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Summary

We review the development of models of cellular and tissue function and in particular address issues of multi-scale
modelling, including the transition from stochastic models to continuum models and the incorporation of cell and
tissue structure. The heart is used as an example of linking models at the molecular level to cell, tissue and organ
level function.

Introduction

Mathematical modelling provides a means of summa-
rizing quantitative knowledge about complex systems.
Models can be used both to interpret complex experi-
mental data and to formulate new experiments (Noble
2002a), and to obtain information that cannot be
directly observed. At the scale of tissues and organs
the modelling approach has loosely been called ‘com-
putational physiology’ (Noble 2002b, Hunter & Borg
2003). The methodology that has been the most suc-
cessful in yielding physiological insights at the tissue
and organ level has been continuum modelling. Here
continuous spatially varying fields are defined to repre-
sent physical quantities such as voltage, stress, strain,
ion concentrations and so on. These are typically rep-
resented by finite element meshes, where a quantity is
represented over a computational element (a region of
tissue) using basis functions (interpolating polynomials
– see review by Smith et al. 2004c). The governing
equations representing physical laws such as conserva-
tion of charge, mass and momentum are formulated in
terms of the finite element fields and solved subject to
appropriate boundary conditions. These equations and
computational methods are well established in physical
and engineering sciences (every new car and aircraft,
for example, is designed using such methods).

As concerns continuum modelling, the unique aspect
of biological tissues is not the governing physical laws,
but rather the material properties of the tissues, and
how these properties are affected by subcellular pro-
cesses that reach down to proteins and gene regula-
tion. The spatial scales relevant to physiological
processes encompass nano-scale molecular events to
metre-scale intact organ systems, a range of 109, and
temporal scales from Brownian motion (microseconds)

to a human lifetime (109s), a range of 1015. Clearly this
range of scales cannot be represented by one model
but rather requires a hierarchy of models and
modeling approaches such as stochastic models of ion
channels and receptors for ligand binding calculations,
ordinary differential equation lumped cell models, and
partial differential equation continuum models at the
tissue and organ levels. It also requires the model
parameters at one scale to be linked to detailed models
of structure and function at a smaller spatial scale –
hence the need for ‘‘multi-scale modeling’’.

In this article we address the issue of multi-scale
modelling in computational physiology, first discussing
stochastic models of molecular events, spatial aspects
of cell function, and model simplification based on
analysis of spatial and temporal scales. We then
illustrate multi-scale modelling by considering the
development of a hierarchy of models addressing the
electro-mechanical function of the heart, from stochas-
tic molecular events through cell and tissue levels to
whole organ function.

Modelling in vivo biochemical kinetics

At the molecular level, many if not all biological pro-
cesses consist of sequences of discrete, random events.
This includes processes such as interactions between
protein molecules, protein-ligand reactions, ion chan-
nel gating, and so on. For many such processes the
molecules are always present in large numbers and
continuum limits can confidently be assumed. For
example, biochemical reactions typically are described
by continuum representations where each molecular
species is described in terms of a concentration (or
chemical activity), and reaction rate expressions are in
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general predicated on this basis, using the law of mass
action to relate reaction rates to concentrations. This
empirical relation was postulated more than a century
ago to describe observations about the rate of chemi-
cal reactions measured in vitro. It has in general been
assumed that rate laws accurately describing in vitro
dynamics will also be suitable and applicable to
describe the biochemistry of in vivo reactions.

In many biological situations, however, only small
quantities of molecules are involved. In cellular regula-
tory networks, for example, a single RNA polymerase
binds to DNA to initiate gene transcription. mRNA is
often produced in very low copy numbers, making a
continuum description in terms of concentrations, and
continuous time dynamics, an inappropriate frame-
work for characterising such systems. Furthermore,
this may be significant for the regulation of pathways
downstream of this particular gene product (McAdams
& Arkin 1997). In this case a stochastic modelling
approach is necessary.

Stochastic models

A stochastic model of a biochemical pathway keeps
track of the exact number of molecules of each type,
known as the state of the system. The probability of a
collision between molecules, and hence of a reaction
occurring, is proportional to the number of molecules
of each type present, i.e. on the current state of the sys-
tem. In this way, at a given point in time the probability
of a reaction occurring can be calculated for each
potential interaction between molecules. The time evo-
lution can, in principle, be described using the master
equation approach, for which linear differential equa-
tions in the probabilities of different states of the system
are solved for a chosen set of initial conditions. In prac-
tice, however, the number of different states is often
prohibitively large, and a solution is found more effi-
ciently using a probabilistic Monte Carlo simulation
approach. Monte Carlo methods use random numbers
to determine which, if any, of the possible reactions
takes place during each time step, according to the reac-
tion probabilities. If the time step is small enough then
the assumption can be made that at most one reaction
will occur per iteration. Following each reaction event
in the simulation, the state of the system is updated and
the reaction probabilities recalculated for the next itera-
tion. Gillespie (1977) proposed a variation of this
approach in which the time to the next reaction is calcu-
lated according to a Monte Carlo simulation on the
probabilities. The algorithm proceeds by taking variable
length time steps, and provides an exact equivalent sim-
ulation of the master equation. Repeated runs of the
algorithm (using a different set of random numbers!)
provide a number of different instances for the same
biochemical pathway, which can be collated to calculate

probability distributions and statistics on molecule
numbers at a given time point. In the limit of large
numbers of molecules, this approach converges exactly
on to the law of mass action deterministic solution.

An alternative stochastic algorithm, StochSim,
written by Carl Firth (Morton-Firth & Bray 1998)
represents each molecule individually. For each itera-
tion a molecule or a pair of molecules is selected at
random, each molecule with equal probability. The
probability of a reaction occurring is now dependent
only on the type of molecules selected (as the probabil-
ity of their selection is equivalent to the probability of
a randomly occurring collision). This approach has
been found to be well suited to systems with large
numbers of molecular species (for example, proteins
with several phosphorylation or methylation states)
and with many possible reactions, and was developed
specifically for modelling cell signalling networks (Shi-
mizu & Bray 2001). However, because the iteration
timescale must be shorter than the timescale of the
fastest reaction overall, simulations can be very com-
putationally intensive if the system contains a range of
timescales. A different approach to modelling stochas-
ticity is to include the randomness as a stochastic term
in a differential equation, known as a Langevin equa-
tion. Recently Burrage et al. (2004) have shown how
this approach can be used to deal efficiently with
multi-scale problems, in which there is a range of dif-
ferent reaction timescales, where the direct Monte Car-
lo integration approach is not efficient.

Simulation of chemical reactions in inhomogeneous

environments

The spatial organisation of the intracellular environ-
ment has only recently come to the fore in modelling
in vivo reaction kinetics. The intracellular environment
is far from the homogeneous, well mixed solution typi-
cally found in the in vitro experiments in which reac-
tion rate laws are established and rate parameters are
measured. An image of the internal environment of a
cell (of the slime mold Dictyostelium discoideum) is
reproduced in Figure 1, showing the high degree of
macromolecular crowding within the cell (Medalia
et al. 2002). It has been estimated that between 5%
and 40% of total cell volume is occupied by macromo-
lecular complexes (large molecules and molecular clus-
ters) – much higher than in a typical biochemical
experimental assay (Ellis & Minton 2003). This macro-
molecular crowding has been shown to affect the rates
of reactions. Crowding has been mimicked in vitro
(Rohwer et al. 1998, for example), and shown to affect
enzymatic reactions by suppressing the dissociation of
the enzyme-substrate complex (Laurent 1971, see also
recent reviews by Hall & Minton 2003; Schnell &
Turner 2004). Chemical reactions in crowded
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environments have been found to demonstrate fractal-
like kinetic properties. Berry (2002) and Schnell and
Turner (2004) have recently reported the results of
simulations of the single enzyme-substrate reaction in
crowded media, using a lattice gas automata model,
finding that the enzyme reaction no longer follows the
standard Michaelis–Menten relationship. The Monte
Carlo approach used in these studies simulates the
reaction kinetics on a spatial grid in which some of the
lattice points are occupied by obstacles representing
the macromolecular crowding of the intracellular
environment. Molecules can move between vacant
lattice points and react with other molecules
encountered, with the reaction probabilities defined in
the usual way. The net reaction rates, averaged over
the spatial grid, have been found to decrease with
time, following the empirical time-dependent relation-
ship k(t) ¼ k0(s+t))h, where k0 is the ideal (dilute
solution) rate constant, and the positive parameters h
and s are found to depend on the number and
arrangement of the obstacles (Schnell & Turner 2004).

There are, however, many other situations within
the cell in which spatial organisation becomes impor-
tant, and for which alternative simulation techniques
can be applied. Because molecules are represented indi-
vidually in the StochSim algorithm (Shimizu & Bray

2001, described above), each molecule can be ascribed
chemical properties such as phosphorylation state (as
we have described) and also physical properties includ-
ing position. This can be used to simulate reactions
within regions of cells in which the conventional ‘dilute
solution’ approximation is not valid. For example,
Shimizu et al. (2003) have simulated patterns of activ-
ity of clustered membrane receptors in a stochastic
model of the chemotactic signalling pathway of E. coli.

Multi-scale modelling and model simplification

The physiological properties of any cell or organ sys-
tem are determined and underpinned by a wide variety
of sub-cellular processes, many of which may be inher-
ently stochastic. When large numbers of molecules are
present stochastic fluctuations are smoothed out and
population-averaged properties can be accurately
described using a continuum representation. Indeed, it
is often the case that the finer detail is not necessary,
nor useful even, for understanding function at a higher
organizational scale. In the context of cellular electro-
physiology, for example, the averaged channel conduc-
tance for a population of stochastically gated ion
channels can be represented by deterministic ordinary
differential equations, and is in general sufficient to
understand cell membrane potential data.

In the same way, when a continuum modelling
approach is appropriate the wide range of temporal
and spatial scales present can often be exploited to
produce a model which, although simplified, is quanti-
tatively accurate when viewed at a higher level in the
hierarchy of physiological organization. The micro-
structural detail of a specific biological tissue can be
spatially averaged to represent effective tissue proper-
ties over macroscopic spatial scales, as for example in
the bidomain model for the propagation of electrical
excitation in cardiac tissue (Keener & Sneyd 1998).
Using spatial averaging techniques (‘homogenisation’),
it is not necessary to represent cells as individual units
in large scale simulations of tissue and organ function.

Similarly, large scale simulations which include the
wide range of timescales of different cellular processes,
so-called stiff problems, are computationally expensive,
prohibitively so for simulations of tissues or organs.
Electrophysiological processes in the cell may take
place on millisecond scales, or shorter, while metabolic
changes take place over seconds or minutes. Therefore
in many situations it is useful to derive time-averaged
properties over molecular time scales to produce sim-
plified macroscopic models which are quantitatively
consistent with the underlying molecular events. Multi-
scale approaches must take into account this range of
timescales, typically by averaging over processes which
are operating at a much faster rate than is of direct
interest, and by assuming that much slower processes

Figure 1. Internal structure of a Dictyostelium discoideum cell, show-

ing the actin filament network (red), membranes (blue), and cytoplas-

mic macromolecular complexes (ribosomes and others, green) in a

volume of approximately 815 nm by 870 nm by 100 nm. This image

was produced by cryoelectron tomography, in which the cell is rap-

idly frozen and imaged over a range of tilt planes in the electron

microscope. A three-dimensional image is then reconstructed from

the two-dimensional slices to give an accurate representation of the

structures within the cell. Reproduced from Medalia et al. (2002)

Science 298, Figure 3A (with permission).

709Multi-scale modelling and the IUPS physiome project



remain essentially stationary. There is a standard set
of mathematical tools available for these model reduc-
tion methods, recently illustrated for modelling ion
transport processes in cell electrophysiology and
metabolism models (Smith & Crampin 2004b). These
techniques can be used to provide simplified represen-
tations of cellular processes to be included in higher-
level models that couple multiple subcellular processes
to form integrative models of cell function. In this
fashion we can envisage constructing a hierarchy of
models at different spatial and temporal scales, from
subcellular processes up to whole organ function,
where the parameters of higher level representations
are consistent with, and informed by, more detailed
models defined over shorter timescales and finer spatial
scales. This hierarchical modelling process has been
most fully developed for models of the electrical and
mechanical properties of the heart, which we discuss
below.

Multi-scale modelling of the heart

Over the past several decades, significant progress has
been made towards modelling the structure and func-
tion of the heart, incorporating detailed electrophysio-
logical, mechanical and structural information into a
single computational framework (see Hunter et al.
2003, Smith et al. 2004c, for reviews). The mechanisms
underlying whole organ function are characterised by
a range of scales of spatial organization. The pumping
capacity of the heart is largely determined by forces
actively generated within cardiac myocytes by the cyc-
lic interaction of the myofilament proteins actin and
myosin, which in turn is regulated by intracellular ion
and metabolite concentrations. Actin and myosin fila-
ments interdigitate to form a regular lattice parallel to
the longitudinal axis of the cell, comprising a repeating
contractile unit, the sarcomere (which repeats about 50
times along the length of the cell). Projections from
the myosin filaments (‘myosin heads’) attach to sites
on the actin filaments to form tension-bearing cross-
bridges. Cross-bridges form, undergo conformational
change to generate tension, dissociate and reattach in
a cycle to propel the thick filaments past the thin
filaments, shortening the cell.

The molecular details of this cross-bridge cycle are
becoming well understood. The cycle is initiated by a
myosin head binding under strain to the actin filament.
The probability of attachment is a function of the
binding strain. During shortening of the muscle
the strain on a cross-bridge is reduced, increasing the
probability of its detaching from the actin filament.
Once it does detach, it can then reattach at a
new value of strain, completing the ratchet cycle,
which is repeatedly performed by all cross-bridges in
the sarcomere. The stochastic nature of the cross-

bridge interactions has implications for the interpreta-
tion of data on the molecular details and energetic
consequences of muscle contraction (Duke 1999, Smith
et al. 2004a). In particular, stochastic models have
been used to determine the effects of protein filament
compliance (the degree to which the filaments yield
elastically when force is applied, Forcinito et al. 1997,
Daniel et al. 1998, Martyn et al. 2002). In the limit of
non-compliant (rigid) filaments, each cross-bridge acts
as a separate force generator, independent of the state
of the other myosin heads in a sarcomere. In this case,
stochastic models can be shown (Smith et al. 2004a,
see Figure 2) to converge to the classical framework
for the sliding filament theory, proposed by Huxley
(1957).

Huxley’s original model assumes that cross-bridges
are either attached or unattached. For a population
of independent cross-bridges, the change in the proba-
bility that a cross-bridge is attached at a given strain
value can be described by a partial differential equa-
tion, using strain dependent transition rates for
attachment and detachment. This continuum
approach has subsequently been extended to incorpo-
rate multiple attached and detached states as increas-
ing detail has become available on the energetics and
molecular structure of the actin and myosin proteins
(Eisenberg et al. 1980, Piazzesi & Lomberdi 1995,
Smith 1998).

Significant computational gains are achieved by
reducing a discrete stochastic model to a system of
partial differential equations. However, the numerical
solution of Huxley-type models is still computationally
prohibitive for large-scale simulations of cardiac tissue.
Essentially, this is because the strain characteristics for
the population of cross-bridges are still represented,
requiring the partial differential equation formulation.
To simulate active force generation in a three-dimen-
sional tissue model, one simplification approach is to
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Figure 2. Fraction of attached cross-bridges as a function of cross-

bridge strain at steady-state for different shortening velocities calcu-

lated using a stochastic model and compared to analytic solutions

(solid lines) calculated from the Huxley (1957) sliding filament model

of muscle contraction (results reproduced from Smith et al. 2004a).
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approximate the probability distributions of the sliding
filament model with Gaussian functions. Ordinary dif-
ferential equations can then be derived for the
moments of each distribution, corresponding to the
population-averaged stiffness, tension and stored elas-
tic energy for the sarcomere (Zahalak 1981, Guccione
et al. 1998). Alternatively, empirically based models
have been developed from experimental measurements
of the properties of intact muscle fibres. Kawai and
Brandt (1980) measured muscle stiffness as a function
of the frequency of an applied sinusoidal length per-
turbation. In these data, state transitions correspond-
ing to molecular events that occur at rates much faster
than the frequency of perturbation will be in phase
with the length perturbation. Conversely, processes
that are much slower will appear to be stationary in
the response of the system, and those occurring at
intermediate rates will show a change in magnitude
and phase lag with change in frequency. The fre-
quency-stiffness experimental data can be fitted using a
transfer function to describe the mechanical response
of the tissue (Kawai et al. 1993a,b). The model of
Hunter et al. (1998)1 combines this characterisation of
the mechanical properties of cardiac muscle with the
kinetics of calcium-dependent regulation of the pro-
portion of available actin binding sites (and hence the
maximum force) to describe active tension generation
in the myocyte in response to an intracellular calcium
transient, which is the trigger for contraction during
each heart beat. Smith (2003) has recently investigated
the connection between these approaches, and has
developed an efficient computational method for link-

ing the parameters of the biophysically based Huxley-
type of model to the more computationally efficient
data-driven model of Hunter et al. (1998). Such a cou-
pling serves two purposes; firstly, it provides a method
of explicitly determining microscopic properties from
macroscopic measurement and secondly, it is a way of
introducing model detail (and associated computa-
tional expense) only when it is required.

The electrophysiological mechanisms underlying the
action potential and calcium transient in heart cells
have been studied in great detail. Detailed models of
myocyte electrophysiology and calcium handling have
been developed by a number of authors including
Noble and coworkers (DiFrancesco & Noble 19852,
Noble et al. 19983), the Luo and Rudy models (19914,
19945) and the Winslow group (Jafri et al. 19986). Fol-
lowing Hodgkin and Huxley’s (1952) characterization
of electrical excitation in the squid axon, these cell
models consist of a system of coupled ordinary differ-
ential equations describing the dependence of the
transmembrane voltage on the various ion channel,
pump and exchanger currents, along with their gating
variables, and the flux of intracellular calcium from
intracellular stores (see Figure 3). Nickerson et al.
(2001) have combined the models of Noble et al.
(1998) and Hunter et al. (1998) to characterise excita-

Figure 3. The Noble ventricular cell model, incorporating ion channels, pumps and transporters linked to intracellular calcium transport mech-

anisms (Noble et al. 1998), available from the CellML website (www.cellml.org).

1http://www.cellml.org/examples/repository/HMT_model_1998_doc.

html

2http://www.cellml.org/examples/repository/DFN_model_1985_doc.

html
3http://www.cellml.org/examples/repository/N_model_1998_doc.html
4http://www.cellml.org/examples/repository/LR_I_model_1991_doc.

html
5http://www.cellml.org/examples/repository/LR_II_model_1994_doc.

html
6http://www.cellml.org/examples/repository/JRW_model_1998_doc.

html
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tion-contraction coupling in the myocytes, to include
stretch-induced changes in membrane conductance and
cell extension-dependent binding of calcium to tropo-
nin C to regulate the availability of actin sites.

In order to simulate tissue and whole organ function,
anatomically based tissue models are developed based
on experimental measurements of passive tissue proper-
ties, stiffness and conductivity (see Smith et al. 2004c,
for a review). These properties are strongly influenced
by the tissue microstructure, which in the heart is
determined by the arrangement the connective tissue
that binds individual myocytes into layers of intercon-
nected sheets separated by cleavage planes (Le Grice
et al. 1995). To simulate the spread of electrical excita-
tion and the generation of tension, the cellular level
model is embedded as a spatially distributed grid in an
anatomically based tissue framework. Advection-diffu-
sion partial differential equations for the cellular vari-
ables (membrane potential, developed tension) are
integrated to determine the spread of excitation in the
tissue and finite deformation equations are solved to
for the change in geometry due contraction (Smith
et al. 2004c). Figure 4 demonstrates the influence of
the heterogeneous microstructure on the spread of exci-
tation though a small block of ventricular tissue and

shows how the conduction anisotropy can be approxi-
mated as a continuous field at higher spatial scales.

At the whole organ scale, anatomically based mod-
els of coronary blood flow embedded in the contract-
ing myocardium provide a means of determining
regional oxygen delivery, such that the balance
between ATP synthesis and its utilisation (shown in
Figure 5(a), as calculated in a model of the heart)
within the tissue can be predicted in both health and
disease. A mathematical model of coronary geometry
is shown in Figure 5(b). The deformation of this
geometry, Figure 5(c), as a result of the active tension,
is calculated using the cellular mechanics model of
Hunter et al. (1998) combined with passive constitutive
laws and the equations of finite deformation. The cor-
onary blood flow velocity in these vessels induced by
contraction of the tissue is shown in the figure.

Discussion

The examples in this paper outline one of the most sig-
nificant challenges for integrative modelling of physio-
logical processes. One is the challenge of linking models
at different spatial scales – for example, interpreting the

Figure 4. Left upper: reconstructed volume of rat left ventricular free-wall myocardium. Left middle: transmural slice from the reconstructed

volume showing a complex network of cleavage planes which course between myocyte laminae. Left lower: the bilinear finite element geometri-

cal description of the cleavage planes through the entire rat tissue block, and a smaller midwall subsection. Myofiber orientation is shown on

the epi- and endo-cardial surfaces. Right. Discontinuous model (a) and continuous model (b) potential maps. Transmembrane potentials are

mapped on 7 equi-spaced surfaces through the reconstructed rat tissue volume, at 8ms following midwall stimulation. Isopotential lines at

5 mV intervals are shown in black. Site of stimulation is shown with black dot at centre of volume. The cleavage plane obstacles in (a) lead to

a highly discontinuous form of propagation, which is however well approximated by the continuous model. From Hooks et al. (2002) with

permission.
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parameters of a constitutive law describing macroscopic
tissue properties in terms of a more detailed model of
the tissue microstructure, or using a model of molecular
events to predict the average rate constants for a bio-
chemical process. Another multi-scale issue is bridging
from stochastic models dealing with individual mole-
cules to continuum models, in particular as the signifi-
cance of stochastic processes in cells becomes more
apparent. A second challenge is to incorporate three-
dimensional cell and tissue structure into models of cell
and tissue function. For example, at the tissue level the
spatial organization of the components of the extra-cel-
lular matrix (ECM) is essential to the mechanical func-
tion of the tissue (LeGrice et al. 1995), and detailed
microstructural information must be incorporated into
simulations of the electrical and mechanical properties
of tissues as we have discussed. However, the impor-
tance of the three-dimensional structure of cells and the
organization within the cell is much less well represented
in models. Current models of calcium handling in cells
distinguish compartments such as T-tubules, the dyadic
space, sarcoplasmic reticulum and mitochondria as
being distinct from the cytosol, but detailed information
on calcium sparks and waves has only recently started
to be incorporated into models. Information on the
roles of the many different proteins of the cytoskeleton,
for example, which maintain the alignment of the cell
and transmit molecularly developed stress to adjacent
cells, could be obtained from spatially extended cell
models. These data on intracellular stresses cannot read-
ily be measured in situ, and there is little qualitative
understanding of the role of each component, or of how

deletion or modification of these proteins, known to
lead to various forms of heart failure, may lead to dis-
ruption of cell and tissue function.

Five years ago the International Union of Physio-
logical Sciences (IUPS) created a new commission
called the ‘Physiome Commission’ chaired by one of
us (PJH)7. The IUPS Physiome Project was then begun
as an internationally collaborative open-source project
to provide a public domain framework for computa-
tional physiology, including the development of model-
ing standards, computational tools and web-accessible
databases of models of structure and function at all
spatial scales (Noble 2002a,b, Kitano 2002a,b, Hunter
et al. 2002, Hunter & Borg 2003). The goal of the
Physiome Project is to establish a publicly accessible
framework for handling the hierarchy of computa-
tional models, associated experimental data and publi-
cations, that will help integrate knowledge, from the
genomic and proteomic levels to whole organ and
body scale, into an understanding of physiological
function for intact organisms.
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