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A computational framework is presented for integrating the electrical, mech-
anical and biochemical functions of the heart. Finite element techniques are
used to solve the large-deformation soft tissue mechanics using orthotropic
constitutive laws based in the measured fibre-sheet structure of myocardial
(heart muscle) tissue. The reaction–diffusion equations governing electrical
current flow in the heart are solved on a grid of deforming material points
which access systems of ODEs representing the cellular processes underlying
the cardiac action potential. Navier–Stokes equations are solved for coronary
blood flow in a system of branching blood vessels embedded in the deforming
myocardium and the delivery of oxygen and metabolites is coupled to the
energy-dependent cellular processes. The framework presented here for mod-
elling coupled physical conservation laws at the tissue and organ levels is also
appropriate for other organ systems in the body and we briefly discuss ap-
plications to the lungs and the musculo-skeletal system. The computational
framework is also designed to reach down to subcellular processes, including
signal transduction cascades and metabolic pathways as well as ion channel
electrophysiology, and we discuss the development of ontologies and markup
language standards that will help link the tissue and organ level models to the
vast array of gene and protein data that are now available in web-accessible
databases.
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1. Introduction

The application of numerical and computational techniques to interpret,
simulate and ultimately elucidate the physiological function of complex
whole organ systems has developed rapidly within the last two decades.
This has been due partly to the availability of new experimental data at the
cell, tissue and organ levels and partly to the improvement in computational
algorithms and the parallel increase in availability of high performance com-
puting resources.

Understanding the integrative function of an organ requires the modelling
of biological processes at multiple spatial and temporal scales. Efficient
contraction of the myocardium (heart muscle) to pump blood from the
ventricles depends crucially on the organization of structural proteins at
the tissue level and the operation of contractile proteins at the subcellular
level. At all levels these processes are nonlinear and time-dependent.

In this review we analyse the mechanical, electrical and biochemical func-
tion of the heart using models which are based on the anatomy and bio-
physics of the cells, tissues and organ. The framework developed here for
the heart is, however, applicable to all organ systems of the body and we
briefly illustrate its application to the lungs and musculo-skeletal system at
the end of the article.

1.1. Anatomy and physiology of the heart

The heart is a four-chambered pump with two priming chambers, the left
and right atria, and two primary pumping chambers, the left and right vent-
ricles (LV and RV, respectively). Blood is pumped from the RV via the pul-
monary artery to the lungs at a peak pressure of about 4 kPa and from the
LV via the aorta to the rest of the body at a peak pressure of about 17 kPa.
Blood is ejected from the ventricles by the contraction of the myocardium
when triggered by changes in the electrical potential across the muscle cell
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(myocyte) outer membrane (sarcolemma). The electrical potential inside
the myocytes is normally maintained at −85 mV relative to the extracellular
fluid. Electric current flow into a cell (inward current) raises the potential
(depolarizes the cell) and initiates wave propagation along the electrically
conducting cells which are also electrically connected by gap junction pro-
teins. These electrically connected cells act as a cable but with continual
regeneration of the signal via inward current through voltage-sensitive ion
channels (see later). The whole electrical activation process is initiated un-
der normal physiological conditions by the heart’s pacemaker cells, which
reside in the right atrium and are called the sino-atrial (SA) node. The sig-
nal spontaneously generated by the SA node propagates through the atrial
muscle and then to the ventricles via a specialized conducting region (the
atrio-ventricular node or AV node). From here the electrical wave travels
down specialized conducting fibres called the bundle of His to a network of
Purkinje fibres, which spread out through the inner region of the ventricular
walls (the endocardium) and make an electrical connection with the myo-
cytes and begin the propagating wavefront that rapidly spreads throughout
the myocardium. The entire myocardium is normally activated within 50 ms
and the mechanical contraction lasts a further 200–300 ms.

Myocardial tissue has been shown in a number of microstructural studies
to consist of layers of interconnected sheets of tissue separated by cleavage
planes (Le Grice et al. 1995, Nielsen et al. 1991). The layers of cells within a
sheet are bound tightly together (3 to 4 cells thick) by endomysial collagen
(see Figure 1.1). The cells are roughly cylindrical, about 20 µm in diameter,
and about 100 µm long. The long axis of the myocytes is called the fibre axis
and this varies by up to 150◦ across the wall, as illustrated in Figure 1.1.
The direction orthogonal to the fibres within a sheet is called the sheet
axis and the direction orthogonal to the sheet is referred to as the sheet
normal. The mechanical and electrical properties of myocardial tissue are
orthotropic with these microstructurally based fibre, sheet and sheet-normal
axes forming the local material axes to which the constitutive laws are
referred (see later). Microstructural detail is critical to both mechanical
and electrical function of biological organs and often varies spatially within
an organ. It is necessary, therefore, to characterize anisotropic conductivity
and mechanical properties in continuum models.

We begin our analysis of heart function by introducing finite element
descriptions of organ geometry and microstructure in Section 2. The con-
tinuum-based equations and techniques for their solution are outlined in
Section 3. Cellular models and their spatial–temporal coupling into the
continuum framework are covered in Section 4. Coronary blood flow (blood
supply to heart muscle) is considered in Section 5. Finally the challenges
and scope for extending this framework and application to other organs are
considered in Sections 6 and 7.
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Figure 1.1. Microstructural organization of cardiac tissue.
A transmural segment of tissue removed from the left ventricular
wall in the upper figure contains muscle fibres that vary in
orientation by about 150◦ (shown by the white lines). These
fibres (muscle cells or ‘myocytes’) are bound tightly together in
sheets 3 or 4 cells thick (see lower figure), that are loosely coupled
to facilitate mechanical shearing. From Le Grice et al. (1995),
with permission.

2. Finite element modelling of cardiac tissue

The development of anatomically based representations of organ geometry
and tissue properties is the essential first step in the construction of an
integrated model of whole organ function. In the following section a fi-
nite element method for representation of these fields is introduced. In
Section 2.2 methods for determining nodal parameter values used in finite
element interpolation functions are outlined.

2.1. Representation of fields

The finite element method is one of the most commonly used approaches
to numerically represent spatially distributed fields. Traditionally, finite
element models use low-order Lagrangian interpolation and, with very few
exceptions, only one type of interpolation scheme in the solution domain.
For a detailed introduction to the finite element method readers are referred
to Zienkiewicz and Taylor (1994). In this review we present a different ap-
proach which uses high-order Hermitian interpolation to provide improved
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efficiency and convergence properties (Hunter 1975, Bradley, Pullan and
Hunter 1997) for representing the nonlinear and C1-continuous variation
typical of many biological fields.

In the notation used below, ξi is the local finite element coordinate in
the ith direction (0 ≤ ξi ≤ 1), u represents the field variable and un its
value at local node n of a given element. ∆(n, e) maps the local node n of
element e to its unique global number for a particular mesh. Continuity of
the derivative of u with respect to ξi across element boundaries is achieved
by defining additional nodal parameters which are the partial derivatives
of the field variable u with respect to the local coordinate

(
∂u
∂ξi

)
n
. Illus-

trating this concept in one dimension, basis functions are chosen to ensure
that nodal derivatives which contribute to the interpolation within an ele-
ment are shared by two adjacent elements in order to maintain derivative
continuity across different boundaries. Derivative continuity requires cubic
interpolation and therefore four-element parameters. These parameters are
specified as the nodal value and its derivative with respect to ξ for two nodes
per element in one dimension. Thus:

u(ξ) = a + bξ + cξ2 + dξ3, and therefore
du

dξ
= b + 2cξ + 3dξ2,

where

a = u1, b = u′
1, c = 3u2 − 3u1 − 2u′

1 − u′
2, d = u′

1 + u′
2 + 2u1 − 2u2,

or, rearranging,

u(ξ) = H0
1 (ξ)u1 + H1

1 (ξ)u′
1 + H0

2 (ξ)u2 + H1
2 (ξ)u′

2 (2.1)

where u′
n =

(
du
dξ

)
n
, and the four one-dimensional cubic-Hermite basis func-

tions are illustrated in Figure 2.1.
To constrain continuity across element boundaries in the global coordinate

system, rather than in the local ξ coordinate system, a further modification
is required. The derivative

(
du
dξ

)
n

defined at node n is dependent upon the
element ξ-coordinate in the two adjacent elements. It is more useful to
define a global node derivative

(
du
ds

)
n

where s is arclength, and then use(
du

dξ

)
n

=
(

du

ds

)
∆(n,e)

·
(

ds

dξ

)
n

(2.2)

where
(

ds
dξ

)
n

is an element ‘scale factor’ which scales the arclength derivative
of global node ∆ to the ξ-coordinate derivative of element node n.

Achieving derivative continuity in three dimensions for the element shown
in Figure 2.2 requires eight values per node:

u,
∂u

∂ξ1
,

∂u

∂ξ2
,

∂u

∂ξ3
, and

∂2u

∂ξ1∂ξ2
,

∂2u

∂ξ1∂ξ3
,

∂2u

∂ξ2∂ξ3
,

∂3u

∂ξ1∂ξ2∂ξ3
.
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Figure 2.1. Cubic-Hermite basis functions.
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Figure 2.2. Schematic and local node numbering of a 3D element
shown in physical space on the left and transformed into ξ space
on the right.
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The second-order cross-derivative terms arise from the need to maintain cu-
bic interpolation along every element edge in each ξ direction. To illustrate,
we consider a particular edge of a three-dimensional element where moving
between nodes corresponds to only increasing in ξ1. The cubic variation
in u can be uniquely specified by u and ∂u

∂ξ1
at each node. However, ∂u

∂ξ2
,

∂u
∂ξ3

and ∂2u
∂ξ2∂ξ3

should also vary cubically and are completely independent
of these parameters. Thus six additional parameters are specified for each
node. Tricubic interpolation of these nodal parameters is given by

u(ξ1, ξ2, ξ3) = (2.3)
2∑

k=1

2∑
j=1

2∑
i=1

[
H0

i (ξ1)H0
j (ξ2)H0

k(ξ3)un + H1
i (ξ1)H0

j (ξ2)H0
k(ξ3)

(
∂u

∂ξ1

)
n

+

H0
i (ξ1)H1

j (ξ2)H0
k(ξ3)

(
∂u

∂ξ2

)
n

+ H0
i (ξ1)H0

j (ξ2)H1
k(ξ3)

(
∂u

∂ξ3

)
n

+

H1
i (ξ1)H1

j (ξ2)H0
k(ξ3)

(
∂2u

∂ξ1∂ξ2

)
n

+ H1
i (ξ1)H0

j (ξ2)H1
k(ξ3)

(
∂2u

∂ξ1∂ξ3

)
n

+

H0
i (ξ1)H1

j (ξ2)H1
k(ξ3)

(
∂2u

∂ξ2∂ξ3

)
n

+ H1
i (ξ1)H1

j (ξ2)H1
k(ξ3)

(
∂3u

∂ξ1∂ξ2∂ξ3

)
n

]

where the nodal index n = 4(k − 1) + 2(j − 1) + i, and

H0
1 (ξ) = 1 − 3ξ2 + 2ξ3, H1

1 (ξ) = ξ(ξ − 1)2, (2.4)

H0
2 (ξ) = ξ2(3 − 2ξ) and H1

2 (ξ) = ξ2(ξ − 1),

as shown in Figure 2.1. To simplify notation, let

u(ξ1, ξ2, ξ3) =
∑
m

ψm(ξ)ūm, (2.5)

where ūm represents the vector of nodal values and their derivatives and ψm

are formed from the products of the one-dimensional basis functions given in
equation (2.4), and the summation over m is taken over all these quantities.

As in the one-dimensional case, to preserve derivative continuity in phys-
ical x-coordinate space rather than in ξ-coordinate space the global node
derivatives need to be specified with respect to physical arclength. There
are now three arclengths to consider: si, measuring arclength along the
ξi-coordinate, for i = 1, 2, 3. Thus(

∂u

∂ξ1

)
n

=
(

∂u

∂s1

)
∆(n,e)

·
(

ds1

dξ1

)
n

, (2.6)

(
∂u

∂ξ2

)
n

=
(

∂u

∂s2

)
∆(n,e)

·
(

ds2

dξ2

)
n

,
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∂u

∂ξ3

)
n

=
(

∂u

∂s3

)
∆(n,e)

·
(

ds3

dξ3

)
n

,

(
∂2u

∂ξ1∂ξ2

)
n

=
(

∂2u

∂s1∂s2

)
∆(n,e)

·
(

ds1

dξ1

)
n

·
(

ds2

dξ2

)
n

,

(
∂2u

∂ξ1∂ξ3

)
n

=
(

∂2u

∂s1∂s3

)
∆(n,e)

·
(

ds1

dξ1

)
n

·
(

ds3

dξ3

)
n

,

(
∂2u

∂ξ2∂ξ3

)
n

=
(

∂2u

∂s2∂s3

)
∆(n,e)

·
(

ds2

dξ2

)
n

·
(

ds3

dξ3

)
n

,

(
∂3u

∂ξ1∂ξ2∂ξ3

)
n

=
(

∂3u

∂s1∂s2∂s3

)
∆(n,e)

·
(

ds1

dξ1

)
n

·
(

ds2

dξ2

)
n

·
(

ds3

dξ3

)
n

.

Equations (2.3)–(2.6) provide a means of interpolating spatially varying
fields that are C1-continuous.

We have used two alternative approaches to modelling the geometry of
the heart. One uses the prolate spheroidal coordinate system shown in
Figure 2.3 with bicubic-linear interpolation for the λ-coordinate (bicubic-
Hermite in the (ξ1, ξ2) plane corresponding to the ventricular surfaces and
linear in ξ3 through the wall) and trilinear interpolation for the θ and µ
coordinates. The other approach uses rectangular Cartesian coordinates
and fully tricubic-Hermite interpolation.

z

y

ξ2

ξ3

d

λ

θ

µ

x

ξ1

Figure 2.3. The prolate spheroidal and rectangular Cartesian
coordinates for the ventricular models shown in Figure 2.4.
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(a) (b)

Figure 2.4. Anatomically accurate canine (a) and porcine (b)
finite element models. (a) uses bilinear/cubic-Hermite inter-
polation based in prolate spheroidal coordinates to represent
canine cardiac ventricles, while (b) uses tricubic-Hermite
interpolation based in rectangular Cartesian coordinates to
represent porcine cardiac ventricles.

As with geometry, cubic-Hermite interpolation can effectively be used
to represent the variation in microstructurally based material directions as
demonstrated in Figure 2.5, which shows the microstructural field embedded
in the geometric models shown in Figure 2.4.

The next step in mesh construction is the calculation of values of variables
un and their partial derivatives with respect to the local material directions
ξi at nodes in the finite element mesh. This nonlinear fitting process is
outlined in the following section.

2.2. Nonlinear fitting

The geometric fitting algorithm which is used to determine nodal field vari-
ables in the finite element tissue models from data is a variant of the well-
known Iterative Closest Point (ICP) algorithm, where the surface fit is im-
proved over several iterations. There are a number of implementations of
this approach for fitting three-dimensional geometric models (Rusinkiewicz
and Levoy 2001). The implementation described here includes a Sobolev
smoothing constraint for sparse and scattered data and has been previously
illustrated for fitting anatomically based bicubic-Hermite surface meshes
(Young, Hunter and Smaill 1989, Bradley et al. 1997). Here, its implement-
ation for fitting faces of three-dimensional volume meshes is given. The
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(a) (b)

Figure 2.5. Anatomically accurate canine (a) and porcine (b)
finite element models. Two layers of streamlines (one on the outer
epicardial surface and one midway through the wall) are used to
visualize the epicardial and midwall fibre directions which vary
continuously through the wall.

nodal positions of this mesh are optimized to achieve the minimum distance
between data points and the closest face of the mesh. This is done by min-
imizing an objective function based on an L2 distance norm, calculated from
projections of the data points on to the mesh faces.

The data for this fitting process are generated from a number of different
sources, dependent on organ type and species. Data for human models are
typically created by digitizing slices from the Visible Human (VH) database,
which has become a common standard for researchers and provides a way of
comparing and sharing geometries (Ackerman 1998). Non-invasive imaging
techniques such as Magnetic Resonance Imaging (Young, Fayad and Axel
1996) and Computed Tomography (Kantor et al. 1999) provide additional
and expanding sources of data. Animal models of organs such as the heart
have been measured directly (Nielsen et al. 1991, Vetter and McCulloch
2000) and have also been measured from casts taken of the heart (Kassab,
Rider, Tang and Fung 1993).

An initial mesh topology is extracted from the cloud of data points by
selecting data points on the outside of the data cloud. These serve as nodes
for the mesh which are then used to generate elements in a systematic
manner. The nodes are chosen to construct a regular mesh with the minimal
number of elements.
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Data projection
The digitization process generates a Cartesian data set with geometric po-
sitions zd, d = 1, . . . , N . For each data point we can find the position on
a given two-dimensional mesh face which has the smallest distance to the
data point. This position is the orthogonal projection of the data point
on to the mesh and has geometric position u = x. The point x is also
given by the local element coordinate ξd as is shown in Figure 2.6. A least-
squares distance function, D, between a data point and its projection may
be expressed by

D(ξ1, ξ2) = ‖x(ξ1, ξ2) − zd‖2, (2.7)

where zd are the spatial coordinates of the data point and x(ξ1, ξ2) is inter-
polated using a bicubic-Hermite basis function which is a reduced form of
equation (2.3):

x(ξ1, ξ2) =
2∑

j=1

2∑
i=1

[
H0

i (ξ1)H0
j (ξ2)xn + H1

i (ξ1)H0
j (ξ2)

(
∂x

∂ξ1

)
n

(2.8)

+ H0
i (ξ1)H1

j (ξ2)
(

∂x

∂ξ2

)
n

+ H1
i (ξ1)H1

j (ξ2)
(

∂2x

∂ξ1∂ξ2

)
n

]
with the derivatives with respect to ξ converted using(

∂x

∂ξα

)
=

(
∂x

∂sα

)(
∂sα

∂ξα

)
,

and (
∂2x

∂ξα∂ξβ

)
=

(
∂2x

∂sα∂sβ

)(
∂sα

∂ξα

)(
∂sβ

∂ξβ

)
,

Data point zd

Projection x(ξ1d, ξ2d)

1
2

3

4

ξ1

ξ2

Figure 2.6. Projection of data point zd on to an
element face and the resulting closest point x(ξ1d, ξ2d).
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for cross-derivatives (α, β = 1, 2 where no summation is implied). Note
x(ξ1, ξ2) here refers to the continuum field evaluated at material points
ξ1, ξ2, while xn refers to the vector of nodal parameters used in the inter-
polation. Thus the local coordinates of the projection point (ξ1d, ξ2d), and
hence its global coordinates, can be determined by solving the following
nonlinear simultaneous equations using the Newton–Raphson procedure:

∂D

∂ξ1
= 0,

∂D

∂ξ2
= 0. (2.9)

Objective function minimization
For a given projection of the data points on to the mesh (i.e., ξd is held
constant), the objective function to be minimized is the sum-of-squares of
the individual errors

F (x̄) =
N∑

d=1

wd‖x(ξ1d, ξ2d) − zd‖2, (2.10)

where wd is a weight for each data point and x̄ is a vector of mesh paramet-
ers. Weights wd are set to unity unless there is a clear difference in quality of
the data (e.g., when combining data sets acquired using different methods).

The fitting problem is to find the set of mesh parameters that minimizes
this objective function. For simplicity the formulation of the linear system
is illustrated below for a one-dimensional element, and the two- and three-
dimensional formulations can be inferred.

Substituting equation (2.8) into equation (2.10) and differentiating, we
obtain

∂F

∂x̄m
= 2

N∑
d=1

wd

(
4∑

r=1

ψr(ξd)x̄r − zd

)
ψm(ξd), (2.11)

where the functions ψ are calculated from the products of the Hermite basis
functions formed in equation (2.8). A minimum of the objective function
can thus be found by setting the partial derivatives in equation (2.11) to
zero. This will result in a linear system only if the scale factors are kept
constant during the fit; that is, the vector x̄ will contain the nodal positions
and the nodal arclength derivatives. With this restriction we can obtain a
linear system of equations of the form Armx̄r = bm where

Arm =
N∑

d=1

wd

4∑
r=1

ψr(ξd)ψm(ξd), (2.12)

bm =
N∑

d=1

wdψm(ξd)zd, (2.13)

and N is the total number of data points.
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A linear system of equations governing the entire mesh can then be found
by assembling a global stiffness matrix from all the element matrices, and
solved to yield new nodal positions, derivatives and scale factors. The
updated scale factors alter the shape of the mesh, since the scale factors
are involved explicitly in the interpolation functions as described in equa-
tion (2.8). The steps described above are therefore repeated until conver-
gence is achieved.

Sobolev smoothing
To deal with an insufficient number of data points, fitting noisy data or
fitting data that has an uneven spread (see Figure 2.7), a smoothness con-
straint (Young et al. 1989) can be introduced by adding a second term to
the objective function equation (2.10). This is known as Sobolev smoothing
with a penalty function, in two dimensions, of the form

Fs(x) =
∫ 1

0

∫ 1

0

{
α1

∥∥∥∥ ∂x

∂ξ1

∥∥∥∥
2

+ α2

∥∥∥∥ ∂x

∂ξ2

∥∥∥∥
2

+ α3

∥∥∥∥∂2x

∂ξ2
1

∥∥∥∥
2

(2.14)

+ α4

∥∥∥∥∂2x

∂ξ2
2

∥∥∥∥
2

+ α5

∥∥∥∥ ∂2x

∂ξ1∂ξ2

∥∥∥∥
2}

dξ1 dξ2,

where αi (i = 1, . . . , 5) are the Sobolev weights (penalty parameters). Each
term has a distinct effect on the final shape of the fitted object. The first
two terms (α1, α2) control the arclength, while the third and fourth terms
(α3, α4) control the arc curvature in the ξ1 and ξ2 directions, respectively.
The last term (α5) represents the face area. For instance, if the weight

(b)

(d) (e)

(f) (g) (h)

(c)(a)
1

ξ2

ξ1

ξ1

2

Fitted shape

Data point

Desired shape

ξ

ξ
2

ξ1

ξ2

ξ

ξ2ξ2

ξ1
ξ1

Figure 2.7. Unbiased fitting due to (a) scattered, and (b) sparse
data. Effects of Sobolev weights in a 2D surface fit with (c) no
smoothing (d) ξ1 weighting on α1 and (e) weighting on α1 and
α3. (f), (g) show similar behaviour for the ξ2 direction and (h)
shows weighting on all faces including the area term α5.
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associated with the cross-derivative term is set to a high value, one might
expect to end up with a mesh with a smaller face area.

The effect of these parameters is illustrated for a simple two-dimensional
surface in Figure 2.7(c)–(h). Figure 2.7(c) shows the effect with no smooth-
ing. Increasing α1 reduces the arclength in the ξ1 direction (Figure 2.7(d))
and including α3 reduces the ξ1 curvature which is seen as a flattening in
this direction (Figure 2.7(e)). Similar behaviour is observed for the ξ2 dir-
ection (Figure 2.7(f), (g)). Placing weights on all coefficients including the
area term (α5) causes a smooth reduction in the face area (Figure 2.7(h)).

3. Continuum modelling

The development of whole organ models using the above anatomically based
finite element descriptions of geometry and tissue microstructure requires
two further steps. Firstly, the cellular-based processes which produce a
change in the state of the organ system, independent of the variations in
boundary conditions, must be characterized. These cellular-based models
are introduced in Section 4. Secondly, governing equations must be proposed
which relate material properties to continuum tissue behaviour. Specifically,
the numerical frameworks for applying equations determining deformation
and activation are outlined below in Sections 3.1 and 3.2.

3.1. Finite deformation mechanics

Understanding and predicting the deformation of tissue under varying dis-
tributions of applied stresses and strains is fundamental to understanding
its function. To deal with the nonlinear constitutive mechanical behaviour
requires a framework based on finite deformation mechanics.

Kinematics
We begin by introducing the kinematic relations required to track material
based properties through large deformations. Let x = (x1, x2, x3) give the
present position in rectangular Cartesian coordinates of a material particle
that occupied the position X = (X1, X2, X3) in the reference state.

In standard finite deformation theory (x1, x2, x3) are considered as ma-
terial coordinates and a deformation gradient tensor F is defined, which
carries the undeformed line segment, dX, to the corresponding deformed
line segment dx = FdX, or in component form:

dxi = F i
M dXM , (3.1)

where

F i
M =

∂xi

∂XM
. (3.2)
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Polar decomposition, F = RU, splits F into the product of an orthogonal
rotation tensor, R, and a symmetric positive definite stretch tensor, U,
which contains a complete description of the material strain, independent
of any rigid body motion (Atkin and Fox 1980).

For inhomogeneous, anisotropic materials the orientation of the mater-
ial axes may vary with location, for example fibre direction changes spa-
tially throughout the myocardium. Thus it is no longer practical to identify
the material axes in the undeformed body with the reference coordinates
(X1, X2, X3). Instead, a new material coordinate system (ν1, ν2, ν3) is intro-
duced which is aligned with the microstructural features of the material, as
described above in Section 2.1. For myocardium, a natural set of material
axes are formed by identifying ν1 with the muscle fibre direction, ν2 with
the sheet direction and ν3 with the sheet-normal direction.

It is useful to choose the base vectors for the να-coordinate system to
be orthogonal in the reference state. This is convenient in myocardium,
for example, where the να-coordinates are chosen to line up with the fibre,
sheet and sheet-normal directions, which are defined to be orthogonal in the
undeformed state. However, the ensuing deformation means that they are
not, in general, orthogonal in the deformed configuration.

A(ν)
α , Aα

(ν) and a(ν)
α , aα

(ν) denote the covariant and contravariant base
vectors in the undeformed and deformed configurations, respectively. The
corresponding metric tensors are denoted by A

(ν)
αβ , Aαβ

(ν) and a
(ν)
αβ , aαβ

(ν). The

undeformed covariant base vectors, A(ν)
α , are defined to be unit vectors

by choosing the να-coordinates to be a measure of physical arclength in the
undeformed state. The base vectors and metric tensors for the να-coordinate
system are

A(ν)
α =

∂Xk

∂να
g(x)

k , a(ν)
α =

∂xk

∂να
g(x)

k ,

A
(ν)
αβ = A(ν)

α · A(ν)
β , a

(ν)
αβ = a(ν)

α · a(ν)
β ,

(3.3)

where g(x)
k are the base vectors of the rectangular Cartesian reference axes.

The Green strain tensor, defining the kinematics of large deformation for
an inhomogeneous anisotropic material, is then

Eαβ =
1
2

(
a

(ν)
αβ − A

(ν)
αβ

)
. (3.4)

Stress equilibrium and the principle of virtual work
The governing equations for elastostatics can be derived from a physically
appealing argument. For equilibrium, the work done by the external surface
forces in moving through a virtual displacement is equal to the work done
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by the stress vector in moving through a compatible set of virtual displace-
ments. Using this principle (known as the principle of virtual work) the
stress equilibrium can be expressed via the following equation (Nash and
Hunter 2000):

∫
V0

TαβF j
βδvj

∣∣
α

dV0 =
∫

V0

ρ0 (bj−f j) δvj dV0+
∫

S2

p(appl)

g3M
(ξ)√
g33
(ξ)

∂xj

∂ξM
δvj dS

(3.5)
where Tαβ are second Piola–Kirchhoff stresses expressed relative to the
fibre-sheet material coordinates;

∣∣
α

is a covariant derivative; δv = δvjij
are virtual displacements expressed relative to the reference coordinate sys-
tem (Malvern 1969); bj and f j are the components of the body force and
acceleration vectors, respectively; p(appl) is the pressure applied to the sur-
face S2 with normal direction ξ3; ρ0 is the tissue density; and gMN

(ξ) are
contravariant metric tensors for the ξi-coordinate system. Covariant base
vectors and metric tensors for the ξM -coordinate system are defined for the
undeformed and deformed states as follows:

G(ξ)
M =

∂Xk

∂ξM
g(x)

k , g(ξ)
M =

∂xk

∂ξM
g(x)

k ,

G
(ξ)
MN = G(ξ)

M · G(ξ)
N =

∂Xk

∂ξM

∂Xk

∂ξN
, g

(ξ)
MN = g(ξ)

M · g(ξ)
N =

∂xk

∂ξM

∂xk

∂ξN
.

(3.6)

Equation (3.5) is the starting point for the analysis of a body undergoing
large elastic deformations. For further detail see Costa et al. (1996a, 1996b).

Finite element solution techniques
Using the interpolation functions ψn from Section 2.1 we can define virtual
displacement fields δvj as

δvj = ψn (ξ1, ξ2, ξ3) δvn
j , (3.7)

where δvn
j are arbitrary virtual nodal displacements. Substituting equa-

tion (3.7) into the equilibrium equations (equation (3.5)) and setting the
coefficient of each component δvn

j to zero, gives

∫
V0

TαβF j
βψn

∣∣
α

dV0 =
∫

V0

ρ0 (bj − f j)ψn dV0 +
∫

S2

p(appl)

g3M
(ξ)√
g33
(ξ)

∂xj

∂ξM
ψn dS.

(3.8)
To evaluate the integrals in equation (3.8), they must first be transformed

from the reference coordinate space to the ξM -coordinate space using the
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appropriate Jacobian. The transformed integrals are written in (3.9):∫∫∫
V0

TαβF j
βψn

∣∣
α

√
G(ξ) dξ3 dξ2 dξ1 (3.9)

=
∫∫∫

V0

ρ0 (bj − f j)ψn

√
G(ξ) dξ3 dξ2 dξ1

+
∫∫

S2

p(appl) g3M
(ξ)

∂θj

∂ξM
ψn

√
g(ξ) dξ2 dξ1,

where
√

G(ξ) =
√

det{G(ξ)
ij } and

√
g(ξ) =

√
det{g(ξ)

ij } are the Jacobians
of the three-dimensional coordinate transformation with respect to the un-
deformed and deformed configurations, respectively. Note that the sur-
face integral is transformed by substituting J2D dξ2 dξ1 for dS, where the
two-dimensional Jacobian with respect to deformed coordinates is given by
J2D =

√
g(ξ)g33

(ξ) (Oden 1972).
The three-dimensional integrals in equation (3.9) are evaluated over the

undeformed volume and the two-dimensional integral is computed over the
portion of the deformed surface (denoted S2) for which external pressure
loads are applied. These integrals are replaced by a sum of integrals over
the collection of element domains which constitute the finite element model.
Element integrals are evaluated numerically using Gaussian quadrature.
Components of the second Piola–Kirchhoff stress tensor, Tαβ , are evalu-
ated at each Gauss point using (Malvern 1969)

Tαβ =
1
2

(
∂W

∂Eαβ
+

∂W

∂Eβα

)
− paαβ

(ν), (3.10)

where p is hydrostatic pressure and the derivatives of the strain energy
function W with respect to the components of E are determined using a
constitutive relation.

The strain energy functions of cardiac tissue have been characterized and
applied by a number of authors (Guccione, McCulloch and Waldman 1991,
Emery, Omens and McCulloch 1997, Usyk, Le Grice and McCulloch 2002)
using a generic exponential relation of the form

W =
1
2
C(eQ − 1), (3.11)

where C is the right Cauchy–Green strain tensor and Q is a function in
which the strain components of E are referred to the local structure-based
coordinates. Guccione et al. (1991) defined the form of Q such that myocar-
dium was assumed to be transversely isotropic and incompressible. More
recently Usyk, Mazhari and McCulloch (2000) have developed and applied
(Usyk et al. 2002) a fully orthotropic model in the form of equation (3.11)
within a three-dimensional model of cardiac mechanics. Difficulties lie in
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assigning unique parameter values in the complex forms of Q required to
fully represent the orthotropic behaviour of myocardium via equation (3.11).

The passive myocardial characteristics have also been encapsulated via
an alternative pole-zero strain energy function for the myocardium (Hunter,
Smaill and Hunter 1995) given by

W = k11
E2

11

|a11 − E11|b11 + k22
E2

22

|a22 − E22|b22 + k33
E2

33

|a33 − E33|b33 (3.12)

+ k12
E2

12

|a12 − E12|b12 + k13
E2

13

|a13 − E13|b13 + k23
E2

23

|a23 − E23|b23
where the constitutive parameters (a s, b s and k s) are fitted from biaxial
testing of tissue slices cut parallel with the fibre axis at several transmural
sites throughout the myocardium (Novak, Yin and Humphrey 1994). Within
equation (3.12) aαβ denote limiting strain or poles, bαβ relate the curvature
of the uni-axial stress–strain relationships and kαβ weight the contribution
of the corresponding mode of deformation to the total strain energy of the
material.

For incompressible materials, an additional scalar hydrostatic pressure
field is introduced into the constitutive equations. The extra constraint
necessary to determine the parameters of the hydrostatic pressure field arise
from the requirement that the third strain invariant (I3) equals one for
incompressible materials.

(a) (b)

Figure 3.1. (a) Canine finite element model in its reference state.
(b) Geometry calculated from application of cavity pressures to
simulate inflation.
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For a Galerkin formulation, the form of the incompressibility constraints
is given in equation (3.13):∫∫∫

Ve

(√
I3 − 1

)
ψp

√
G(ξ) dξ3 dξ2 dξ1 = 0, (3.13)

where Ve denotes the domain of the element and ψp are the basis functions
used to approximate the three-dimensional hydrostatic pressure field. Note
that the undeformed three-dimensional Jacobian,

√
G(ξ), is introduced since

the integrals are evaluated with respect to the undeformed configuration.
The methods outlined above can be applied to calculate the deformations

associated with inflation of the finite element mesh of the canine ventricu-
lar model shown in Figure 3.1. The reference geometry is shown in Fig-
ure 3.1(a), and the deformed geometry produced by the application of left
and right cavity ventricular pressures of 0.2 kPa and 1 kPa, respectively, is
shown in Figure 3.1(b).

Numerical and computational issues
There are a number of numerical and computational challenges which must
be overcome for the effective and efficient application of the finite element
method to the finite deformation mechanics equations described above. The
first of these is in the implementation of numerical techniques to find the
roots of the system of nonlinear equations obtained by evaluating the in-
tegrals in equations (3.9) and (3.13) for each element in the mesh. The
Newton–Raphson method can be used for this root-finding process. The
calculation of the Newton step vector at each iteration requires the solution
of a sparse set of linear equations, for which the SuperLU method (Demmel
et al. 1999a, Demmel, Gilbert and Li 1999b) has been found to perform well.

Oden (1972) suggests that the interpolation scheme chosen to describe the
deformed geometric coordinates (ψn in equation (3.9)) should be of higher
order than those chosen to approximate the hydrostatic pressure field (ψp

in equation (3.13)). The strain energy contribution to stress components is
related to the first derivatives of the geometric displacement fields, whereas
the hydrostatic pressure directly contributes to the stress components. For
consistency, and to avoid numerical ill-conditioning when calculating com-
ponents of the stress tensor, the two contributions should vary in a similar
manner.

The computational issues associated with modelling finite deformation
mechanics centre around the exploitation of parallel architectures. In par-
ticular, the determination of groups of element stiffness matrices can be
allocated across multiple processors while incurring only a small compu-
tational overhead. Furthermore, the SuperLU algorithm provides close-
to-linear scalability for the Newton step calculations. The scalability of
two such major components of the method means that, with increased



390 N. P. Smith, D. P. Nickerson, E. J. Crampin and P. J. Hunter

processor count, close-to-linear speed-up is exhibited for the whole algorithm.
The ease of implementation and code maintenance for shared memory archi-
tectures is well suited to finite deformation mechanics simulations, and in-
deed this has been the preferred platform. However, recent improvements
in availability and the ongoing optimization of specific algorithms (Li and
Demmel 2003) mean that distributed memory systems now provide an in-
creasingly attractive alternative computational platform.

3.2. Myocardial activation

Cardiac tissue consists of discrete cells but we can model the electrical beha-
viour of the tissue using a continuum approach that averages the electrical
properties over a length scale greater than that of single cells. In the con-
tinuum approach we assume that cardiac tissue has three orthogonal con-
ductivity directions following the microstructural organization of the tissue.
The fastest conductivity is along the fibre axis; there is slower conductivity
in the plane of the sheet, and finally the slowest propagation is along the
sheet-normal axis.

The continuum approach uses the bidomain model of multicellular volume
conductors, which has been used extensively in models of the spread of
electrical activity in excitable tissues (Fischer et al. 2000, Henriquez 1993,
Muzikant and Henriquez 1998, Plonsey and Barr 1984, Roth and Wikswo
1986, Roth 1997, Skouibine, Trayanova and Moore 2000, Trayanova 1994).
The bidomain model of cardiac tissue consists of two interpenetrating do-
mains representing cells and the space surrounding them. The intracellular
domain represents the region inside the cells and is given the subscript i, and
the extracellular domain represents the space between cells and is given the
subscript e. The key to the model is that these two domains are assumed
to exist at all points in the physical solution domain. Detailed derivation
of the bidomain model can be found elsewhere (Schmitt 1969, Tung 1978,
Krassowska and Neu 1994). Here we state the equations and show how they
are transformed into finite element coordinates in order to study electrical
propagation on a deforming finite element mesh.

Let φi and φe be the electric potentials in the intracellular and extra-
cellular domains, respectively, and Vm = φi − φe is the transmembrane
potential. Associated with these domains are the macroscopic tensor quant-
ities σi and σe, representing the local volume averaged conductivities in the
intra- and extracellular spaces, respectively. Tensors σi and σe are each
separately anisotropic and are assumed to be diagonal in the material co-
ordinates based on the fibrous structure of muscle tissue.

The bidomain model consists of two equations. The first describes the
conservation of current,

∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) + Is1, (3.14)
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that given a transmembrane potential distribution is used to solve for the
extracellular potential. The second equation describes the current flow
across the cellular membrane composed of ionic and capacitive currents
(the cell membrane acts as a parallel capacitance), that is,

∇ · (σi∇Vm) + ∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
− Is2, (3.15)

and is used to calculate the transmembrane potential distribution. Am is
the surface to volume ratio of the cell membrane, Cm is the membrane
capacitance per unit area, and Iion is a nonlinear function representing the
sum of all the transmembrane ionic currents. Externally applied volume
stimulus currents can be imposed in both the extracellular (Is1) and intra-
cellular (Is2) domains.

It is assumed that there is no current flow between the intracellular do-
main and the external region so the boundary condition applied to Vm on
the solution domain boundary is

(σi∇Vm) · n = −(σi∇φe) · n, (3.16)

where n is a unit vector outwardly normal to the domain boundary. For
the extracellular domain the current must balance between the extracellular
domain and the surrounding external regions, that is,

(σe∇φe) · n = −(σo∇φo) · n, (3.17)

where σo signifies the conductivity of the surrounding region. The negative
sign accounts for the direction of current flow as both sides of the equations
use outward normal vectors. The boundary extracellular potential must
also match the potential of the boundary of the external regions,

φe = φo. (3.18)

In the absence of an external region any combination of current and potential
boundary conditions can be used to specify the required physical problem,
with the restriction that at least one extracellular boundary point has a
potential boundary condition to provide a reference potential (and hence a
unique solution to the bidomain equations).

The monodomain model of activation
In an effort to further reduce the computational cost of the activation mod-
elling, the extracellular domain is sometimes assumed to be highly conduct-
ing or, alternatively, both domains are assumed equally anisotropic. With
either of these assumptions the transmembrane potential is equal to the
intracellular potential, and the bidomain equations simplify to

∇ · (σ∇Vm) = Am

(
Cm

∂Vm

∂t
+ Iion

)
− Is, (3.19)
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as the gradient of the extracellular potential field is effectively zero in either
of these approximations. This monodomain model is suitable for situations
such as computations on an isolated heart. When the extracellular electrical
state is important the full bidomain model needs to be used, for example
electrical current propagating from the heart to the torso in body surface
potential forward simulations or the application of defibrillation-type extra-
cellular stimuli.

For the monodomain model, there is no connection between the intra-
cellular domain and any surrounding media. Therefore, no current can flow
out of the solution domain, giving rise to the boundary condition

(σ∇Vm) · n = 0. (3.20)

Finite element-derived finite difference method
In order to solve the bidomain or monodomain models on realistic ventricu-
lar geometry domains, the equations need to be solved numerically, dividing
the solution domain into smaller subdomains over which the equations can
be integrated. The method reviewed here for the numerical integration of
the bidomain or monodomain models is a collocation method known as the
finite element-derived finite difference method (Buist, Sands, Hunter and
Pullan 2003). In this method, finite elements (FEs) are used to describe the
tissue geometry and fibrous microstructure, and the activation equations
are solved on a high-resolution nonuniform finite difference (FD) grid which
is defined from and embedded in the material space of the FEs. This al-
lows for the much smaller space constant required for the resolution of local
behaviour and steep spatial gradients of the activation model while having
the solution mesh defined by the geometry of the problem, including any
geometric deformation applied to the host FE mesh as the points remain
invariant in material space.

A significant advantage of this method is that the FD collocation points
are embedded in the FE geometric mesh, so when the geometric mesh de-
forms (i.e., due to contraction of muscle) the FD points move with the de-
formation. This is an essential feature when modelling coupled electromech-
anics, as seen in the following section (Section 3.3). Figure 3.2 illustrates
the definition of such FD meshes and their mapping to the local quadratic
solution space (Buist et al. 2003).

To solve the bidomain equations (3.14) and (3.15) or monodomain equa-
tion (3.19) we need to express the diffusion terms ∇·(σ∇φ) in the curvilinear
material coordinates (ξ1, ξ2, ξ3). The expansion of this term using domain
metrics and standard tensor notation, with a comma denoting partial dif-
ferentiation, gives

∇ · (σ∇φ) =
(
σk

α,βφ,k + σk
αφ,kβ − σk

l φ,kΓl
αβ

)
aβα

(ν), (3.21)
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collocation points

material coordinates

x1

x2

ξ1

ξ2

material coordinates
transformed

global coordinates element coordinates

Figure 3.2. An illustration of the collocation points defined on a
two-dimensional finite element mesh. Each interior point together
with its 8 surrounding points (in 2D (x1, x2)-space) is mapped on
to a unit square in (ξ1, ξ2)-space. Note that the material
coordinates which are orthogonal in (x1, x2)-space become
non-orthogonal in (ξ1, ξ2)-space.

where aβα
(ν) are the components of the contravariant metric tensor in the

deformed configuration which is defined in terms of the contravariant base
vectors

aβα
(ν) = aβ

(ν) · aα
(ν). (3.22)

See equation (3.3) for more detail. The Christoffel symbol (Γl
αβ) is used to

represent the base vector derivatives and is defined as

Γl
αβ = a

(ξ)
α,β · al

(ξ). (3.23)

Tissue microstructure
The tissue microstructure is included in the activation model through the
extra- and intracellular conductivity tensors (σe, σi). Using the material
coordinate system (ν1, ν2, ν3) defined previously, the original conductivity
tensor (σ∗a

b ) is a diagonal tensor given by

σ∗a
b =


σf 0 0

0 σs 0
0 0 σc


, (3.24)

where σf is the fibre direction conductivity, σs the sheet, and σc the cross-
sheet conductivity. For direct inclusion into equation (3.21) σ∗a

b must be
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transformed into ξj coordinates (Figure 3.2). This is accomplished with the
transformation

σk
j =

∂ξk

∂νa

∂νb

∂ξj
σ∗a

b . (3.25)

The resulting effective conductivity tensor σk
j is, in general, no longer diag-

onal.

Numerical solution
As shown in Figure 3.2, each interior FD point is mapped into a local quad-
ratic template element consisting of the surrounding FD points in order
to approximate the first- and second-order partial derivatives of potential
and the first-order partial derivative of the conductivity tensors. The quad-
ratic basis is chosen simply to ensure second-order accuracy in the spatial
derivatives used for the reaction–diffusion equations. The three quadratic
Lagrange basis functions in one dimension are

ψ1(ξ) = 2
(

ξ − 1
2

)
(ξ − 1),

ψ2(ξ) = −4ξ (ξ − 1),

ψ3(ξ) = 2ξ

(
ξ − 1

2

)
.

(3.26)

Basis functions for higher dimensions are created through the tensor product
of these one-dimensional basis functions. Quadratic basis functions of the
appropriate dimension are then used to interpolate over the local quadratic
element, in a manner similar to that already discussed in Section 2.1.

From the central node in the local quadratic element, the indices i, j, and
k are used to denote steps in the ξ1, ξ2, and ξ3 directions, respectively, where
a single step can be made in each of the positive and negative directions.
With this template, each of the partial derivatives in equation (3.21) can
be approximated by quadratic basis function derivatives where the central
node has a location of ξ = 1

2 in each of the local element directions. The
three first-order derivatives of potential are

∂φ

∂ξ1
= φ(i+1)(j)(k) − φ(i−1)(j)(k),

∂φ

∂ξ2
= φ(i)(j+1)(k) − φ(i)(j−1)(k),

∂φ

∂ξ3
= φ(i)(j)(k+1) − φ(i)(j)(k−1).

(3.27)

The first-order derivatives of the conductivity tensor components are found
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in a similar way. The second-order derivatives are defined as

∂2φ

∂ξ2
1

= 4
(
φ(i+1)(j)(k) − 2φ(i)(j)(k) + φ(i−1)(j)(k)

)
,

∂2φ

∂ξ2
2

= 4
(
φ(i)(j+1)(k) − 2φ(i)(j)(k) + φ(i)(j−1)(k)

)
,

∂2φ

∂ξ2
3

= 4
(
φ(i)(j)(k+1) − 2φ(i)(j)(k) + φ(i)(j)(k−1)

)
,

(3.28)

with three cross-derivative terms:

∂2φ

∂ξ1∂ξ2
= φ(i+1)(j+1)(k) − φ(i+1)(j−1)(k) − φ(i−1)(j+1)(k) + φ(i−1)(j−1)(k),

∂2φ

∂ξ1∂ξ3
= φ(i+1)(j)(k+1) − φ(i+1)(j)(k−1) − φ(i−1)(j)(k+1) + φ(i−1)(j)(k−1),

∂2φ

∂ξ2∂ξ3
= φ(i)(j+1)(k+1) − φ(i)(j−1)(k+1) − φ(i)(j+1)(k−1) + φ(i)(j−1)(k−1).

(3.29)

To calculate the metric tensors, the base vectors must also be approximated
numerically. The base vectors are the first-order spatial partial derivatives
and the quadratic template is used for the approximation in the same man-
ner as that used for the solution variable, φ. The second derivatives of the
basis functions are the first derivatives of the base vectors and they are used
to generate the base vector derivatives, Γ (equation (3.23)).

Implicit and explicit formulations
The transmembrane potential (Vm) equation contains a time derivative that
can be approximated by a first-order forward time approximation

∂Vm

∂t
=

V t+∆t
m − V t

m

∆t
. (3.30)

We present two methods to add the discrete form of the time derivative to
the bidomain or monodomain models, giving explicit and implicit formula-
tions. If the two bidomain diffusion terms are represented by IVm and Iφe ,
the transmembrane equation can be written

IVm + Iφe = Am

(
Cm

V t+∆t
m − V t

m

∆t
+ It

ion

)
− It

s2. (3.31)

The explicit formulation is created by setting the time of IVm to be t and
the update for the transmembrane potential is then

V t+∆t
m = V t

m +
∆t

AmCm

(
It
Vm

+ It
φe

+ It
s2

) − ∆t

Cm
It
ion. (3.32)
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For each FD node, the group of points used to create the local quadratic
element are stored along with the corresponding diffusion coefficients. This
allows the evaluation of the two diffusion terms to be reduced to two inner
products of the stored coefficients with the appropriate potential values –
one inner product for the IVm term and one for the Iφe term.

The implicit formulation uses IVm based at the new t+∆t time-step, and
is given by

V t+∆t
m − ∆t

AmCm
It+∆t
Vm

= V t
m +

∆t

AmCm

(
It
φe

+ It
s2

) − ∆t

Cm
It
ion. (3.33)

The left-hand side of this equation is written into a matrix system where one
row is generated for each FD point, and the column positions correspond
to the difference point numbers that define the local quadratic element.

Numerical and computational issues
The wave of electrical activation travels through cardiac tissue with a very
steep wavefront owing to the fast response of ventricular cells to electrical
stimulation (the rapid upstroke of the cellular action potential, as will be
described in Section 4 – see Figure 4.3). This leads to high spatial gradients
of electrical potential in the region around the wavefront, requiring the use of
a very high-density finite difference grid to resolve the wavefront accurately.
Ahead of the wavefront and behind the activation wave, however, tissue is
inactive and recovering, respectively, and a lower-density grid is sufficient to
resolve the slower electrical activity. Therefore the use of a uniformly high-
resolution finite difference grid results in a large computational overhead for
the inactive and recovering regions of tissue. Adaptive grid techniques are
well suited to this type of problem, where only the region of tissue about the
activation wavefront is solved using the high-resolution grid, while inactive
regions use lower-resolution meshes and recovering regions use a medium-
density mesh. Currently we are testing an implementation of a multigrid
technique (McCormick 1989) which allows for the specification of multiple
grid levels, with stepping between these levels during model simulation.

Numerical solution of the electrical activation model requires two steps:
integration of a system of ordinary differential equations for the cellular
processes at each point to calculate Iion and solution of the bidomain equa-
tions (3.14)–(3.15) or monodomain model (3.19) for Vm. Using anything
other than the simplest cellular models, this first step will have significantly
greater computational demands than the solution of the advection–diffusion
equation. This is also a target for parallelization. The cellular ODEs at each
grid point can be integrated independently for a given time-step, suggest-
ing that this integration is an ideal candidate for multiprocessing. Given
no communication between grid points during a time-step the integration
of the cell model should scale linearly with the number of processors in a
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shared memory system, while the communication between the cellular and
continuum models represents a fixed cost which restricts the scalability on
distributed memory systems.

3.3. Coupled electro-mechanics

In the previous sections, we have seen how a finite element model of finite
deformation elasticity can be formulated, and the same finite element de-
scription can be used to model the spread of electrical excitation. Previous
work (Hunter, Nash and Sands 1997) has modelled the electrical excita-
tion and mechanical contraction as two separate processes weakly coupled
together through the use of the excitation wavefront to initiate active con-
traction of the tissue. However, in cardiac tissue these two processes are
tightly coupled at both the cellular and tissue levels and essential physiology
is left out of such weak-coupling models. Not only does the electrical excit-
ation initiate mechanical contraction but mechanical deformation alters the
electrophysiology at both the tissue and cellular levels. The cellular level
models described in Section 4 describe these effects in cell models; here we
concentrate on the continuum tissue level models.

The collocation technique introduced in the previous section allows mac-
roscopic changes in electrical activation processes due to the mechanical
deformation of the tissue. Active contraction of muscle fibres generates
force only in the direction of the fibre axis (aligned with the ν1-coordinate).
Therefore only one term from the stress tensor needs to be modified, and so
if the stress tensor is expressed with respect to the microstructural material
axes, only the T 11 component is modified:

Tαβ =
1
2

(
∂W

∂Eαβ
+

∂W

∂Eβα

)
− paαβ

(ν) + Ta11δα
1 δβ

1 , (3.34)

where T = T (t, λ11, . . .) is the active tension generated by a fibre at time t.
The fibre extension ratio, λ11 =

√
2E11 + 1, defines the current stretch or

compression at a given collocation grid point and is determined from a
cellular model discussed in Section 4. The value of the active tension at a
given Gauss point in the finite element scheme will be defined by the cellular
model parameters interpolated from the nearest neighbour collocation grid
points, with the collocation points closest to the Gauss point having greater
influence than those distant to it. Given the finite element description of
strain in the tissue model, the fibre axis strain is readily estimated, and
hence the extension ratio can be calculated at any grid point.

Numerical simulation
Although the electrical excitation and mechanical contraction are physiolo-
gically interdependent, the quasi-static techniques used for the solution of
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(1) Given initial geometry,
boundary conditions, and initial
active tension at the tissue level

(5) Update the active tension at
the tissue level and update the

deformation, also increment time

(2) Solve tissue mechanics for
deformation (finite elasticity)

(3) Update the collocation grid
geometry, conductivity tensor, and

fibre extension ratios

(4) Solve the cellular model over
the current time step (to provide
new electrical state and active

tension at the collocation points)

Figure 3.3. Schematic illustration of the iterative solution process
for coupled cardiac electromechanics simulations of continuum
tissue models. (See text for more detail.)

the finite elasticity tissue models and the fact that the electrical and cellular
processes take place on much faster time-scales allows for some uncoupling
in the continuum model simulation. Figure 3.3 highlights the algorithm
used for the solution of coupled electromechanics in continuum tissue mod-
els. This algorithm allows for the independent solution of the finite elasticity
and electrical propagation models at a given instant in time, resulting in two
solution steps separated by an update step in which information is either
transferred from the FE nodes to the FD grid points or vice versa.

Any simulation starts with a description of the model and some initial
conditions. In this case the model definition includes a finite element geo-
metry (including the fibrous microstructure continuum representation), the
constitutive material law for the mechanical model, the continuum material
parameters, and specification of the cellular model. The simulation frame-
work developed allows for spatial variation of cellular models and parameters
within models. Initial conditions required for solution of the finite deforma-
tion elasticity and electrical activation are covered in the previous sections.
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Given an initial state for the tissue, an iteration of the finite element algo-
rithm can be performed to give the deformed geometry at time t.

After mechanical deformation of the finite element geometry the loca-
tion of the collocation points remains unchanged in solution space, but
their global position and microstructural axes need to be updated. The
metric tensors (equation (3.22)) and the effective conductivity tensor (equa-
tion (3.25)) are also updated before the diffusion coefficients (equation (3.21))
are recomputed. The extension ratio values at the collocation grid points
are updated by interpolation of the finite element strain field.

With the collocation grid points updated, the cellular models can be
integrated forward by one time-step from time t to t+∆t and the bidomain
equations solved to determine the spread of activation. The size of the time-
step (∆t) can be significantly larger than the actual integration time-step
required for a converged integration of the cellular differential equations
and the bidomain equations. This is due to the much shorter time-scales
for kinetics of the cellular level models and the propagation of electrical
activation compared to the mechanical contraction. As an indication, the
time-step typically required for integration of the the bidomain equations is
on the order of 0.01 ms while the mechanics can typically be updated and
recomputed on the order of 1.0 ms. The cellular models may require even
finer time resolution, which can be accomplished with the use of adaptive
time-stepping ODE integrators within a bidomain model time-step (e.g.,
LSODA (Hindmarsh 1983)).

The solution of a time-step in the cellular model produces a new value
for the active tension T at each collocation point. This active tension is
then interpolated from the collocation grid points back to the finite element
Gauss points as described. With the new active tension values the finite
deformation elasticity model can be solved anew, resulting in the deformed
geometry at time t + ∆t.

4. Cellular modelling

The mechanisms by which tissue contracts in response to electrical stim-
ulation, consuming energy provided by metabolism in the process, reflect
events taking place at the sub-cellular level, and thus necessitate modelling
at much smaller spatial scales from those outlined above. For continuum
scale investigations of tissue and whole organ function, cellular processes
may be included in simulations using simple empirical representations, in
some instances using only a single variable, for example, to represent act-
ive tension, or the state of electrical activation (via the Iion current term
in equation (3.15)). However, a detailed mathematical quantification of
the subcellular biochemistry is necessary to couple the activity of processes



400 N. P. Smith, D. P. Nickerson, E. J. Crampin and P. J. Hunter

operating across the range of spatial scales of organization that are char-
acteristic of complex organs such as the heart, for example, to study the
effects of pharmaceutical interventions on pump function. Heart cells, like
any other cell, are hugely complicated, highly organized and regulated entit-
ies. Therefore, cellular models are typically developed with the competing
demands of biophysical accuracy and computational simplicity. This chal-
lenge has not entirely been met. While progress in the key areas of electrical
activation and cellular mechanics has led to highly sophisticated models,
which we outline below, the energetics component of cellular physiology has
largely been neglected until very recently, and a satisfactory framework for
coarse graining and averaging cell properties for incorporation into tissue
and organ simulations is yet to emerge. It is clear that such approximation
techniques must be developed in order to make fully coupled simulation of
the heart, with some 109 cells, computationally tractable.

4.1. Active tension development

Heart tissue is made up of sheets of muscle fibres, myofibres, bound together
with connective tissue, as discussed in Section 1.1. Myofibres comprise
muscle cells, myocytes, which contract in response to electrical stimula-
tion. Inside these striated muscle cells are myofibrils, bundles of contractile
proteins, which can be resolved into sarcomeres, the repeating structural
elements which are the functional contractile units of the cell. Sarcomeres
consist of parallel and overlapping filaments of actin and myosin protein, or-
ganized into a regular cross-sectional lattice, in which a hexagonal array of
thin actin filaments surrounds each thick myosin filament (see Figure 4.1).
The molecular mechanism which generates active tension is due to the in-
teraction of these proteins. Projections from the thick myosin filaments
attach to thin actin filaments to form tension-bearing cross-bridges. These
cross-bridges form, undergo conformational change to a load-bearing state,
dissociate and reattach in a cycle to propel the thick filaments past the thin
filaments, shortening the sarcomere and contracting the cell.

This process takes place in response to electrical activation via a sequence
of events in the cell. Calcium ions are required to trigger active contraction.
At rest, the intracellular concentration of calcium is maintained at very low
levels. One of the consequences of activation of the cell is that calcium
ions enter through the cell membrane. This small influx of calcium however
triggers much larger release from storage sites within the cell, in a high-
gain process known as calcium-induced calcium release. Calcium ions must
bind to the muscle fibres in order to allow cross-bridges between the thick
and thin filaments to be formed. Therefore the contraction is dependent on
the calcium level in the cell. However, calcium ions are actively removed
from inside the cell, both via re-uptake into the intracellular calcium stores,
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sarcomere

(a) Diastole (relaxed) (b) Systole (contracted)

Figure 4.1. Schematic illustration of the overlapping thick
(myosin) and thin (actin) filaments of a sarcomere, viewed along
its length. (a) shows the relaxed sarcomere, and (b) the
sarcomere in a state of contraction, where the thick and thin
filaments have moved past each other due to the action of
cross-bridges (here the myosin heads are represented as spurs
protruding from the thick filaments). In (a) the cross-sectional
organization of the filaments is represented (inset).

where it is unavailable to the muscle fibres, and by extrusion from the cell
itself. As a result the level of calcium in the cell is only transiently raised
following electrical activation, and so the tension development follows the
same periodicity as the electrical stimuli received by the cell.

Models of active force generation in cardiac muscle can therefore be de-
veloped in three parts: (i) the calcium transient and calcium binding to the
thin filaments, (ii) the availability of thin filament binding sites for cross-
bridges to form, and (iii) the kinetics of actin-myosin cross-bridges them-
selves. Calcium binding to accessory proteins (Troponin-C) is a saturating
function of the calcium concentration [Ca],

[Ca-TnC] =
α [Ca]

[Ca] + β(T )
, (4.1)

where [Ca-TnC] is the concentration of Ca-bound Troponin-C (TnC) and
β(·), the rate of unbinding from TnC, is a decreasing function of the de-
veloped tension T . As a result of calcium binding to TnC, a sequence of
events is initiated which results in the conformational change of a protein
complex, removing a physical obstruction to formation of the actin-myosin
cross-bridges. The kinetics of this process are essentially governed by a
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first-order equation of the form

dz

dt
= f

(
[Ca-TnC]

)
(1 − z) − bz, (4.2)

where the variable z represents the fraction of actin binding sites available
for cross-bridge formation and the rate at which sites become available f(·)
is an increasing function of the [Ca-TnC] complex, and hence of calcium
concentration and developed tension.

The steady state tension developed in muscle fibres has long been known
to depend on the length of the muscle. This property in heart tissue (Guz,
Bergel and Brutsaert 1974) reflects that greater tension and hence pumping
capacity is generated in the heart when distended, i.e., with increased ex-
tension of the myofilaments. The steady-state tension To at a given calcium
concentration is linearly dependent on both sarcomere length, λ, and the
available fraction of actin binding sites, z:

To ∝ (
1 + β0 (λ − 1)

)
z, (4.3)

where β0 is the slope of the linear tension-length relation.

Actin–myosin cross-bridge kinetics
Cross-bridge kinetics, first modelled by Huxley (1957), are the result of
transitions between attached force-bearing configurations, and non-force-
bearing unattached states of the actin-myosin cross-bridges within each
myocyte. The rates of transition between each state are dependent on the
strain carried by a given cross-bridge head, and the concentrations of meta-
bolite molecules such as ATP (Adenosine Tri-Phosphate) whose chemical
free energy of hydrolysis is converted to work via the cross-bridge cycle. At
the level of a single cross-bridge, the time-dependence of transition rates on
cross-bridge strain x, the extension of the myosin head when attached to an
actin binding site, requires the system be modelled as a system of partial
differential equations (Huxley 1957, Hill 1975). The conservation laws for
cross-bridges which can be in one of n biochemically or mechanically dis-
tinguished states with probability pi(x, t), with muscle shortening velocity
v(t), are given by

∂pi

∂t
− v(t)

∂pi

∂x
=

n∑
j=1
j �=i

pj(x, t)αji(x) − pi

n∑
j=1
j �=i

αij(x), (4.4)

where αij is the transition rate between the ith and jth states, which may
depend on the cross-bridge strain x (for transitions between unattached
and attached states, or for a change of conformation between two attached
states, where chemical energy from ATP is used to change the protein
conformation and increase the strain in the cross-bridge). In practice it is
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usually assumed that kinetics are restricted to a cycle, the cross-bridge cycle,
and so the rates of transition between non-adjacent states in the cycle are
zero. Conservation of the total number of cross-bridges leads to a system of
n − 1 coupled first-order hyperbolic PDEs, along with the relation

pn(x, t) = 1 −
n−1∑
i=1

pi(x, t). (4.5)

Typically in this model cross-bridges are assumed to be independent force-
generating elements, and also it is assumed that strain x is a continuous vari-
able. In fact, myosin heads and actin binding sites are discretely spaced,
but in the limit of large numbers for averages taken over large populations
of cross-bridges this is a reasonable approximation. Furthermore, cooperat-
ive interactions between cross-bridges have been suggested to explain some
muscle data, in particular the steady state force-calcium curve, which shows
a sigmoidal-type relationship between the tension generated and the con-
centration of calcium ions (Rice and de Tombe 2004).

Huxley considered a two-state model, with one attached and one un-
attached state, which reduces to a single first-order hyperbolic PDE. For
suitably chosen piecewise linear functions for attachment and detachment
rates this model can be solved analytically, for example, to produce steady
state distributions of attached cross-bridges for different contraction velocit-
ies v. More complicated models have been proposed which include numerous
states, reflecting changing views about the detailed biochemistry underlying
the cross-bridge cycle (Piazzesi and Lombardi 1995, Smith 1998). Hill has
shown from principles of chemical free energy transduction that the strain-
dependent transition rates for these models are not in fact independent of
one another, as their ratios are related to the free energy change associated
with the transition, which must also reflect the change in energy associated
with the change in cross-bridge strain (Hill 1975, 1989). Typically this is
calculated by assuming that each cross-bridge functions as an elastic ele-
ment which develops tension k(x) which is a function of its displacement
from the actin binding site. The tension generated in a population of cross-
bridges is calculated by integrating over the distributions of tension-bearing
states (assuming uniform distribution of cross-bridges along filaments and
hence uniform probability of strain x)

T (t) =
∫ ∞

−∞
k(x)


∑

jatt

pj(x, t)


 dx, (4.6)

where the sum is over attached cross-bridge states and k(x) is the force
developed by a cross-bridge at strain x. Often it is assumed that the
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myosin heads are linear elastic elements, in which case the tension de-
veloped per sarcomere is proportional to the first moment of the distri-
butions, summed over attached states.

Averaging and empirical modelling
For solving continuum-scale tissue mechanics problems, the active tension
generated by cellular contraction is required at a large number of spatially
distributed points in the model. Solving systems of partial differential equa-
tions at each point is computationally prohibitive in this context. However,
to accurately model contraction, and in particular the energetics of this
process in tissue we need to retain many details from this molecular de-
scription of the contractile apparatus. Two suggestions have been made for
tissue level simulations. Zahalak has proposed that ODE approximations
for the zeroth, first and second moments of the PDEs can be made if it is as-
sumed that the distributions of attached and unattached states with strain
are Gaussian in form (Zahalak 1981). It is a well-known property of the
normal distribution that the first three moments can be expressed in closed
form in terms of each other. This approach has been proposed for both
skeletal (Zahalak 1981, Zahalak and Ma 1990) and cardiac cells (Guccione,
Motabarzadeh and Zahalak 1998). The validity of the assumption of normal
distributions is questionable, however, particularly for perturbations away
from isometric (i.e., zero velocity) equilibrium. An alternative view of this
problem is to produce an empirical model of tension development in muscle
cells which can be related back to molecular processes.

The model of Hunter et al. (Bergel and Hunter 1979, Hunter 1995,
Hunter, McCulloch and ter Keurs 1998) couples a linear time-dependent
component for contraction with a static nonlinearity to produce a phe-
nomenological description of tension development associated with cross-
bridge kinetics:

T

To
=

1 + aQ(v)
1 − Q(v)

, (4.7)

where a is a parameter fitted from the steady state tension-velocity rela-
tionship and To is the steady state isometric (zero velocity) tension (see
equation (4.3)). Q(v) is a linear response function of the shortening velo-
city v(t) with m components, which can be represented as an hereditary
time integral or fading memory model

Q =
m∑

i=1

Qi =
m∑

i=1

Ai

∫ t

−∞
e−αi(t−τ)v(τ) dτ, (4.8)

and the parameters Ai and αi can be recovered from data on studies of
muscle stiffness measured for transient length and force-step experiments,
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Figure 4.2. (a) Tension recovery (lower figure) following a length
step of ∆λ of duration ∆t (upper figure). Notice the different
phases of the tension recovery. (b) Tension T1 reached at the end
of the length step, divided by isometric tension To, plotted
against the magnitude of the length step ∆λ. One curve is for a
length step of 1 ms duration and the other for an idealized
instantaneous step.

and for sinusoidal length perturbations about equilibrium over a range of
frequencies, for both skeletal (Kawai and Brandt 1980, Kawai, Zhao and
Halvorson 1993b) and cardiac (Saeki, Kawai and Zhao 1991) preparations.
The form of this fading memory component is equivalent to the transfer
function fitted from these sinusoidal perturbation data, and typically for
cardiac muscle it is determined that three components are required to de-
scribe the response of tissue.

The model captures many features of real muscle experiments, for ex-
ample the tension developed following a step change in muscle length,
shown schematically in Figure 4.2. Furthermore, the dependence of the
parameters of the fading memory model on metabolites such as ATP can
be characterized from experimental data (Saeki et al. 1991, Kawai, Saeki
and Zhao 1993a), and this is necessary in order to couple the active ten-
sion generation to models of energy metabolism in the cell. However, with
this type of model a calculation of the energetic cost of contraction is not
readily accessible, as the link to the molecular mechanisms of contraction
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is not included in the fading memory framework. The links between these
two modelling approaches and the underlying cross-bridge theory of Huxley
have recently been investigated and discussed by Smith (2003).

Computational efficiency of the fading memory model
In the context of tissue and organ scale mechanical simulations, the compu-
tational efficiency of cell models is critical. The properties of the exponential
decay term allow the tension at a new time (t + ∆t) to be written in terms
of the length history up to time t weighted by the decay over ∆t, together
with the hereditary integral contribution from the latest time increment ∆t:

Qi(t + ∆t) = e−αi∆t

[
Qi(t) + Ai

∫ t+∆t

t
e−αi(t−τ)v(τ) dτ

]
. (4.9)

The Qi are then summed as in equation (4.8) to yield a solution for current
active tension T . This provides an efficient method for calculating the time-
dependent generation of active tension at the large number of Gauss points
in a finite element mesh required to geometrically represent cardiac tissue
and organ models.

4.2. Cellular electrophysiology

Contraction of the heart is triggered by a wave of electrical excitation mov-
ing through the tissue. This travelling wave is generated by the rapid depol-
arization of the cell membranes of the muscle cells (myocytes) from a negat-
ive resting potential, called an action potential. Muscle cells are for the most
part electrically excitable. The resting potential is a stable steady state, and
small displacements quickly decay back to rest. However, a super-threshold
stimulus generates a large-amplitude trajectory, the action potential, before
the membrane potential returns to its resting value. This response to a suf-
ficiently large stimulation is at the basis of the electrical properties of heart
muscle.

The electrophysiological properties underlying excitability were first un-
derstood in a mathematical model of a nerve cell, the squid giant axon, due
to Hodgkin and Huxley (1952). As for other electrically excitable tissues,
the active constituent of nerve cells and heart cells is the membrane (sarco-
lemma) which isolates the contents of a cell from its external environment.
Electrical excitability in transmembrane potential is a consequence of the
processes controlling the transport of electrically charged species across the
cell membrane. This membrane is selectively permeable to charged ionic
species, such as sodium, potassium and calcium ions. The passage of ions
through the cell membrane is regulated by ion-specific pores, or ion chan-
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nels, whose permeability may be controlled by the cell membrane electrical
potential (voltage-gating) or by the binding of other ions or metabolites.
The different properties of two such voltage-gated ion channels, controlling
the flux of sodium and potassium ions, were sufficient to explain the excit-
ability in the squid giant axon.

Ion channels and voltage gating
The opening and closing of ion channels in response to changes in potential
underlies the excitability of the membrane. When an ion channel is open,
the direction in which ions move through the channel is dictated by the
electrical and chemical gradients which they experience. Ions move down a
concentration gradient until the motive force is balanced by the opposing
electrostatic force, produced by the potential difference across the membrane
due to net movement of charge. The distribution of each ionic species on
either side of the membrane determines a membrane potential, the Nernst
potential, at which there is zero net motive force, for the ith ion, Vi. In
many cell types including cardiac myocytes the resting potential, at which
the voltage-dependent sodium channels are predominantly closed, is close
to the Nernst potential for potassium.

Current balance for the capacitive membrane gives a differential equation
for the membrane potential of the form (Hodgkin and Huxley 1952, Keener
and Sneyd 1998)

Cm
dVm

dt
= −

∑
i

gix
n
i ym

i (Vm − Vi) + Is, (4.10)

where the sum over subscript i is over the range of different types of ion
channels in the membrane. The gating variables xi and yi describe, respect-
ively, the activation (opening) and inactivation (closing) of channels, taking
values between 0 and 1, according to the differential equations

τxi(Vm)
dxi

dt
= x∞

i (Vm) − xi (4.11)

and a similar equation holds for yi. The relaxation time-scale τxi(Vm) and
steady state value x∞

i (Vm) are functions of the membrane potential (for
voltage-gated channels). Parameters n and m reflect the number of inde-
pendent gating subunits of each type making up the ion channel, which
must all be in an open state for the passage of ions. The conductance gi for
the ith channel is for the open channel, and Cm is the capacitance of the
membrane. Is represents a current source applied to the cell, for example
the initial stimulus from neighbouring cells. This framework is at the root
of all contemporary models of cellular electrophysiology (Miura 2002).

Hodgkin and Huxley also studied the propagation of the action potential
in a simple spatially extended version of their model using cable theory.
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They were able to calculate the speed of the travelling wave along the axon
of the nerve cell using the shooting method, in 1952, on a manually cranked
calculator (a Brunsviga 20), due to the labours of Andrew Huxley (Hodgkin
1976).

Electrical excitability in the heart
The physiological principles which underlie excitability in the heart are es-
sentially the same as for any other excitable cell type. In some cases sim-
plified models can be produced and separation of time-scales used to reduce
the complexity of a model (see, for example, Smith and Crampin (2004)).
On the other hand, there are many processes involved in generating and
regulating the electrical properties of cells. For example, more than 20
different types of ion channel have been identified in the myocyte. The
same modelling framework can be expanded by the addition of equations
representing the active (energy-requiring) transport of ions against their
electrochemical gradients by ion pumps and exchangers in the membrane,
which are required to maintain the resting state of the cell and to regulate
cell calcium. One important feature of the cardiac action potential is that it
has a so-called plateau phase during repolarization back to the resting po-
tential, during which calcium ions enter the cell triggering a larger release
from intracellular calcium stores (see Figure 4.3). This calcium-induced cal-
cium release initiates the contraction of the muscle filaments, as discussed
above. Equations describing these processes can be incorporated to produce
comprehensive models of cellular electrophysiology.

The most extensive of these cardiac models are the ion channel models
pioneered by Noble and co-workers (Noble 1960, DiFrancesco and Noble
1985, Noble et al. 1998), and the Luo and Rudy models (Luo and Rudy
1991, 1994), focusing on the physiological behaviours of premature stimu-
lation and arrhythmogenic activity of the single myocyte. Their model has
since been extended by Jafri, Rice and Winslow (1998), among others, to
accommodate more complex calcium kinetics which are important for con-
traction coupling, as discussed above. One important consideration that is
introduced by more realistic models of calcium handling is that the cellular
compartment into which calcium channels empty (the diadic space) is very
small, and furthermore the release of calcium from the internal stores has
been shown to be in discrete quantities, or sparks, introducing very short
time-scales and a stochastic element to cell models, which may be important
in some circumstances (Greenstein and Winslow 2002).

4.3. Metabolic models

Muscle cells convert metabolic (chemical) energy to work via a sequence
of biochemical processes involving the breakdown (or hydrolysis) of the
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Figure 4.3. Figure showing, from top to bottom, ventricular action
potential, ionic currents, intracellular calcium transient and active
tension development from a cardiac myocyte model. Note that the
rapid inward (negative) component of the sodium current (Na+;
dashed line), which initiates the action potential upstroke, reaches
a much greater maximal amplitude than is shown in the figure
(where the scale is truncated at −0.1µAmm−2). These traces were
generated using the ventricular electrophysiology model of Noble
et al. (1998) coupled to the HMT mechanics model of Hunter et al.,
as described in Nickerson, Smith and Hunter (2001).
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molecule ATP (Adenosine Tri-Phosphate). Energy-requiring reactions, for
example muscle contraction due to the kinetics of binding and unbinding
of actin–myosin cross-bridges, and transmembrane ion pumps operating
against an electrochemical gradient, are coupled to the hydrolysis of ATP
which releases energy. As might be expected, there is an intricate feedback of
energy demand to supply in the cell, particularly acting at the major sites
of ATP generation in the cell, the mitochondria, where ATP is formed
by the process of respiration, using oxygen from the blood (Nicholls and
Ferguson 2002).

Despite its importance to heart function, metabolism has received less at-
tention for quantitative models of the heart. It is fair to say that the major
attention in cell modelling has been on cell electrophysiology. This is per-
haps natural, both because of its obvious centrality in understanding the
electrical activation of cardiac cells and the initiation of contraction, but
also probably because of the development of sensitive experimental tech-
niques for recording cell membrane voltages and transmembrane ion cur-
rents. (The patch-clamp technique and its many progeny use micropipette
electrodes coupled with high-impedance amplifiers to measure transmem-
brane currents from individual ion channels.) However, nuclear magnetic
resonance (NMR) techniques can now be used to monitor metabolite con-
centrations in the beating heart, and increasingly data is becoming available
which allows for the development of more sophisticated metabolism models
as components for whole-cell modelling. To study the normal function of
organs such as the heart, electrophysiology and contraction can be charac-
terized, and models parametrized, for normal metabolic conditions, where
the heart is well perfused with an oxygenated blood supply through the
microcirculation. However, of very significant interest is the use of the
modelling framework described in this article to understand dysfunction in
the heart, and in particular dysfunction caused by ischaemic heart disease.
Ischaemia is the reduction or loss of blood supply to the heart, or a region
of the heart muscle (Opie 1998). There may be many underlying clinical
reasons for ischaemic episodes, by which the coronary flow is reduced, how-
ever, the major effect on the cells is disruption of the balance of supply
and demand for ATP, resulting both from the reduction in oxygen supply
and from the reduction in blood flow to transport energy substrates to, and
waste products from the cells.

The result of ischaemia on the muscle is an increase in the acidity of
the cells (acidosis), changes to the distribution of ionic species across the
cell membrane, which affect the electrophysiological properties of the cells,
and eventually the loss of ATP to drive energy-requiring reactions. The
final consequence of these disturbances is the loss of the contraction cycle,
pump failure and cell death (infarction). However, before this occurs the
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changes to the ionic milieu can also give rise to pathological electrical beha-
viours, or arrhythmias. The origins of these arrhythmogenic processes are
not well understood, and detailed cell and tissue modelling provides a test-
bed for different theories and potential therapies. ATP and its hydrolysis
products, and in particular the cell acidity levels, regulate many of the elec-
trophysiological and calcium handling processes in the cell. This network of
regulatory interactions is now being incorporated into detailed cell models
for the heart. The additional complexity of accounting for metabolites and
acidity notwithstanding; the major difficulty again with numerical simula-
tions involving metabolism is the inclusion of processes which take place
over time-scales of minutes to hours, i.e., many heart beats, rather than
the millisecond time-scales of most electrophysiological processes. Further-
more, the loss of blood supply is usually localized to one region of the muscle,
with a gradation of effects moving laterally away from the fully ischaemic
zone. The resulting spatial heterogeneity of cell properties is thought to be
strongly influential in the developing pathophysiology, and is a significant
further challenge to modelling studies. A description of continuum mod-
elling approaches for the coronary vasculature and microcirculation blood
supply to the heart is presented in Section 5.

Computational and modelling issues
These models of cellular electrophysiology and metabolism are described by
coupled systems of nonlinear ordinary differential equations, possibly with
the addition of stochastic components for certain ion channel gating and
calcium handling processes. An essential characteristic of these compon-
ents for integrated modelling of physiological systems is the wide range of
time-scales that are introduced. For example, the upstroke of the action
potential takes place on the sub-millisecond time-scale, whereas the dura-
tion of the cardiac action potential itself is on the order of several tenths
of a second. The introduction of metabolic processes into cell models in-
troduces components with time constants of seconds and longer – several
orders of magnitude larger than the (sub-) millisecond electrophysiological
time-scales. This gives rise to large stiff systems of coupled ODEs to de-
scribe the kinetics of the various processes which underlie the action po-
tential and its regulation by metabolism. While numerical simulation over
this range of time-scales for a single cell presents few difficulties for mod-
ern computers, the coupling of large numbers of cells in a continuum tissue
framework represents a significant hurdle to simulation studies (there are
109 or so cells in the human heart). Faster algorithms for very stiff ODE
systems, along with refinements in modelling which allow course graining or
adiabatic approximations for slowly varying properties are therefore needed.
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5. Vascular blood flow

A third important continuum element of tissue models, following mechanical
and electrical activation, is representation of the network of coronary blood
vessels (vasculature) which supply cardiac tissue with oxygenated blood.
The spatio-temporal distribution of the supply of oxygen and metabolic
substrates (perfusion) is an important determinant of heart function, typ-
ically via its influence on the state of cellular metabolism (models of which
were introduced in Section 4.3). Interactions between vascular perfusion
and organ function are also relevant at the continuum modelling scale.

The arterial and venous vessels are elastic tubes, and so their volume is
a function of the difference between the blood pressure and the mechanical
state of the tissue in which the vessels are embedded. Thus the vascular
fluid dynamics are integrally coupled to tension generation and deformation
of the tissue.

Several recent studies have used statistical morphometric data to recon-
struct vascular network geometries using measurements from casts (Kassab
et al. 1993, Kassab and Fung 1994), image segmentation (Kantor et al. 1999)
and spatial distributing algorithms (Smith, Pullan and Hunter 2000). These
geometries provide the foundation for an anatomically based model of vas-
cular blood flow. Computational limitations motivate the reduction of the
full Navier–Stokes equations to produce a one-dimensional model of flow in
a single vessel segment, which we describe below. The use of constraints to
maintain conservation relations across bifurcations in the branching network
is introduced (in Section 5.2). A lumped parameter model (Section 5.3) is
used to represent small vessel microcirculation networks distributed at fine
spatial resolution. Finally, modelling the effect of tension generation and de-
formation on blood flow in the coronary network is described in Section 5.4.

5.1. Single vessel model

There are a number of fundamental assumptions about vascular blood flow
used in deriving the governing equations for the model presented here. The
studies of Perktold, Resch and Peter (1991) and Cho and Kensey (1991) in-
dicate that the shear thinning properties of blood do not play a significant
role in large diameter vessels. This is because the relative size of red blood
cells to vessel diameter is small and therefore blood can be modelled as a
continuum. The distensibility of a coronary vessel wall is assumed to dom-
inate any effects due to the compressibility of blood. Thus, in the equations
below, blood is modelled as an incompressible, homogeneous, Newtonian
fluid. The low Reynolds number applicable to the majority of the circula-
tion means that all flows are assumed to be laminar.

With these assumptions the Navier–Stokes equations can be expressed
using a cylindrical coordinate system (r, θ, x), where the x axis is aligned
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with the local vessel axial direction. Assuming velocity in the circumfer-
ential direction is zero and that the flow is axi-symmetric, the equations
governing fluid flow reduce to

∂vx

∂t
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∂vx

∂r
+ vx

∂vx
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+

1
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∂x
= ν

(
∂2vx

∂r2
+

1
r

∂vx

∂r
+

∂2vx

∂x2

)
, (5.1)
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In these equations vx(x, r) and vr(x, r) are the axial and radial velocities.
Pressure, viscosity and density are denoted by p(x), ν and ρ respectively.
Conservation of mass is governed by

∂vx

∂x
+

1
r

∂ (rvr)
∂r

= 0. (5.3)

We make the further assumption that radial velocity is small compared to
axial velocity and, consistent with experimental observation, that the radial
velocity profile can be represented in the form

vx =
γ + 2

γ
V

[
1 −

(
r

R

)γ]
, (5.4)

where V (x) is average flow velocity, R(x) is the internal vessel radius and γ
is an empirical fitting parameter (Smith, Pullan and Hunter 2002).

Equations (5.1)–(5.3) can be reduced such that conservation of mass is
governed by

∂R

∂t
+ V
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+

R

2
∂V
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= 0, (5.5)

and conservation of momentum equals
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(see Smith et al. (2002) for details). Equations (5.5) and (5.6) provide two
equations in the three unknowns, (V, p, R). A third constitutive equation
which describes the relationship between pressure and radius, R, must be
established. Ignoring any transient or visco-elastic properties of the vessel
wall, an empirical relationship between transmural pressure and the radius
can be established, which is of the form

p(R) = Go

[(
R

Ro

)β

− 1
]
. (5.7)

The form of equation (5.7) was chosen to provide a good fit to experimental
pressure–radius data. The solution to equations (5.5)–(5.7) characterizes
transient blood flow in the coronary network.
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5.2. Branching in vessel networks

Equations governing fluid flow at bifurcations within a network must now
be introduced in order to model blood flow through branching structures
such as the coronary network. The bifurcation model is based around an
approximation of the junction between vessels as three short elastic tubes
of radius Ra, Rb and Rc, respectively. If the tubes are assumed to be
sufficiently short then the velocity along them is constant, i.e., they are
parallel-sided and losses due to fluid viscosity are negligible. Furthermore,
no fluid is assumed to be stored within the junction. The location of the
parent vessel entering the junction is denoted by a and the points at the
beginning of the daughter vessels are labelled as b and c. If Fa, Fb and Fc

are the rates of flow through each junction segment and Po is the pressure
at the junction centre, then conservation of mass through the junction is
governed by

Fa − Fb − Fc = 0. (5.8)

The conservation of momentum for tube a is governed by the resultant axial
force equalling the rate of change of momentum of fluid in a segment length
la of radius Ra, i.e.,

R2
a(pa − pb) = ρ

(
∂(laR2

aVa)
∂t

+
∂(lbR2

bVb)
∂t

)
, (5.9)

along with similar expressions for the flows between tubes a and c, and
tubes b and c. Having introduced equations (5.8) and (5.9), which govern the
conservation of mass and momentum across the bifurcation, the next step is
to couple these to the single vessel equations (5.5)–(5.7). This is achieved by
manipulating the pressures at the three segment ends that form a bifurcation
such that the flows Fa, Fb and Fc simultaneously satisfy equations (5.8)
and (5.9). This manipulation can be cast as a root-finding problem. The
boundary conditions from the single vessel elements are used to calculate
flows in each segment for a given pressure and partial derivatives of flow
with respect to pressure ∂F

∂p . From these equations a Newton–Raphson step
can be calculated to determine the change in the pressure increments in
tubes a, b and c required to satisfy equations (5.8) and (5.9) to linear order.
To account for the nonlinearities this calculation is iterated using the new
pressure values until the solution converges.

5.3. Microcirculation

The microcirculation network is formed by the terminal branching arterial
and venous networks, called arterioles and venules, and the capillaries that
connect them. This network is both topologically and functionally differ-
ent from the network of large-conduit vessels. These vessels have diameters



Multiscale computational modelling of the heart 415

RA RC
RV

C1 C2
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Figure 5.1. Schematic of the lumped parameter microcirculation
model with the lumped comments for volume capacitance and
resistance to flow shown.

comparable to the size of a red blood cell. At this spatial scale blood can
no longer be considered as a homogeneous Newtonian fluid and the flow
properties are strongly influenced by the individual red blood cells (Pries,
Neuhaus and Gaehtgens 1992). This affects fluid viscosity (known as the
Fahraeus effect), flow profiles and distribution of flow at bifurcations (Pries,
Ley, Claasen and Gaehtgens 1989). Thus the equations used to model flow
through the larger vessels in this study are no longer valid. The large num-
ber of microcirculation networks connecting each arteriole to a venule also
makes the method of discretely modelling individual vessel segments for
each microcirculation network computationally prohibitive. To overcome
these problems a lumped parameter model of microcirculation has been de-
veloped based on the intramyocardial pump of Spaan, Breuls and Laird
(1981). This model is used to reproduce the observed flow responses to
arteriole and venule pressure of an anatomically based model combining
nonlinear resistive and capacitive elements, reproducing experimentally ob-
served behaviour in a computationally efficient way, while retaining some of
the fundamental physics of the problem. A five-element lumped parameter
model is shown schematically in Figure 5.1. RA, RC and RV are arter-
ial, capillary and venule resistances, respectively, and C1 and C2 represent
the proximal and distal capacitances of the microcirculation model. The
rate of change of pressure is related to the net flow across the capacitive
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components, and hence the pressure drop, according to

C1
dp1

dt
= FA − FC =

PA − P1

RA
− P1 − P2

RC
, (5.10)

C2
dp2

dt
= FC − FV =

P1 − P2

RC
− P2 − PV

RV
. (5.11)

These equations are then coupled to the terminal segment end of the ar-
teriole and venule models using the same root-find techniques employed to
determine bifurcation flows. The Newton–Raphson method is used to iter-
atively converge to the PA and PV pressure values that, via single segment
boundary condition, give flows FA and FV .

5.4. Coupled blood flow and tissue mechanics

The effect of contraction of the heart and skeletal muscles around the em-
bedded vessels is an important determinant of blood flow (Downey and
Kirk 1975, Spaan et al. 1981, Krams, Sipkema and Westerhof 1989). There
are two distinct steps to coupling coronary blood flow to the pressure exer-
ted by the other host organ on the embedded vessels, firstly calculation of
the pressure exerted on the vessel wall and secondly to include this pressure
in the blood flow models presented above.

For each vessel, the pressure exerted on the vessel wall as a function of
time and distance along the vessel must be calculated. The pressure acting
on a vessel wall at a given point along the length of a vessel is assumed to
be the average of the radial forces acting normal to the wall. The starting
point in determining this pressure is the second Piola–Kirchoff stress tensor
Tαβ , calculated by solving the finite deformation equations which govern
the deformation of the host medium (Section 3.1). This stress tensor is
defined in the local material coordinates (ν1, ν2, ν3) (see Figure 5.2).

Tαβ does not directly provide information about the physical stresses.
The objective is to use the second Piola–Kirchoff stress tensor to determine
the Cauchy stress tensor σij in a deformed rectangular Cartesian coordin-
ate system. Using σij the physical stresses can then be calculated. The
Cauchy stress tensor is related to the 2nd Piola–Kirchoff stress tensor in
this Cartesian coordinate system (Malvern 1969) by the following relation:

σ(x) =
1
J

FT (ν)F T . (5.12)

F is evaluated using the material coordinates of the host finite element mesh
ξ and the reference coordinate system of that host mesh θ:

∂xi

∂νM
=

∂xi

∂θj

∂θj

∂ξk

∂ξk

∂νM
. (5.13)
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Figure 5.2. Coordinate systems used in the kinematic analysis of large-
deformation finite element host mesh with embedded coronary elements.
The axes (X1,X2,X3) are the material Cartesian coordinates aligned
with the reference coordinates (x1, x2, x3) in the undeformed state.
(ν1, ν2, ν3) are the material coordinates aligned with the tissue micro-
structure; these are defined to be orthogonal in the undeformed state.
(ξ1, ξ2, ξ3) are the local finite element material coordinates. (Y1, Y2, Y3)
and (y1, y2, y3) are the Cartesian set of coordinates which are orthogonal
and aligned with the vessel direction in the undeformed and deformed
states respectively. (θ1, θ2, θ3) are the curvilinear reference coordinate
system.
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To evaluate the stresses on the vessel wall the Cauchy stress tensor is trans-
formed into a rectangular Cartesian coordinate system y in which the local
deformed vessel geometry is referenced:

σij(y) =
∂yi

∂xk
σkl(x) ∂yj

∂xl
. (5.14)

According to Cauchy’s formula, the stress vector in Cartesian coordinates
t (the force per unit area acting on a surface with unit normal n) is given
by (Spencer 1980)

t = σijnigj, (5.15)

where gj are the base vectors of the coordinate system. From this expression,
the normal stress, tn, acting perpendicular to a surface with a normal ni is

tn = σijninj . (5.16)

By determining a vector normal to the vessel wall the normal stress acting
on the wall can therefore be calculated. This can be further simplified by
aligning y1 in the direction of the vessel, y2 normal to y1 and to the x axis
and choosing y3 as the cross-product of y1 and y2. Thus both y2 and y3 are
normal to the vessel axis. The average normal stress in the radial direction
is then

twall =
1
2
(σ22(y) + σ33(y)) (5.17)

and twall is taken as the stress acting on the vessel wall.
Once the pressures are determined the second step is to include the reac-

tion of the vessel wall to the varying pressure and deformation in the blood
flow model presented in Section 5.1. Deformation of the host organ finite
element mesh produces deformation of the embedded vessel geometry. This
deformation is calculated by using one set of ξ positions within the mesh
geometry to fix vessel segments at material points inside the mesh. As the
mesh deforms the position of the vessels is calculated by reinterpolating the
basis functions using the deformed geometry at the fixed ξ positions. Using
this method axial vessel strain (denoted by λ) can be determined from the
solution of the finite deformation equations (an example of the calculated
deformation of embedded vessels is shown in Figure 5.3).

The elastic pressure–radius relationship must be modified such that pres-
sure within a vessel is the sum of two terms: the reaction of the fluid on the
elastic vessel wall and the pressure

P (R) = Go

[(
R

√
λ
λ∗

o

R∗
o

)β1λ+β2

− 1

]
− twall, (5.18)

exerted on the wall by the deforming host medium, where β1,β2 and Go are
empirical parameters fitted from experimental data.
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(a) (b)

Figure 5.3. A coupled model of coronary arterial blood flow and
myocardial mechanics showing calculated intramyocardial
pressure mapped on to the deformed coronary arterial geometry
at two stages of the heart cycle: (a) start of contraction and
(b) end of contraction. Shading indicates the degree of pressure
exerted on the vessels by contraction.

To account for deformation, i.e., stretch or compression of vessels, the
conservation equations for mass and momentum are also modified:

∂
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R
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λ
)

∂t
+

R
√

λ

2
∂V

∂x
+ V

√
λ

∂R

∂x
= 0, (5.19)

∂V

∂t
+ (2α − 1)V

∂V

∂x
+ 2(α − 1)

V 2

R

∂R

∂x
+

1
ρ

∂p

∂x
=

−ανSV (a2 + b2)
(α − 1)πa3b3

. (5.20)

The solution techniques for these modified blood flow equations are un-
changed. However, the λ and twall values vary with time and thus require
updating at each time-step. This can be achieved via linear interpolation of
values calculated from mechanics solutions which are usually incremented
with a significantly greater time-step than that used in the flow solution.

Numerical and computational issues
Calculations of coronary blood flow for the whole heart are computation-
ally intensive owing to the large number of finite difference grid points and
the number of network bifurcations and lumped parameter microcirculation
models to be solved at terminal branching of the network. The compu-
tational storage required for the implementation of an implicit method is
prohibitive. The explicit two-step Lax–Wendroff finite difference scheme is
a suitable solution method for the set of equations which is second-order
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coronary mesh.

accurate in both time and space, and also eliminates large numerical dis-
sipation (Press, Teukolsky, Vetterling and Flannery 1992). For a detailed
analysis of the stability properties of this approach see Smith et al. (2002).

A major advantage of the explicit Lax–Wendroff scheme, applied to the
blood flow equations, is the ability to divide the computational effort at a
given time-step evenly between processors with little additional work. The
scalability is demonstrated in Figure 5.4 for a typical network simulation
on a shared memory Silicon Graphics Power Challenge. The computation
times for the finite difference calculations are very close to the theoretical
ideal of linear speed-up, indicating an efficient parallelization, in this case
using simple scheduling to divide grid points evenly between processors.
The computation times for the network elements, both for bifurcations and
microcirculation calculations, do not show linear speed-up. More iterations
are needed to reach convergence in regions of the coronary network where
large pressure gradients occur. Thus, to avoid computational bottlenecks,
where a large subset of the processors may be idle, dynamic scheduling can
be used to divide computational work between processors. The computa-
tional overhead, however, increases and efficiency drops as the number of
processors is increased, as shown in Figure 5.4 by the fall away from the
ideal linear speed-up.
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6. Future directions

Having presented a framework for integrative modelling linking across mul-
tiple physical processes at one spatial scale (mechanics, electrical wave
propagation and coronary blood flow) and across multiple spatial scales
(subcellular, ion channels to the intact organ), we now explore future dir-
ections for this work and present models from two other organ systems
developed using this framework.

6.1. Multiscale modelling in the heart

The framework for computational physiology presented here, and illustrated
in relation to the heart, requires anatomically and biophysically based mod-
els to be developed at multiple spatial scales from genes to the intact or-
ganism.

At the organ level the models are based on physical conservation laws
and are solved with numerical techniques that are typically finite element
or boundary element methods, since these are readily able to cope with the
complex three-dimensional geometries. A feature of the models at this level
is that they must deal with more than one type of physical problem. Large
deformation mechanics in the heart, for example, is solved with Galerkin
finite element techniques coupled closely with the solution of the reaction–
diffusion equations governing electric current flow around the heart. This
latter technique uses a computational grid which is tied to material points of
the moving finite element mesh, but the spatial resolution requirements for
these two processes are quite different. Spatial convergence for the mech-
anics is achieved with a finite element mesh of around 100 tricubic-Hermite
elements but convergence for the reaction–diffusion equations requires a
mesh resolution of 0.1–0.2 mm, corresponding to 30 million grid points if
implemented for the whole heart. The challenge now is to develop adaptive
meshing techniques (multigrid, for example) which use the finely resolved
meshes only in the vicinity of the moving wavefronts.

Another priority for model development at the organ level is to incorpor-
ate the measured spatial distribution of material parameters, such as the
density variation of various ion channels in the heart (Akar and Rosenbaum
2003).

The organ systems for which models are currently at an advanced stage of
development are the heart and circulation, the lungs, the musculo-skeletal
system and the digestive system. The next-highest priorities are probably
the kidney, endocrine pancreas and liver.

Tissue properties are included in the conservation laws of continuum
mechanics (equations (3.10) and (3.5)) or electrophysiology (equations (3.14)
and (3.15)) via material constitutive laws that express stress–strain rela-
tions (equation (3.12)) or current–voltage relations (equation (4.10)). The
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next challenge at the tissue level is to relate these macroscopic continuum
descriptions to detailed structural models of the tissue. Linking the para-
meters of these constitutive laws to the underlying tissue structure requires
tissue models at the millimetre scale which include the distributions of type,
orientation, density and cross-linking for collagen, proteoglycans and other
extracellular matrix components. The properties of these tissue types must
be linked to cellular properties within appropriate cell types. Similarly, the
cellular processes such as ion transport, signal transduction, metabolic path-
ways, etc., must be linked to the spatial distribution of proteins within cells
and their enzyme and substrate-dependent binding reactions. In some cases
these must also account for the reaction–diffusion behaviour of intracellular
messengers.

Another important goal in multiscale heart modelling is the development
of a three-dimensional (3D) myocyte cell model which can link the function
of individual proteins to the integrated function of cells operating within
the extracellular matrix (ECM). The forces developed by myofilaments dur-
ing active contraction are conveyed to adjacent cells via intercellular gap
junctions (formed from the protein connexin) and the surrounding ECM
of collagen (the primary structural protein) and proteoglycans (with their
electrically charged water binding groups). The internal structure of the
myocytes is maintained by a network of intermediate filaments (primarily
the protein desmin) (Balogh et al. 2002). Three-dimensional models that
incorporate the spatial distribution and material properties of these ECM
and intracellular structural proteins are needed. The 3D models also need
to include the reaction–diffusion kinetics of mobile ions like H+ and Ca2+

and the spatially localized action of signal transduction pathways.

6.2. Markup languages and ontologies

Mathematical modelling of physiological function at the level of tissues and
cells often requires that independently developed models be combined. Sig-
nalling pathways within cells, for example, are highly interdependent and
cannot be treated in isolation. This raises two very important issues for
biological modellers. The first is the need for a standard format (a ‘markup
language’) for encoding models in a robust, parsible, electronic form. For-
tunately the recent development of XML1 standards provides a platform for
the development of modelling standards such as CellML (www.cellml.org)
and SBML (www.sbml.org). The second is the need for consistent names
for all the biological components (an ‘ontology’) and a strong typing con-

1 eXtensible Markup Languages developed by the W3C (Worldwide web consortium
www.w3c.org)
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vention so that a particular protein such as PKA, for example, is labelled
as a kinase (a type of enzyme) that can participate in a particular type
of reaction (phosphorylation of a binding site on the target protein). This
second requirement is being addressed by a number of international con-
sortiums such as TAMBIS (imgproj.cs.man.ac.uk/tambis) and BioPAX
(www.biopax.org).

6.3. Other organ systems

There are twelve organ systems in the body2 and each component of these
organ systems involves one or more of the four basic tissue types3 which
contain, depending on their location, a fraction of the approximately 200
different cell types. Here we briefly describe progress on applying the com-
putational framework described above to two other organ systems.

The lungs
The dominant physical processes occurring at the organ level in the lungs
are gas transport through the airways, blood flow in the pulmonary circu-
lation and large-deformation mechanics of the soft parenchymal tissue. The
airways are divided, on average, into 16 generations of conducting airways,
which occupy about 150 ml of the 4 litre total air capacity, and 9 (on av-
erage) generations of respiratory airways in which gas exchange with the
blood flow takes place. A finite element model of the conducting airways,
based on CT data is shown in Figure 6.1 (Tawhai, Pullan and Hunter 2000).
This model has been used to study gas transport (Tawhai and Hunter 2001a,
2001b) and the transport of heat and humidity in the conducting airways
(Tawhai, Rankin, Ryan and Hunter 2002, Tawhai and Hunter 2004).

The challenge now is to develop tissue models that incorporate the struc-
ture and functional properties of the epithelial and connective tissue sur-
rounding the airways and pulmonary blood vessels. Once the three major
physical processes dominating lung function (air flow, blood flow and tissue
mechanics) have been modelled, the spatial distribution of cell types can be
included and the link made to diseases of the lungs such as COPD (chronic
obstructive pulmonary disease) and asthma.

The musculo-skeletal system
Anatomically based models from the musculo-skeletal system are shown
in Figure 6.2. This includes tricubic-Hermite models of bones and muscle

2 Cardiovascular system, respiratory system, muscular-skeletal system, skin (integu-
ment), digestive system, urinary system, nervous system, endocrine system, lymphoid
system, male reproductive system, female reproductive system and the special sense
organs.

3 Connective tissue, epithelial tissue, muscle tissue and nervous tissue.
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Figure 6.1. A model of the human airways for studying gas
transport and exchange in the lungs. From Crampin et al. (2004),
with permission

(a) Three-dimensional
bone structure.

(b) The fitted femur
bone model.

(c) Finite element mod-
els of the muscles and
tendons of the human
forearm.

Figure 6.2. Examples of images and finite element models from
the musculo-skeletal system.
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which incorporate the underlying microstructure using the method previ-
ously applied to the heart. For certain regions of the body, such as the legs,
the fibrous structure of the muscles has also been fitted to experimental
data and the tendons, ligaments and cartilage are also included. One cur-
rent application is examining the distribution of stress over the head of the
femur as the patella (knee cap) rolls over it. Note that the geometric fitting
processes used here are very similar to those described in Section 2.2 for
the heart and the equations governing mechanics are also similar to those
described in Section 3.1. Bone, which is a linearly elastic compressible ma-
terial, can be treated within the same nonlinear elasticity framework used
for muscle, tendons and cartilage provided that the strain energy function
equation (3.12) is spatially modified.

Again, the goal here is to link models of detailed structure (bone tra-
beculae and the soft connective tissues of skeletal muscle and cartilage) to
continuum constitutive law parameters and then to incorporate the distri-
bution of cell types and cell level processes to link the tissue and organ
models to diseases such as osteoporosis and rheumatoid arthritis.

7. Conclusion

In this paper we have discussed computational modelling of organ systems
(the heart in particular) at several spatial scales. At the level of the intact
organ this requires the solution of partial differential equations expressing
physical conservation laws, such as conservation of mass and momentum for
mechanics and conservation of current for electrical activation.

The challenges from a numerical perspective are finding efficient ways of
coupling the various physical systems (large-deformation mechanics, elec-
trical wave propagation, fluid flow, etc.), each of which has its own charac-
teristic length and time scales. Another challenge is linking across spatial
scales from subcellular protein pathways to integrated cell function and then
to tissue and organ behaviour. For electrical activation in the heart we have
shown in this review how the solution of equations governing the electro-
physiology of subcellular ion channels can be linked to the reaction–diffusion
equations at the tissue and whole organ level.

The major challenges for the heart modelling work are: (i) to extend the
organ level models to include other anatomical structures such as the atria
and heart valves, (ii) to extend the tissue level models to incorporate more
detail on extracellular matrix structure and how this changes in disease, and
(iii) to extend cellular level models to incorporate signal transduction and
metabolic pathways and how these are altered by disease.

The physiological accuracy of these continuum models depends critically
on the constitutive laws (both the functional form and spatially varying
parameter values) that define the relationships between stress and strain,
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current and voltage gradient, etc. The fact that the constitutive law para-
meters do vary spatially is a reflection of the inhomogeneous structure of
the underlying tissue, which grows and remodels to suit its local functional
requirements. Since it is generally not possible to measure experimentally
the constitutive law parameters throughout an organ, an alternative ap-
proach is to establish a relationship between the constitutive law and the
underlying microstructure of the tissue. Constitutive parameters can then
be inferred from observations of structure throughout an organ. Establish-
ing the relationship between microstructure and the continuum constitutive
law requires micromechanical models which incorporate extracellular mat-
rix structure as well as subcellular cytoskeletal structure. Such models are
now under development.

Finally, the multi-physics and multiscale continuum modelling frame-
work presented here is applicable across all organ systems and tissue types.
Models of the lungs, musculo-skeletal system and digestive system are well
under way.
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