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Introduction
Coupling genomic data to physiological function is the aim

of biology in the post-genomic era. Quantitative descriptions
of biological processes using mathematical modelling are one
important tool in this aim. Empirically derived relationships
have commonly been used in modelling biological processes.
While such data-driven models often give useful descriptions
and insights into specific data sets, these models often fail when
combined together to study interaction between multiple
processes. On the other hand, physics-based models – models
built on principles including the laws of mechanics and
thermodynamics, in which assumptions and approximations
are made explicit – operate with a common currency of mass,
charge, energy and momentum (Bassingthwaighte et al., 2001;
Qian et al., 2003). With care, such models may be naturally
integrated together to form comprehensive models of
biological systems.

It is our conviction that a high degree of the true complexity
of the biological mechanisms must be represented in models if
clinically applicable insights are to be gained from model
simulations. There are, however, significant challenges to be

overcome, both mathematical and computational. Multi-scale
models must incorporate nontrivial biological complexity,
while remaining computationally tractable. Furthermore, while
representing this complexity, models must still be capable of
providing insights via mathematical analysis when simulations
do not behave as expected (as must sometimes happen if we
are to learn anything new!). This requires the development of
approaches to deal with model complexity and
parameterization, and communication and information sharing
between developers of models.

One approach to handling complexity across multiple spatial
and temporal scales is to adopt a modular and hierarchical
approach to modelling biological systems. In this approach,
mathematical representations of biological components are
brought together and tuned appropriately to produce a model
of a specific cell or tissue type. The most transparent way of
achieving this goal is to retain biophysical detail at each level
in a modelling hierarchy, while employing simplifying
assumptions to move to higher level descriptions (Smith et al.,
2004; Smith et al., 2000). This often requires the coupling of
models governed by different physical equations, representing

Predicting information about human physiology and
pathophysiology from genomic data is a compelling, but
unfulfilled goal of post-genomic biology. This is the aim of
the so-called Physiome Project and is, undeniably, an
ambitious goal. Yet if we can exploit even a small
proportion of the rich and varied experimental data
currently available, significant insights into clinically
important aspects of human physiology will follow. To
achieve this requires the integration of data from disparate
sources into a common framework. Extrapolation of
available data across species, laboratory techniques and
conditions requires a quantitative approach. Mathematical
models allow us to integrate molecular information into

cellular, tissue and organ-level, and ultimately clinically
relevant scales. In this paper we argue that biophysically
detailed computational modelling provides the essential
tool for this process and, furthermore, that an appropriate
framework for annotating, databasing and critiquing these
models will be essential for the development of integrative
computational biology.
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physiologically discrete functions (Nickerson et al., 2005).
Such a hierarchical and multi-physics approach provides an
obvious mechanism for revision or improvement of selected
parts of a large-scale simulation as new data are collected.
Furthermore, this biophysical approach provides greater
confidence in the ability of a model to extrapolate from the data
used for parameterization and to provide detailed, even patient-
specific, predictions when data from an individual are
available.

The integration of biophysically based models covering the
breadth of physiological function, across spatial and temporal
scales, is the approach and philosophy driving the IUPS
sponsored Physiome Project (Crampin et al., 2004; Hunter and
Borg, 2003). As part of this umbrella project, this multiscale
modelling approach has had demonstrable success in models
including the gastro-intestinal (Buist et al., 2006), renal (Ribba
et al., 2006) and musculo-skeletal organ systems (Hunter et al.,
2005) and, arguably the most sophisticated exemplar, the heart
or ‘cardiome’ (Hunter and Borg, 2003). It is from this cardiac
work that we draw our examples below; however, the
principles we illustrate are relevant across the full range of
organ systems.

Typically, as our knowledge and understanding of biological
processes grows, models of increasing detail and
comprehensiveness have been developed, often by piecing
together existing model components, in order to incorporate
more and more of the available data. However, the strength of
building on existing work can also be the greatest weakness of
this approach. Errors and implicit assumptions contained in
foundation elements of models can, as we will demonstrate
below, propagate through as more complete models are
developed. It is, therefore, vital that the assumptions used to
develop models are made explicit, and that propagation of
errors is prevented. This imposes an extremely high duty of
care on both authors and reviewers of new models. In
particular, it is unreasonable to expect such problems to come
to light during the conventional reviewing process. We assert
that new and innovative processes and criteria must be
developed to augment the standard peer review process, such
that, not only are errors in models eliminated, but also the
conditions of appropriate model use and connection with the
experimental data are made transparent for the user
community. If these issues can be addressed, we believe the
scientific community at large will have improved confidence
in the fidelity of individual models, and the utility of
computational biology as a whole. This will be essential for
computational modelling to achieve its promise, both in the
laboratory and in the clinic.

Work in a number of groups is already progressing towards
the development of tools and ontologies (Cuellar et al., 2003;
Schilstra et al., 2006) to facilitate the unambiguous machine-
readable representation of biological models. Most recently this
concept has been progressed further with the proposal of set of
rules (termed MIRIAM, Minimum Information Requested In
the Annotation of biochemical Models) for curating
quantitative models of biological systems (Le Novere et al.,

2005). This community effort defines procedures for encoding
and annotating models represented in machine-readable form
which, if adopted, should ensure (i) consistency between
curated models and their reference description; (ii) provide
searchable databases of models using biological terms from
accepted ontologies; and (iii) facilitate model reuse and
development in the manner that we have described. These rules
for annotation do not, however, provide any comment on the
nature of the models themselves, or their suitability for any
specific modelling purpose (indeed, this is not the intention of
the MIRIAM initiative); however, it is apparent that additional
constraints on the structure of models will also be useful when
combining them together. Below, we briefly review the
development of cardiac models with a more detailed focus on
four of our own published models. We then highlight two
specific examples in the cardiac field where reuse of elements
has led to the connection between model parameters and
experimental measurement becoming disconnected. These
examples are used to motivate the proposal of additional
criteria for biophysically based models to address the issues
discussed above, before specifically analysing our four
published models against these proposed criteria.

The development of integrated cardiac models
The last 40 years have seen the development of increasingly

detailed biophysically based cell models of cardiac
electrophysiology (Luo and Rudy, 1991; McCulloch et al.,
1998). These models currently provide detailed representations
of membrane-bound channels and transporters, and fluxes of
ions between the cytosol and intracellular organelles. One
example of a transporter model is our recent study
characterising the kinetics of the sodium pump (Smith and
Crampin, 2004) (Fig.·1A). The function of this exchanger is the
maintenance of both the sodium and potassium gradients across
the myocyte membrane. The kinetics of this process were
represented using an enzymatic cycle, formulated to be
thermodynamically consistent in coupling the free energy of
ATP hydrolysis to movement of the ions against their
electrochemical gradients, and fitted to experimental data of
observed pump cycling rates at different extracellular sodium
concentrations.

The known details of channels, pumps and exchangers have
enabled analysis of the role that each functional element plays
in health and disease (Shaw and Rudy, 1997). Further, they
have provided a successful paradigm for integrating individual
data sets on the different molecular components of the cell into
a common framework. This allows trans-membrane ion
transport to be linked to action potential recordings, in altered
ionic conditions, in the whole myocyte, across a range of
species from rat to human (Pandit et al., 2001; ten Tusscher et
al., 2004). We recently published a model (shown
schematically in Fig.·1B) of the myocyte that builds on the
existing Luo–Rudy dynamic (LRd) electrophysiology model
(Hund and Rudy, 2004). The LRd model was developed to
study myocyte electrophysiology over one heart beat. Our
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study considered the effect of acidosis (a drop in pH associated
with impaired metabolism) on excitation–contraction coupling
in the heart cell, over multiple beats (Crampin and Smith,
2006). This imposes a new set of requirements on the model.
It was necessary to ensure conservation of mass and charge,
and that under normal conditions the time courses for state
variables (ionic concentrations and membrane potential) were
maintained from one beat to the next. Our model uses
thermodynamically constrained cycles to represent acid
transporters and includes proton inhibition of many of the
calcium-handling process in the cell, fitted from available
experimental data.

While initially lagging behind developments in
electrophysiology, cellular models of myocardial contraction
have now progressed so that myocardial mechanics can be
computationally simulated. Detailed Ca2+-induced activation of
thin-filament kinetics has been combined with a representation
of cross-bridge tension generation, which describes the length
and tension-dependent Ca2+-induced activation of cellular
contraction. Transient Ca2+-induced excitation–contraction has
been characterized by coupling electrophysiological and
mechanical models (Nickerson et al., 2001), thus enabling
simulations of activation-induced contraction. Based on the
existing framework of Hunter et al. (Hunter et al., 1998), we
recently developed a model of active contraction of the
myocyte, which uses mass-action kinetics to model calcium
binding to TnC, and tropomyosin kinetics (Niederer et al.,
2006). These elements have been combined with a
phenomenological representation of actin–myosin binding
kinetics and the force and length dependence of each process
was characterized in detail. In this study, each parameter was
rationalized from numerous sources and, where possible,
multiple experimental modalities, through an extensive review
of the literature (Fig.·2A is shown as an example). Issues of
species consistency and experimental conditions, in particular
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temperature, are explicitly addressed in the choice of
parameters to represent a rat myocyte at room temperature.

In parallel work, we have developed a computational model
of muscle cell oxidative energy metabolism (illustrated in
Fig.·2B), which we have applied to analyze cardiac and skeletal
muscle energetics (Bassingthwaighte et al., 2001; Wu et al.,
2007). In these studies, ATP consumption is treated as a forcing
function and the ATP consuming processes associated with
contraction and electrophysiology are not explicitly modelled.
In current work, the energy metabolism model is being
integrated with the electrophysiology and mechanics models,
leading to an increasingly detailed model of cardiomyocyte
biophysics.

Despite the increasing complexity, rapid improvements in
the performance per unit cost of high performance computing
has more than offset the computational demands for solving the
systems of ordinary differential equations that represent these
cellular and sub-cellular models. This has led to the
development of models of cardiac tissue, in which the cellular
models are embedded in a continuum description of tissue
geometry. These models incorporate data from confocal
microscopy, which detail the myocyte, fibroblast and collagen
microstructure within the tissue. These microstructural data can
be used to determine the conductivity and stiffness tensor
within the continuum model, in order to predict the functional
properties of electrical conductivity and mechanical stiffness of
cardiac tissue (Trew et al., 2006). By applying the mono-
domain or bi-domain equations, tissue-level models have been
used to predict the spread of activation in two- and three-
dimensional simulations (Smith et al., 2004; Tomlinson et al.,
2002). Using the tension transients calculated in the cellular
models, tissue deformation can be predicted by solving the
equations of finite deformation (Pullan et al., 2001). Linking
the calcium transient of the cellular electrophysiology model to
cellular tension generation enables the coupling of activation
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and contraction. This coupling is achieved at the tissue level
by combining numerical solution techniques properly to
preserve computational efficiency (Nickerson et al., 2005;
Smith et al., 2003) (Fig.·3).

In this way, cellular and sub-cellular modelling provides a
framework for capturing mechanisms at their own spatial scale
and for extrapolating these responses to determine behaviour
at the tissue level. The parameters of each of these cellular
models are typically determined either directly (a single
measurable parameter) or indirectly (fitting a data set) from
experimental data.

It is critical to preserve this link to experimental data, both
for appropriate parameterisation and for validation of model
function. The potential provided by the ability to reuse and
integrate existing model components can, however, be a
double-edged sword. Model integration leads to the reuse of
parameters, which is a necessary and efficient means to
generate new, more complex models. Even if all model
parameters are determined using the best currently available
experimental data, they may still be superseded in time. The
parameter set for a model component can, however, become
obscured from further reviewer scrutiny once it is reused in
later models, and the original explicit connection with
experimental data is lost.

Specific cases of this phenomena for the propagation of two
common cardiac myoctye model parameters over 25–30 years
of modelling are shown in Fig.·4A,B: the binding affinity of
Ca2+ to troponin C (Crampin and Smith, 2006; Faber and Rudy,
2000; Hilgemann and Noble, 1987; Holroyde et al., 1980;
Hunter et al., 1998; Jafri et al., 1998; Luo and Rudy, 1994;
Nickerson et al., 2001; Noble et al., 1998; Pandit et al., 2001;
Robertson et al., 1981; Rodriguez et al., 2002; Winslow et al.,
1999; Zeng et al., 1995) and to calsequestrin (Bondarenko et
al., 2004; Cannell and Allen, 1984; Crampin and Smith, 2006;
Faber and Rudy, 2000; Hund and Rudy, 2004; Iyer et al., 2004;
Jafri et al., 1998; Luo and Rudy, 1994; Ostwald and

MacLennan, 1974; Pandit et al., 2001; ten Tusscher et al., 2004;
Winslow et al., 1999; Zeng et al., 1995). In both cases, an early
model (Cannell and Allen, 1984; Robertson et al., 1981)
provided a foundation component for a number of the current
cardiac models. Since the original models were published, there
has been a consistent flow of new and arguably more reliable
experimental data sets, which have been largely ignored by the
modelling community. The vast majority of cardiac models
(including our own) (Crampin and Smith, 2006) are guilty of
building on existing models without considering the source of
all the model parameters. To address this issue, in our recent
model of active contraction (Niederer et al., 2006) we
performed an extensive literature search for each model
parameter and noted the experimental conditions under which
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Fig.·2. (A) Isometric tension data at varying strains. Solid data points represent measurements taken under physiological conditions used to fit
the model. The remaining data are plotted as crosses. (B) Schematic diagram of the model of muscle cell oxidative energy metabolism.

Fig.·3. Coupled electromechanics simulation at diastolic (A) and
systolic (B) states. The coloured surfaces indicate active tension with
blue corresponding to 0·kPa and red to 50·kPa. The model uses a
simplified left ventricular geometry, tension is calculated using the
electrophysiology model (Crampin and Smith, 2006) coupled with the
active contraction model (Niederer et al., 2006), and passive material
laws are defined by the Pole Zero law (Nash and Hunter, 2000). The
equations were solved as previously described (Nickerson et al.,
2005).
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the parameter was measured. We belive this
adoption of clear links between model parameters
and experimental results is an important step in
maintaining credibility in cardiac modelling.

Criteria for model assessment
Systematic validation against experimental data of

models linking detailed cellular biophysics to tissue
function remains challenging. As outlined above this
is, in part, due to the technical difficulties associated
with managing and maintaining links to
experimental data required for each mechanism in
the excitation–contraction metabolism process.
Nonetheless, validation is essential before these
promising simulation techniques can provide real
value to the clinician.

The specific difficulties outlined above are as
follows. (1) Models are rarely implemented and
tested as part of the peer-review process for journal
publications, meaning the published manuscript may
contain errors. (2) The connection between model
parameters and data is often ambiguous. Making this
link transparent is fundamental to building large-
scale models that integrate different physiological
subsystems. (3) The functional limitations of a
model do not become apparent until significant time
and effort has been put into model implementation,
application and coupling. (4) There are few public
forums where feedback, experiences and critique of
existing published models can be shared. (5) The
experimental data used to parameterize and validate
computational models are rarely available to the
community in convenient useable formats.

Each of these issues undermines confidence and
impairs the application and extension of models by
people other than the developers, or those with
specific expertise in model development. As
discussed above, a number of cell modelling mark-
up languages have been developed (CellML, SBML,
Jsim) and using these, and other established
computing languages, cell models can be made
freely available. Furthermore, there is on-going
discussion of the development of FieldML
(http://www.physiome.org.nz/fieldml/pages/), a
mark-up language that will enable the representation of
structural and continuum information about biological and
physical entities. This will allow the unambiguous machine-
readable representation of structural and tissue-based models.
Running versions of models provided by model authors using
these codes provides a significant step in overcoming issue 1.
Furthermore, a model that is compliant against the MIRIAM
rules guarantees machine readability, an unambiguous
description of the model, consistency with the published model,
and consistency between published results and simulation
output.

N. P. Smith and others

To address issues 2–5 will require the community to build
on these initiatives, and the development of openly available
resources to disseminate models linked to the data sets used to
parameterize them. We suggest that the following two types of
entities should be collected and published online in a physiome
database: published models, including complete codes for
simulation, and peer-reviewed published data sets in accessible
electronic formats. The first of these is the domain of the
MIRIAM standard. Model entries in the database will be
annotated using established ontologies, and include working
and executable codes, using freely available tools, or
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Fig.·4. Citation tree for the source of the (A) binding affinity of Ca2+ to troponin
C and (B) binding affinity of Ca2+ to calsequestrin parameter, in cardiac myocyte
mathematical models. Grey and white boxes indicate experimental and modelling
studies, respectively.
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computational code in an established language (C, Matab,
Fortran, Pascal). These marked up executables with the
addition of digitized data sets (see point 1 below) will ideally
be available as part of the review process. This will enable the
reviewer and user community to curate entries in the database
with the following tools and criteria:

(1) Explicit links will be established between data sets and
models. Specifically, each model will link to: (i) the data that
were used to parameterize the model; (ii) additional data that
are used to verify or demonstrate the scope and physiological
application of the model; and (iii) known relevant data sets that
the model does not satisfactorily fit. In addition each data set
will link to: (i) model(s) that use the data set as part of the
parameterization of those models; (ii) models that fit and/or
help to explain the data set; and (iii) models that are not able
to fit the data. These links will be edited by the authors.

(2) Classification of the model according to the objective
criteria listed below. The authors will be invited to provide this
classification. The ultimate goal is to have submission of a
model to the Physiome resource with classification according
to these criteria as part of the review process for major journals.
Reviewers may be expected to verify the initial classification
entered by the authors.

(3) A user feedback and review section where people can
post non-anonymous ‘amazon.com’ style comments on their
experiences. In each case the authors will be invited to provide
a response and, if necessary, update their work.

Objective criteria
Below is the list of objective criteria that we propose for

classification of computational models of cellular function.
Each model is classified in each of the following categories as:
(A) satisfies, (B) does not satisfy, or (NA) not applicable. This
classification is not intended as a judgment on the validity of
a given model or approach; but is intended to help define the
scope and applicability of a model for potential users.

Objective characteristics of models
Biophysically based model criteria:

(1) Mass balance. The total mass of model variables leaving
or entering the system is explicitly accounted for (and in the
case of a closed system is conserved).

(2) Charge balance. Total charge of model variables leaving

or entering the system is explicitly accounted for (and in the
case of a closed system is conserved).

(3) Osmotic balance. Mass balanced model accounts for
water fluxes and volume changes.

(4) Thermodynamic feasibility. Model components obey
detailed balance and thermodynamic box constraints.

Criteria for comparing model to data:
(5) Initial conditions given for periodically driven models

provide a beat-to-beat steady state (variables return to the initial
condition after exactly one period).

(6) All parameter values are justified by cited experimental
measurement, previous estimation based on model analysis, or
based on model analysis in the current study, or qualitative
commentary by the authors.

Computational documentation criteria:
(7) In addition to MIRIAM compliance, all model units are

defined and used consistently and model initial and boundary
conditions are unambiguously defined.

We now consider the models, from our own work, described
above. The classification of each of the models against these
criteria is given in Table·1.

Discussion
In the above section we have proposed a set of criteria for

models in physiome databases, in addition to MIRIAM
compliance, by which we hope to facilitate confidence in the
use and reuse of biophysically based models of biological and
physiological systems. These insist on a transparent connection
between experimental data and model representation, and a set
of objective model characteristics that will assist in quantifying
the scope of a given model.

It would be naïve, however, not to consider the difficulties
with implementing such a process. The culture of scientific
publishing rewards the creation and publishing of new models
rather than critiquing or reviewing existing work. The
classification of models according to a set of criteria, as
proposed above, may require significant investment of
resources and, perhaps, requires new ways to recognize and to
provide incentives for individual involvement.

As suggested in the MIRIAM proposal, an initial curation
process will be most effective if performed by the model

Table·1. Review of computational models of cellular function

Model/criteria 1 2 3 4 5 6 7

Smith and Crampin (Smith and Crampin, 2004) NA NA NA A NA A A
Crampin and Smith (Crampin and Smith, 2006) A A B B A A A
Niederer, Hunter and Smith (Niederer et al., 2006) NA NA NA B NA A A
Wu et al. (Wu et al., 2007) B A B A A A A

The models reviewed above classified according to the criteria outlined above, where the model satisfies (A), does not satisfy (B), or is not
applicable (NA) when assessed against each criteria. 

See text for details of each model.
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author, rather than post-hoc by a separate curator. However, if
models are to fulfill their role, giving qualitative (mechanisms)
and quantitative (experimental data) understanding, it will be
vital that there is a forum for an open and robust critique of
models. This debate could take the form of challenging models
with new data sets, as they become available, or critiquing
modelling assumptions or approaches used in deriving a model.
Developing a forum that encourages open debate amongst
experts and users and provides useful information for non
experts, while minimizing unproductive conflict, would clearly
require skilled mediation and a well established code of
conduct. However, as argued in the Introduction, we believe
this type of curation will be an essential process for the ongoing
development of integrated computational models

We have outlined a preliminary plan that expands the
currently proposed criteria for model curation and we assessed
four models from our own work against the proposed criteria.
We hope that this proposal will itself generate dialogue and
debate within the biological modelling community. Our five
criteria for model assessment have been selected for their
primary relevance to metabolic and electrophysiological
models. However, any ‘final’ set of criteria must of course be
selected and adopted by the community, and may possibly
require the formulation of additional criteria, or even of
alternative lists for the classification of models based on other
frameworks, e.g. network inference models for gene–gene
interactions, or signalling pathways. We see this goal as falling
firmly under the aegis of the Physiome Project; motivated by
the pressing need to establish standards to facilitate
communication and debate about models, to accelerate the use,
implementation and review of models and their connection
with data by the scientific community.

The authors would like to thank Professor Peter Hunter, for
helpful discussions. This work was supported. by the Marsden
Fund of the Royal Society of New Zealand through grant No.
04-UOA-177 and National Institutes of Health grant No.
EB005825.
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