iterative scheme proposed by Judd and Mees [31] uses a
sensitivity analysis to determine the basis function to add to
a model that will give most improvement to the model fit to
the data, and the basis function to remove from a model
that will least damage the approximation. A model selection
criterion such as the cost function described above can then
be used to select the best model size k from a set of models
constructed in this way. McSharry et al. [34] extended this
iterative data-driven approach to extract a set of non-
orthogonal empirical functions (NEFs) from multivariate
data sets. NEFs have the appeal of providing a decomposi-
tion which is motivated by the problem-domain (accounting
for the underlying dynamics and conservation laws) rather
than the statistical convenience offered by classical decom-
position techniques such as principal component analysis.
Crampin et al. [30] demonstrated that the law of mass action
can be employed to constrain the set of relevant basis func-
tions and that the model construction can be attempted by
either a specific to general or a general to specific approach.

2.3.1 Specific to general approach

This approach expands the model size, starting from a single
basis function and then adding basis functions iteratively
until the stopping criterion, minimization of the cost func-
tion (Eq. (4)) is reached. Selection of the basis function to be
used to increase the model size is determined by considering
u = —®TEX, the projection of the vector of the residuals onto
the model design matrix. The largest positive element in p is
selected as the first basis function and subsequently basis
functions are added, subject to the minimization of the cost
function. Additionally, the algorithm uses a non-negative
constraint for obtaining positive coefficients in the least
square method.

2.3.2 General to specific approach

Alternatively, all of the basis functions from the complete
dictionary are used to form the initial model, which is then
simplified by discarding terms iteratively, until the same
cost function is minimized. The algorithm requires an
initial selection of coefficients to start with. The least
squares solution of y and ® with non-negative constraint
was selected as initial coefficients. This was then followed
by application of the same IC (Eq. (4)) alternately to eject
and then to add a basis function until the same basis func-
tion is chosen and is removed from the subset, reducing the
model size by one.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proteomics 2007, 7, 828-838

2.4 ODE reconstruction

Having identified the mechanism using either of the above
approaches, the differential rate equations can be recon-
structed from the basis functions and the coefficients infer-
red. The reconstruction is simply based on chemical kinetics.
The ODE reconstructor gives the differential equations as
the final output of the algorithm.

3 Results
3.1 Method validation

We tested the performance of our methodology using an
approach based on calculating the sensitivity of the model
inference. The sensitivity here accounts for two aspects,
namely, (i) the correctness of the reaction structure and (ii)
the correctness of the parameters, in comparison with the
true “generative” system. The former can give topological
information about the mechanism and the latter can yield
a measure of the goodness-of-fit of the parameters. We
define the topological sensitivity index S; [16] of the infer-
red model as

Tc

S§=— <
YT Tr+ Ty

®)
where T¢ is the total number of correctly identified reactions,
Ty is total number of falsely identified reactions and Ty is the
total number of unidentified reactions. Here the term Ty
refers to a case where the number of identified reactions is
less than that of the total number of reactions used to gen-
erate the time series. We note that the differential rate equa-
tions, and not the reaction mechanisms, are used to calculate
this sensitivity.

To test the ability of our approach to correctly infer bio-
chemical networks, we calculated the sensitivity index for a
wide range of chemical reactions using simulated time series
data sets. In order to facilitate comparison of performance
across a range of reactions, we quantified the complexity of
the chemical reactions underlying these data sets based on
an approach from graph theory [35]. A brief account of eval-
uating the complexity of the chemical reactions is given as
follows: for any given chemical reaction or a set of chemical
reactions, it is possible to construct a network diagram as a
directed bipartite graph linking reactants via reaction fluxes.
A typical bipartite graph for a simple reaction network
X1 — X; — X3 is shown in Fig. 3. From the bipartite
graph for the chemical reaction the complexity index I can
then be calculated using the formula

m

IC =—mz Z Ti (9)
i=1

where m is the number of elementary chemical reaction

steps in the mechanism, z is the number of species and T;
is the total number of branches emanating from and
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T2:2
T_ll=2
X, X, = X;

Figure 3. Bipartite graph for a chemical transformation. The
reactants are indicated in circles and the reactions are repre-
sented as filled circles. Here, the number of elementary chemical
reaction steps, m=2, and the number of species, z=3. The
number of branches originating from and ending in each reaction
point T; = T, =2. The overall complexity index is I = 24.

Table 1. Complexity index I for some unimolecular and bimolec-
ular reactions calculated on the basis of bipartite
graphs. mis the number of reaction steps, zis the num-
ber of species, T;is the number of branches emanating
from the reaction points in the corresponding bipartite

graph
m
m z T, IC =m Zz Ti
i=1
Unimolecular reactions
X1 g XZ 1 2 2 4
X1 —= X2 — X3 2 3 2,2 24
X, — X, — X3 — 3 3 2,2,1 45
— X1 =X, — X3 — 4 3 1,2,2,1 72
— X1 = X); = X3 —
1 5 4 1,2,221 160
— X4
X1+X— X35 =X, +X4 2 4 3,3 48
Bimolecular reactions
X1+ X; — 1 2 2 4
2X1 — X1+ X, 1 2 4 8
Xl +X2 g 2X1 1 2 4 8
X1 +X2 — X3 1 3 3 9
X1+ Xy — X3+ Xy 1 4 4 16

ending in each reaction node (dark circles, Fig. 3). Com-
plexity indices for some simple reactions are given in
Table 1.

We simulated time series data for a range of pathways of
unimolecular and bimolecular reactions of varying complex-
ity in order to measure the network inference performance
as a function of network complexity. Figures 4a and b show
the performance of the specific to general and general to
specific approaches in terms of topological sensitivity indices
for increasing reaction complexity, for unimolecular and
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bimolecular reactions, respectively. Figure 4b shows that for
the specific to general approach, the sensitivity decreases
with complexity for pathways involving bimolecular reac-
tions. However, that is not so with the general to specific
approach, for which the topological sensitivity of the method
remains fairly high for reactions of increasing complexity.
Thus the general to specific approach outperforms the spe-
cific to general approach.

The topological sensitivity index S, gives a measure of the
inferred reaction topology only. Total sensitivity T is a
measure of both the topological accuracy and parametric
accuracy and can be defined as follows:

TS = SI — ép (10)

M M
ep = %Z (Z (“u‘ - “§>2> (11)
=1\

where ¢p is the error associated with the parametric estima-
tions. Here B is the total number of nonzero terms in
F(x;,a;), ajj are the coefficients identified by the model and
a;; are the true coefficients used to generate the time series. A
plot of the total sensitivity for pathway inference with the
general to specific approach, for unimolecular reactions of
varying complexity index, is given in Fig. 4c. We see that the
total sensitivity decreases to 0.6 when the complexity index
reaches 60 and then remains fairly constant for the general to
specific approach. While we suppose that this is one way to
quantify the model errors, model accuracy depends on many
other factors, for example the time interval between data
points, parameters of the system itself, and so on, whose
evaluation complicates the error variables. Nevertheless, the
sensitivity measures described by Eqgs. (8) and (10) are ade-
quate to support the validity of our method.

3.2 Examples

Two examples that highlight the features of our approach are
presented below. The first example is a typical enzyme
kinetics reaction which we use to illustrate the application of
the algorithm to predict a reaction mechanism from a single
time series only. The second example uses a data set meas-
ured from the glycolytic pathway of Lactococcus lactis. In this
example we show how our method can predict the topology
of this metabolic pathway.

3.2.1 Example 1

The following reaction mechanism is a typical example con-
taining a bimolecular reaction step [36]:

E+s-Lc (12)
ky
cXpiE (13)

www.proteomics-journal.com
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-a— Specific to general
—a&— General to specific

; @ 0.8
0.6
= 0.4
0.2
1]
o 50 100 150 200 250
Complexity Index I
12
—a— Specific to general
1 —a— Ganeral o specific
7 os
0.6 4
04
=
0z
[+] - -
0 10 20 30 40 50 60 70 80 an 100
Complexity Index I -
1.2
R 17 m Figure 4. Variation of topological sensitivity
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w cases the sensitivity of the general to specific
0.2 - approach is greater than that of the specific
0 g : ] to general approach. (c) Variation of total
0 50 100 150 200 250 sensitivity with complexity index I for gen-
eral to specific approach for unimolecular
Complexity Index I reactions.

Writing S=X;,E=X,;,C=X; and P =X,, the corre-
sponding rate equations for all the four species are as fol-
lows:

% = ki X1 X, (14a)
% = — k1 X1 Xo+k2 X3 (14D)
% = X1 X, — kX3 (14¢)
% — kX (14d)

The complexity index of the above reaction scheme (Egs. (12)
and (13)) is 48. A time series was generated for the above set
of reactions with initial conditions {1, 0.1, 0, 0} for E, S, C

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

and P, respectively, with k; = 2 and k, = 1.2. Initially time se-
ries for the three species X, X,, and X; were used. The algo-
rithm generated a dictionary of 86 basis functions for these
three species, including uni- and bimolecular terms. The
basis functions selected by the general to specific algorithm
are listed in Fig. 5a. The algorithm predicts two basis func-
tions which correspond to three differential rate equations.
Comparison of the predicted differential rate equations,
Fig. 5a, with Egs. (14a—c) shows that the predicted model
coincides with the generative model, giving a topological
sensitivity index of 1. The inferred rate coefficients also
closely match the generative model, with total sensitivity
index of 0.988.

Figure 5b gives the model output when time series data
for all four species X;, X,, X;, and X, were given to the algo-
rithm. The model generated 248 basis functions as a com-
plete dictionary for uni-and bimolecular interactions be-
tween four species. From the output we see that the model is
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Model found using genspecl fa)
x[3] + 0 x[0] -> 1 x[2] + ¢ =x[0], k= 1.195%¢,
using basis function (439}

1 x[1] + 1 x[2] -» 1 x[3] + 0 x[0], k= 1.9904,

using basis function (63%)

dXdt (1) = - 1.9904*X(1)*1+X(2)"1
dMde(2) = + 1.1956%*X(3)™1 - 1.8904%X (1) 1*X(2)"1
dXdt(3) = - 1.1956*XK(3)"1 + 1.9904%*X(1)"1*X(2)"1

(b)
Model found using genspecl

1 x([3] + 0 x[0] -» 1 x[2] + 1 =x[4], k= 1.12283,
uaing basia function {108)
1 x[1] + 1 x[2] -= 1 %x[3] + 0 x[0], k= 1.89920,

using basis function (179)

dXdt (1} = = 1.9920#+X(1)"1+X({2)"1

dXdt(2) = + 1.1983+X(3)"1 - 1.9920%*X (1) 1+X(2}"1
dXdt(3) = - 1.1983+*X(3)"1 + 1.9920%X(1)*1*X(2]}"1
dXdt(4) = + 1.1983%X{3}"™1

Figure 5. Model output for time series from Eqgs. (14a) to (14d)
with k; = 2.0 and k; = 1.2 using data for (a) X;, X,, and X3, and (b)
X, X5, X3, and X,. In both cases, the predicted model and coeffi-
cients are close to the real ones.

able to predict the standard enzyme kinetics scheme with
rate parameters close to the generative values. The algorithm
was tested with time series generated with different time
steps varying from 0.01 to 0.5 and with different initial con-
ditions. The topological and total sensitivities did not change
significantly for these variations.

3.2.2 Example 2

The glycolytic pathway in L. lactis has been explored experi-
mentally in great detail [19, 37]. Time series data from these
experiments have been used recently by Voit et al., [38] for
testing a reconstruction pathway methodology based on the
power law approximation. We have used the data obtained
from >C NMR experiments for our analysis [19]. These data
comprise 54 time points, measured for each component over
a period of 108.9 min, at time intervals of 2.2 min.

The glycolytic pathway involves the conversion of glucose
to pyruvate, and comprises eight reaction steps, illustrated in
Fig. 6a. In the first step, glucose is converted into glucose-6-
phosphate (G6P) (X;). Phosphoenolpyruvate (PEP) (Xs) also
contributes to this step. G6P is converted into fructose-1,6-
bisphosphate (FBP) (X;), then sequentially to glycer-
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aldehyde-3-phosphate (Ga3P) (X), 3-phosphoglyceric acid
(3-PGA) (X,) and PEP (X;). Glucose and G6P, along with
PEP, are involved in the conversion of PEP to pyruvate (Xj).
This step is activated by a positive feedback from FBP, which
also exerts a positive feedback on the conversion of pyruvate
to lactate (X;) [38]. In Fig. 6a, reactions are indicated with
solid arrows, and the feedback interactions are indicated with
dotted arrows along with the signs (+) or (-) to indicate
positive or a negative feedback. Time series data were una-
vailable for two of the intermediate components, namely the
Ga3P (X) and dihydroxyacetonephosphate (DHAP) (X).
Since we are interested in determining the pathway struc-
ture, we use a subset of the complete dictionary of basis
functions which are confined to n;X; — 1;X; reactions only.

Figure 6b gives the topology of the pathway predicted by
our method from the data. The components inside the dotted
circle were not available as inputs. Our method predicted a
reaction step linking the components FBP (X;) and 3-PGA
(X,). Figure 6b shows that the algorithm has correctly pre-
dicted most of the reaction steps. The network described in
Fig. 6b is written down in differential rate equation form in
Fig. 7. Firstly, we see from the differential rate equations that
the basic linear skeleton of the pathway starting from
X1 — ... = X5 is clearly predicted. Also several regulatory
interactions, which have been drawn into the predicted
topology, are also identified (Fig. 6b).

Our method has predicted that G6P (X;) is produced in-
dependently by glucose and PEP (X;), i.e. 2Xs — X, and
X1 — X,. However, in reality, glucose (X;) and PEP (X;) are
involved in the production of G6P (X;). Similarly in the pre-
dicted model, pyruvate (X;) is produced by reaction steps in-
volving glucose and G6P (X; X,) and separately from FBP
(X3). In reality, pyruvate (X;) is produced by the interaction of
glucose (X;) and G6P (X;) and also independently from PEP
(Xs). The conversion of PEP into pyruvate (X5 — Xg) is acti-
vated by FBP (Xj;). Even though our basis functions do not
represent feedback reactions, the predicted model indicated
the involvement of FBP (X;) in the synthesis of pyruvate (Xg).
This is also the case for the involvement of FBP in the syn-
thesis of lactate (X;). The method predicts an additional
reaction X; — X3 which is not originally seen in the glyco-
lytic pathway [29].

4 Discussion

We have presented a new approach for identifying biochem-
ical reaction mechanisms from time series data based on
global nonlinear modeling. We have demonstrated that our
method can give information on pathway connectivity and
chemical reaction steps using simulated data and data
measured on the glycolytic pathway of L. lactis.

Biological interactions are confined to follow the laws of
chemistry. We used this information to construct the basis
functions, elementary reactions from which a model will be
reconstructed, based on the principle of mass action (Sec-

www.proteomics-journal.com



836 J. Srividhya et al.

Proteomics 2007, 7, 828-838

Glycolytic pathway Predicted pathway
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Figure 6. Glycolytic pathway topology: (a) A simplified topology of the glycolytic pathway of the L. /actis as given by Hoefnagel et al. [37].
Solid lines indicate reaction steps and dotted lines indicate regulatory influences: activation (positive sign) and inhibition (negative sign);
(b) Predicted topology by our method using the time series data available for seven of the species (labeled X;—X;). Time series data for
those components inside the dotted circle were not available; the dotted rectangle shows the predicted reaction step by our method.

tion 2.1). The set of basis functions, which provides a
description of all feasible chemical interactions between the
set of species, is a key aspect of the method. This approach
rules out the identification of chemically impossible combi-
nations. This chemical reaction dictionary can be made as
comprehensive as required, for example using unimolecular
and bimolecular interactions as we have done here. While
bimolecular (or higher) terms are nonlinear in the reactant
concentrations, the model selection method is linear in the
coefficients to be determined. This dramatically simplifies
the determination of model coefficients from the data to a
linear optimization problem. The iterative approach to mod-
el selection allows the algorithm to determine the appropri-
ate model size — the number of basis functions necessary to
model the data. This iterative scheme suggests both specific
to general and general to specific approaches to the analysis
of the data. We have found that the general to specific meth-
od out-performs the specific to general approach, which
appears to suffer from a divergent approach in minimizing
the cost function. This may result in the identification of
local minima, instead of attaining a global minimum [39].

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

We have introduced the use of a sensitivity-based analysis
for model verification. This gives insight into the applica-
bility of our method over a variety of chemical reactions
based on their complexities. Topological sensitivity measures
the correctness of the connectivity of the inferred pathway,
and total sensitivity measures the accuracy of the inferred
model as a quantitative model of the pathway kinetics. For
unimolecular reactions, the topological sensitivity (Fig. 4a)
and the total sensitivity (Fig. 4c) are almost the same for the
general to specific approach; however, a small decrease is
seen in the corresponding total sensitivities. This corre-
sponds to the errors in the inferred parameters, and not in
the topological sensitivity. The algorithm is more efficient in
identifying the mechanism than in identification of the pa-
rameters. Further refinements are underway to improve the
efficiency of the method.

The data used in Example 1 were simulated using a
mathematical model of the reaction. The mechanism was
inferred using a single data set consisting of time series of
four species. This demonstrates that our method is efficient
in deducing the reaction mechanism of the enzyme kinetics
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d¥dt (1) 0.2062*x(1)"1

0.0291*x(1)"1 -
.1228*x(5) "2

dXdc (2) = +
+ 0O
0.0697*x (1)

d¥dt (3) = + 9.3905*x(2)71 +

d¥dt (4) = + 0.0369%*x%(3)"1 -
d¥dt (5) = + 0.2388%*x(4)™1 -

dxdt (6) = + 0.0791*x(1)"1 +
L4100%x(2)"2

0.2172%x(3)

dA¥Xdt (7) = + 0.2454%*x(3)™1 +

with a single set of time series data. Traditional methods used
by enzymologists to distinguish reaction mechanisms, typi-
cally need steady state kinetics data, or data from a variety of
perturbations in order to decipher the mechanism [40]. The
time series data in Example 2 are experimentally measured
data, which prove to be an ideal candidate to test the efficiency
of the method. The set of time series data of seven metabolites
in the glycolytic pathway was used as inputs to the algorithm.
A subset of the complete dictionary of reaction steps was used
to obtain a picture of the reaction pathway topology. Even with
the use of this restricted subset, the method predicted a good
amount of information about the pathway. This would be
valuable information when analyzing time series data on bio-
chemical pathways with little prior knowledge.

Our method is significantly different from the already
available S-systems method [27] for inferring reaction
mechanisms from time series data. S-systems do not fol-
low mass action and the reactants can have fractional
powers [41]. This empirical approach has been argued to
provide a good alternative for modeling reactions in non-
ideal environments [18, 42]. Using this approach, parame-
ters that are equivalent to rate constants as well as frac-
tional exponents of the reactants need to be optimized, and
these exponents naturally appear nonlinearly, making pa-
rameter estimation potentially a much more challenging
problem. Kikuchi et al. [26] also use the S-systems
approach but with a modified genetic algorithm to opti-
mize several parameters at once. We have presented argu-
ments as to which rate laws are applicable in intracellular
metabolic reactions elsewhere [43, 44]; here we use the law
of mass action to describe elementary reaction steps to give
sufficient information about the system. Our methodology
involves the estimation of the rate constants alone, since it
follows from the law of mass action that the exponents are
fixed according to the elementary chemical steps, and are
not unknown parameters to be determined. Instead, we
perform a model selection to identify which elementary
reaction steps to include in our model of the data. In this
method, fewer parameters are therefore required to be
estimated, and furthermore there is no need for an initial
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2.2909%x(2) ™1

1

0.6338%x(4) ™1

0.9864%x(5) "1

L
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- 0.9783*x(6)"1

- 0.3543*x(7)*1
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- 0.8199%x(2)"2

- 0.4099*x(3)™1

Figure 7. Differential rate equa-
tions predicted by our method
corresponding to the predicted
network described in Fig. 6b.
Note that the algorithm has pre-
dicted the direct conversion of
Glucose (X;) to FBP (X3) which
does not appear in the original
pathway.

.1229%*x(5) "2

guess of the values of the rate parameters as they are esti-
mated using linear regression.

The computational time taken in the inference process
for these examples is minimal. However, there are computa-
tional limitations to this approach. Assuming that sufficient
data points can be collected, this approach can be used for
data sets with large numbers of chemical species. However,
the number of basis functions generated increases signifi-
cantly with the number of species, and therefore, so does the
computation time. Another limitation of our method is the
choice of basis functions. It is possible to include trimolec-
ular interactions and other types of basis functions in the
model design matrix. Further refinement of the method ap-
plicable to complex mechanisms (such as Michaelis—Menten
kinetics and Hill functions) requires the use of nonlinear
optimization techniques for parameter estimation. We are
currently investigating this direction.

We have developed a new approach to infer reaction
mechanisms and pathway connectivity from biochemical
time series data. We tested our method with several types of
chemical interaction and pathway data, and used a complex-
ity index to determine the sensitivity of our approach for dif-
ferent pathways. We showed that the topological sensitivity
for inferred pathways is high for complex mechanisms. We
demonstrated this by testing our method with a real experi-
mental data on the glycolytic pathway.
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