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Abstract. We consider the problem of inferring kinetic mechanisms for
biochemical reactions from time series data. Using a priori knowledge
about the structure of chemical reaction kinetics we develop global non-
linear models which use elementary reactions as a basis set, and discuss
model construction using top-down and bottom-up approaches.

1 Introduction

There is a current shift in the biological sciences from reductive to systematic
approaches. High-throughput experimental assays are increasingly common. The
data sets generated in these experiments hold the promise of identification of the
components and interactions comprising regulatory biochemical networks. At
the same time, however, there is a growing requirement for the development of
computational approaches suited to the analysis of these data sets, in particular
when there is little prior knowledge of the chemical interactions involved.

Determining nonlinear reaction mechanisms directly from time series data
seems likely, prima facie, to be a difficult problem given the difficulties encoun-
tered for parameter optimisation in biochemical pathway models [1, 2]. Several
authors have tackled the simpler problem of determining the Jacobian matrix
from the linear response of a chemical system near a steady state (see [3] for
a review). While this provides useful information on steady state behaviour
and ‘connectivity’ in a biochemical network, it does not reveal crucial details
about the nonlinear dynamics which underlie transient behaviour and oscilla-
tions, which are of particular interest in many biological systems. In this paper
we discuss an approach to inferring reaction kinetics from time series data using
global nonlinear modelling techniques.
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2 Global Nonlinear Modelling of Time Series Data

Let us assume that time series data of length T are recorded on the concen-
trations of M chemical species forming a complete reaction pathway. A model
F = (F1, . . . , FM ) for the underlying reaction mechanism provides a description
for the rate of change of each of the concentrations x(t) =

(
x1(t), x2(t), . . . ,

xM (t)
)
, and can be expressed [4] as a sum of K basis functions, φj ,

dxi

dt
= Fi(x) =

K∑

j=1

φj(x,aij), i = 1, . . . ,M . (1)

A data-driven modelling approach is to select a generic form for the basis
set. Neural networks are a popular choice, and have been shown to be useful
in a number of applications to modelling biochemical pathways [5]. Data-driven
modelling can deliver an accurate description of the data, as measured by model
prediction errors. There are, however, several issues motivating an alternative
approach. A mechanistic interpretation of the model, which is our aim, is rarely
possible. Secondly, by imposing the structure of the laws of chemical reactions, so
that the resulting model can be interpreted mechanistically, we also constrain the
form which the model can take which should help in the model selection process.
Thirdly, polynomial models of chemical reactions based on mass action kinetics
fall into the category of pseudo-linear basis functions, which are particularly
convenient for time series analysis.

2.1 Mathematical Models of Chemical Kinetics

Chemical reaction pathways are composed of a number of elementary reactions,
each of which can be represented by

aA + b B λ−→ cC + d D (2)

in which the chemical species A and B react to form species C and D in the
proportions given by the integers a, b, c, d [6]. The molecularity of the reaction
is determined by a and b, which represent the numbers of molecules of A and B,
respectively, which take part in the reaction. Unimolecular reactions occur when
a single molecule is transformed into one or more product molecules; bimolecular
events involve the collision of two reactant molecules [7]. According to the law
of mass action of chemical kinetics [6], the reaction velocity v(t) is proportional
to the product of the concentrations of the reactants,

v = λx a
A x b

B (3)

where xA and xB represent the concentrations of A and B, and the rate parameter
λ is the constant of proportionality. C is produced in the reaction at c-times this
reaction velocity, for example. Therefore the rates of production of C and D and
removal of A and B, determined from the overall reaction velocity, are
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v(t) = −1
a

dxA

dt
= −1

b

dxB

dt
=

1
c

dxC

dt
=

1
d

dxD

dt
, (4)

which imposes a structural constraint on the kinetics of elementary reactions.
Reaction pathways are typically characterised by chains of elementary re-

actions, rather than dense networks, and so only a small subset of the total
number of possible reactions between biochemical species will be present. Ki-
netic equations describing the net rate of change of each species for the whole
pathway are be found by summing the appropriate velocity terms over the subset
of elementary reactions in which each species is involved.

2.2 Pseudo-Linear Models Based on Elementary Reactions

A particularly convenient class of basis functions has the general form [4, 8]

Fi(x,ai) =
K∑

j=1

aijφj(x) . (5)

The fact that aij appears linearly greatly simplifies fitting the model to data.
The model parameters, ai = {aij}K

j=1, can be determined for each species i by
solving the linear system of equations yi = Φ · ai in the least squares sense,
where yi = {dxi(tk)/dt}N

k=1 and Φjl = φj

(
x(tl)

)
is the model design matrix.

This is achieved by seeking ai which minimises χ2
i = ||yi − Φ · ai||2. Both χ2

i

and ||ai|| are minimised by choosing ai = Φ+yi, where Φ+ is the Moore-Penrose
pseudo-inverse of Φ [9].

Let us suppose that the reaction system governing the concentrations of the
chemical species is represented by a polynomial model structure of order p. A
quadratic model, p = 2, may be written as

Fi(x,ai) = ai +
K∑

j=1

bijxj +
K∑

j=1

K∑

k=1

cijkxjxk . (6)

In the context of chemical reactions, the parameters ai = {ai, bij , cijk} de-
termine the rate constants for constant flux terms (sources and sinks), linear
and quadratic interactions. The model can, therefore, represent all possible uni-
molecular and bimolecular interactions between the species, and encompasses all
possible elementary reaction velocities of the type represented in (3). However,
general multivariate polynomial models have limited usefulness for modelling
reaction systems, for the following reasons. Firstly, the large number of free pa-
rameters can quickly become intractable with large numbers of variables [10].
Secondly, the set of multivariate polynomial basis functions includes a large
number of combinations of polynomials which cannot be interpreted in terms
of reaction mechanisms (4). For example, a positive quadratic term cijkxjxk in
the kinetic equation for the ith chemical species suggests that Xi is produced
in a bimolecular reaction between Xj and Xk with rate parameter λ = cijk/ni,
where ni is the number of molecules of species i produced in the bimolecular
reaction. In which case, the kinetic equations for the species j and k must also
reflect this reaction, according to (4), by including terms −(cijk/ni)xjxk. (Note
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that a negative quadratic term in which xi is not one of the variables could have
no chemical meaning in the kinetic equation for Xi.)

This latter problem, at least, can be improved if polynomial basis functions
are based instead on elementary reaction steps, as defined by (4). For example,
if the jth basis function represents a bimolecular reaction between Xp and Xq

Xp + Xq
λj−→ Xr, p, q ∈ {1, . . . , M} , r ∈ {1, . . . ,M ; r �= p, q} (7)

then an appropriate basis function, φj(xp, xq), operating on three variables
{xp, xq, xr}, would be the set

{dxp

dt
= −xpxq,

dxq

dt
= −xpxq,

dxr

dt
= xpxq

}
(8)

and the coefficient aj = λj for this basis function is the rate parameter, which
must be positive. In this way a set of pseudo-linear basis functions can be built
up to represent possible elementary reactions. To implement this approach we
concatenate the multivariate problem to a single vector of length N = M ×T of
the entire data set. The design matrix can then be constructed in the usual way.

3 Iterative Approaches to Model Selection

We wish to minimise

χ2 = ||y − Φ · a||2 subject to aj ≥ 0, ∀j and N (a) = K (9)

where N (a) is the number of nonzero components of a, i.e. the number of basis
functions used in the model. In general, increasing the model size K is always
likely to marginally improve the prediction errors. Our expectation is that the
data are generated by just a small number from amongst the set of possible
interactions, and therefore we wish to identify a parsimonious model which is
consistent with the data [11]. A least squares calculation for the full complement
of possible elementary reactions will tend to use all available basis functions
to minimise the residuals which, even for small N , is unlikely to yield useful
results. Hence a model with too many parameters will not distinguish between
the generative dynamics that we wish to identify and artifacts due to noise,
which is known as over-fitting.

The optimal model size can be determined using a maximum likelihood ap-
proach by adding a penalty term which favours more concise models. This can
be achieved using a cost function based on the Akaike Information Criterion [12]
(derived by maximising the log-likelihood functions for a set of models with dif-
ferent numbers of parameters). Assuming independent and normally distributed
errors, the maximum likelihood parameter estimates are the least squares esti-
mates, in this case calculated using a non-negative least squares algorithm [13].
If E(K) = y−Φ · a with N (a) = K is the vector of residuals with model size K,
the cost function to be minimised over K is

CAIC(K) =
1
N

E(K)TE(K) + K . (10)
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(An alternative cost function, Rissanen’s Minimum Description Length [14]
based on minimising the coding length of a model and associated residual errors,
could also be used here.)

We are now left with the problem of determining, for each model size K, the
optimal subset of K basis functions from the pool of all possible basis functions,
so that we can subsequently determine the optimal model size which minimises
the cost function CAIC(K). The non-orthogonality of the basis functions means
that the optimal subset of size K +1 is not necessarily the optimal subset of size
K plus the ‘next best term’. The selection process must therefore be iterative.
The approach we propose is based on finding criteria for adding and eliminating
elementary reactions to sequentially expand or contract the current basis.

3.1 Simple-to-General and General-to-Specific Model Selection

Following Judd and Mees [8], let µµµ = −ΦTE(K) be the projection of the vector
of residuals onto the model design matrix for the entire set of basis functions
Φ. A sensitivity analysis of the minimisation problem (9) shows that the basis
function corresponding to the largest positive element in µµµ should be added to
the current subset of basis functions to give the largest marginal improvement
to the mean squared error. Similarly, the basis function which can be eliminated
doing least damage to the residuals can be shown to be the one with the smallest
coefficient aj .

This suggests two approaches to model construction. To expand from the
optimal model of size K to K + 1 these two criteria are applied to alternately
add then remove a basis function until there is no further change (when the term
to be added to the subset is the same as the term to be removed). A ‘simple-to-
general’ algorithm uses this approach to successively expand the model, starting
with a single basis function, in order to find the model which minimises CAIC(K)
(for more details of the algorithm see [8, 15]). Alternatively, a ‘general-to-specific’
approach [16] can be developed where the initial set contains all basis functions
and the same criteria are applied alternately to eject then add a basis function
until the same basis function is chosen and is removed from the subset, reducing
the model size by one (P. E. McSharry, unpublished).

3.2 Example Biochemical Pathways

We demonstrate our approach with two very simple yet realistic types of bio-
chemical networks (which have also been used to test other network identification
methods [17]). The first type consists of chains of unimolecular reactions and the
second is an enzymatic reaction involving a bimolecular reaction step. In each
case, a full set of basis functions was used including source and sink terms,
unimolecular and bimolecular reactions.

Unimolecular Reaction Pathways: We tested both model construction ap-
proaches on two unimolecular (linear) pathways: one with a reversible step, which
has five elementary reactions in the pathway
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(a)

and one a branched pathway, which has six elementary reactions

(b)

Enzyme-Substrate Reaction: A simple model for the enzyme-substrate reac-
tion proposed by Fersht [7], which gives similar kinetics to the standard Michaelis-
Menten reaction, is given by

(c)

where the enzyme X2 is recovered from the enzyme-substrate complex X3 so
that the overall reaction is transformation of substrate X1 into product X4.

We ran simulations of the ODE kinetic models for each of these three path-
ways, collecting around 20 data points on each species, for a single time se-
ries ‘experiment’ which starts from initial conditions perturbed from the steady
state. These data were then used to attempt to extract the reaction mechanism
using the two algorithms discussed above, which were written in Matlab. The
results are shown in Fig. (1), where the cost function is plotted against model
size K.
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Fig. 1. Cost function CAIC against model size K for (a) linear pathway (with λ0 =

1.0, λ1 = 2.0, λ2 = 1.5, λ3 = 0.5 and λ4 = 1.0), (b) branched pathway (with λ0 =

1.0, λ1 = 2.0, λ2 = 8.0, λ3 = 3.0, λ4 = 4.0 and λ5 = 0.5) and (c) enzyme-substrate

bimolecular reaction (λ1 = 2.0, λ2 = 1.0); showing general-to-specific (solid line) and

simple-to-general (dotted line) approaches
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4 Discussion

As can be seen from the Figure, the general-to-specific algorithm out performs
the simple-to-general approach. For pathways (a) and (b) the general-to-specific
algorithm identified the appropriate model size and the correct set of elementary
reactions in each case, while the simple-to-general approach found models min-
imising the cost function which were not identical to the generative elementary
reactions. For the substrate-enzyme reaction both approaches added an extra
elementary reaction which was not part of the generative kinetics, but both nev-
ertheless captured the main features of the pathway. Hendry and Krolzig [16]
have pointed out that the simple-to-general approach to model building is a
divergent branching process, and likely to be susceptible to finding routes to
local minima in the cost function. For this reason it seems natural to favour the
general-to-specific approach.

There are, however, some limitations to this approach. The implementation
of non-negative least squares, to ensure positive coefficients, appears to be very
slow for larger sets of chemical species (M ∼ 10) where there is a very large
number of possible elementary reactions. It is therefore desirable to limit the
size of the basis set using whatever a priori knowledge of the reaction pathway
may be available. The requirement for time series data on every species, and the
restriction to elementary reactions of the form described above also limit appli-
cability. This latter restriction can be relaxed, to include Michaelis-Menten-type
expressions for reaction rates for example, at the expense of the pseudo-linearity
of the model. A crucial component of the model building process is experimen-
tal design. Data on the response of the system to many different perturbations,
which excite different modes of behaviour, are needed to characterise the full
‘model space’. While multiple data sets can straightforwardly be incorporated
using this framework, the issue of what data should optimally be collected has
not yet been addressed.

Biological networks and reaction pathways are in general sparsely connected,
and so we may be justified in assuming that parsimonious models of the data are
most likely to establish the correct generative mechanisms. As our understanding
of biochemical pathways and networks improves we may be able to derive better
criteria, based specifically on the currently emerging details on the structure and
topology of individual biological pathways themselves.
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