
METHODS AND APPLICATIONS OF ANALYSIS.  2001 International PressVol. 8, No. 2, pp. 415{428, June 2001 012REACTION-DIFFUSION MODELS FOR BIOLOGICAL PATTERNFORMATIONE. J. CRAMPIN� AND P. K. MAINI�yAbstrat. We onsider the use of reation-di�usion equations to model biologial patternformation and desribe the derivation of the reation terms for several illustrative examples. Aftera brief disussion of the Turing instability in suh systems we extend the model formulation toinorporate domain growth. Comparisons are drawn between solution behaviour on growing domainsand reent results on self-repliating patterns on domains of �xed size.1. Introdution. Understanding the mehanisms underlying spatial patternformation is a entral issue in early biologial development. Although genes playa ruial role in embryology, a study of genetis alone may not be suÆient to revealhow the physial and hemial properties of embryoni material interat to produethe omplex spatio-temporal signalling ues whih ultimately determine ell fate. Auseful tool for studying suh omplex nonlinear interations is mathematial mod-elling, and there is now a vast literature on mathematial models of biologial patternformation.In general, models for biologial pattern formation desribe either mehanisms ofell motility or the generation of hemial prepatterns. Cell movement models on-sider the aggregation of ell populations under hemial signalling ues or mehanialfores, with subsequent ell di�erentiation in response to inreased ell density (fora review see [22℄). The aggregation of ells may our in response to a gradient inthe distribution of a hemial signal (hemotaxis, see for example [18℄) or may bedue to mehanial ues: for example the advetive fores exerted by motile ells ona substratum or via ellular motion up a gradient in adhesivity of the extraellularmaterial (haptotaxis, see for example [27, 22℄).Chemial prepattern models, on the other hand, argue that a pattern is �rstestablished in the onentration of ertain hemials (morphogens), and subsequentellular di�erentiation into di�erent tissue types follows aording to whether or notthe loal onentration exeeds some threshold. It is impliitly assumed in suh modelsthat the hemial pattern is established on a faster timesale than the response of theellular mahinery, so that the formation and interpretation of the pattern deouple.Turing [39℄ demonstrated that suh prepatterns ould be formed in homogeneousmedia by a symmetry-breaking instability driven by di�usion. The model equa-tions for two suh interating hemials, u(x; t) and v(x; t), are the oupled reation-di�usion equations �u�t = Dur2u+ f(u; v)(1.1) �v�t = Dvr2v + g(u; v)(1.2)where the kineti funtions f and g desribe the nonlinear reation between the hem-ials. Turing showed this system an exhibit di�usion-driven instability whereby aspatially uniform steady state whih is stable in the absene of di�usion an be driven�Centre for Mathematial Biology, Mathematial Institute, 24{29 St Giles', Oxford OX1 3LB,UK.ymaini�maths.ox.a.uk 415



416 E. J. CRAMPIN AND P. K. MAINIunstable by di�usion. Below we disuss several reation kinetis that have been putforward for biologial models. Then we onsider reent developments in the reation-di�usion theory for biologial pattern formation where underlying domain growthhas been suggested as an important mehanism in pattern seletion, and relate theseissues to reent results on self-repliating patterns in reation-di�usion systems.2. Biologial and Biohemial Reation Kinetis. Funtional forms for thekineti terms in models pertinent to biologial pattern formation have been derivedin several di�erent ways. Below we desribe several suh derivations and provideillustrative examples.2.1. Phenomenologial Models. In their 1972 paper Gierer and Meinhardt[8℄ proposed several models for pattern formation in an attempt to explain the re-generative properties of hydra observed in various transplantation experiments. Themodel kinetis are based on biologially plausible arguments and funtions are hosento reprodue the experimentally observed behaviour. The sheme whih has ome tobe known in the literature as the Gierer-Meinhardt model (desribed in their paperas ativator-inhibitor model with di�erent soures) onsiders autoatalyti ativationof hemial A(x; t) and self-inhibition of hemial H(x; t) and has the form�A�t = �0�+ �ApHq � �A+DA �2A�x2(2.1) �H�t = 0�0 ArHs � �H +DH �2H�x2(2.2)where 0 < (p�1)=q < r=(s+1). In their paper the authors onsider all parameters tobe positive onstants exept for the inhomogeneous distributed soure terms �(x) and�0(x), usually taken to be simple gradients aross the solution domain. However, foronstant parameters these kinetis may admit di�usion-driven instability. Standardvalues assumed for the powers in the quotients are p = r = 2, q = 1 and s = 0, and thenondimensionalised kinetis may be written for u = �0�0H=(�)2 and v = 0�0A=�as(2.3) f(u; v) = v2 � u; g(u; v) = v2u � kv + Æwhere u is the inhibitor (or substrate) and v the ativator, time is nondimensionalisedwith � = �t, k = �=� and Æ = 0�0�0=�.2.2. Hypothetial (Bio)hemial Reations. Several authors have derivedreation shemes from desriptions of hypothetial hemial reations. For example,Shnakenberg [34℄ proposed a series of trimoleular autoatalyti reations involvingtwo hemials as follows(2.4) X k1
k2 A; B k3�! Y; 2X + Y k4�! 3X:Using the law of mass ation and denoting the onentrations of X;Y;A and B byx; y; � and �, respetively, we have(2.5) dxdt = k2�� k1x+ k4x2y; dydt = k3� � k4x2ywhere k1; :::; k4 are (positive) rate onstants. Assuming that there is an abundaneof the external reatants A and B, � and � an be onsidered to be onstant. After



REACTION-DIFFUSION MODELS FOR BIOLOGICAL PATTERN FORMATION 417appropriate nondimensionalisation, with u = pk4y and v = pk4x representing thevariation over time of the two onentrations respetively, then(2.6) f(u; v) = b� uv2; g(u; v) = a+ uv2 � vwhere a = k2�=k1 and b = k3pk4=k1�=k1 are nondimensional parameters, and nondi-mensional time � = k1t.A further example used to study pattern formation is the Gray-Sott model forautoatalysis in the ontinuously fed unstirred ow reator [9, 10, 35℄ whih mayexhibit bistability. The kineti sheme for this reation is a variant of the autoatalytimodel for glyolyti osillations proposed by Sel'kov [37℄. The sheme onsiders theautoatalyti prodution of B whih deays to form produt P in the irreversiblereations(2.7) A+ 2B k1�! 3B; B k2�! P:Here B is self-ativating (autoatalyti) while A is a substrate for whih higher on-entrations inrease the rate of its own removal. In a losed reator, for whih initialonentrations of A and B are spei�ed and no material is allowed to enter or leavethe reator, eventually all of the reatants would be onverted to produt. However,nonequilibrium onditions may be maintained by a onstant ow, at rate �, throughthe reator, with feed of reatant A at a onstant onentration a0 and removal of theprodut P . The model equations take the form(2.8) dadt = �(a0 � a)� k1ab2; dbdt = ��b+ k1ab2 � k2b:After nondimensionalisation, under these nonequilibrium onditions, the kinetis aregiven for u = a=a0 and v = b=a0 by(2.9) f(u; v) = F (1� u)� uv2; g(u; v) = �(F + k)v + uv2where k = k2=k1a20 is the e�etive rate onstant for formation of produt P and F =�=k1a20 so that �res = k1a20tres = 1=F is the mean residene time in nondimensionaltime units. By varying these two parameters the kinetis may have a single (trivial)steady state(2.10) ur = 1; vr = 0known as the red state. However, in ontrast to the other models, this sheme mayexhibit bistability when the disriminant � = 1 � 4(F + k)2=F > 0, giving twoadditional steady states arising in a saddle-node bifurationub = 12 �1�p�� ; vb = F2(F + k) �1 +p��(2.11) ui = 12 �1 +p�� ; vi = F2(F + k) �1�p��(2.12)where the intermediate state (ui; vi) is unstable and the blue state (ub; vb) is stable.This model has been widely studied, both as the simplest hemially plausiblemodel whih gives osillations in the ontinuously stirred reator and also in theontext of hemial pattern formation in reation-di�usion equations. It is similarin struture to the Brusselator model [23℄. In the viinity of the bistable regimethe Gray-Sott model has been studied in the ontext of self-repliating phenomena,disussed below.



418 E. J. CRAMPIN AND P. K. MAINI2.3. Hypothetial models from Eology. White and Gilligan [41℄ proposeda model for the population dynamis of a host-parasite-hyperparasite system to a-ount for persistent spatio-temporal patterns in population densities in a homogeneousenvironment. The population dynamis is desribed by loal interation terms anddi�usion is assumed to model the spatial spread and dispersion of eah speies. (Dif-fusion is ommonly used as a model for the spatial spread of root systems and forthe dispersal of spores.) In the �eld, pathiness has been observed for timesalesmuh longer than those assoiated with stohasti heterogeneities (where eventuallya uniform infestation of parasite would be expeted). Phenomena monitored exper-imentally inlude drifting disease `hot-spots' and periodi ourrene of disease at apartiular loation.In dimensional form the loal dynamis are governed for host (H), parasite (P )and hyperparasite (Q) by the systemdHdt = rH �1� Hk �� aPH(2.13) dPdt = bPH � P1 + eP Q(2.14) dQdt = lP � dQ(2.15)where the host plant H grows logistially and is removed by the parasite P at arate a per unit parasite and has onversion fator b per unit host. Predation of thehyperparasite Q on the parasite is a saturating funtion of parasite population, withonversion at a rate l per unit parasite, and the hyperparasite has a natural deayrate d. The parameters r, k,  and e are positive onstants.Following the authors we sale the population densities with their steady statevalues when k = 1, namely (Q1s ; H1s ; P1s ), suh that u = H=H1s , v = P=P1s andw = Q=Q1s and then the interation kinetis aref(u; v) = u�1� u��� uv(2.16) g(u; v; w) = �� uv1 + � � vw1 + �v�(2.17) h(v; w) = Æ (v � w)(2.18)with the resaled variables Æ = d=r, � = k=Hs, � = Qs=r and � = bPs. Time isnondimensionalised with the rate parameter r. Under di�erent parameter regimes thisthree-speies model has been shown to demonstrate both stationary spatial patternsand patterns whih osillate in time.2.4. Empirial Shemes. Here the kineti term is obtained by modelling realdata, where the funtion and model parameters are provided by �tting an experimen-tal data urve. For example, the Thomas immobilized-enzyme substrate-inhibitionmehanism [38, 1℄ involves the reation of uri aid (onentration u) with oxy-gen (onentration v). Both reatants di�use from a reservoir maintained at on-stant onentration u0 and v0, respetively, onto a membrane ontaining the immo-bilized enzyme uriase. They reat in the presene of the enzyme with empirial rateVmuv�m+u+u2=�s , where Vm is a measure of the maximal reation rate and �m and �sreet the onentrations at whih the enzyme is half ativated and half inhibited



REACTION-DIFFUSION MODELS FOR BIOLOGICAL PATTERN FORMATION 419respetively. The dynamis are then governed bydudt = pu(u0 � u)� Vmuv�m + u+ u2=�s ;(2.19) dvdt = pv(v0 � v)� Vmuv�m + u+ u2=�s(2.20)where pu and pv are transport oeÆients for the reatants whih are maintained byreservoir onentrations u0 and v0.2.5. Models of Experimental Chemial Systems. Although Turing pre-dited the spatial patterning potential of hemial reations in 1952, this phenomenonhas only reently been realised in atual hemial reations. It is now possible, in er-tain ases, to write down detailed reation shemes.The �rst Turing patterns were observed in the hlorite-iodide-maloni aid(CIMA) reation with starh [2, 6℄. The model proposed by Lengyel and Epstein[17℄ stresses three proesses: the reation between maloni aid (MA) and iodine toreate iodide, and the reations between hlorite and iodide and hloride and iodide.These reations take the formMA+ I2 ! IMA+ I� +H+(2.21) ClO2 + I� ! ClO�2 + 12I2(2.22) ClO�2 + 4I� + 4H+ ! Cl� + 2I2 + 2H2O:(2.23)The rates of these reations an be determined experimentally. By making the experi-mentally realisti assumption that the onentration of maloni aid, hlorine dioxideand iodine are onstant, Lengyel and Epstein derived the following model�u�t = k1 � u� 4uv1 + u2 +r2u(2.24) �v�t = k2 �k3�u� uv1 + u2�+ r2v�(2.25)where u; v are the onentrations of iodide and hlorite, respetively and k1; k2; k3and  are positive onstants.3. Model Behaviour. We have desribed several illustrative examples, how-ever, many more reation shemes have been proposed (see, for example, [22℄).Reation-di�usion model behaviour has been extensively studied in the linearizedregime on regular geometries. The response to small amplitude perturbations is de-termined by linearization about the uniform steady state, suh that in this regimethe solution onsists of the amplitude growth-rate weighted sum of eigenfuntions ofthe Laplaian satisfying the boundary onditions, typially taken to be no-ux. Tounderstand the behaviour of the full system, nonlinear perturbation analysis may beemployed in the weakly nonlinear ase, however, for the fully nonlinear ase mostinvestigations have required numerial simulation. In one spatial dimension, the pat-terns exhibited by these models are spatially periodi, with the number of osillationsinreasing with domain length. On two-dimensional domains, stripes (analogous tothe one-dimensional behaviour) are observed, as well as spots, the form of the non-linearity being ruial in determining whih type of behaviour is observed [7℄. More



420 E. J. CRAMPIN AND P. K. MAINIompliated labyrinthine patterns may also be generated. It should also be noted thatmodels an exhibit Turing-Hopf bifuration, resulting in travelling peaks and troughs.These models have been widely applied to spatial pattern formation in early de-velopment, inluding animal oat markings [21℄, limb development [19℄, shell patterns[20℄ and buttery wing patterns [22, 36℄. All of these appliations onsider patternto arise in response to small amplitude spatial perturbations to the uniform steadystate.4. Reetion and Splitting of Travelling Pulses in the Gray-SottModel. Turing's theory for morphogenesis onsiders the growth of in�nitesimal per-turbations driven by the di�usive instability. In general, however, reation-di�usionsystems an display a wider variety of spatio-temporal phenomena in response tolarge amplitude perturbations. The nature of the kineti terms plays the major rolein determining the solution behaviour.The Gray-Sott model is an example of a kineti sheme whih, for suitablyhosen parameters, demonstrates bistability. In the viinity of the bistable regime,many interesting spatio-temporal phenomena have been reported. Pearson [29℄ �rstidenti�ed self-repliation of spot-like patterns in two-dimensional numerial simula-tions of the Gray-Sott model, amongst various other behaviours, some exhibitingspatio-temporal haos (typially from the interation of Turing and Hopf modes).This behaviour was observed for suÆiently large perturbation away from the trivial(red) homogeneous steady state, and in a parameter regime in the viinity of both aHopf bifuration in the kinetis, and a subritial Turing bifuration for the nontrivialsteady state. Many of the patterns reported by Pearson had previously been or weresubsequently identi�ed in hemial experiments on the FIS reation by Lee, Swinneyand o-workers [14, 15℄; for a review see [16℄.Corresponding phenomena in spatially one-dimensional systems have been studiednumerially [30, 31, 32℄. Depending on the preise loation in parameter spae (whileremaining in the viinity of the urve bounding the bistable region) these authorshave reported various behaviours for �nite initial perturbations. Travelling pulseswhih are reeted from zero ux boundaries are found in a region for whih there isa unique steady state, reprodued in Figure 4.1(a). Also it is found that these pulsesare reeted during ollisions with other pulses [30℄. Wave splitting (or self-repliationof pulses), illustrated in Figure 4.1(b), is observed for small enough ativator di�usionoeÆient in the bistable region and, for parameters for whih there is a single stablebranh, in the viinity of the saddle-node bifuration. For the latter ase Petrovet al [30℄ have suggested that in this region the kinetis show exitable dynamis,where small perturbations deay exponentially to the globally stable steady statebut suÆiently large perturbations result in long refratory exursions through thephase spae before returning to the �xed point. They suggest that by dereasingthe ativator di�usivity the wave bak beomes dereasingly refratory, until �nally itexites a seondary wave whih moves o� in the opposite diretion. However, Nishiuraand Ueyama [24℄ have shown that the splitting phenomena may be reovered for nearequal ativator and inhibitor di�usion oeÆients, by judiious hoie of the kinetiparameters.Several authors have investigated analytially the pulse-splitting phenomenon inthe Gray-Sott model. Osipov and Severtsev [25℄ disuss splitting and periodi pat-terns on in�nite domains. Reynolds et al [33℄ present a heuristi explanation forself-repliation of spots and analyse equations of motion for travelling pulses in thelimit of small ativator di�usion. Nishiura and Ueyama provide an argument based on
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424 E. J. CRAMPIN AND P. K. MAINIP. imperator this behaviour is maintained in the adult �sh, where horizontal stripesmaintain an average spaing.A simple model of a growing tissue supposes that uniform tissue density is main-tained, so that the expansion of the tissue may be desribed kinematially, with ellproliferation onsidered as a distributed soure of volume. The equations for reationand di�usion then beome (see [4℄)�u�t +r � (au) = Dur2u+ f(u; v)(5.1) �v�t +r � (av) = Dvr2v + g(u; v)(5.2)where a(x; t) is the veloity �eld generated by the distributed soure term S(x; t) and(5.3) r � a = S(x; t):If all ells have the same rate of proliferation then S(x; t) = r is onstant over thedomain, and in one spatial dimension the domain length is given by L(t) = `ert.Transforming to a �xed interval, z = xe�rt 2 [0; `℄ we reover, for u(z; t) and v(z; t),�u�t = Due�2rt�2u�z2 + f(u; v)� ru(5.4) �v�t = Dve�2rt�2v�z2 + g(u; v)� rv(5.5)If the ell proliferation is not uniform aross the domain then the advetive term dueto the domain growth will not disappear under this transformation. Biologially, it isreasonable to assume that domain growth is a muh slower proess than the reationand di�usion of hemials through the tissue. Therefore we assume that r � 1, theslow domain growth limit. Under these onditions two generi solution behaviours areobserved, the regular splitting and insertion of new peaks in the ativator solution,illustrated in Figure 5.1. Whih of these two phenomena ours will depend solely onthe nonlinearities in the reation kinetis.The insertion of new peaks on the growing domain was ompared by Kondo andAsai [11℄ to the regular insertion of stripes on the growing angel�sh. Subsequent work[40, 28℄ has shown that stripe-forming equations on two-dimensional domains mayexhibit similar behaviour. We have found that domain growth an stabilise parallelstripes, as well as giving rise to stripe splitting or insertion, and Painter et al [28℄demonstrated that a population of ells responding hemotatially to the dynamihemial prepattern an lead to the insertion of initially narrow stripes in the elldensity, whih broaden with age, as observed on the �sh. While this is seeminglygood irumstantial evidene that a mehanism suh as reation-di�usion is at workin the �sh, it is important to note that these experimental observations may alsobe onsistent with any other mehanism whih generates patterns with an intrinsiwavelength.6. Disussion. Pattern seletion in the Turing instability on domains of �xedsize displays strong sensitivity to the size and geometry of the solution domain. Thishas proved to be an important ritiism of the appliation of Turing's ideas to someproblems in biology where the number of wavelengths generated is ritial. The rootof this problem is in the fat that for domains of anything but very small aspet ratio(the ratio of domain size to intrinsi pattern wavelength) many patterns of di�erent
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