
Reconstructing gene regulatory networks:
from random to scale-free connectivity

J. Wildenhain and E.J. Crampin

Abstract: The manipulation of organisms using combinations of gene knockout, RNAi and drug
interaction experiments can be used to reveal regulatory interactions between genes. Several
algorithms have been proposed that try to reconstruct the underlying regulatory networks from
gene expression data sets arising from such experiments. Often these approaches assume that
each gene has approximately the same number of interactions within the network, and the
methods rely on prior knowledge, or the investigator’s best guess, of the average network connec-
tivity. Recent evidence points to scale-free properties in biological networks, however, where
network connectivity follows a power-law distribution. For scale-free networks, the average
number of regulatory interactions per gene does not satisfactorily characterise the network. With
this in mind, a new reverse engineering approach is introduced that does not require prior know-
ledge of network connectivity and its performance is compared with other published algorithms
using simulated gene expression data with biologically relevant network structures. Because this
new approach does not make any assumptions about the distribution of network connections, it
is suitable for application to scale-free networks.

1 Introduction

The development of computational techniques to identify
the transcription networks underlying observed gene
expression patterns is an important challenge in the analysis
of gene expression data. Significant progress has been made
in the last few years in characterising regulatory interactions
at the genomic level [1–9], including methods for identify-
ing gene and protein interactions, regulatory modules
occurring with high frequency in the genome and the identi-
fication of transcription motifs [10–13].

In parallel, several different approaches have been pro-
posed by which gene regulatory networks can be identified
directly from gene expression data sets [2, 14–16]. The aim
of these so-called ‘reverse-engineering’ approaches is to
allow investigators to analyse data sets directly without
making prior assumptions about the underlying networks.
Gene regulatory networks, identified purely from transcrip-
tional data, reflect regulatory influences, rather than
mapping direct physical interactions between molecules.
Methods for gene network reconstruction have been pro-
posed on the basis of statistical analyses such as Bayesian
networks [17, 18], Boolean models [19] and graphical
Gaussian models [15, 16]. In this report, we focus on
analysing networks from gene perturbation experiments,

analysed previously using singular value decomposition
(SVD) [14, 20, 21] and a linear regression approach [2].

From the perspective of network reconstruction, one of
the most important features of gene regulatory networks is
that they are sparsely connected: the average number of
connections per node in the network is small in comparison
to the number of nodes [22]. Jeong et al. [23] analysed
protein–protein interaction maps from Saccharomyces cer-
evisiae and estimated an average degree kav per gene of 2.4.
Guelzim et al. [24] showed for the yeast transcriptional
network that the incoming and outgoing connections (in-
and out-degrees) have a similar proportion in the genome.
For this reason, progress can be made despite difficulties
in achieving adequate coverage of all potential regulatory
interactions in data sets (for example, there are typically
fewer data points than interactions to be determined in
gene expression data sets, especially for large-scale
studies, including microarray approaches). Yeung et al.
[14] have presented an approach based on SVD to infer
the regulatory interactions, and they had success with
limited amounts of data for networks of more than 200
genes. On the basis of this work, an improved approach to
experimental design was developed, in which genes are
selected iteratively for perturbation to reveal the architec-
ture of the underlying network [20].

There is mounting evidence that many biological net-
works, including metabolic [25], protein–protein inter-
action [26] and transcriptional networks [27], as well as
many other genomic indices [28], share the common prop-
erty that the distribution of connections follows a power
law, P(k) � k2g. Here the degree distribution P(k) is the
probability that a ‘node’ (gene) of the network is connected
to exactly k other nodes. Networks with this property are
known as scale-free networks, as the relative probability
for two different connectivities k depends only on the
ratio of the connectivities, rather than on their absolute
values. Although the power-law degree distribution is
the distinguishing feature of scale-free networks, few
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reverse-engineering algorithms have considered this prop-
erty, and several of the most prominent algorithms
implicitly assume that networks are well characterised by
their average network connectivity.

In this work, we consider the influence of the distribution
of connections on network identification. Recently, Gardner
et al. [2] described a reverse engineering algorithm based on
a multiple regression approach, called NIR. Their approach
requires that the average number of connections in the
network be specified a priori, and that each node in the
inferred network has this number of connections. This is
clearly a limitation if biological networks are not well
characterised by their average degree. Farina and Mogno
[21] proposed the FAST algorithm that follows the SVD
implementation by Yeung et al. [14], having a low compu-
tational complexity compared with the NIR algorithm.

Two new algorithms for reverse engineering gene regu-
latory networks are proposed in this paper, called
simple-to-general (S2G) and general-to-specific (G2S)
[29]. Both algorithms use an iterative model selection tech-
nique, described subsequently, to find the true underlying
network. The two algorithms differ from one-another in
that S2G iteratively builds up a network model, starting
with no connections, whereas G2S starts with a fully con-
nected network and sheds connections until an optimal
network model is found. In either case, no assumptions
need to be made about the network connectivity, distri-
bution or average degree for the nodes, and it is this
increased flexibility that makes these algorithms suitable
for the identification of networks with more appropriate
‘biological’ degree distributions, such as scale-free
networks.

Efforts to develop algorithms for identification of regulat-
ory networks are, however, hindered by the quality and
reliability of available data sets. In particular, benchmark-
ing data sets on networks with known interactions are not
readily available. For example, Gardner et al. [2] collected
data for a sub-network of the SOS pathway in Escherichia
coli, perturbing each gene in the sub-network in turn and
recording the steady-state expression level. Using these
data, Gardner et al. [2] applied the NIR algorithm and
were able to infer many of the known interactions for
what is a fairly well characterised pathway. However, the
algorithm also identified a significant number of regulatory
influences not previously recorded in the literature, which
could correspond either to false positives or to the correct
identification of previously unrecognised, yet genuine,
regulatory interactions. This makes it difficult to use such
data sets to assess the performance of their and other algor-
ithms. In this situation, in silico modelling of gene networks
can provide a platform by which to assess the performance
of different algorithms [14, 20, 30–32]. In silico gene net-
works generate gene expression data with well-defined
properties. The parameters of such artificial networks can
be varied systematically, and the data sets obtained
provide an objective comparison of reverse engineering
algorithms on gene networks with different topologies,
and with varying degrees of biological variation and
measurement noise.

2 Methods

We developed a simulation environment similar to the one
introduced by Mendes et al. [31]. This differential equation
model, described subsequently, was used to generate
steady-state gene expression data from perturbation exper-
iments. To analyse the influence of network connectivity
on the performance of the reverse engineering algorithms,

we have used simulated data sets for random and scale-free
networks of different sizes and noise levels in order to
assess the performance of the existing and newly proposed
algorithms.

2.1 Simulating gene expression data

Initially, we specify parameters defining the network con-
nectivity in order to generate a network. Gene expression
data can then be simulated for this network by specifying
kinetic functions representing the regulatory interactions.
In our model, the number of regulatory interactions of
each gene is given by the degree, k, of the corresponding
node, and the different network topologies correspond to
different distributions of k across the nodes in the
network. We simulated three types of networks: random
[33], scale-free and hierarchical network topologies [34],
shown in Fig. 1.

Random network. For a network of N genes, the random
procedure connects each pair of nodes i and j with equal
probability z, where the threshold for interaction z is
equal to the average connectivity of the network, kav.

Scale-free network. Following the work of Barabási and
Albert [35], the scale-free topology is built using the
preferential attachment rule

zi ¼
kiP
j kj

ð1Þ

where ki is the degree of node i and zi the probability
threshold for new interactions for gene i. Initially all
nodes i ¼ 1, . . . , N are assumed to have the same interaction
probability. If a node acquires an interaction, the probability
for new interactions increases according to (1). The algor-
ithm selects two nodes randomly and tests against the prob-
abilities zi(k) and zj(k). This procedure is terminated when
the specified average connectivity for the network kav is
reached, which, providing it is well below fully connected,
generates the power-law property.

Hierarchical network. In addition, we simulated hier-
archical networks that are built by cloning a scale-free
network and then adding connections between the clones,
based on the probabilities zi(k). These hierarchical networks
retain the scale-free property.

For each network, the ratio of positive to negative con-
nections is specified by the parameter r. If r ¼ 0.5, then
the probabilities for an edge to be activating or inhibiting
are equal. Increasing r leads to more positive regulatory
interactions, decreasing it to more negative interactions.
Savageau [36] developed a theoretical basis that established
some properties of either mode of regulation, but to our
knowledge little research has been published about this pro-
portion in genomes [37].

After defining the network structure, we generate
large-scale expression data sets for the given topology,
based on a model of genetic networks using ordinary differ-
ential equations (ODEs) [31]. Assuming that the levels of
mRNA species are continuous and depend on the balance
between transcription and degradation, (2) describes the
general structure of the mathematical model

dxi

dt
¼ fiðx1; . . . ; xN Þ � bixi ð2Þ

where xi represents the abundance of the mRNA of gene i,
fi(x1, . . . , xN) is the rate of transcription and bi represents the
breakdown rate of species i. The regulatory effects of
activating and inhibitory genes are represented in the rate
function fi, which represents the influence of all regulatory
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genes acting on gene i. Thus changes in the rate of trans-
cription of each gene come about from changes in
concentration of the other gene products. We assume
that each gene exists only once in the network and trans-
cription is catalysed by a limited number of transcription
complexes. This characteristic leads to a general rate law
of transcription

fiðx1; . . . ; xN Þ ¼ vi

Y
j

a
mj

j

I
mj

j þ a
mj

j

 !
�
Y

j

1þ A
mj

j

A
mj

j þ b
mj

j

 !

þ ui ð3Þ

where the term vi symbolises the basal (non-inhibited) rate of
expression and ui represents an external perturbation. The
regulatory interactions between genes consist of activation
(Aj) or inhibition (Ij) of gene expression by transcription
factors (activators and repressors), assumed proportional to
gene transcript levels, with saturation constants a and b.
The exponents mj regulate the sigmoidicity of the interaction
curve. These parameters are arbitrarily chosen from prede-
fined ranges (Table 1). We generated large-scale expression

data sets by simulating this ODE model, and checking the
resulting data to guarantee a stable model.

2.2 Variability and noise

An important objective is to study the effects of variability on
the performance of the algorithms. Two different sources are
of major importance: biological variability and experimental
noise. In biological systems, variability arises from genetic
polymorphisms and from different environmental conditions.
We simulated this by slightly varying the parameters vi, bi, ai,
bi and mi in the model between different simulated exper-
iments. We simulated measurement error by adding
Gaussian distributed noise to our simulation results, with
zero mean and variance 0–100% according to the smallest
estimated expression ratio of the final mRNA levels.

2.3 Steady-state perturbation experiments

Perturbation of the expression level of a gene will cause a
change in the rate of expression of other genes in the regu-
latory network via their regulatory interactions, which may
subsequently settle down into a new steady-state expression
profile. To identify this system, a reverse engineering algor-
ithm tries to infer the connections from the measurements
obtained as a response to the perturbations made to the
network. The identification of nonlinear behaviour is very
challenging because of the increased complexity necessary
to identify the nonlinear functional interactions. However,
a simpler approach is to identify connections only by consid-
ering response to small perturbations from steady state, for
which the behaviour of the network can be approximated
by a linear system of equations. In this case, and in practice
often for larger perturbations, the deviation from steady state
yi ¼ xi 2 xss

i is well approximated by the linear equation

dyi

dt
¼
XN

j¼1

aij yj; i ¼ 1; . . . ;N ð4Þ

The ‘connectivity matrix’ aij represents the influence of gene
j on gene i, and its entries are non-zero only when gene j acts
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Fig. 1 Networks of 30 nodes, with average degree kav ¼ 3

a Random network topology (kin ¼ 1.4, kout ¼ 1.5)
b Scale-free network topology (kin ¼ 1.5, kout ¼ 3)
c Hierarchical network topology (kin ¼ 1.5, kout ¼ 4.5)

Table 1: Parameter ranges for internal parameters used
in the simulation model

Parameter Description Range

vi Basal rate of expression U [1.05 . . . 1.15]

mi Hill coefficient U [0 . . . 6]

ai Activator half-saturation

constant

U [1 . . .2.5]

bi Inhibitor half-saturation

constant

U [1 . . . 2.5]

bi Degradation rate U [0.75 . . . 0.85]

U[x . . . y] denotes uniformly distributed random values in the
given range. Biological variation in the kinetic parameters is
determined by adding a uniformly distributed random value in
the range [20.1 . . . 0.1]
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directly on gene i in the network. If a sustained external
perturbation uil is applied to the system, then a new steady
state for each mRNA species may be established. The
steady state resulting from the lth perturbation made to a
network of N genes and M perturbation experiments is
given by the following equation

0 ¼
XN

j¼1

aijyjl þ uil þ eil; i ¼ 1; . . . ;N ; l ¼ 1; . . . ;M

ð5Þ

where yjl is the steady state mRNA concentration for gene j
following the perturbation in experiment l and e il represents
the error term of the particular measurement. Our task is
to identify the N � N coefficients aij (the connectivity
matrix) describing the regulatory interactions between the
genes; in particular, to identify the non-zero elements and
their signs to distinguish between activating and inhibitory
influences.

In practice, relative gene expression levels ŷil are
measured, where ŷil is the ratio of the steady-state
expression yi under perturbation and the reference (unper-
turbed) steady state for gene i in experiment l

ŷil ¼
yil

xss
i

¼
xil

xss
i

� 1 ð6Þ

Under this linear transformation of the data, the model that
we wish to fit to the relative expression level data set is

0 ¼
XN

j¼1

âijŷj þ ûi ; Ei; i ¼ 1; . . . ;N ð7Þ

where ŷj and ûi ¼ ui/xss
i , are vectors of length M over the

different experiments, âij ¼ aij xss
j /xss

i , which does not
change the locations or the signs of the non-zero entries
of the connectivity matrix, and Ei is the model reconstruc-
tion error (residual) for gene i over the experiments. We
used model (2) and (3) to generate steady-state expression
data Ŷ ¼ [ ŷ1, ŷ2, . . . , ŷN] for perturbations Û ¼ [û1, û2,
. . . , ûN], and we applied different reverse engineering algor-
ithms to infer the connectivity matrix and assessed their
relative performance for different network parameters.

2.4 Comparison of reverse engineering
algorithms

We used the NIR and FAST algorithms as described in the
publications of Gardner et al. [2] and Farina and Mogno
[21]. Additionally, two new algorithms have been adapted
from the analysis of biochemical pathways [29]. In
general, at least N independent measurements are required
to uniquely determine the coefficients of the connectivity
matrix from (7). Following Gardner et al. [2], in this
work, we have assumed that each gene in the network is per-
turbed in turn, M ¼ N and Û is a diagonal matrix.

Given the perturbations ûi and the steady-state expression
data ŷi, the coefficients âij can be found for each gene i in
turn using a maximum likelihood approach. Assuming inde-
pendent and normally distributed measurement errors, this
reduces to least squares minimisation

CLS ¼
1

M
Ei � Ei ð8Þ

and can be solved using SVD. Typically, however, this
approach will lead to over-fitting of the model to the data,
including the noise. NIR and FAST get around this problem

by assuming that each gene has around the same number of
interactions, but as we have noted, this is inconsistent with
the degree distributions found in many biological networks.

2.4.1 Simple-to-General and General-to-Specific:
An alternative approach is to introduce a penalty term to
the log-likelihood expression to prevent over-fitting, and
hence find a sparse matrix aij. The algorithms S2G and
G2S do not impose the number of interactions, k, a priori.
Rather, they attempt to find a parsimonious model, using
the Akaike Information Criterion (AIC) [38] to restrict the
number of terms

CAICðKÞ ¼ M log
1

M
E
ðKÞ
i � E

ðKÞ
i þ 2K ð9Þ

where the number of terms in the model K is to be deter-
mined by the algorithm, from the data. This cost function
seeks to minimise the least squares error and the second
term penalises the use of an increasing number of
interactions. (An alternative cost function, Rissanen’s
Minimum Description Length [39] based on minimising
the coding length of a model and associated residual
errors, could also be used here.)

We expect only a subset of the coefficients âij to be
non-zero. Our model is then

E
ðKÞ
i ¼

XK

k¼1

âik ŷfðkÞ þ ûi; i ¼ 1; . . . ;N ð10Þ

for a network with K , N interactions, where f(k) [ f1, . . . ,
Ng are the indices for the K interactions included in the model.
The question is how to find K, and then which subset of K
interactions to choose from the set of N possible interactions.
An iterative procedure for constructing the model is proposed
by Judd and Mees [40], who analysed the effect of adding and
removing terms from the model. They showed that the term
that can be added to increase the model size, giving the
largest marginal improvement to the model approximation,
is the element with largest absolute value in

mi ¼ �V T
� E
ðKÞ
i ð11Þ

which is the projection of the model reconstruction error onto
the matrix V, the model design matrix, which is the set of all
possible interactions. Similarly, they showed that the term
that can be removed from the model doing the least damage
to the approximation corresponds to the smallest coefficient
âij [40]. Two iterative algorithms based on adding or removing
interactions to improve the approximation are described in
the Appendix. The S2G approach starts with a single inter-
action and iteratively considers terms to add to the model in
order to find the set of interactions which minimises (9).
Alternatively, the G2S approach uses as the initial set a fully
connected graph and then applies (11) and (9) to eject terms
until the optimal model is constructed.

2.4.2 Combining results using voting: Although G2S
and S2G are built from the same iterative procedure,
because of their different selection approaches we have
found that the two algorithms tend to identify different net-
works. A simple voting scheme between the two algorithms
was found to improve the performance. In the voting
scheme, the networks indentified independently by the
two algorithms are compared, and only those connections
common to both networks are retained. This was found to
decrease the number of false positive connections ident-
ified, with only a small impact on the false negative rate,
thus increasing the performance of the approach.
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3 Results

We measured the performance of the reverse engineering
algorithms on simulated datasets with different network
sizes and parameters. The NIR and FAST approaches
required that the average network connectivity kav was
passed to the algorithms along with the steady-state data
sets. An alternative strategy for NIR was suggested by
di Bernardo et al. [7] where a maximal connectivity kmax

is provided to the algorithm, and statistically insignificant
edges subsequently pruned from the inferred network –
we have not implemented this idea here. In addition, we
compared the performance of the algorithms to a random
allocation of gene–gene interactions, to calculate a
threshold for selection of interactions by chance. We esti-
mated statistics for randomly inferred connections for the
given network parameters with respect to the topology,
average number of connections kav, network size N and
the ratio r of repressing to activating interactions.

To compare the performance of the different algorithms
we calculated the sensitivity (Sn: true positive rate, or
‘power’) and the false discovery rate (FDR), defined in
the Appendix. Specificity (Sp: the true negative rate) is

not a useful statistic here as it will be strongly affected by
changing network size when comparing algorithm perform-
ance with different numbers of genes. In addition, we calcu-
lated the total number of errors (false positive count and
false negative count).

Topology. Fig. 2 shows the performance of the four reverse
engineering algorithms on sparse networks with random,
scale free and hierarchical network topologies for different
network sizes, along with the results of voting between the
S2G and G2S approaches, and inference by chance.
Simulated steady-state gene expression profiles were gener-
ated using networks with the desired topology and network
size, and the gene regulatory networks inferred by each
reverse engineering algorithm were compared with the
network used to generate the data set. We used 50 indepen-
dently generated networks at each data point in order to
assess the performance of the reverse engineering algorithms.

S2G and G2S algorithms perform fairly uniformly
across the different network topologies, and the sensitivity
(true positive rate) is insensitive to network size for gene
networks of 10–50 genes. In contrast, the NIR approach
shows significantly worse performance for scale-free
and hierarchical topologies than for random networks.

a b

c

Fig. 2 Performance of network inference algorithms for random, scale-free and hierarchical networks with 50 genes and kav ¼ 2

a Random network topology
b Scale-free network topology
c Hierarchical topology
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The performance of the FAST algorithm was found to
be poor in all cases. The key network inference statistics
for networks of size 50 are summarised in Table 2.

Connectivity. It has been shown that the connectivity
varies in different components of transcriptional net-
works [10, 24]. Our simulations indicate that the level of
connectivity also has a strong influence on the ability to
infer networks. Fig. 3 shows that for networks of
fixed size (40 genes) the performance of all algorithms
deteriorates with increasing number of interactions in the
network (average degree kav) from two to five interactions
per gene.

Noise. The most common problem in the analysis
of data generated by high throughput experiments is
the control of variability, both within and between
experiments. In general, increasing the noise in our
simulated data sets decreased the number of correctly
identified connections, illustrated in Fig. 4a, and reduced
the sensitivity with growing network size (data not
shown). Specifically, the performance of the G2S approach
drops towards the level of the NIR approach. This abrupt
change in performance is presumably a result of loss of
information content of smaller (near zero) expression ratio
changes following perturbation of the network (Fig. 4b).

Table 2: Performance under different topologies with kav52 and network size of 50 after sampling 50 times

Algorithm Random Scale-free Hierarchical

Sp Sn FDR Sp Sn FDR Sp Sn FDR

S2G 0.953 0.962 0.688 0.967 0.956 0.598 0.996 0.916 0.181

G2S 0.978 0.951 0.529 0.978 0.945 0.530 0.978 0.924 0.538

Vote 0.990 0.934 0.345 0.992 0.930 0.291 0.998 0.890 0.095

NIR 0.973 0.660 0.670 0.970 0.531 0.734 0.962 0.142 0.929

Fast 0.960 0.053 0.974 0.961 0.037 0.977 0.960 0.042 0.979

By chance 0.980 0.020 0.980 0.980 0.020 0.980 0.980 0.019 0.981

a b

c

Fig. 3 Influence of network connectivity on inference rate in scale-free networks with 40 genes

a Sensitivity
b FDR
c Total number of errors

IEE Proc.-Syst. Biol., Vol. 153, No. 4, July 2006252



4 Discussion

In this work, we performed a direct comparison of reverse
engineering algorithms, although it was necessary to pass
information about the network structure (kav and infor-
mation about the noise distribution) to the NIR and FAST
algorithms. Unsurprisingly, the S2G and G2S algorithms
performed better on scale-free and hierarchical networks
as these two algorithms make no assumption about the dis-
tribution of the number of regulatory interactions per gene.
This additional flexibility does not appear to impair the
performance of the S2G and G2S approaches for networks
with random topology. In our simulations, the S2G algor-
ithm showed the same low computational complexity as
the FAST algorithm (but with the ability to infer regulatory
interactions). The computational complexity of the NIR
algorithm grows exponentially with increasing number
of connections per gene. For dense networks, the cost
to infer a network is similar to the G2S algorithm. Our
analysis also highlights the effectiveness of ensemble
approaches, such as the voting method used here, which

combine predictions from different methods to reduce the
FDR (inference error) without reducing the sensitivity
(identification of true interactions), and thus improve pre-
dictive power.

The significance of degree distributions such as the scale-
free and hierarchical topologies that we have considered
here is their apparent prevalence in data on real biological
networks. Recently, there has been some discussion as to
whether these data indicate true power-law behaviour, or
whether the biological networks in fact only approximate
the scale-free property over some range of connectivities
or sampling [41–43]. From the perspective of network
inference, however, the key finding remains that biological
networks are not randomly connected and therefore not well
characterised by their average connectivity.

Our simulations with different network parameters show
that the underlying structure of regulatory networks
strongly influences the performance of reverse engineering
algorithms. Simulations and reverse engineering
approaches typically assume sparse networks with an
average degree of around 2 [14, 16, 20], consistent with
Jeong et al.’s estimate of kav � 2.4 in protein–protein inter-
action maps from S. cerevisiae [23]. Guelzim et al. [24]
recently found that transcriptional networks have at least
an average degree of four interactions per node, but found
incoming and outgoing connections (in and out degrees)
have a similar proportion in the genome, whereas
Luscombe et al. [44] have reported that the in and
out degree may differ strongly in transcriptional networks
(kin� kout). A high out degree indicates the existence of a
large number of target genes that are at the end of signalling
pathways, mostly regulated by central hubs [44]. Our simu-
lations showed that the increase in the average degree
impacts the inference and leads to an increase of false nega-
tives in the inferred datasets, whereas the difference
between in and out degrees is less worrying for successful
inference. We also observed a significant deterioration of
the sensitivity of the algorithms with increasing measure-
ment noise, decreasing the probability of discovery of regu-
latory interactions. Measurement noise most severely
affects our ability to infer networks with hierarchical struc-
ture and hub-like network motifs, which if obscured by
noise will impact on the whole network inference. In con-
trast, we found that the biological variability of a system
did not strongly influence the performance as network
size was varied.

We used simulated gene perturbation data, in which indi-
vidual genes were down or up regulated (Fig. 4b) and, if a
steady state was reached, the corresponding steady
network expression levels recorded. Equally, we could
have applied the techniques to knockout data sets. Several
authors have criticised the usage of knockout experiments
because they cut essential regulatory interactions in a bio-
logical system. In our network simulations, we found that
failure to reach a new steady state was not uncommon
(for example, a perturbation resulting in periodic expression
levels). We also observed that highly connected networks
have a very high tolerance towards perturbations. This
behaviour is known to be inherent to biological systems
[9]. For the reverse engineering algorithms, these pertur-
bations thus provide less information about the network,
which may be responsible for the decline in the rate of
inferred connections with increasing kav.

There are at present no fully validated large-scale
biological datasets available, and we must rely on simulation
models to assess the performance of our algorithms. Indeed,
the use of standard simulated data sets to compare algorithm
performance has been suggested [15, 31, 45]. The caveat to

a

b

Fig. 4

a Effect of noise on network inference rate for scale-free networks
with kav ¼ 2
Percentage of noise is calculated according to the expression levels per
simulation
b Histogram of variation in individual mRNA species expression
ratios for scale-free network with 30 genes and kav ¼ 2
Counts around zero indicate genes with small expression changes
relative to control arising as a consequence of perturbation or
variability
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the use of simulated data sets, of course, is that they will only
provide evidence on the performance with real data if the
simulation model gives a faithful representation of real bio-
logical networks. Although models for large scale data analy-
sis cannot be as detailed as tissue or pathway-specific models
[46, 47], they can be made increasingly realistic using topo-
logical information such as kav, in against out degree ratio,
and power-law exponent g, measured in real genomes [48,
49]. Using experimentally inferred values for DNA transcrip-
tion and degradation rates for known gene families to gener-
ate a hierarchy of time scales, allows complex gene
regulation models to be constructed.

Several alternative transcriptional network simulation
environments are available. Regulatory interactions can be
modelled using a mix of discrete Boolean logic and differen-
tial equations [50]. Zak et al. [47] consider the limitations in
information content of gene expression data for reverse
engineering regulatory networks. Kauffman [51] presents a
proposal for using an ensemble approach to understand
genetic regulatory networks. The S-system approach has
been used to produce and analyse transcriptional perturbation
data to find the correct regulatory mechanisms [52].
Probabilistic models simulating transcriptional data are
presented by Mao and Resat [53] and Zhou et al. [32]. Vu
and Vohradsky [30] published a gene network simulator
that is based on a neural network principle. The availability
of different models allows cross-validation of results from
experimental data, as it seems reasonable that some models
are better simulations for a particular biological problem.

From a practical perspective, establishing the size of the
perturbations made to the system may in some
circumstances be a difficult task. For over-expression of
transcripts, for example using plasmids [2], the rate of
mRNA production by the expression vector can be
established. In cases where transcription is perturbed
using other chemical or pharmaceutical means, for
example, the target of the perturbation may not be known,
let alone the perturbation strength. Several authors have
addressed this issue in the context of regulatory network
identification and shown that a scaled version of the
connectivity matrix can be recovered without knowledge
of the perturbations themselves [54, 55].

Finally, we reflect that underlying all gene regulatory
network modelling is the assumption that correlations
between transcript levels reveal regulatory interactions.
Segal et al. [12] have shown for yeast that the transcription
level and the protein levels do not have to be correlated.
This would suggest that combining measurement data of
mRNA and protein levels may improve the inference of
regulatory interactions from experimental results.

In this paper, we have introduced two new approaches to
analyse data from gene perturbation experiments, we have
validated these and two published algorithms on an compu-
tational model simulating gene expression data. We showed
that our selection method performs well on the simulated
data sets. The FAST and NIR algorithms assume that
each gene has the same number of regulatory interactions.
The new approaches S2G and G2S do not make an
assumption about the degree distribution of the genes, and
are therefore well suited to the identification of scale-free
and hierarchical networks.
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7 Appendix

The following algorithm, S2G, implements the selection
approach by Judd and Mees [40]. We note that although
this selection algorithm was originally developed for
pseudo-linear models with non-orthogonal basis functions,
it can equally well be applied to construct purely linear
models [40], and we have found that it works well, as
described in Section 3. In this case, to find the unknowns
âij, we can proceed gene by gene.

The dataset provided to the algorithm contains the
scaled steady-state concentrations Ŷ and the perturbation
strengths for gene i, ûi. The algorithm finds the number of
interactions (basis functions) minimising the cost function
CAIC(K) by choosing a set of K basis functions, F, from the
pool V containing all N possible, normalised basis functions
(i.e. V ¼ f ŷjg, j ¼ 1, . . . , N). Ei

(K ) ¼
P

k¼1
K âik ŷf(k)þ ûi is

the model reconstruction error vector resulting from using K
basis functions in F, where f(k) are their indices.

1. Let F initially be an empty set and k ¼ 1 the number of
interactions to be included in the basis in this iteration.
Define E (0) ¼ ûi.
2. Let vector m ¼ 2VT . E(k21) be the projection of the
reconstruction errors onto the pool of basis functions. Let
iin be the index in V of the component of m with
maximum absolute value. This will be the basis function
included in the basis F ¼ F < fiing.
3. Calculate the coefficients aij associated with all the basis
functions in the basis F [by finding the pseudo-inverse
matrix for the linear equation (10)]. Let iout be the index
of the interaction having the coefficient with smallest absol-
ute value. This basis function is a candidate for removal
from the basis F.
4. If iin = iout, then remove iout from the basis,
F ¼ F\fioutg, and go to step 2.
5. Store the current F(k) ¼ F and calculate the cost function
CAIC(k).
6. If CAIC(k) , CAIC(k 2 1), then increase k ¼ kþ 1 and go
to step 2.
7. The algorithm terminates, with K ¼ k 2 1 the optimum
number of basis functions, and F(K ) the set of K basis func-
tions in V, which minimises the cost function.

This procedure can be repeated for each row to find all
non-zero elements in âij.
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The G2S selection technique starts with the basis F
containing all possible interactions in V and, in a similar
manner, systematically removes basis functions until the
cost function CAIC(K) is minimised.

7.1 Assessment of algorithm performance

To assess the network reconstruction performance, we
counted true positives (TP: correctly identified interactions),
false positives (FP: incorrectly identified interactions), true
negatives (TN: correctly identified zeros) and false nega-
tives (FN: incorrectly identified zeros). From this infor-
mation, we estimated the sensitivity (Sn: true positive

rate, also called ‘Power’), specificity (Sp: the true negative
rate) and the FDR

Sn ¼
TP

TPþ FN
; Sp ¼

TN

FPþ TN
; FDR ¼

FP

TPþ FP

These statistics were used to validate an existing interaction
without taking the sign of the interaction into account. To
consider the identification of positive and negative inter-
actions (activation and repression), we also recorded the
signed true positive rate and signed true negative rate.
The accuracy in detecting the correct sign approaches
100% for NIR, S2G and G2S (data not shown).
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