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Bioengineering analyses of physiological systems use the computational solution of physical
conservation laws on anatomically detailed geometric models to understand the physiological
function of intact organs in terms of the properties and behaviour of the cells and tissues within
the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple
scales of biological organization – from proteins to cells, tissues, organs and organ systems – these
methods have the potential to link patient-specific knowledge at the two ends of these spatial
scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted
in relation to body surface ECG measurements via a mathematical model of the heart and torso,
which includes the spatial distribution of cardiac ion channels throughout the myocardium
and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or
pump known to be present in the heart. Similarly, linking molecular defects such as mutations of
chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires
models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas
exchange, together with the large deformation mechanics of breathing. Organizing this large body
of knowledge into a coherent framework for modelling requires the development of ontologies,
markup languages for encoding models, and web-accessible distributed databases. In this article
we review the state of the field at all the relevant levels, and the tools that are being developed
to tackle such complexity. Integrative physiology is central to the interpretation of genomic and
proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
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Physiology has always been an integrative science
concerned with understanding quantitatively how the
structure and function of cells, tissues and organs
explain the complex behaviour of living systems. During
the first half of the 20th century physiologists, from
Sherrington and Eccles to Hodgkin and Huxley, revealed
the physical basis of human physiology all the way
from cell biophysics to integrative control. In the last
50 years, however, the biological limelight has progressively
focused on molecular biology, with its spectacular success
in explaining mechanisms at the level of genes and
proteins. In recent years this success has largely been
based on the development of experimental techniques
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such as DNA sequencing, PCR, microarrays and confocal
fluorescent imaging, and above all on the realization that
high-throughput measurement coupled to comprehensive
databases is just as important to quantitative science as the
more traditional approach of hypothesis-driven research.
The inevitable consequence of this success is an explosion
of data at the subcellular level that are difficult to interpret
in relation to the physiological behaviour of complex living
organisms. One of the main challenges in physiology over
the next 10 years is therefore the interpretation of the
genome and ascribing physiological function to genes
and proteins in the wider context of integrative systems
(Hunter & Borg, 2003; Hunter et al. 2002).

The physical sciences, on the other hand, have for
the past 200 years confronted nature’s complexity with
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the development of mathematical models of natural
phenomena. Our ability to understand complex fluid flow,
for example, in order to design aircraft or forecast weather,
is a testament to the physicists and mathematicians of the
19th and 20th centuries, who identified nature’s physical
conservation laws and developed the mathematical
framework to describe them. The successful application of
these laws to the solution of engineering problems has also
advanced greatly in the past 50 years from the development
of computers and numerical analysis [every new complex
engineering device is, these days, designed with the aid
of mathematical models and finite element (or similar)
analysis].

The use of mathematical modelling in physiology
gained prominence in the 1950s with the successful
prediction by Hodgkin and Huxley of the speed of action
potential propagation along a nerve fibre from cable
theory coupled to models of ion channel conduction
and gating kinetics. Other early successes in applying
techniques from the physical sciences to physiological
systems were the engineering analysis of blood flow
in arteries using computational fluid dynamics, and
orthopaedic stress-strain analysis using linear elasticity
theory and finite element analysis. In both cases, however,
the biological problems are not significantly different from
other engineering problems – blood can be treated as
a viscous Newtonian fluid like water, albeit with higher
viscosity and some unusual characteristics at low shear
rates, and bone behaves as an orthotropic linear elastic
material, at least until one considers its ability to grow and
remodel. It was not possible in these early applications of
mathematics and engineering to biology, which pre-date
modern molecular biology, to link physiological behaviour
to molecular detail.

In this article we argue that the discipline of physiology
should now embrace the new era of ‘computational
physiology’ in which mathematicians and bioengineers
will work alongside physiologists and molecular biologists
to link the physiology of cells, tissues and organs to the
growing genomic and proteomic databases. The time
is right – genomic and proteomic data are routinely
collected; it is clear that the timing and spatial location
of gene expression is controlled by environmental
factors conveyed to the transcription factors in the gene
regulatory regions by complex and redundant pathways
which can only be analysed with network models; the
physiological significance of genetic diseases will only be
understood by linking quantitative models of tissue and
organ physiology with the signal transduction cascades,
metabolic pathways and other cellular processes. However,
the tools required for this so-called ‘Physiome Project’

[the term ‘physiome’ comes from ‘physio’ (life) and ‘ome’
(as a whole) and is intended to convey a ‘quantitative
description of physiological dynamics and functional
behaviour of the intact organism] are significantly
different from the tools of standard engineering analysis
for a number of reasons. Biological materials are almost
always inhomogeneous, anisotropic and exhibit non-
linear behaviour, but nowadays even these characteristics
are not unusual in engineering materials. Biological
processes (such as signal transduction pathways) exhibit
enormous complexity, often with extraordinary degrees
of apparent redundancy, but again so do engineered
systems such as the electronic circuits in a Boeing 777
aircraft. The really significant and unique characteristic
of biological materials is their ability to grow and remodel
in response to changing environments – determined partly
by genes and partly by their physical environment. An
important consequence is that structure and function are
intimately linked in a way that no engineering material or
system can emulate. Capturing these structure-function
relationships in a computationally efficient manner is the
key to successful computational physiology and requires
models and software that are fundamentally different to
those found in the engineering world.

Our ‘physiome’ theme is developed in several stages.
We begin with a discussion of biological complexity
and the sources of data for modellers at the molecular
level. We briefly describe the framework of ontologies
and markup language standards that are being developed
for handling our knowledge of biological systems at all
levels of biological organization from genes to organisms,
integrating across species, age and pathological state. We
then discuss progress in modelling biological systems,
beginning with gene regulation and cell function and
ending with anatomically and biophysically based models
at the organ level. The heart and lungs are used to illustrate
the use of models that integrate structure and function
across multiple spatial scales. Throughout the paper we use
the heart as our primary example of multiscale modelling
because the heart has provided the first example of a
‘physiome model’ of an organ.

Biological complexity

The new millennium began, appropriately enough,
with the announcement in February 2001 that the
Human Genome Project was close to achieving its goal
(International Human Genome Mapping Consortium,
2001; Venter et al. 2001). Soon after, in April 2003,
the completion of the full sequence was announced
(Collins et al. 2003). As a result, immense opportunities
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for integrative physiology and systems biology have
opened up. The challenge to interpret this vast volume
of data at the genomic and proteomic levels in terms
of function at higher levels is what modern physiology
is about, and this is precisely what is meant by
integration in biology. It is also, in part at least, what is
meant by ‘systems biology’: the application of systems
theory to the complexity of biological interactions at
all levels. [This is what distinguishes the word ‘system’
in ‘systems biology’ from its long-established use in
‘systems physiology’. The latter refers to high levels
(such as cardiovascular, respiratory, nervous, immune
systems), whereas ‘systems biology’ can refer to systems
theory analysis at any level, including for example
gene networks, cell signalling cascades and metabolic
pathways].

Biological complexity and the direction of causality

But why should we bother with such complexity? Having
broken biological systems down into their smallest
components, have we not begun to reach our goal of
understanding, at least in principle? Wasn’t the aim to
simplify, not to ‘complexify’? Could we not now ‘compute’
the behaviour of living systems (Brenner, 1998) from the
automatic and inevitable interactions of their component
parts, starting with genes coding for proteins, proteins
interacting to form pathways, in turn to form cells, tissues
and organs – and so on up to the highest levels? There
are at least two reasons why this is not possible. The
first reason is that it is computationally impossible and
would be lacking in insight (Noble, 2002a). Being able
to reconstruct a process is not sufficient, by itself, to
understand the process. There will be many parameters
in the reconstruction equations that will be in need of
explanation, and we will also want to achieve more general
insight into how the process reacts to perturbations,
including most importantly, those of disease states. The
second reason is that causation does not simply run in
one direction (i.e. upwards). Lower level events, such as
gene expression, are controlled by higher level processes.
Without understanding the higher level logic in its own
right (Noble & Boyd, 1993), the lower level data will often
be just that: masses and masses of unexplained data.

Levels of Selection

But do the higher levels have a logic? Or are they just
the ‘lumbering robots’ (Dawkins, 1976) of gene-level
selection, with about as much logic as a cloud formation?
The issue of levels of selection is now the subject of

important debates in the theory of biology (Williams,
1992; Keller, 1999; Gould, 2002; Krakauer, 2002) The
question here is the level at which selection operates.
If it really were the case that selection is entirely gene-
orientated, then the ‘lumbering robots’ (i.e. the physiology
of higher level function) would indeed be of limited value,
even irrelevant to a general theory of biology. However, this
gene-orientated view confuses several different processes.
Genes are not simply physical stretches of DNA, just as
the information on a magnetic surface is not the surface
itself. Genes are the carriers of information that any part
of an organism can read, information which is transmitted
from one generation to another. This transmission is
parsimonious in the sense that it is not necessary to code
for everything that happens in the development and life of
an organism. The properties of water, lipids and the rules of
self-assembly, for example, must all be taken for granted.
As a ‘book of life’ the genome is necessarily incomplete
(Noble, 2002b). It may also be repetitive and redundant,
though the extent to which junk DNA is functional, rather
than truly redundant, is also an open and controversial
issue.

Replicators and interactors

These considerations are usually expressed by
distinguishing between replicators, containing
information that gets copied from one generation
to another, and interactors, such as macromolecules
(even DNA itself, as a chemical substance, is in this sense
an interactor), biochemical pathways, cells, organisms,
and species and clades, which both carry the replicator
information and are subject to selection. Since genes
interact so that many genes contribute to any given
higher-level function, and each higher-level function
depends on many genes for its transmission, natural
selection must act at the levels at which functionality
appears and this will only very rarely depend on a single
gene. One of the challenges for theoretical biology is to
identify the levels at which different functions can be
said to be expressed and therefore to identify the levels at
which natural selection must operate. This is a challenge
to which the Physiome Project can respond since, when it
is complete enough, it should reveal the modular nature
of gene interaction, and the extent of that modularity, at
all levels.

Gene numbers and functions

Analysing biological complexity at various levels is
therefore necessary. But there must be very many different
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ways of measuring and assessing complexity, some more
appropriate to one level rather than another, with each level
having its own criteria. One way to look at complexity from
a genome level is to ask how many biological functions
are available to evolution in any given genome. For a
genome of 40 000 genes if we make the extreme assumption
that only two genes are needed to define a function then
the total number of possible functions would be 0.5 ×
40 000 × 39 999 = 799,980,000. Even with this absurdly
minimalist view, the number of possible combinations
of effects is very large. With more realistic assumptions
about the number of genes involved in each function,
the figures are really huge: thus at 100 genes/function
we obtain ∼1.5 e302; and if we allow for all possible
combinations we get ∼2 e166713! This has two consequences
that are relevant to complexity. The first is that with such
huge potential combinations of gene product interactions,
trying to understand the system purely at the genome
level is clearly impossible. Nature can have used only
a minute fraction of these combinations and we need
to look at these ‘from above’ to identify them, i.e. we
need to look at the genome through the eyes of higher
levels, including physiology. Since only a minute fraction
of possible interactions are used, this introduces another
way of viewing the question of how contingent evolution
has been. With such enormous possibilities, the chances of
humans (or any other species) evolving may be exceedingly
small. The counterargument would be that evolution really
is constrained. But constrained by what? This must be
constraint by the logic of life at a higher level. In both
cases, though, we need to understand the higher-level logic,
either as a constraint or as a chance historical success, or
most probably both: chance and necessity interact.

The (imperfect) logic of life

We are a long way from being able to judge such broad
questions. But it is worth noting here that we would
not expect the ‘logic’ to be perfect from an engineering
point of view. Evolution is a dynamic process and there
is no reason to suppose that what has evolved is fully in
equilibrium with its environment (though Gould’s view of
stasis in evolution comes close to this – see Williams, 1992,
chapter 9). Moreover, evolution is an historical process,
with all the accidents and dead ends that a blind journey
will produce (see particularly chapter 6, ‘Historicity and
Constraint’, in Williams, 1992). Genes are perhaps better
viewed as prisoners of the successful physiological systems
that carry them than the determinants of those systems.
They simply, and necessarily, code what has worked well
at the level of the interactors. ‘Worked well’ is the correct

description. ‘Works best ’ would require design that avoids
the historical accidents (using existing structures for a
new function, such as the formation of the mammalian
middle ear from modified jaw and hyoid arch bones) and
evolutionary traps (such as the convoluted path of the
sperm ducts following descent of the testes, or the inversion
of the retina). Ultimately, we must be able to account for
the evolutionary history of functional development. As
Jared Diamond has insisted (Diamond, 1993), physiology
should re-connect with the mainstream biological theory
of evolution.

Comparison of genomes

These calculations put into perspective the frequent
comparisons of similarity of genomes. If we differ from
species x by only 1% then, from a genome point of view, the
differences look insignificant. Using the same calculations
as above, however, we get a totally different perspective.
Introducing less than 1% of 1% of a genome of 40,000, i.e.
a single gene, doubles the available functions. The argument
is remarkably simple. We still have all the possible functions
of the original set of genes, and all of those again in
combination with the new gene. If we differ from another
species at the genome level by, say, 1% (i.e. 400 genes)
then the potential differences at a functional level are
truly enormous. Even a 0.1% difference corresponds to
40 genes and also a huge number of new possibilities. To
these calculations, we have also to add the influence of the
environment through its control of gene expression levels.
Suppose, for example, that gene expression levels might
vary for a given protein by around an order of magnitude.
This would mean that, to the original 40 000, we can add
a further 400 000 elements to play a part in combinations.
That puts the nature–nurture argument in perspective,
and the absurdity of trying to arrive at percentages for the
influence of each. Of course, only a very small proportion
of the possible combinations actually occur.

Functional genomics and molecular
physiology

As an example of such a comparison of genomes, how
can the apparent complexity of the human body be
understood in relation to a much smaller and simpler
organism, for example the nematode worm C. elegans,
which appears to have more than half the number of
protein-coding genes but on the order of 1011 fewer cells.
[Each of the cell divisions taking place during development
of the worm from fertilized zygote to mature adult has
been described in exquisite detail, giving the complete
lineage for the 1000 or so cells making up the adult
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worm (www.wormbase.org). While the relatively simple
physiology of the worm can be understood in terms of
the different cell types and their interactions, it is still
far from understood in terms of its genome]. If the gene
numbers predicted by the various genome projects prove
to be accurate, then the data confirm the view that it is the
enumeration of possible interactions between genes, rather
than the absolute size of the genome, that determines
biological complexity. It is therefore the regulation of these
interactions which must be the major postgenomic focus
(Claverie, 2001). [Although the number of bases in the
human genome is determined, there is still much dispute
over the number of protein-coding genes, and proposed
gene numbers are estimates that are sensitive to the gene-
finding algorithms used. However, the waters are further
muddied by the observation of highly conserved sequences
in the more than 99% of the genome which apparently does
not code for proteins. Furthermore, homology between
species is found in these non-coding regions suggesting a
functional, possibly regulatory role for the so-called junk
DNA (Dennis, 2002; Mattick, 2001)].

The enormous challenge lying ahead of the human
genome project, and the ultimate goal of functional
genomics, is to understand the role of the genome
in development, normal physiology and, perhaps most
significantly, in disease. New experimental technologies
are accelerating the identification of patterns of gene
expression that delineate tissue types and underlie
pathology. Altered gene expression in response to changing
stimuli or through disease gives rise to reprogramming
and changing function within tissue. Examples in
cardiac ventricular tissue that have received recent
attention include the molecular changes underlying the
sequence of structural and functional modifications
during remodelling after myocardial infarction (Cohn
et al. 2000; Sehl et al. 2000; Stanton et al. 2000)
and those responsible for modified electrical properties
generating cardiac arrhythmia (Antzelevitch et al. 2001;
Noble, 2002c). Variation in gene expression between
individuals gives rise to increased disease susceptibility
or responsiveness to therapy and it is a major aim
of functional genomics to unravel the combinations of
environmental and genetic factors that underlie complex
disease, which to this point have proved elusive. These
examples highlight the position of functional genomics at
the interface between molecular biology and physiology.
[This has been recognized in recent titles for the
quadrennial IUPS International Congress of Physiological
Sciences, held in 2001 in Christchurch, New Zealand,
under the banner ‘from Molecule to Malady’, and due to be

held in San Diego in 2005 with the focus ‘from Genomes
to Functions].

Progress on understanding the role of the genome in
cell, tissue and organ function is a highly integrative
problem, which requires significant computational input.
The major emphasis is currently on genome (and
proteome) informatics: databasing, annotation and
so forth (Winslow & Boguski, 2003). In addition
to sequencing and annotation projects for different
species, genomic databases with a particular tissue or
disease focus are now being developed, for example,
the Cardiac Gene Expression knowledgebase (CaGE;
www.cage.wbmei.jhu.edu), which aims to catalogue all
genes expressed in human cardiac tissue (Bober et al. 2002).
While this is of great importance for making genomic
data available and usable, it is increasingly apparent that
the challenge ahead is to give quantitative predictions
to physiological outcomes from genomic knowledge.
As more and more data accumulates, a computational
framework is required which can reach down to the
genomic level via modelling of regulatory processes; in
particular gene regulatory networks, interactions with
signalling and metabolic pathways and how these influence
and effect higher level organization and function.

The trend in current biology is towards comprehensive,
automated measurement techniques. The development
of high-throughput technologies for the systematic
measurement of gene transcripts, proteins and their
interactions, coupled to advances in computational data
processing, provides a method for probing the functional
role of large numbers of genes. DNA microarrays have
emerged as the pre-eminent technology for large scale
parallel gene expression studies (see, for example, The
Chipping Forecast II, 2002).

Gene expression profiling

Microarrays exploit the complementary binding
properties of nucleic acids: fluorescently labelled gene
transcripts (mRNA) isolated from a tissue sample are
allowed to hybridize with molecules of known sequence
(ESTs or cDNA) immobilized at particular locations
in an array. The fluorescence intensity at a particular
spot on the microarray reveals the amount of the gene
transcript which has hybridized at that location and the
ratio of intensities of red and green fluorescent labels
on the same array provides a measure of the differential
expression level of the corresponding genes between two
samples. These data on the up- and down-regulation of
genes can be collected across different tissue types, disease
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Figure 1. Model representations
A, conceptual: representation of the
model through diagrams, natural
language, or concepts from ontologies. B,
mathematical: representation of the
conceptual model using mathematical
equations. C, instances: representation of
mathematical equations as instances of
CellML components connected together.

states and in response to different stimuli. Data collected
on temporal gene expression profiles, by sampling
mRNA at several different times following experimental
perturbation, provide gene expression time series data
which are crucial for the development of dynamic models
of gene regulation.

Studies of human disease using microarrays for
gene expression are increasingly common, as shown in
several recent reviews on microarrays in cardiovascular
research and medicine (Cook & Rosenzweig, 2002; Napoli
et al. 2003). Disease and tissue-specific microarrays have
been developed – for example, a cDNA ‘CardioChip’,
comprising over 10 000 cardiovascular-related ESTs
(Barrans et al. 2001; Barrans et al. 2002). Most of these
studies aim to identify differentially expressed genes
(Henriksen & Kotelevtsev, 2002; Simkhovich et al. 2003).
Clustering gene expression profiles is a common starting
point for the analysis of microarray data and is used to
find functional groupings of genes (Eisen et al. 1998;
Slonim, 2002). If the expression profiles of a set of genes
are closely correlated over many different experimental
conditions then this co-expression is taken as a possible
indication of a similar functional role for the cluster of
genes or, even, of shared regulatory control mechanisms.

Figure 2. Ontology domains in the
physiome project
Black boxes, ontology domains that the
IUPS project needs to develop; green
boxes, ontology domains in which the
IUPS ontologies will share a common
framework with others; red boxes,
ontology domains that the IUPS project
does not need to explicitly build.

Similarly, principal component analysis (PCA) can be used
to reduce the data to a few simple underlying expression
patterns, in particular for periodic temporal patterns of
gene expression (Alter et al. 2000; Holter et al. 2000). The
‘guilt–by association’ of new genes with genes of known
function via clustering suggests new targets for study.

Data requirements for modelling regulatory networks

High-throughput gene expression techniques generate
large amounts of data. The primary concern for the
analysis and modelling of large scale data sets is the so
-called ‘curse of dimensionality’: the parameter space for
a model grows exponentially with the number of variables
(genes). This makes finding appropriate parameter values
for large scale gene network studies a major challenge.
The key to this problem is the use of prior knowledge on
interactions and components of the network which have
already been identified, features common to biological
networks such as sparseness (Jeong et al. 2000), and
the use of simplified response functions in the model,
can all be used to reduce the number of undetermined
parameters. To fully characterize network behaviour it
is necessary to sample gene expression profiles under
many different combinations of inputs and perturbations,
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for example point mutations, gene deletions and over-
expression, inhibition of translation by antisense RNA, and
perturbation of signalling and metabolic pathways.

Localized information on gene expression, required
for spatially extended models, can be obtained
from immunofluorescence studies. Laser capture
microdissection (LCM), which automates the dissection
of specific cells and multicell structures which have first
been identified under the microscope (Emmert-Buck et al.
1996; Mills et al. 2001), allows gene (and protein) profiling
studies to be conducted at high spatial resolution. The
quantity of mRNA which can be extracted from such small
samples may not be sufficient for high quality microarray
studies. For detection of low abundance transcripts
quantitative reverse-transcription PCR (RT-PCR) can
give high sensitivity measurements of transcript levels,
with the added advantage that RT-PCR can measure
absolute, rather than relative concentrations of RNA
(Schnell & Mendoza, 1997). PCR primers are required
for each gene of interest and so, as with microarrays,
the technique cannot be used to analyse previously
unidentified genes. Transcripts of unknown genes can
be measured using Serial Analysis of Gene Expression
(SAGE; Velculescu et al. 1995; Yamamoto et al. 2001;
Patino et al. 2003), where large numbers of transcripts are
counted and analysed efficiently by sequencing only short
tags from each RNA molecule. These short sequences can
usually identify the corresponding gene (as long as its
sequence is known). All tags collected from a sample are
assembled into a single molecule which is then amplified
and sequenced, providing quantitative information on
the amount of each transcript in the sample.

Proteomics and metabolomics

Gene expression profiles describe the transcriptional state
of cells or tissue, but do not directly reflect protein

Molecule Gene Organelle Cell Tissue Organ Individual

Structure

Process &
function

Modelling

Experiment

Digital Anatomist
Physiome structural ontology

SOFG

Physiome process & function ontology

Physiome modelling ontology

PSI, MGED, PEDRo

TAMBIS, BioCyc, GO, PSI

TAMBIS, BioCyc, GO, PSI, BioPAX, aMAZE

Figure 3. Ontological domains
SOFG, Standards and Ontologies for Functional Genomics
(www.sofg.org); GO, Gene Ontology (www.geneontology.org);
MGED, Microarray Gene Expression Data
(mged.sourceforge.net); BioPAX, Biological Pathways Exchange
(www.biopax.org).

abundance. Proteomics and metabolomics aim to provide
an unbiased identification and quantification of all
proteins and metabolites present in a biological sample.
The proteome encompasses modifications of protein

molecules and interactions between proteins. Knowledge
of the changing protein content of cells, and functional
interactions between proteins is of primary importance in
developing models of cellular function. Gene expression
studies provide the link between the (relatively) static
genome and the highly dynamic protein content of a
cell, responding to environmental changes, signalling
pathways, as well as normal homeostatic protein turnover.
The relation between gene expression profiles (the
transcriptional state), as measured by mRNA level, and
net protein synthesis depends on translation and post-
transcriptional modification rates, as well as on the rate of
protein decay, whether the molecule is actively degraded
or transformed.

Protein molecules are intrinsically less amenable to
high-throughput studies than are nucleic acids due to their
secondary and tertiary structure. Technologies for large
scale proteomics analyses include separation techniques
(2D-PAGE, Poly Acrylamide Gel Electrophoresis) and
mass spectrometry. Microarray-based techniques are also
available for protein studies, although these platforms
are less developed than DNA microarrays, both for
detecting protein abundance by using different affinity
reagents (for example antibodies, as a multiplexed
immunoassay) to bind to proteins selectively, and
for protein–protein interactions (MacBeath, 2002), also
studied in the Yeast Two-Hybrid system. The identification
and measurement of interactions, both stable and
transient, between biomolecules in vivo is probably the
widest current knowledge gap, and greatest experimental
challenge.

Spatially extended networks (cell-cell signalling interactions)

Signalling and metabolic pathways

Protein network (regulation by transcription factors)

Gene-gene interaction network (connectivity or wiring diagram)

Gene coexpression (correlation in gene expression profiles)

Figure 4. Hierarchy of network models for gene regulatory
network modelling
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Issues and standards for gene expression
profiling experiments

Important for the development of robust and predictive
models is the quality of the data available, good
data annotation, and a methodology for assessing and
managing the sources of variability in the data. There
remain many issues to do with data reproducibility,
variability and experimental design for microarray
experiments (Churchill, 2002; Speed, 2003), which we will
not discuss here. Differences between nominally similar
tissue samples reflecting normal biological variability
need to be quantified to minimize false positives in the
identification of differentially expressed genes. Modelling
may be a useful tool for identifying the sources of
robustness to normal biological variability in regulatory
networks (Alon et al. 1999; von Dassow et al. 2000).

The details of experiments performed, on sample
preparation and so on, have significant bearing on
the interpretation of profiling studies. With this in

Figure 5. Finite element representation
of cellular potentials
A, a one-dimensional row of myocytes,
each with transmembrane potential
shown below by the dots. B, the mean
potential distribution is approximated by
a smooth curve constructed from
piecewise polynomials. The three sections
separated by dashed lines are called finite
elements. C, the field inside each element
is given by an interpolation of potentials
defined at the nodes (shown by the red
dots).

mind, ontologies and languages for the annotation of
gene expression and proteome data are being developed
(Stoeckert et al. 2002; Taylor et al. 2003). Standards have
been proposed for describing microarray experiments,
MIAME (Minimum Information About a Microarray
Experiment) by the Microarray Gene Expression Data
society (MGED; www.mged.org), which in late 2002
were adopted by several major journals including Nature,
The Lancet and Cell as requirements for publication
of the results of microarray studies. Annotated data
is required to be deposited in one of several public
databases: for example Gene Expression Omnibus (GEO)
at NCBI (www.ncbi.nlm.nih.gov) and ArrayExpress at
EBI (www.ebi.ac.uk/arrayexpress), which conform to the
MIAME standards. A mark-up language for data exchange
between databases, MicroArray Gene Expression Markup
Language (MAGE-ML; www.mged.sourceforge.net), has
been developed by MGED and others, under the
auspices of the Object Management Group (OMG;
www.omg.org).
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Physiome ontologies and markup
language standards

To link the rapidly growing knowledgebase of biological
data into a physiome modelling framework, formal
vocabularies need to be developed to reduce the growing
heterogeneity of terms. This is especially important as
models of physiological processes are developed that
span multiple spatial scales (genes and proteins to cells,
tissues and organs) and incorporate the parameter changes
associated with disease. A formal representation of custom
data structures in the many applicationspecific databases is
also needed to provide a common interface between them.
Standards must be developed to formalize the description
of both experimental data and mathematical models
of physiological processes. Ontologies that incorporate
semantic descriptions of modelling concepts make the
modelling environment richer and unambiguous. They
also permit the integration of data from ontologies and
databases in other areas of biological research and the
building of software tools that interpret and use this
information. [An ‘ontology’ is a taxonomy together with
a set of domain-specific rules for linking objects within
the taxonomy. For example, a taxonomy for the human
musculo-skeletal system names all the bones, muscles,
tendons and ligaments, etc. in the human body. The
rules are typically biological constraints such as ‘the
semimembranosus muscle originates from the ischial
tuberosity and inserts into the posterior part of the medial
condyle of the tibia’].

Levels of representation

The physiome modelling framework can be considered at
three levels:
1 Biological – representation of the biological problem
using terms from the biological domain
2 Mathematical – mathematical formulation of the
biological problem
3 Computer based representation languages –
representations of models in a formal language
that is machine interpretable, and which represents
computational abstractions of entities, mathematical
relationships and rules for their interpretation.

The goal is to represent the details of these levels
in a way that can be used to explore the meaning
of ideas and observations across the levels. Biology
is usually represented using biological terms and
relationships in a natural language context. Mathematics
is a language in which we can represent theories for the
processes and structures that the biological terms and

relationships describe. At the computer representation
language level, both the biological and mathematical
interpretations need to be represented in constructs
that can be used in various computer applications,
such as simulation and visualization tools, and data
repositories.

The three levels of representation are intimately related.
Biological concepts link to mathematical concepts and
simulation architectures, which link to computer based
representations. At each level there is a description
of the model, and at each level we find information
that feeds across into the other levels. An example;
a biological concept of predator–prey interactions can
be modelled mathematically as two coupled ordinary
differential equations. The way we express this model
makes a certain claim on the relationship of the rates of
change of predators and prey. Simulation of the model
helps us to understand the longterm behaviour of such a
description, and allows us to measure data appropriate for
validating the biological reality of the model.

The requirements for this multilevelled modelling
framework to be effective are: (i) tools for experts to
represent models and solutions within particular levels
using the language and interfaces that are natural to
them, and (ii) computer based representations of what
is described using these tools.

One toolset under the first of these requirements that
is being developed is a visual editor. Visual building
blocks and interfaces are a very natural way for people to
navigate libraries and to build and interpret models (see
Fig. 1). To develop a framework for building toolsets, we
need to have good solutions to the second requirement,
i.e. computer based representations of what modellers are
describing. To this end, various representation languages,
including ontologies are being developed. The integration
of ontologies into the physiome project will provide an
unambiguous, and machine interpretable, representation
of concepts across these levels of modelling, helping
to communicate biological models through tools for
building, sharing, interpreting, and visualization. One
such representation language, CellML (www.cellml.org)
has been developed over the last four years, and aims
to represent models at the cellular level. The CellML
language itself is a set of constructs that have elegant
interpretations within both the computational simulation
domain and the object orientated programming
domain. As a modelling representation language, it
is sufficiently generic to represent any mathematical
representation of any biological model, not just cells,
so serves as a base for the development of a more
generalized modelling representation environment. The
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evolution of this generalized representation environment
includes the integration of ontology data, which
provides a machine-interpretable pathway through the
levels of modelling, and the further development and
integration of FieldML (www.bioeng.auckland.ac.
nz/physiome/markup.php) which facilitates the
representation of structural and continuum based
information about biological and physical entities.

Building and integrating ontologies

Ontologies are a vehicle for providing unambiguous
descriptions of terms and their relationship to one another.
To a computer scientist, they provide a formal framework
for describing the properties and relationships of concepts
that have both a formal logical foundation and a structure
amenable to machine processing, interpretation and
sharing. To a biologist or modeller, ontologies provide a
thesaurus and structure for understanding and binding
terms, ideas, data sets, and visualizations, etc.

Many different groups are constructing ontologies for
various biological domains. One approach to integrating

Figure 6. Geometric models of the heart
A, finite element surfaces fitted to measurements from the left and right ventricles of the pig heart. B,
3-D finite element model of the heart. The elements use high order basis functions (cubic Hermite) and
therefore relatively few are required to provide an accurate description of ventricular anatomy. From
Stevens & Hunter (2003) with permission.

ontologies from different biological domains would be
to generate a large composite ontology. However, this
is not the intention of the IUPS project’s ontological
framework because the biological ontologies that currently
exist do not form pieces of the same puzzle – they
may have biology in common, but it usually stops
there. There is no currently agreed core framework or
methodology that can be used to guide the development
of compatible domain specific ontologies, but there
are efforts underway to promote such a platform. The
Unified Medical Language System (UMLS), for example,
is attempting to bring together various ontologies from
different domains into a composite ontology that fully
integrates these knowledgebases.

The current view on the IUPS project’s ontological
framework is shown in Fig. 2. Some new ontologies
are being built from scratch while some existing
ones will need to be extended and integrated as
both a common framework and data source (i.e. a
composite approach). The focus at present is to describe
constructs for interpreting our computer based model
representations within the biological and mathematical
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levels of modelling. The domains of modelling theory, and
the ML library domains (Fig. 2) capture representations
of mathematical relationships, model architectures, and
component structure (both physical and abstract).

Ontologies within the data, simulation, and
visualization domains provide a top level interface to the
resources they describe. The hierarchy of modelling shown
earlier describes levels at which a modeller thinks about
biological terms, for example – a particular organ or cell,

Figure 7. The microstructure of cardiac tissue
A, schematic diagram showing the variation in muscle fibre direction across the wall in a segment
removed from the left ventricle (top), and the branching laminar structure of myocardium in which the
sheets are composed of myocytes bound in layers, 3–4 cells thick, by endomysial collagen and surrounded
by perimysial collagen which also links to the adjacent sheet (bottom). This ‘fibrous-sheet’ architecture
allows for shearing to occur between the layers and aids the process of wall thickening at end-systole.
B, a composite 3D confocal image of a transmural block of myocardial tissue from the rat heart with
a single image slice shown below (top), and a finite element model of the cleavage planes from the
transmural tissue block used to study the flow of current and propagation of the tissue activation
wavefront around the myocardial sheet structures (bottom). The spatial variation of tissue properties,
such as the density of collagen, gap junctions and ion channels, etc. is defined by the markup language
FieldML (www.bioeng.auckland.ac.nz/physiome/physiome.php). Figs A and B, from Hooks et al. (2002)
with permission.

a particular process such as ion transport. These processes
and entities are concepts within domains of biology that
already have databases and associated ontologies. Instead
of defining one particular interpretation of these concepts
we can use these other ontologies directly to describe
any biological aspect we are referring to in a particular
model or ontological concept in our domain. One of the
necessary aims of groups such as TAMBIS (Transparent
Access To Multiple Bioinformatics Information Stores;

C© The Physiological Society 2004



12 E. J. Crampin and others Exp Physiol 89.1 pp 1–26

imgproj.cs.man.ac.uk/tambis), BioPAX (Biological
Pathways Exchange; www.biopax.org) and PSI (Protein
Standards Initiative) is that they work together to ensure
that their biological concepts are compatible (Fig. 3). In
the area of biochemical pathways, the CellML developers
are working closely with BioPAX and SBML (Systems
Biology Markup Language; www.sbml.org) to establish
the foundations for binding cellular domains. An example
use-case of such a binding is a pathway of inference
starting at concepts in the BioPAX database and ending in
selections of models from the CellML database. A number
of use-cases are described in the Appendix.

Modelling gene function

A major effort is underway to process and interpret
microarray data to infer regulatory mechanisms in
gene networks. Predictive mathematical models of gene
networks provide a quantitative framework within which
gene expression data can be used to determine regulatory
interactions between genes, and the effect on cellular
function. Traditionally this approach has been tackled
in an intensive fashion, by piecing together available
information on individual gene interactions to reconstruct
network behaviour. The new data collection technologies
demand a change of emphasis to automated data analysis
and modelling procedures. The task, to determine the
underlying network, its structure and dynamics, from
the data has become known as reverse engineering
of gene regulatory networks. Many different modelling
approaches have been applied to studying gene networks,
reflecting differing levels of description and differences in
data available to the modeller. A hierarchy of modelling

Figure 8. Fibre orientation in the heart described by 3D finite element fields
Fibres are shown on A, endocardial surface, B, midwall, and C, epicardial surface. From Stevens & Hunter
(2003) with permission.

levels is presented in Fig. 4. In addition to these different
levels of description of regulatory mechanisms, there
are many possible mathematical representations available
to the modeller. The choice of mathematical modelling
framework will reflect the available data, and also the level
of description that is required, from discrete stochastic
models which represent individual molecular dynamics to
deterministic spatially extended continuum modelling of
gene expression.

Boolean networks

One way to greatly simplify the mathematical
representation of networks is to ignore the details
of molecular interactions and focus instead on their
outcomes, namely whether a gene is ‘on’ or ‘off’, according
to whether its transcription level is above a given
threshold. Regulation is then represented by logical
operations (AND, NOR, etc.) on the gene expression
states, according to whether interactions activate or
repress transcription. Gene expression levels are logical
variables which are updated synchronously according to a
rule table (a set of if then instructions) which describes the
logical operations representing the regulatory interactions
between genes. A Boolean network thus represents
a ‘wiring diagram’ for the gene network (Bolouri &
Davidson, 2002; Davidson et al. 2002). The aim of a
reverse engineering approach is to infer the logical rule
table directly from data. Techniques have been proposed
which demonstrate that in principle a Boolean network
can be constructed from data using no prior knowledge
(Liang et al. 1998).

Although the properties of Boolean networks are much
simpler than their continuous variable counterparts,
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they retain many of the properties of networks that
are important in terms of gene function. For example,
steady states are achieved as the network settles down
into a stationary state or a repeating pattern of states
(oscillation). The appeal of this modelling framework
is its simplicity, but much biological detail is clearly
lost. In reality, gene expression levels recorded in time
course microarray studies spend much of their time at
‘intermediate’ levels, rather than quickly saturating at
maximal expression rate, or falling to negligible levels.
Logical networks may therefore be a good modelling
strategy when the data quality is poor, and where
intermediate expression levels cannot be resolved.

Kinetic modelling

Systems of differential equations provide a very natural
modelling framework for the kinetic behaviour of gene
networks, which easily extends to encorporate stochastic
effects on gene transcription (McAdams & Arkin, 1999;
Kepler & Elston, 2001) and modelling of transport
processes in spatially extended systems. For large networks,
the ‘curse of dimensionality’ limits the possibility of

A B C D
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Figure 9. Wave propagation in the heart
Wavefront locations using an eikonal equation to simulate propagation from the distal ends of the Purkinje tree.
For each sample time anterior (top) and posterior (bottom) views are given. A to H is 5 ms to 40 ms in 5 ms
increments. The endocardial surfaces of the right and left ventricles can be seen through the translucent outer
epicardial surface. From Tomlinson et al. (2002) with permission.

inferring parameters of a model from data. A reverse
engineering technique has been proposed for linear
systems, motivated by the observation that gene networks
are sparse (there are relatively very few regulatory
interactions between genes) demonstrating that progress
can be made even with limited data (Yeung et al. 2002).

For well characterized networks, in which the relevant
genes have been identified and the wiring diagram
determined, biophysically realistic nonlinear kinetic
functions can be assumed for the regulatory interactions.
This allows quantitative prediction of transcription rates
etc. in response to perturbations of the network. Kinetic
parameters can be determined for individual reactions (for
example the binding of transcription factors, degradation
rates of mRNAs, etc.) using time-course data from
microarrays, or GFP reporter gene approaches (Ronen
et al. 2002). Interactions between cells are critical in
determining ptterns of differentiation into distinct tissue
types. Models of spatially extended systems must therefore
incorporate mechanisms for signalling between cells,
transport of gene products as signalling molecules and
signalling networks within cells (Mjolsness et al. 1991; von
Dassow et al. 2000; Davidson et al. 2002).
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Cellular modelling

The coupling of gene expression to tissue and whole
organ function requires a number of intermediate models
at physiologically based spatial scales. A number of
groups have developed sophisticated representations of
ion transport between subcellular compartments and via
the membrane in, for example, cardiac (Noble et al.
1998 and Luo & Rudy, 1994), pulmonary (Smirnov &
Aaronson, 1994), and smooth muscle (Yang et al. 2003) cell
types. Based on systems of coupled ordinary differential
equations, the development of these modelling techniques
is illustrated below for the cardiac myocyte by considering
their application to understanding excitation, contraction
and metabolism.

Multi-scale modelling in the heart

Modelling provides a quantitative framework for
establishing the effect of molecular changes on the
function of cells, tissues and whole organs. For the
heart, modelling is already at an advanced stage: at
the cellular level, where electrophysiological, excitation-
contraction coupling, contractile and metabolic processes
have been incorporated; at the tissue level, where structural
details and conduction properties are included; to models
describing the anatomy of the heart itself. Models of cardiac
myocytes are now sufficiently sophisticated that the effects
of up and down regulation of specific genes can in some
cases be predicted. These models can characterize disease
at the cellular level (e.g. altered protein expression levels or
mutated ion channel function), which may then be studied
in tissue and whole organ models to predict outcomes on
whole organ function. (Hunter et al. 2001; Noble, 2002d).

A B C D

Figure 10. An anatomically accurate two dimensional model of coupled excitation-contraction in the
cardiac ventricles
The wave of cellular trans-membrane voltage (scaled between – 85 mV blue and + 45 mV red) is shown
on the deforming tissue model. The undeformed finite element mesh to shown to provide a reference
for tissue deformation.

Cardiac cell models

The key cellular processes which are currently
characterized within the organ level modelling framework
are ion channel electrophysiology, myofilament mechanics
and cellular metabolism. The most advanced of these
models are the ion channel models pioneered by Noble
(DiFrancesco & Noble, 1985; Noble et al. 1998; Noble
& Rudy, 2001) following the seminal modelling work
of Hodgkin & Huxley (1952) on squid axon excitation.
The Luo & Rudy (1991, 1994) models are alternative
frameworks focusing on the physiological behaviours of
premature stimulation and arrhythmogenic activity of
the single myocyte. Their modelling framework has since
been extended by Jafri et al. (1998), among others, to
accommodate more complex calcium kinetics which are
important for contraction coupling.

In parallel with electrophysiology, Wong (1972), Panerai
(1980), and Guccione & McCulloch (1993) have developed
specific cardiac models of active tension generation
largely based on experimental data from inhomogeneous
papillary preparations. Hunter et al. (1998) has published a
model fitted from more current data measured from intact
and skinned trabeculae and the isolated cardiac cell. This
model consists of two components, the binding kinetics
that regulate the maximum number of cross-bridges
(the force-generating bonds formed between contractile
proteins) and the phenomenological characterization of
the binding and unbinding kinetics of the cross-bridges
themselves.

The modelling of metabolic regulation in cardiac cells
has, until recently, lagged behind the characterization
of excitation and contraction. This is in part due to
the immense complexity of what are highly integrated
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metabolic pathways which exhibit multistate nonlinear
regulation via a large number of state variables (Smith et al.
2002). However, a number of recent studies focusing on
regulation of ion transport (Smirnov & Aaronson, 1994;
Michailova & McCulloch, 2001; Ushimaru & Fukushima,
2002) and contraction (Saucerman et al. 2003; Smith,
2003) in the myocyte indicate that a fully coupled
excitation-contraction model regulated by metabolism
will soon be developed.

These cellular-based models now encompass sufficient
biophysical detail such that the mediation of specific
membrane exchanger and pump ionic currents via gene
expression levels can be directly accounted for and linked
to specific pathologies (Snyders & Chaudhary, 1996;
Clancy & Rudy, 2002; Winslow et al. 1998; Antzelevitch
et al. 2001; Noble, 2002e; Mazhari et al. 2001). However,
to conclusively link gene regulation with clinically relevant
whole organ pathology requires a further step in the
increasing spatial scale. A continuum framework supplies
an effective means of representing the spatial properties
of geometry, conductivity and stiffness tensors, and the
spatial variation of different cell types and properties.
As will be demonstrated in the following section,
using cellular models of active function at grid points
embedded in the continuum geometry, in combination
with governing equations, and appropriate numerical
solution methods, presents a powerful tool for linking
function through a number of spatial scales.

Tissue modelling

The major physical processes operating in the heart at the
level of the intact organ are (i) the mechanical deformation

A B C

Figure 11. Model of the coronaries
The intramyocardial pressure exerted on to the embedded coronary vessels by myocardial contraction. Scaled
between 0 KPa (blue) and 8 KPa (red) through the cardiac cycle.

of the myocardium (ii) the fluid mechanics of blood
flow in the atria, ventricles and coronaries (iii) electrical
activation of the conducting system from the sino-atrial
node to Purkinje fibres and the myocardium, and (iv)
transport of metabolic substrates between the coronaries
and the myocardium to support the energy demands of
the working heart. [Heat flow associated with temperature
gradients does not appear to be significant in the in -vivo
heart – unlike the lungs where warm blood is in close
proximity to cold air]. These tissue level processes are of
course supported by a diverse range of physical processes
at the cellular level, as discussed in earlier sections. In each
case the physical process (mechanics, electrical current
flow, etc.) is governed by well-established conservation
laws. In the following sections we describe these laws
and how they are linked to physical processes at the
cell level.

Continuum fields

A key concept underlying all of these tissue-level equations
is the concept of a continuum representation of spatially
varying quantities. This is illustrated for the spatial
variation of transmembrane potential in Fig. 5. There
are about 1010 myocytes in the heart [a myocyte is about
100 µm long and 20 µm diameter, or π .10–5 mm3 volume
and the human adult myocardium occupies a volume of
about 4.105 mm3]. Each cell has a slightly different resting
potential (e.g. due to small differences in the expression
of Na/K pumps) and these transmembrane potential
differences become larger during activation, as illustrated
for a one-dimensional row of cells in Fig. 5A. Since the cells
are electrically coupled, the differences between adjacent
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cells are small and to a good approximation the potential
field varies smoothly and continuously as shown in Fig. 5B.
The spatial variation of transmembrane potential is called
a field and is best represented mathematically by dividing
the spatial domain into subdomains called finite elements,
as shown in Fig. 5B. The potential field within an element
is then modelled by interpolating values of the potential
defined at the nodes using the basis functions shown in
Fig. 5C. Since a node is shared between two elements
the potential is continuous across element boundaries. If
the spatial derivative of potential is also defined at the
nodes and the set of basis functions is extended to include
interpolation of the derivative (called ‘cubic Hermite’
basis functions), the finite element representation of the
potential field can maintain continuity of its first derivative
(and hence current) across the whole domain.

Approximating the discrete cell-by-cell domain with a
continuous field representation is the basis for continuum
modelling.

Any number of such fields can coexist in the same
physical domain. For example, the extracellular potential
provides another dependent variable field governed by
conservation laws and linked to the transmembrane
potential in bidomain models of cardiac electrophysiology.

Model of ventricular geometry

The one-dimensional cubic Hermite basis functions
illustrated in Fig. 5 can be extended to three dimensions
and used to fit a finite element model of ventricular

A B C D

Figure 12. Extraction of data from CT images, and fitting of a high order finite element mesh for a
human lung lobe
A, isosurfaces drawn at the lobe boundary. B, random data points calculated to sit on the iso-surfaces.
C, initial linear volume mesh. D, high order mesh fit to the extracted data.

geometry, as shown in Fig. 6. Anatomically based models
have now been developed for the dog (Nielsen et al. 1991),
pig (Stevens & Hunter, 2003) and rabbit heart (Vetter &
McCulloch, 2000).

Cardiac structure

In addition to the geometry, fundamental to predicting
whole organ function, is an accurate representation of
the spatial variation in tissue properties which are often
based on the underlying microstructure. This fibrous-
sheet structure of the heart is illustrated in Fig. 7. The ‘fibre’
axis is aligned with the local myocytes (i.e. the direction
of sarcomere length changes), the sheet axis is orthogonal
to the fibre axis, and is in the plane in which myocytes
are tightly bound by endomysial collagen into layers 3–
4 cells thick. The third ‘sheet-normal’ axis is orthogonal
to this plane. The fibrous-sheet structure for the whole
myocardium is illustrated in Fig. 8

Adding function to the continuum framework

To predict whole organ function such as myocardial
mechanics or activation requires the application of
physical conservation laws which couple the discrete
cellular models into a common spatial framework. These
laws are expressed mathematically in the form of integral
equations or PDEs (partial differential equations) which
balance forces (expressed per unit area as stress) or
fluxes (such as an electrical current). These equations
are derived from the basic physical laws of nature
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and are independent of the particular properties which
characterize the material under consideration (such as
soft biological tissue). To solve these balance equations
for a particular material requires another equation, called
a material law or constitutive equation, which is derived
from experimental observation of the particular material.
For example, in the case of simulating myocardium
contraction, to solve the stress equilibrium equations
requires an additional material law linking components of
stress to the components of material strain (deformation
gradients). The experimentally obtained parameters in
this relation are the elastic constants of the tissue. For
conservation of current the material law links current to
voltage gradients with parameters that express the tissue
conductivity.

The systems of equations governing each function
are typically non-linear and are solved using numerical
methods which reflect the spatial-temporal scale of the
underlying phenomena. The rapid upstroke in the action
potential of the cardiac myocyte produces large spatial
gradients which require representation at high spatial
resolution (see Fig. 9). The relative efficiency of the
finite difference technique or low order finite element
method lends itself to this application. Conversely the

A B

Figure 13. Fitting surface meshes to human central airways
A, data extracted from CT images. B, high order surface mesh fit to the data.

continuous stress and strain fields generated by cardiac
deformation are effectively predicted using finite elements
with high order C1 continuous basis functions. The
coupling of systems with large differences in the solution
scales provides much of the challenge for modelling
computational modelling at this scale in the context of
the Physiome Project. Two examples of system coupled
modelling are given below.

Coupled excitation-contraction coupling
in myocardial tissue

The electrophysiology model of Noble et al. (1998), linked
via calcium kinetics to thin filaments kinetics and active
force generation by Nickerson et al. (2001), provides
the voltage source and tension dynamics at a cellular
level. Stretch activated channels in the electrophysiological
model produce a reverse coupling where mechanical
stretch alters the cell action potential. Smith et al. (2003a)
have embedded this cellular model in a grid of finite
difference points in a two dimensional finite element
model of the cardiac ventricles (see Fig. 10). Excitation was
initiated by applying a spatial pattern of stimulus currents
based on measurements of Durrer et al. (1970), inducing
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the spread of an activation wave. From this excitation
solution at each time step the active tension produced by
cell excitation was calculated at the gauss points in the
finite element model. Using the non-linear constitutive
law, and applying the governing equations, the finite
element method was used to calculate tissue deformation
in this coupled model. For well characterized networks,
in which the relevant genes have been identified and the
wiring diagram determined, biophysically realistic non-
linear kinetic functions can be assumed for the regulatory
interactions. This allows quantitative prediction of
transcription rates, etc. in response to perturbations
of the network. Kinetic parameters can be determined
for individual reactions (for example the binding of
transcription factors, degradation rates of mRNAs, etc.)
using time-course data from microarrays, or GFP reporter
gene approaches (Ronen et al. 2002). Interactions between

A B C

Figure 14. Airway models
A, airway model using CT data to fit airways down to branch generations 6–9, and airway generation
algorithm to fill a CT-based volume mesh from the CT airways out to the terminal bronchioles. The right
upper lobe airways are green, right middle lobe are red, right lower lobe are blue, left upper lobe are
yellow, and left lower lobe are orange. B and C, a single alveolar sac comprising 19 alveoli clustered
around a central duct, with a dense segmented capillary mesh wrapped over the alveoli. Only a single
layer of capillaries passes between each pair of adjacent alveoli. The alveolar-capillary mesh has been
used by Burrowes et al. (2003) to simulate blood cell transit through the pulmonary microcirculation
under different pressure conditions typical of the vertical human lung. By altering the pleural, arteriolar,
and venule pressures, transit in the different lung ‘zones’ can be simulated. B shows a flow solution for
‘zone 3’, where the arterial and venous pressure are greater than the alveolar pressure. C shows a flow
solution in the same geometry for ‘zone 2’, where the alveolar pressure is less than arterial but greater
than venous pressure. In these solutions red shows the greatest flow, and blue the least.

cells are critical in determining patterns of differentiation
into distinct tissue types. Models of spatially extended
systems must therefore incorporate mechanisms for
signalling between cells, transport of gene products
as signalling molecules and signalling networks within
cells (Mjolsness et al. 1991; von Dassow et al. 2000;
Davidson et al. 2002).

Coupled myocardial mechanics and coronary
blood flow

The anatomically-based model of the largest six
generations of the coronary arterial tree generated by
Smith et al. (2000) has been embedded at material points
in the model of the cardiac ventricles presented above. By
assuming the functional form of the axial velocity profile,
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the three dimensional Navier-Stokes equations governing
blood flow have been reduced to one dimension to create
an efficient model of coronary haemodynamics (Smith
et al. 2002b). Using the myocardial mechanics framework
of Nash & Hunter, (2000) the temporal compression and
deformation of each vessel segment was determined. The
effect of this spatial–temporal variation in intramyocardial
stress was then coupled to blood flow via an elastic pressure
radius relationship based on local arterial mechanics. This
coupled model of myocardial mechanics and coronary
blood flow has been used to quantify the effect of
myocardial contraction on coronary blood flow (also
known as systolic flow impediment) in the heart (Smith
et al. 2002b), as illustrated in Fig. 11.

Multi-scale modelling in the lungs

The lung performs gas exchange and metabolic functions
through the coupling of several subsystems: the
conducting airways that transport air to and from the
atmosphere and are a major site of defence; the respiratory
airways that are covered with alveoli and hence are the
site of gas exchange; the pulmonary capillaries that cover
the alveolar walls, bringing blood into close contact
with alveolar gas; and the pulmonary vasculature that
circulates de-oxygenated blood through the capillary bed
and returns oxygenated blood to the heart. The larger
transport systems can be considered to be ‘embedded’
within the pulmonary parenchyma, and the entire system
to be mechanically coupled through the vast network
of fibres that run along the airways and extend into
the lung from its surfaces (Weibel, 1984). Each of these
subsystems is therefore intimately coupled to the others,
both structurally and functionally. Traditional measures
of lung function use global indices such as blood gases
or volumes measured by spirometry to non-invasively
predict the health of the lung, but the normal lung
exhibits structural asymmetry and regional variation in
ventilation and perfusion that influences these global
measures, and therefore significant loss of lung function
can occur through disease before it is detected using global
measures. Computational modelling in combination with
state-of-the-art medical imaging provides a framework
for predicting pulmonary function based on individual
structure, such that global measures can be interpreted in
terms of regional function.

CT (Computed Tomography) imaging has emerged as
the modality of choice for imaging the lung, with state-
of-the-art CT of high enough resolution to segment the
lung fissures and the major airways and blood vessels
(Zhang & Reinhardt, 1999; Kiraly et al. 2002). Masked

CT images can be used directly to fit finite element
models of the lobes and segmented airways and vessels.
This process is illustrated for the right upper lobe shown
in Fig. 12, using masked images from the Lung Atlas
project (Li et al. 2003). In Fig. 12A iso-surfaces have
been constructed to trace the lobe surface. A random
spread of data points are generated over the iso-surfaces
in Fig. 12B. In Fig. 12C the data points are projected
orthogonally to an initial linear volume mesh surface.
Figure 12D shows the final high-order finite element mesh
that is fit to the CT data using CMISS geometric fitting
[the finite element program developed by the Auckland
Bioengineering group; www.cmiss.org] (Fernandez et al.
2003).

The level of structural detail required in a model of
the airways will depend upon its area of application. For
example, the details of 3D structure are important for
simulating flow fields and particle deposition (Nowak et al.
2003), whereas a 1D model that integrates cross-sectional
information is considered appropriate for simulating
mixing of inspired inert gases (Paiva & Engel, 1979). A
further example is in the study of airway collapse, where
describing the surface geometry is important but detailed
structure can be neglected. An individual CT data set can
be used to generate a set of airway models that are patient-
specific and relate directly to one another. Volume (3D),
surface (2D), or line (1D) finite element airway models
can be derived from the single iso-surface data set shown
in Fig. 13A:
1 The surface points can be triangulated, and the volume
filled with a very fine tetrahedral mesh. This is the
traditional approach used for flow modelling, where the
surface geometry detail is considered important. However,
this produces a very large mesh and consequently flow
simulations are generally carried out for only a few airway
generations.
2 Surface meshes can be constructed either by simply
triangulating the surface data points (as in 1), or by using
the geometry fitting process described for the lobes to fit
a high-order surface mesh (Fig. 13B).
3 The surface mesh can be reduced to a 1D mesh by
creating a node at each airway bifurcation or ending,
and calculating derivatives that force the 1D elements to
pass through or very close to the centreline locations of
the 2D mesh. Area information can be incorporated by
calculating the cross-sectional area at discrete locations
down each airway, then using this ‘data’ to fit area values
and derivatives.

These multidimensional models can be used in
combination for a single problem (e.g. combining 3D and
1D airflow in different airway generations) or coupled for
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solving multiple problems simultaneously (e.g. coupled
3D airflow and 2D wall mechanics).

Current segmentation algorithms can uniquely identify
individual human airways from CT imaging down to
the 6th to 9th branch generation (Kiraly et al. 2002).
Beyond this level it becomes increasingly difficult to trace
the path of the individual airways. Symmetric (Weibel,
1963) or Horsfield-based (Horsfield et al. 1971) models
could be coupled to the CT-based airway meshes, but
such an approach would not relate the model airways to
a spatial location, thus limiting the utility of the model.
A mathematical algorithm (Tawhai et al. 2000) can be
used to generate airways from the fit airway mesh to
the terminal bronchioles. The 3D bifurcation-distributive
algorithm generates model airways into accurate lobar
volume meshes so that the airway geometry and branching
pattern depends directly on the lobe geometry. Airways
generated into an anatomically -based lobe geometry
are shown in Fig. 14A, with the airways coloured to
differentiate between the five lobes.

The alveoli in the respiratory airways form a
mechanically-tethered elastic tissue. The alveoli are
densely packed, with multifaceted shapes (Weibel, 1984).
The respiratory tissue can be modelled as a 3D structure
for mechanics studies (Denny & Schroter, 1996; Burrowes
et al. 2003), or as a 1D structure for simulating inert gas
mixing (Verbanck & Paiva, 1990; Dutrieue et al. 2000).
For example, Burrowes et al. (2003) have modelled the
alveolar geometry using a space-filling Voronoi mesh.
This approach fills a prescribed volume with space-
filling alveoli and central duct spaces, and has been used
further by Burrowes et al. (2003) as a base structure over
which a model of the pulmonary microcirculation was
generated (Fig. 14B). The 3D mesh has an anatomically
consistent geometry and forms a structural framework
for incorporating the distribution of extracellular collagen,
elastin, and basement membrane for mechanical analysis.

By utilizing a hierarchy of models for the pulmonary
system, whether structural (e.g. 3D, 2D, and 1D airway
models) or functional (e.g. using a multibranching model
to parameterize a lumped model for inert gas mixing
in the acinus) we have a powerful modelling framework
that allows us to move between, and link, different
levels of interest for simulating a range of functional
problems (Tawhai & Hunter, 2001a,b). An example
of applying this approach to link CT-imaged regional
information to global measures is by investigating the
sensitivity of predicted global measures to changes in
model geometry: do the models predict that global
measures will be influenced by geometry changes
within the ‘normal’ range, or alternatively, do model

predictions suggest that geometry changes outside the
‘normal’ range would not be detected by the global
measures? This investigation requires incorporation of
ventilation distribution, perfusion distribution, soft tissue
mechanics, inert gas mixing to simulate transport of the
imaged contrast agent, and gas exchange. Each of these
components can be modelled in detail (3D air flow,
parenchymal micromechanics) or reduced and combined
for a tractable model (1D air flow calibrated against 3D,
compressible finite elasticity for the air-tissue ‘composite’).
The effect of respiratory tissue geometry changes can be
probed using multibranching models of the acinus, or
the effect of conducting airway geometry changes can
be probed using anatomically based conducting airway
models coupled to simple lumped parameter models of
the acinus.

Conclusions

The canvas on which we have constructed this review is
vast. It ranges in scale from modelling molecular processes
to modelling whole organs and systems, and its theoretical
range encompasses linking physiology to mainstream
biological theory in relation to evolution and development.
It is necessary to emphasize the enormity of the challenge
that quantitative integrative physiology faces for several
reasons

First, the magnitude of the challenge is not yet
fully appreciated. Integrative physiology has been so
systematically overshadowed over recent decades by the
developments in molecular biology that its scale and
funding have not kept pace. We believe that this balance
should, and probably will, progressively change as the
power of quantitative integrative work becomes clearer. To
the extent that we can show how higher-level functional
understanding clarifies molecular understanding, and is
even necessary for that understanding, the more this area
of science will attract some of the best minds to tackle its
challenge.

Second, we wish to emphasize the range of skills that
will be required. The authors of this review include
a mathematician, a physiologist, a computer scientist
and four bioengineers. The project we are describing is
necessarily multidisciplinary. It will transform the way in
which physiology is done, just as much as the molecular
revolution did. Integrative physiology in the past was
essentially qualitative. It will in future become a highly
quantitative, computer-intensive discipline.

Third, we really are only at the very beginning. There
is still a long way to go in the development of the
relevant models. In many areas of physiology other
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than the heart and lungs, modelling is not yet as well
developed. As models improve in sophistication, more
gene expression and proteomic data can usefully be
incorporated for predictive modelling. As we have noted,
spatial information is crucial in making the step from
cellular to tissue level properties. Adequately dealing with
spatial variation in parameters and properties remains
one of the major gaps in current modelling approaches at
all spatial levels. Proteomic information on biomolecular
interactions will be important for unravelling metabolic
and signalling pathways operating in the cell, and in
particular in response to disease and injury. Identifying
functional interactions in signalling and genetic networks
is of particular interest as they regulate the coordinate
expression of functional groups of genes, with a few key
pathways switching between alternative cell fates (Neves
& Iyengar, 2002; Bhalla, 2003). Gene network modelling
is also at an early stage in its development. A great deal
of attention is currently focused in reverse engineering
dynamic models of regulatory networks directly from
gene expression and proteomic data (Brazhnik et al. 2002;
Bolouri & Davidson, 2002; Kholodenko et al. 2002; Tegner
et al. 2003). This may be facilitated by new results which
indicate that in the future it may be possible to manipulate
the genome in situ, and by selectively turn genes on
and off in vivo using genetically engineered switches and
other control mechanisms (Gardner et al. 2000; Elowitz
& Leibler, 2000; Hasty et al. 2002). If reverse engineering
can be successfully accomplished and automated then the
analysis of highthroughput data will feed directly into
parameterization of dynamic models which can be used for
quantitative prediction of the regulatory networks which
underly physiological function and the response of tissue
to injury and disease.

One of the intriguing opportunities presented by the
availability of high resolution imaging and anatomically
based computational models is that of the patient-specific
modelling. That is, the generic model of the heart or lungs,
shown in Fig. 6 and Fig. 14, respectively, can be adjusted to
match MR images of the heart or helical scan CT images
of the lungs. Coupled with measurements of both gene
sequence and physiological function for that individual,
the realization of patient-specific, model-based clinical
diagnosis becomes more feasible.

In this article we have surveyed issues of complexity and
modelling from genes and proteins to tissues and organs.
A framework for the physiome project is being put in
place which involves developing ontologies for describing
the biological knowledgebase, markup languages for
encapsulating models of structure and function at all
spatial scales. The greatest challenges at present are

developing the means of linking models across the spatial
scales.

What are the factors that will continue to drive this
project? One of these is the sheer excitement of unravelling
the logic of life at all levels of complexity. This intellectual
challenge will become even greater as the various pieces
are put together. The more of the jigsaw puzzle we see,
the more we will want to complete it. A second important
factor will be clinical and pharmaceutical relevance. The
development of the ‘heart physiome’ as the first physiome
model of an organ was motivated by the obvious clinical
importance of heart disease.

Appendix

Ontologies and Tools

The IUPS physiome project is developing a number of tools
for biological modelling. As we have discussed, ontologies
are fundamental to these. How a particular tool makes use
of an ontology depends on what information it needs from
it. This process can be viewed in a number of ways:
1 defining machine interpretable representation
languages
2 building internal data structures for databases or object
orientated constructs
3 representing datasets for simulation and visualization
4 finding results of complex queries over ontological
domains
5 generating data for dynamic navigation interfaces that
people use to browse, select, and manage representations

This is certainly not an exhaustive list, but does give
us the right perspective to interpret the main ontological
domains we are building or integrating (Fig. 2). A
good way to get a feeling for the value of building
and integrating these ontology domains is to consider
some use-cases from the perspective of a biologist or
modeller using various tools. We can envisage the goal
of a biologist as locating models, running simulations,
and visualizing systems, and perhaps identifying systems
that fit their data sets, and the goal of a modeller to
be investigating the theoretical foundations of models,
building models, comparing models, and like the biologist,
running simulations and visualizing the systems.

Examples of how the ontologies, markup languages
and tools are used by physiologists and modellers are
illustrated here

Use-case 1. A biologist, using an interface to the BioPAX
ontology, locates the cAMP/PKA signalling cascade that
participates in the regulation of l-type calcium channel
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activity. From this concept they locate CellML models
that describe this system, and are able to run simulations,
manipulate these, and visualize their behaviour.

Use-case 2. A biologist locates l-type calcium channels
through an anatomical navigation interface. From here
they can investigate the 3D structure of the channel,
its physiological function, or publications that relate to
it. Each of these steps helps to gather or filter a set of
models with which they can continue with simulation and
visualization.

Use-case 3. A biologist with a protein domain motif,
perhaps with identifiers from the Gene Ontology or
protein interaction databases, obtains a set of models
that refer to this motif. From here they can look at 3D
structures, physiological function, or visualizations of its
behaviour in various models.

Use-case 4. A biologist with a data set wants to find
a model that could help them interpret data from
experiments. Using navigation or query interfaces, they
can find a set of models that contain the correct entities,
or describe the appropriate physiological process, or use
particular modelling theories. From here they enter an
iterative process of model fitting and system identification,
i.e. reducing the set of models to those that provide useful
levels of accuracy. The parameter data sets and the raw
data sets themselves can be submitted for peer review to
be included in the repositories for other people to use.

Figure A1. Use-cases to illustrate ways in which models are accessed

Use-case 5. A modeller has located a particular model.
They are able to run it in a simulation, visualize its
behaviour, interpret the mathematical theories it was built
from, and then edit it in a model editor. They are able to
submit annotations to the original model, or submit new
models for peer review to be included in the repositories
and ontologies.

Use-case 6. A modeller starts with a publication, obtains
a set of models that describe both the publication and
unpublished models of the same processes. They can view
comparisons of these models that highlight the similarities
and differences in architecture and modelling theories used
by the modellers who created them.

Use-case 7. A modeller has a particular goal in mind, in
this case, coupling their model to models that describe
systems at a finer physiological scale to theirs. They can find
a concept of coupling scales in the navigation interface that
interfaces with the modelling theory ontology. From here
they see mathematical systems or examples for coupling
between scales, and through these select actual models
that implement these. They now select subsystems from
the library, or make up their own, and have the option
of selecting model templates that help them to couple
the subsystems into their model. For example, selecting
various subsystems that describe the signalling pathway
leading to the activation of l-type calcium channels, and
integrating these into their continuum model that may
couple a spatial variation of activation of β1 and β2
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adrenergic receptors and the resulting spatio-temporal
propagation of activation of the muscle.
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