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Abstract: Systems biology is the understanding through computational modelling
of the function of biological systems. New high-throughput experimental technolo-
gies can measure simultaneously the levels of expression of thousands of genes.
The challenge is to extract knowledge from these data sets in order to understand
the regulatory machinery of the cell. This article describes recent approaches to
gene network modelling, focusing on the issues arising in the attempt to identify
regulatory networks directly from high-throughput gene expression data.
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1. INTRODUCTION

In recent years, new experimental approaches
have been developed that allow large scale quan-
titative measurement of biological systems, which
was not previously possible. In particular, the
development of techniques to monitor which genes
are actively making proteins in a cell has opened
the door to network-based analysis of the cell’s
regulatory machinery. Systems biology is the term
which has been adopted over the past decade or
so to describe this new approach to understand-
ing biological function. This review describes the
current status of systems biology, focusing on the
challenges thrown up in the analysis of these data.

In the past, the study of gene function has re-
volved around attempts to delete a gene (gene
’knock-out’ experiments) in order to determine
its putative biological role. This produces a ‘parts
list’ for a biological organism, an effort which has
been greatly advanced by completion of various
genome sequencing projects (the Human Genome
Project, completed in 2003 (Collins et al., 2003),
and similar genome projects for many other or-
ganisms). However, not all of the available com-
ponents in an organism’s parts list are present in
all its cells and, furthermore, it has been found
that the same component may have different roles
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erent cells within the same organism. This
ad researchers to develop experimental tech-
s to measure which subset of an organism’s
are actively being used in different cell types
y particular point in time. This allows an
ore profound study: how do the genes in an

ism’s genome interact to generate complex
ical function.

jor challenge remains, however, in how to
ss and interpret the data which are pro-
by these technologies. The Human Genome

ct determined that there are some 25 thou-
genes in the human genome. While this is
hort of the 140 thousand or so which were
ted in the early days of the project, the
aneous measurement of the activity of all 25
and genes creates significant challenges for
chers trying to infer regulatory interactions
en the genes. Predictive mathematical mod-
provides a framework within which data can
ed to determine the regulatory interactions
en genes. Traditionally this approach has
tackled in an intensive fashion, by piecing
er available information on individual gene
ctions to reconstruct the network of regula-
nteractions within a cell. High-throughput
iments now produce data from thousands of
, demanding a change of emphasis to auto-



mated data analysis and modelling procedures.
The task, to determine the network of regula-
tory interactions underlying the data, has been
called reverse engineering (in analogy with the
industrial practice of examining a competitor’s
finished product in order to learn how it performs
its tasks). Below we review some of the reverse
engineering techniques which have been developed
for this task, in particular focusing on the system
identification challenges. Before that we review
the fundamentals of molecular biology, and de-
scribe the experimental approaches which have
lead to these new challenges for systems biology.

1.1 Gene Expression Primer

Genes are the fundamental units of heredity, by
which information is passed on from one gener-
ation to the next. A gene is a section of DNA,
the molecule on which the heritable information is
carried, which codes for a protein. More precisely
the sequence of bases (the bridges between the two
strands of the DNA double helix) along the DNA
encodes the sequence of amino acids, the building
blocks that make a protein. Gene expression is the
process in which the information carried by the
gene is read and used to produce a protein. This
process takes two steps (see Fig. 1). Firstly a gene
is transcribed to an intermediate molecule, mRNA,
by an enzyme which reads the sequence of bases.
Secondly, the mRNA molecule is translated into a
protein (the correct sequence amino acids for the
protein is assembled at a ribosome, according to
the genetic code).

Fig. 1. The basic events in gene expression

In the double-helical structure of DNA, deter-
mined by Watson and Crick, the information con-
tent is duplicated. Information contained in the
sequence of bases along one strand is the same as
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n the sequence of bases along the other. This
to the complementary base pairing princi-

ach of the four possible bases, A (Adenine),
ymine), G (Guanine) and C (Cytosine), can
ind to one other type, to form the bridge
en the two strands of the double helix. A
s binds to T, G always to C. As was noted by
n and Crick in their famous paper (Watson
rick, 1953) this provides a template mecha-
for replication of DNA when required as, for
ple, during cell division. This principle is also
sis for the development of high throughput
ular technologies to identify and quantify
RNA present in the cell, and hence gene

ssion.

ight be expected, gene expression is very
regulated in the cell. Not all proteins are

ed in all cells at any one time, and cells need
pond to changing demands and conditions,
ing metabolic state, growth or cell division,
o on. Most of the different steps in gene
ssion are regulated, and the proteins may
e further post-translational modifications in
to become functional. However, the majority
regulatory activity controlling gene expres-
thought to take place at the transcriptional
Transcriptional regulation is achieved pre-
antly by the binding of other proteins to
NA, either to facilitate or to hinder tran-
ion. Many proteins acting in this manner
nscription factors, and can be specialised to
dual genes, or may act on large numbers of
. Transcription factors which facilitate gene
ssion are known as transcriptional activa-
hile transcription factors which inhibit gene

ssion are known as repressors.

odelling Gene Expression

criptional regulation of gene expression in-
proteins (gene products) interacting with
NA to activate or repress transcription.
cription factors themselves may be regulated
er proteins, or other cellular processes, such
metabolic state of the cell. In this way, we

nvisage a hierarchy of levels of regulation,
ultimately act on the DNA, shown in Fig 2.

ellular regulatory network that controls gene
ssion can me modelled at several different
of abstraction:

arative studies are aimed at finding patterns
e expression data. Examples include cluster-
genes into groups according to correlation
ir expression profiles (co-expression) under
nt experimental conditions.



Fig. 2. Interdependence of Cellular Networks. Top
layer: cell signalling and metabolic network
(metabolome); middle layer: protein-protein
interactions (proteome); bottom layer: gene
expression (transcriptome). Arrows repre-
sent activation and bars represent inhibition.
Adapted from Brazhnik et al. (2002).

Gene Regulatory Network models focus on data at
the transcriptional level, to identify a regulatory
‘wiring diagram’, called a Gene Regulatory Net-
work, illustrated by the dashed arrows in Fig 2.
This simplified representation of cellular signalling
projects the pathways mediated by protein and
metabolite interactions on to the transcriptional
level (dashed arrows), reducing the problem to
identifying (indirect) gene-gene connectivity from
gene expression data. In particular, the wiring di-
agram identifies connections between genes which
up- and down- regulate gene expression. For ex-
ample, in the figure gene 1 (G1) makes protein
P1 which is a transcription factor that activates
expression of G2. Therefore in the gene regulatory
network, G1 activates G2. Similarly, G3 inhibits
its own expression, as its protein P3 inhibits the
action of activatory transcription factor P4, and
so on.

Mechanistic models characterise the biophysical
and biochemical details of DNA, protein and
metabolite interactions, to produce a fully predic-
tive kinetic model of gene regulation and cellular
signalling. These models include all three of the
interaction levels illustrated in the figure.

The majority of this review will focus on mod-
elling gene regulatory networks from gene expres-
sion data. Next we discuss how these data are
generated.
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. MEASURING GENE EXPRESSION

expression is quantified by measuring the
nt of mRNA corresponding each gene that
sent in the cell. The two issues facing exper-
al measurement gene expression are firstly
termine which mRNAs are present in the
nd secondly to count how many copies of
molecule are present. Complementary base
g of DNA and RNA molecules can be used
e both these problems, and the development

hnologies that enable parallelisation of these
ulations has given birth to transcriptomics

ystems biology.

se of complementary base pairing, sequences
A (and single strands of DNA) bind (‘hy-
e’) much more readily with molecules hav-
e complementary sequence of bases, than

molecules with a different sequence. Even a
difference in the sequence greatly reduces

binding affinity. Thus complementary base
g can be used to identify transcripts, by
isation of a sample with molecules of known

nce.

basic process has been turned into a high
ghput mechanism for measuring gene ex-
on by parallelising the hybridisation reac-
so that the abundance of thousands of gene
ripts can be detected at once. This technol-
described below.

arrays: The most widely adopted tech-
y for high throughput measurement of gene
ssion is DNA microarrays. DNA microar-
use the complementary binding properties
NA to recognise the specific sequences of

A molecules extracted from cells. mRNA
ed from the sample is used to make fluo-
tly labelled molecules which hybridize with
ules immobilised onto glass slides or chips.
immobilised molecules are manufactured to
equences corresponding to genes of interest,
re laid out in an array, where each point
e array corresponds to a particular gene
nce. When the fluorescently labelled sample
shed over the array, the intensity of the
scence at a particular location in the array
s the amount of the gene transcript which is
t in the sample.

echnology is most commonly used to quan-
he ratio of fluorescence intensities between
e and a control, or between two samples,
red and green fluorescent labels. The sen-
y that can be achieved can be as high as a
RNAs per cell, with relative discrimination
und two-fold concentration changes, due to
gh affinity and specificity of complementary
tide binding.



Typically, two types of microarray experiments
are conducted. Gene expression in two different
samples can be compared directly on the same
array (for example ‘normal’ against disease). Al-
ternatively, time course data can be generated by
sampling from a cell population at different times
following a stimulus, and compared to gene ex-
pression in an unstimulated (control) population.

Microarrays are now produced for thousands of
genes, enough to cover entire genomes, however,
microarray experiments give only relative levels
of gene expression. Absolute quantitative studies
can be carried out with RT-PCR and SAGE
technologies.

Quantitative PCR: The Polymerase Chain Re-
action (PCR) allows small amounts of DNA to
be amplified, using an enzymatic reaction that
produces copies with the exact same sequence.
The PCR technique has been adapted to provide
quantitative and highly sensitive measurements
of the amount of a specific mRNA present in a
sample. The technology is not easily parallelised,
however, and is relatively slow, therefore it is most
commonly used for detailed study and validation
of results.

Both PCR and Microarray technologies require
molecules of the appropriate sequence for all genes
of interest (required as ‘primers’ in the PCR re-
action). Therefore, neither technique can be used
to measure the expression of previously unknown
or unrecognised genes. One technique which can
identify and measure transcripts without prior
knowledge of the set of genes of interest is SAGE.

Serial Analysis of Gene Expression (SAGE):
SAGE (Velculescu et al., 1995, 2000) is an ap-
proach in which large numbers of mRNA tran-
scripts can be counted and analysed efficiently
by sequencing only short pieces, or ‘tags’, from
a defined location of each mRNA molecule. These
tags provide a signature that uniquely identifies
the corresponding mRNA molecule (the length of
the tags is such that there is a one-to-one mapping
from tag sequences to genes). Tags extracted from
a sample are assembled into a single molecule,
which is then amplified and sequenced. Counting
the number of appearances of each tag quantifies
the abundance of the corresponding mRNA in the
original sample. Because it is not necessary to
know the gene corresponding to a particular tag
at any point in this process, SAGE can therefore
be used to identify and quantify the expression of
previously unknown genes.
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easuring Protein Abundance

two higher levels of the hierarchy shown
g 2 are more difficult to measure in a
hroughput fashion. Protein molecules have

licated secondary and tertiary structure
makes them intrinsically much less easy to

with for high-throughput studies than DNA
NA. Nevertheless, techniques are available
allow large scale analyses of the abundance
erent proteins in the cell, including separa-
echniques (for example using the mass and
ostatic charge to separate proteins). Quanti-
measurements can then be made following
tion. Mass spectrometry can be used to
fy proteins separated out in this way.

ene Expression Data Sets

ge amount of data is generated in each
array experiment, however, currently the
bility of multiple repeat measurements, both
de repeats and repetition of entire experi-
, is limited by the expense of the technology.
ent experimental procedures are required to
eaningful, reproducible data sets. Microar-
xperiments involve many separate steps in
reparation of samples, of the arrays and
subsequent image acquisition and analysis

er et al., 1998). Significant microarray-to-
array variability is therefore to be expected,
ormalisation and pre-processing of the raw
is a crucial element in microarray analysis.
t experiments are clearly of importance for
atistical analysis of microarray experiments
r statistical significance tests on inferences
from the data (Speed, 2003). Recently a

f standards was adopted by the microar-
ommunity in an attempt to make experi-
more easily reproducible, and results more

htforward to interpret, and to ensure that
imental data is made publicly available. This
rises a set of principles, called Minimum In-
tion About a Microarray Experiment (MI-
) (Brazma et al., 2001), and many journals
e that these be adhered to before publica-

ver, there remains a significant problem
e development of system identification ap-
hes to gene regulatory network inference,
at there are no large-scale validated data
here the underlying network is fully known.
are some smaller data sets available, corre-
ing to well characterised sub-networks (Gard-
t al., 2003), but often the development
erse engineering algorithms has relied on
etic data sets, generated using mathemati-
odels of gene regulatory networks (Mendes
2003).



2.3 Data Preprocessing

Data preprocessing done prior to the implementa-
tion of high level analysis techniques is used to ar-
rive at the best estimate of the mRNA level in the
original sample from the experimental measure-
ment (fluorescence intensity of the microarray im-
age, for example). Calibration, normalisation and
scaling of the data, as well as log-transformation
of relative gene expression levels and technique-
specific analysis such as image processing of flu-
orescence intensities for microarray studies, are
crucial if correct inferences are to be drawn from
the data (Speed, 2003).

2.4 Data Requirements for Reverse Engineering
Gene Networks

The above considerations aside, the data typically
generated in high-throughput gene expression ex-
periments raise significant difficulties for systems
identification approaches. The principal concern
is the so-called curse of dimensionality: the pa-
rameter space for a model grows exponentially
with the number of genes, while typically rela-
tively few independent experiments are done. This
makes finding appropriate parameter values for
large scale gene network studies a major challenge.

One key to this problem is to incorporate a priori
knowledge about the system into the data analy-
sis. In general, many gene-gene interactions will
have already been identified, often using gene-
scale (rather than genome-scale) experimental ap-
proaches. These data can be used to restrict the
dimension of the parameter search space. Other
global features of gene regulation can also be in-
corporated to deal with this problem. One such
feature is that gene networks are sparsely con-
nected (that is, there are many fewer actual than
possible connections in the network). Imposing an
upper limit to the number of regulatory interac-
tions per gene (estimated at less than 10 for higher
organisms) reduces the difficulty of the system
identification problem.

To fully characterise network behaviour it is neces-
sary to sample gene expression under as many dif-
ferent combinations of inputs and perturbations
as possible. To this end gene activity can be ma-
nipulated by using a variety of molecular biology
techniques, including gene deletions (knock-outs),
in which a gene is removed from the network;
knock-downs in which gene expression is reduced
for a target gene; and over-expression, increasing
the expression level of a target gene (for example
using plasmids to express the mRNA). A simple
strategy for rational selection of genes to perturb
for gene network inference has been suggested
by Tegnér et al. (2003). In order to maximize
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mount of information extracted from each
iment, genes whose activity has changed the
uring all previous experiments are selected.

iterative procedure can be supplemented by
selecting genes whose network connections
atistically most uncertain. Other than this,
little has been said regarding experimental

in the system identification of gene regula-
etworks.

e variety of techniques have been used to in-
ate gene expression profiles from microarray
s, including principal components analysis
er et al., 2000, 2001; Alter et al., 2000), cor-
ndence analysis (Fellenberg et al., 2001), and
nstruction of statistical models (Zhao et al.,
. In the following section we discuss one of
ost common approaches, cluster analysis, in
similar gene expression profiles are grouped
er.

USTERING GENE EXPRESSION DATA

mon starting point for the analysis of gene
ssion data is to use a clustering technique
up together genes with similar expression
s (Eisen et al., 1998; Chu et al., 1998; Spell-

et al., 1998; Wen et al., 1998; Iyer et al.,
Alon et al., 1999; Tusher et al., 2001; Yeung
2001). This approach is based on the idea

genes will respond in one of only a lim-
umber of ways, and seeks to identify these
ings. Typically, however, the different ways
ich genes may respond in experiments are
own, and therefore unsupervised techniques

ost commonly used. Genes are said to be co-
ssed if there is strong correlation in their ex-
on profiles (over different experimental per-
tions) which may imply that they are under
me regulatory control. Co-expressed genes
e involved in similar functions within the
nd the association of new genes with genes
wn function suggests new targets for study.

der to cluster a data set the similarity
en two data points has to be quantified.
nce metrics commonly used are Euclidean
ce between expression profiles, or a dis-
based on the correlation coefficient (this
particularly suitable for comparisons of

, rather than magnitude, of expression lev-
ther measures that have been used include

al information and rank correlation. Many
nt algorithms have been applied to cluster

expression data. Techniques can be divided
ierarchical and non-hierarchical approaches.
ierarchical techniques iteratively partition

ata into a predetermined number of group-
o as to optimize some selection criterion. For
ple, K-means (Tavazoie et al., 1999) seeks it-



eratively to partition N data points into K groups
so that the sum of K sums of squared distances
from the means of each group is minimized (hence
K-means). A drawback of this approach is that
the number of clusters must be specified at the
outset. Typically for a given data set the algo-
rithm is applied in succession for different values
of K, and the ‘best fit’ selected according to some
selection criterion.

More widely used are hierarchical clustering tech-
niques which generate a tree structure linking
genes according to how closely their expression
profiles are correlated. This is tackled as either a
top-down problem (Alon et al., 1999), where one
large cluster is successively divided into smaller
groupings, or a bottom-up approach (Eisen et al.,
1998) in which smaller clusters are successively
combined into larger ones. The disadvantage of
these methods is that it can be difficult to know
which associations are significant, and which are
artefactual, i.e. where to ‘cut the tree’.

Problematically, different clustering algorithms
will find different partitions of the same data
set. So far, however, there are few indications as
to which technique provides the best clustering
for a specific data set or application. There is
a pressing need for improved statistical analyses
of the results of clustering techniques which give
confidence levels for the clusters that are found.

3.1 Principal Components Analysis

Another low-level data analysis approach is to use
principal components analysis (PCA) to reduce
the data set to a few simple underlying modes
of gene expression (Holter et al., 2000, 2001;
Alter et al., 2000). Principal components analysis
performs a linear transformation of the data such
that the majority of the variance in the data
is captured by the first few modes (principal
components). This provides a way to simplify the
data set and is particularly useful for oscillatory
patterns of gene expression where responses with
different period are distinguished easily (although
Yeung and Ruzzo (2001) have commented on the
detrimental effect of using PCA to simplify the
data before applying a clustering algorithm).

4. REVERSE ENGINEERING GENE
NETWORKS

Gene network analysis tries to identify the reg-
ulatory interactions underlying the gene expres-
sion data. Many different approaches have been
applied to the problem of inferring the structure
of gene networks from expression data, and to
developing predictive kinetic models. Below we
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be these techniques in turn, discussing their
s and data requirements, with examples.

oolean and Logical Networks

way to greatly simplify the mathematical
entation of networks is to ignore the details
lecular interactions and focus instead on
outcomes, namely whether a gene is ‘on’ or
according to whether its transcription level
ve or below a given threshold. Regulation
n represented by logical operations (AND,
etc.) on the gene expression states, accord-

whether interactions activate or repress
ription. Gene expression levels are Boolean
les which are updated synchronously ac-
g to a rule table (a set of if . . . then . . . in-
ions) which describes the logical operations
enting the regulatory interactions between
. A Boolean network is thus quite a natural
o represent a wiring diagram for the gene
rk.

ugh the properties of Boolean networks are
simpler than their continuous variable coun-
ts, they retain many of the properties of
rks that are important in terms of gene
on. For example, steady states are achieved
network settles down into a stationary or

ating pattern of logical states (oscillation),
ich stability properties can be determined.

al authors have been able to piece together
l network models for smaller scale gene net-
(typically models representing a small part
rger network) from the literature on known
tory interactions between genes, as discov-
y mutation screens and molecular studies.
oza et al. (1999) used a generalised formal-
f the logical network to study gene interac-
underlying the development of flower buds
abidopsis (a plant commonly used to study
development and genetics). Knowledge of
ise interactions for a network of 10 genes was
ted from the literature ‘by hand’ to build
twork.

im of a reverse engineering approach is to
the logical rule table directly from data.
iques have been proposed which demon-
that in principle a Boolean network can be
ucted from data using no prior knowledge.
et al. (1998) have developed an algorithm,
they call ‘REVEAL’, to determine Boolean

ls from data using an information theoretic
ach. Mutual information is used to identify
inimal set of inputs required to determine
utput for each gene in the network. Look-
bles are then used to reveal the correspond-
gical operations acting on the inputs, from
the network ‘wiring’ is determined.



The appeal of this modelling framework is its sim-
plicity. However, much biological detail is clearly
lost. There are many aspects of cellular signalling
which cannot easily be described with Boolean
variables. Regulation cannot be additive, nor can
regulatory mechanisms such as negative feedback,
well characterised in biological systems, be easily
accommodated. Furthermore, in reality gene ex-
pression levels recorded in time course microarray
studies, for example, seem to spend much of their
time at ‘intermediate’ levels, rather than quickly
saturating at maximal expression rate, or falling
to negligible levels. Boolean networks may there-
fore be a good modelling strategy when the data
quality is poor, and where intermediate expression
levels cannot be resolved.

Some of these drawbacks can be overcome by
generalisations which allow multiple logical values
for each gene, asynchronous updates and multiple
distinct thresholds for switching between states,
but all of this comes at the expense of the simplic-
ity of the Boolean formulation. Control of logical
variables by continuously varying metabolite or
cell signalling networks can be included, and var-
ious hybrid models with some logical and some
continuous variables have been proposed.

Davidson et al. (2002b) have lead an intensive
effort to identify and model the gene regulatory
network for specification of endomesoderm (an
early tissue formation event during development)
in the Sea Urchin embryo (see also Davidson et al.,
2002a; Bolouri and Davidson, 2002). This includes
cell-to-cell signalling pathways (ligand-receptor
binding) to provide spatial coupling between cells,
each of which has the same underlying logical gene
network. A model of the whole network was built
up in a piece-by-piece fashion, using both Boolean
and algebraic logical elements, as appropriate for
the available data (Brown et al., 2002).

4.2 Bayesian Networks

The Bayesian approach to gene network modelling
treats the expression level of each gene as a ran-
dom variable and regulatory interactions as prob-
abilistic dependencies between variables (Fried-
man et al., 2000; Pe’er et al., 2001; Hartemink
et al., 2002; Imoto et al., 2003). Bayesian analysis
reveals statistical relationships between the genes
from data. These relationships can be represented
as a directed graph. If a directed edge exists from
gene X to gene Y then the expression of Y is
found to be directly dependent on X, and so forth.
More complicated dependencies are represented
in a similar way. Quantitatively, the statistical
relationships between genes found in the data are
described as joint probability distributions on the
variables (for example the probability of gene Y

being
X is e

The B
or lin
to noi
handl
variab
prior
intera
factor
conce
variab
this a
netwo
and d
feedb
forma
netwo
proba

Altern
can b
the B
the p
data—
with
is, ho
variab
appro
prior

Harte
on ga
romyc
wild t
vironm
DNA
genom
dencie
picked
the fe
elling

4.3 C

Syste
natur
havio
uation
(Kepl
McAd
for re
to rev
expre
uous
to a
descri
This
tions

87
expressed at a certain level given that gene
xpressed).

ayesian approach is not limited to pairwise
ear interactions between genes. It is robust
sy data and can in principle be extended to
e missing data and even latent (unobserved)
les. However, it is the ability to include
information, for example on known gene
ctions or protein data such as transcription
binding locations etc., and indeed protein

ntrations, in a rigorous manner as additional
les which is perhaps the main strength of
pproach. In its simplest form the Bayesian
rk gives a static model of the data set,
oes not describe dynamic processes such as
ack, known to characterise regulation. The
lism can be extend to dynamic Bayesian
rks, a series of connected models for which
bilities span timesteps.

ative models for the underlying network
e ranked against each other according to
ayesian scoring metric—the logarithm of
robability that model is correct, given the
which measures, essentially, the economy

which the model explains the data. This
wever, a more difficult task when latent
les are included, as is the assignment of
priate weights in the scoring metric when
information is incorporated.

mink et al. (2002) collected expression data
lactose metabolism in the yeast Saccha-
es cerevisiae using 52 samples from both
ype and mutant strains under variety of en-
ental conditions. Data was collected using

chips with all 6135 genes of the S. cerevisiae
e. A static model of the statistical depen-
s between genes was built up for (hand-
) components of the genome demonstrating
asibility of this approach to network mod-
.

ontinuous Variables: Linear Network Modelling

ms of differential equations provide a very
al modelling framework for the kinetic be-
ur of gene networks. Overlooking those sit-
s where stochastic models are required

er and Elston, 2001; Arkin et al., 1998;
ams and Arkin, 1999; Crampin et al., 2004c
view; which are unlikely to be amenable
erse engineering approaches), the level of

ssion of each gene is represented as a contin-
variable which changes over time according
differential equation with ‘reaction’ terms
bing regulatory inputs from other variables.
gives a coupled system of differential equa-
to solve for the network behaviour.



Near to a steady state of such a dynamical system,
the kinetics are well described by a model which
is linear in the variables. A general linear model
for the concentration of the ith mRNA, vi(t), is
given by

dvi

dt
=

N∑
j=1

Aijvj(t) − λivi(t) + bi(t)

for i = 1, . . . , N genes. λi is a degradation rate
for the ith mRNA and the bi(t) are known func-
tions which represent experimental perturbations
applied to the network. Aij is the connectivity
matrix for the network (the Jacobian). Reverse en-
gineering aims to determine the unknown param-
eters Aij and hence the connectivity in the linear
model. Ideally sufficient data would be collected
so that the connectivity matrix can be completely
determined (i.e. parameters chosen to minimise
the least squares discrepancy of the model from
the data set). However, typically for large net-
works there are more parameters to be deter-
mined than there are (independent) data points.
Microarray experiments rarely have more than
10 time points, for example, and the number of
genes N may be an order of magnitude larger.
This underdetermined problem does not have a
unique solution but can still be solved, in the least
squares sense, using singular value decomposition
(SVD) to find the solution space—the family of
solutions which are consistent with the data (in
fact SVD algorithms will pick the least squares
solution from this solution space, Press et al.,
1992).

A supplementary criterion is needed to select the
most appropriate solution in this case. One sug-
gestion that has been made by Yeung et al. (2002)
is that gene networks are observed to be sparse,
that is, there are relatively very few regulatory
interactions between genes, and so most of the
entries in the connectivity matrix should be ze-
ros. This property can be exploited to choose the
solution which is consistent with the data and
minimises the number of nonzero elements. These
authors have demonstrated this to be a tractable
approach, for data generated from model networks
at least, using an algorithm from robust regres-
sion analysis to find the optimal solution. The
relatively low data requirement—they show that
only approximately as many data points as genes
are required for sparse networks—comes at the
expense of an increased computational cost, how-
ever, the approach can be used to efficiently com-
pute connectivity matrices for networks contain-
ing thousands of genes. Further details on these
techniques, and variations on these approaches,
can be found in Crampin et al. (2004b).
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y-state Perturbation Data: Two reverse
eering algorithms based on this approach
recently been described for steady state ex-
ental data. In this scenario, the cell is al-
to settle into a new stable steady state

ing perturbation to one or more genes, and
eady gene expression levels recorded. Gard-
t al. (2003) described an algorithm called
rk Inference via multiple Regression (NIR),
solves the following steady state problem

0 =

N∑
j=1

Aijvjl + bil

1, . . . , N genes, where bil is the perturba-
ade to the ith gene and vjl is the steady

expression level of the jth gene in the lth
iment. Gardner et al. (2003) collected data
e SOS response network in the bacterium
li. They considered a small sub-network of
es involved in sensing damage to DNA and
ring a the synthesis of a number of proteins
ed in DNA repair. The NIR algorithm as-
that each of the N genes in the network has
st K < N regulatory interactions, and for
ene iteratively searches for the best choice of
eractions using regression. By doing this for
nt K and computing the best fit over K for
ta, an optimum network can be determined.
approach performed very well for the SOS
nse network, when network predictions were
ared with known interactions between the
.

ver, a limitation of this approach is that
umber of connections K per gene in the
rk must be guessed at, and each gene is
ed initially to have this number of regula-
nteractions (although some may have near-
trength). This is particularly important as
ce suggests that transcriptional networks
t well characterised by an average connec-
but show a power-law distribution in the

er of connections per gene (Featherstone and
ie, 2002). Recently we have considered a
r reverse engineering approach, which deals
these two distinct issues (Wildenhain and
pin). Firstly, the algorithms we have pro-
do not impose a fixed number connec-

per gene, but allow this number to vary,
termined by a formal criterion such as the
e Information Criterion (Akaike, 1974), or
um Description Length (Rissanen, 1980).

dly, the selection of connections for each
from the N possible gene-gene interactions
n iterative model selection scheme by Judd
ees (1995), and described in Crampin et al.

a). We recently compared the performance
algorithms based on these ideas, one which
ucts a network by building from an ini-



tially unconnected set of genes, while the other
starts with a fully connected network and removes
connections until an optimal solution is found.
These algorithms were found to perform well on
simulated gene expression data sets, in particular
when the underlying network was constructed to
have the power-law distribution of connections.

These methods concentrate on identifying the
connectivity in the network, rather than the more
difficult task of characterising the nonlinear dy-
namics of the regulatory interactions. The lin-
earization step which is used to reduce the prob-
lem to the determination of the connectivity ma-
trix is only valid near to a steady state of the
system, and so relies on relaxation data for small
perturbations from the steady state. Methods
to determine nonlinear aspects of the regulatory
mechanisms are discussed below.

Kinetic Models with Nonlinear Response Func-
tions: For well characterised networks in which
the relevant genes have been identified and the
wiring diagram determined (perhaps through one
of reverse engineering schemes discussed above),
biophysically realistic kinetic functions can be as-
sumed for the regulatory interactions. This allows
quantitative prediction of transcription rates etc.
in response to perturbations of the network. Ki-
netic parameters can be determined for individual
reactions (for example the binding of transcription
factors, degradation rates of mRNAs, etc.) using
timecourse data from microarrays or other exper-
imental approaches. Ronen et al. (2002) made in
vivo measurements on the DNA repair system in
the bacterium E. coli using intensity of a green
fluorescent protein (GFP) linked to genes of in-
terest, to determine their expression levels (Kalir
et al., 2001). Their network has a simple known
architecture: a ‘single input module’ in which a
single master repressor gene (LexA) regulates ap-
proximately 30 targets (of which they measured
the response of 8). They were able to fit their data
to a model with sigmoidal response functions,
determining parameters by least squares fitting
(using SVD).

This method can easily be generalised to more
complicated transcription factor-gene interaction
functions, allowing positive and negative feed-
backs between gene products and gene transcrip-
tion, and to allow the regulatory input of several
genes. Detailed kinetic models can incorporate
kinetic descriptions of promoter substructure, de-
tailing interactions of transcription factors, with
appropriate functions for the rate of transcrip-
tional output for given binding state. Reverse
engineering methods can be devised for nonlinear
models such as these (see Crampin et al., 2004a,b
for more details). However, there is a trade-off
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en model complexity and tractability. The
tion of functional forms for regulatory in-
ions is not a simple process, and as the
eter space expands, more and better high
tion timeseries data on the transcription of
gene under a wide variety of physiological
tions and gene perturbations is needed to
eterise the model.

ODELLING SPATIALLY DISTRIBUTED
NETWORKS

g many developmental processes, interac-
between cells and across tissues are criti-
determining patterns of differentiation into
ct tissue types. While, of course, each nu-
carries the same DNA, the profile of gene
ssion in different cell types (the state of the
rk) will be distinct. In the course of develop-
cells from an initially homogeneous tissue
eceive different signals and adopt different
ns of gene expression, leading to different
tes. Models of developmental processes must
ore incorporate mechanisms for signalling
en cells, transport of signalling molecules
gh the tissue, as well as signalling networks

cells.

patial Modelling using Differential Equations

al approaches have been used to model and
gene regulation in spatially extended sys-

using continuous variable gene network mod-
particular, two studies have focused on dif-
stages of the early development of the fruit

rosophila melanogaster, which have necessi-
very different modelling approaches. During
development in Drosophila groups of genes
gap, pair rule and segment polarity are

sively expressed in periodic bands along the
o. This pattern in the expression of groups
es is a result of an underlying regulatory
rk, with initial input from genes expressed
e mother. The symmetry of the banded pat-
lends itself to a spatially one-dimensional
sis.

work model for segment polarity gene ex-
on, which occurs after the expression of pair
enes has been constructed by von Dassow
(2000). From a survey of the literature,

were able to write down all of the known
interactions which have been discovered by
tion mutagenesis studies, and chose suitable
onal forms for receptor-ligand binding, tran-
ion rates and so forth. Parameter values for
of these processes have not been experimen-
measured. Surprisingly, however, an explo-
of the model with randomly chosen param-



eter sets found that the experimentally observed
pattern of gene expression was recovered in a rel-
atively large region of parameter space. From this
evidence, the authors suggested that robustness to
parameter variation is a property of gene regula-
tory networks. This would of course be extremely
useful for reverse engineering approaches, as it
would suggest that network behaviour is deter-
mined primarily from is structure, and the details
of the kinetics relegated to a less important role
(Albert and Othmer, 2003). Clearly robustness in
biological networks also has obvious biological and
evolutionary implications.

A computational optimization approach has been
applied to the highly specific situation arising
earlier in Drosophila development, during which
time gap and pair rule expression patterns are
determined from the maternal gene expression
(Mjolsness et al., 1991; Reinitz et al., 1995; Sharp
and Reinitz, 1998). At this stage the embryo
consists of a syncytium, in which multiple nuclei
exist in an extended cell-like compartment, and
are not separated by cell membranes. For this
unique situation the transport of gene products
can be modelled by solely by diffusion.

‘Gene Circuit’ Approach: In this case Reinitz
et al. (1995) have demonstrated that a reverse-
engineering approach is possible, using digitized
images of immunofluorescence staining of the gene
products. Local fluorescence intensity was as-
sumed to be proportional to protein concentra-
tion. As all of the genes involved in this devel-
opmental stage have been identified the authors
have built up a database of gene expression images
from wildtype and mutant embryos for each gene
known to be involved in the network and at each
discernible developmental stage.

For the concentration of the ith gene product,
vi(x, t), nonlinear optimization in the form of a
simulated annealing algorithm (Press et al., 1992)
was used to determine best fit parameters for a
model of the form

τi

∂vi

∂t
= g

⎛
⎝∑

j

Aijvj + mivm

⎞
⎠ + Di

∂2vi

∂x2
− λivi

where g(·) is a sigmoidal response function, Aij

is the matrix of regulatory connections between
genes, known beforehand, λi is a decay rate and
Di the diffusion coefficient for the ith gene prod-
uct and mivm describes the effect of underlying
(maternal effect) protein gradient, vm(x), on gene
i. While this model represents a much simplified
view of the biophysical processes at work in the
syncytium, the model could reproduce the tem-
poral sequence of spatial gene expression patterns
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e different genes, and predict the effects of
imental interventions and mutations.

6. DISCUSSION

network modelling, and in particular the
pment of reverse engineering techniques to
ate the modelling of data, are at an early
in their development. For reverse engineer-
ne networks, several approaches have been
sted and applied to specific problems, but
ave yet to demonstrate general utility and
ability.

the perspective of system identification,
are a number of pressing issues that need
addressed in order to improve the practi-
of applying reverse engineering approaches
ome scale data sets. In particular, the de-
ent of methods to incorporate prior knowl-

bout the biological system is required, with
nt degrees of confidence assigned, and to

ine data from different sources, for example
array gene expression data with proteomic
sets. Also very important is the develop-
of techniques to reduce the dimensionality
work models. One possible approach is to
clustering techniques to preprocess data,
er to identify a network of regulatory in-
ions acting on co-expressed genes. However,
problematic is the current lack of validated
sets that can be used to evaluate different
rk identification techniques, which makes
comparison of the strengths and weaknesses
erent approaches difficult. Also, although an
ted standard for microarray data sets has
dopted, a similar standard has only recently
proposed for biological models (MIRIAM;
um Information Requested In the Annota-
f biochemical Models, Novère et al., 2005).

evelopments in high-throughput gene ex-
on measurement technologies pave the way
revolution in understanding of development
isease. The ability to measure expression
for multiple genes concurrently is driving
t away from the study of single genes to
iew that gene function can only be un-
od in the context of the gene network,
ltimately the many interacting regulatory
rks—genetic, signalling, metabolic, etc.—
are the functional environment of the genes.
bility to generate predictive models describ-
antitatively the interactions between genes
ene products is crucial to enabling this re-
.
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