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Reaction-Diffusion Patterns on Growing Domains

The reaction-diffusion (Turing) mechanism is one of the simplest and most elegant the-
ories for biological pattern formation. The recent experimental realisation of Turing
patterns in chemical systems has fostered renewed interest in reaction-diffusion the-
ory, however, its relevance to many biological problems has been questioned because
of the perceived failure of the mechanism to generate patterns reliably. A recent paper
suggesting the involvement of reaction-diffusion in fish skin patterns has implicated
domain growth as an important mechanism controlling pattern selection. In this thesis
we present a systematic study of the effects of domain growth on reaction-diffusion
patterns, and discuss the implications for reliable pattern generation.

Starting from the postulate that tissue growth rates are locally determined, we derive
general evolution equations for reaction-diffusion on growing domains as a problem in
kinematics. We argue that the biologically plausible scenario is to consider domain
growth on a longer timescale than pattern formation. Then it is found that the solu-
tion goes through a sequence of recognisable (quasi-steady) patterns. Using symmetry
arguments relating different pattern modes we show that for uniform domain growth
the solution evolves by frequency-doubling, the regular splitting or insertion of peaks
in the pattern. For pattern formation in two spatial dimensions domain growth is
found to select rectangular lattices, rather than the hexagonal planform that is pre-
ferred on the fixed domain. For nonuniform growth the local tissue expansion rate
varies across the domain and splitting or insertion may be restricted to regions of the
domain where the growth is sufficiently fast.

The behaviour of solutions can be studied asymptotically and peak splitting and inser-
tion are shown to occur according to the form of the reaction nullclines. We highlight a
novel behaviour, frequency-tripling, where both mechanisms operate simultaneously,
which is realised when quadratic terms are absent from the reaction kinetics. Any
particular pattern in a sequence remains established until the domain is sufficiently
large that a transition to a higher pattern mode occurs. This presents a degree of scale
invariance. The pattern which persists finally is not strongly dependent on the final
domain size, and hence domain growth can provide a mechanism for reliable pattern

selection.
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1. Introduction

Structural and functional ideas in developmental biology have been somewhat eclipsed
by the recent advent of developmental genetics. The role of genetic information in de-
termining the development of organised and differentiated structures from a single cell
is commonly deduced by studying the effects of gene mutations, determining that a
certain gene is mecessary for the correct development of a particular structure. The
revolution in molecular genetics has led to unprecedented discoveries and advances,
however, there is a danger that something has been lost in the thrust of this research.
While nobody would dispute that genes and gene products act in concert, our un-
derstanding of the mechanisms by which differentiated structures emerge from the
interaction of genes and their products is at risk of being overlooked in the drive
to identify (and label) the genetic components involved in the process. The implicit
assumption that all growth and form of an organism can be explained in terms of
gene instructions, that organisms are ‘genetically programmed’, is opposed by the al-
ternative view that spatial organisation, illustrated by the adaptive and regulatory
properties of developing organisms, must be explained otherwise.

The study of physical aspects of growth and form has a long and distinguished
history. D’Arcy Thompson’s celebrated book [125] draws parallels between biological
forms and structures arising in physical systems. That physical laws constrain what is
possible (in terms of morphology or pattern) is indisputable. However, to understand
how morphology is determined and regulated it is necessary to postulate physical
mechanisms that may plausibly coordinate the spatio-temporal emergence of structure.

This thesis is concerned with one such class of mechanism, based on simple physical
principles, which can generate spatial pattern from initial homogeneity. In the context
of morphogenesis, Alan Turing [126] proposed that a set of chemicals which react and
diffuse within a substrate could lead to the spontaneous symmetry breaking of an
initially homogeneous distribution of the chemical concentrations, and the generation
of spatial patterns. Before discussing this model in more detail, we consider pattern
formation in biological systems, and various alternative modelling approaches.

1.1 Models for Biological Pattern Formation

Any instance of a heterogeneous distribution of gene product or differentiated tissue
constitutes a pattern, and any such scenario may be interrogated as to the mechanisms
of organisation and regulation of the pattern. A multitude of different morphologies
in many different areas of biology have been the subject of mathematical modelling.
Several biological systems have attained status of paradigm in theoretical work in
this field, including the segmentation of the insect embryo [58, 118], limb develop-
ment [79, 26|, the formation of animal coat markings [88] and the arrangement of hair
follicles and feather primordia in skin [90, 89]. Certain unicellular organisms have also
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2 1. INTRODUCTION

been studied experimentally and theoretically in the context of pattern formation,
for example the generation of whorls in the marine alga Acetabularia [44] and the
branched and star-shaped morphologies of Micrasterias [66, 48, 50]. For these species
(where each organism has only one nucleus) it is most apparent that structure must
develop through spatially distributed physical processes occurring within the cell. At
the other end of the scale, patterns in population density (often called ‘patchiness’)
are studied in ecological settings [121, 83, 96, 80].

These examples raise an important theoretical consideration. For the patterning
of animal skins, a greater or lesser degree of variation is often displayed between
members of the same species and even between closely (genetically) related animals.
However, the mechanisms regulating segmentation and limb development, for example,
must be able to reliably generate the same number of pattern elements despite normal
biological variation, for example in the size or geometry of the region in which the
pattern develops. Models whose purpose it is to describe the mechanisms of spatial
organisation must be able to account for whichever of these alternative features is
observed in the biological system under scrutiny. We return to this crucial issue in the
discussion of reaction-diffusion models below.

Two general categories for models of pattern formation may be described, which
encompass most theoretical research to date, namely chemical prepattern and cell
motility (or mechano-chemical) models. The latter consider the aggregation of cell
populations subject to chemical signals and mechanical forces, where it is supposed
that cell differentiation occurs in response to increased cell density (see the book
by Murray [88] and references therein). In this thesis we are primarily concerned
with models of the chemical prepattern type. Here it is argued that a pattern is
first established in the concentration of certain chemicals (termed morphogens), and
subsequent differentiation into different tissue types occurs according to whether or
not the concentration exceeds some threshold locally. Thus it is implicitly assumed
that the chemical pattern is established on a faster timescale than the response of the
cellular machinery, so that the formation and interpretation of the pattern decouple.

The idea of threshold-mediated response to morphogen concentration gradients is
developed in Wolpert’s notion of positional information [134, 135]. Much of this work
considers cellular response to (possibly multiple) simple gradients. Crick [20] estab-
lished that gradients could form on realistic timescales over distances of a millimetre
or less under the mechanism of passive or facilitated diffusion of morphogen from a
localised source.

Theoretical approaches may also be divided into discrete (cellular) and continuum
descriptions. Turing’s original discussion of the reaction-diffusion mechanism considers
both possibilities, however, the analysis is restricted to the case of diffusive coupling
between cells (or through the tissue), which is by no means the only mechanism of
cellular communication demonstrated in biology. Much is known at the molecular
level about intercellular signalling. Cells can demonstrate active regulation of signals
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and passage of substances, which are ignored in diffusion-based models. In some
instances signalling molecules are held in the cell membrane and bind to receptors on
adjacent cells only, a process known as juxtacrine signalling. Lateral inhibition, for
which ligand binding down-regulates ligand and receptor expression, generates fine-
grained patterns where the wavelength is two cell diameters (high and low expression
levels of the ligand are found on alternate cells). This mechanism is observed in the
Delta- Notch signalling pathway [17], and typically selects a subset of cells from an
initially equivalent field which adopt a different cell fate. A recent model due to Owen
et al. [104, 105] considers lateral induction, where signalling results in up-regulation of
ligand and receptor expression (positive feedback), and has demonstrated that longer
wavelength patterns may be generated in a mechanism with only nearest-neighbour
cell communication. In two dimensions spot and stripe patterns may be generated by
this model.

Before going on to discuss the reaction-diffusion mechanism in more detail, we
briefly discuss the justification for such modelling, as well as some of the pitfalls. In
this context it is useful to distinguish between modelling and simulation of a natural
phenomenon. It would be a tall order (if not impossible) to describe all of the detailed
processes involved in any single biological pattern forming event. However, such an
all-encompassing mathematical description (or some approximation to it) would con-
stitute a simulation of the system. This is not the intention of the sorts of models
we have described above; rather the aim is to discover whether some smaller set of
processes may in themselves be sufficient to account for the phenomenon. The model
is built to encapsulate only those mechanisms of interest, and is analysed to deter-
mine qualitatively whether the phenomenon may be attributed to the interaction of
these mechanisms. In this sense we are constructing and testing theories of pattern
formation. Furthermore, a simple model, such as a reaction-diffusion system, may
be considered to represent a caricature of some more complicated (and unidentified)
system, which captures the dynamics of the higher dimensional system. In this sense
different classes of model may be studied as paradigms for pattern formation, rep-
resenting some level of mathematical abstraction from the physical reality. Clearly
this is only satisfactory from the biological point of view if connections can be made
from the mathematical analysis to physically measurable quantities. Of course a suc-
cessful comparison between model behaviour and the natural phenomenon does not
guarantee that the model constitutes the correct explanation. It may be the case
that several models with different underlying assumptions generate similar behaviour.
This is found to be the case for reaction-diffusion models and certain mechano-chemical
models for pattern formation, where the underlying mathematical structure of the pat-
tern forming bifurcation are similar, both mechanisms generating an intrinsic pattern
wavelength. Hence it may be difficult to distinguish between the predictions of models
describing very different mechanisms purely in terms of phenomenology.



4 1. INTRODUCTION
1.2 Reaction-Diffusion Theory

In 1952, Turing proposed that pattern formation during morphogenesis might come
about through an instability in systems of reacting chemicals, driven by diffusion. The
resulting chemical prepatterns, states the hypothesis, are subsequently interpreted as
positional information by competent cells and cell fates are determined via prepattern-
dependent differentiation. As will be shown in the following chapter, a set of two or
more chemicals is required to interact in a well defined manner in order that hetero-
geneous patterns may arise in their concentrations. Significantly, the diffusion-driven
instability (DDI) requires disparity between the diffusivities of the chemicals.

This mechanism for spatial and spatio-temporal pattern formation is of great theo-
retical interest as it represents a spontaneous spatial symmetry-breaking phenomenon
in a simple physical system. Any thermodynamically closed system, where there is no
transfer of matter or heat into or out of the system, must evolve towards thermody-
namic equilibrium. Pattern formation in such systems can be only transient. However,
Prigogine and Nicolis [94] showed that if nonequilibrium (or far-from-equilibrium) ther-
modynamic conditions are maintained in an open reactor, e.g. by providing a constant
supply of reactant, then heterogeneous patterns may be sustained. In the mecha-
nism described by Turing these patterns have an intrinsic wavelength which does not
depend on the physical size of the reactor, and patterns tend to demonstrate period-
icity. Turing’s theory has found application in fields far removed from developmental
biology—see for example the book by Walgraef [130].

Turing’s ideas have been applied to a wide variety of pattern formation problems
in biology. However, the theory has received important criticism on several fronts.
Firstly, although many molecules have been identified which appear to act as diffusive
signals, some of which may act as morphogens in the Wolpertian sense, no set of
chemicals has been demonstrated to operate in the manner that Turing described in a
biological system. In fact, it is only relatively recently that Turing patterns have been
demonstrated conclusively under controlled conditions in artificial chemical systems,
discussed in the following section.

We have already hinted at the second major source of criticism of Turing’s theory
of pattern formation in biology. In many situations the number of pattern elements
(for example the number of wavelengths generated in one dimension) is crucial. Tur-
ing patterns have been shown to display strong sensitivity to the size and geometry
of the solution domain. This criticism, which has come to be known as the robustness
problem, was first brought to light concerning the segmentation of Drosophila. Kauff-
man [59] suggested that periodic gene expression patterns observed during the early
development of insects could be explained by a reaction-diffusion model, which ap-
peared to give qualitatively similar patterns on regular and rather symmetric domains.
Subsequent work [10] showed that patterns which do not resemble those occurring nat-
urally are obtained for minor perturbations of the size and shape of the domain. In
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fact it was subsequently discovered that the segmentation of the Drosophila embryo is
achieved in a manner much closer to that described by Wolpert, where each individual
element of the apparently periodic pattern is separately controlled and regulated, and
the pattern is generated in a cascade of gene switching [2].

The root of this problem is in the fact that for domains of anything but very
small aspect ratio (the ratio of domain size to intrinsic pattern wavelength) there are
many different patterned solutions which may be generated, the number increasing
as the domain size is increased, and the selection between these different patterns
depends sensitively on initial data and domain geometry. Bard and Lauder [6] draw
the same conclusion, finding in a series of numerical experiments that patterns in
discrete cellular simulations are sensitive to the number of cells, concluding that only
unpredictable mosaic patterns are possible. More recently Saunders and Ho [118]
have considered segmentation of growing systems, concluding once again that reaction-
diffusion does not constitute a reliable pattern generation mechanism. Dillon et al. [26]
have shown that the multiplicity of solutions may be reduced by varying the boundary
conditions. We will demonstrate that the consideration of domain growth during
pattern formation may have important consequences for the robustness issue.

An alternative way of viewing the robustness issue is to argue that the reaction-
diffusion mechanism fails to demonstrate the regulatory properties that we described
earlier. While for given initial conditions it may be possible to select the desired
pattern by judicious choice of domain size, in general biological systems are subject to
natural variation in such parameters and reliable pattern generation requires a certain
degree of scale invariance. To achieve this regulatory property, various modifications
to the theory have been proposed, requiring some form of feedback from the domain
size to the parameters in the function describing the reaction rates [100, 52]. We will
discuss scale invariance later, in light of results we will present for pattern formation on
growing domains. Before turning to consider domain growth we discuss the realisation
of chemical patterns in laboratory experiments.

1.3 Chemical Pattern Formation

Travelling waves in chemical systems have been known for some time in the Belousov-
Zhabotinsky reaction, however, reactions demonstrating the stationary patterns pre-
dicted by Turing have only been discovered within the last decade. General reviews of
spatio-temporal phenomena in chemistry can be found in Epstein and Showalter [36]
and Johnson and Scott [56] and, for spatial patterns, Maini et al. [78].

The experimental realisation of Turing patterns was precipitated by the develop-
ment of gel reactors where reactants undergo diffusive transport through an aqueous
gel, which serves to suppress any convective motion. First introduced by De Kepper
and Boissonade in Bordeaux, the Gel Strip reactor has two reservoirs containing chem-
ically inert sets of reactants which are allowed to diffuse into a thin rectangular ribbon
of gel from opposite sides. In the middle of the ribbon both sets of chemicals are
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present and may react. The concentrations in the two reservoirs can be held constant
to maintain nonequilibrium conditions. The first unambiguous experimental observa-
tion of Turing patterns was reported by this group in the CIMA reaction! [13, 23].
Here the gel was loaded with starch primarily to aid visualisation. Starch, a large
molecule with low mobility in the gel matrix, forms a complex with iodide, one of
the reacting species, effectively reducing its diffusion coefficient to provide the neces-
sary conditions for Turing patterns to form. Subsequent observations were reported
by Ouyang and Swinney [103] using a variation on the design, the Gel Disk reactor,
where patterns form in the plane perpendicular to the concentration gradients so that
larger patterned domains can be observed. A vast amount of theoretical work has been
done to develop analytical models of these complicated reactions, the aim being to re-
produce the phenomena and to calculate phase and bifurcation diagrams describing
the chemical systems.

Stationary patterns have also been recorded in the FIS reaction? when initiated
with sufficiently large perturbation away from equilibrium. Here pattern formation
is achieved by propagating chemical (redox) fronts which halt when they approach
each other. In this case labyrinthine patterns [69] have been observed as well as
self-replicating phenomena [70], where a localised spot grows, divides and separates,
repeating to fill domain. Other phenomena include breathing spot patterns, where
the spot radius oscillates [47]. Recently, similar structures have also been reported in
the CIMA reaction [22]. However, these patterns are not of Turing type in the strict
sense, as we shall see in the following chapter.

1.4 Domain Growth

The motivation for consideration of domain growth in developmental systems is appar-

ent. Most pattern formation takes place during the growth of the organism. However,
what may not be immediately clear is whether underlying growth, which is expected to
take place over much longer timescales than the generation of pattern via reaction and
diffusion, may be considered to decouple from the reaction-diffusion mechanism, as are
other cellular processes. Furthermore, it is unclear how the incorporation of domain
growth might influence pattern selection. The following is a quote from Cross and Ho-
henberg’s comprehensive review of pattern formation in nonequilibrium systems [21,
p-1052]:

‘A natural procedure for biological systems is to consider the spatial domain (2 to be a function
of time €2(t). Then the dynamics of the [reaction-diffusion] equations will be supplemented by
the stretching of the domain. In the simplest case one might assume that the timescale for

variation of Q(t) is slow, but never the less the final pattern obtained might be very different

! Chlorine-Todide-Malonic Acid
2Ferrocyanide-Iodide-Sulfite
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from the one which would be produced by specifying an initial condition on the fully grown
domain Q(tfinal)-,

It is our intention in this thesis to present a systematic study of the influence of domain
growth on pattern formation in reaction-diffusion systems.

Domain growth has previously been considered in reaction-diffusion models for
the sequence of emergence of tooth primordia in the developing jaw [65] and for the
branching morphology of growing Micrasterias [66]. New impetus was recently pro-
vided by Kondo and Asai [64], who suggested that a reaction-diffusion mechanism
could be responsible for the dynamic changes in pigmentation patterns of the marine
angelfish Pomacanthus. Unlike mammalian coat markings, the pattern in the skin
of these fish changes dynamically during growth of the animal, rather than simply
enlarging in proportion to the body size. Juvenile P. imperator display concentric
stripes and P. semicirculatus have a regular array of vertical stripes which increase in
number during growth. Juvenile P. semicirculatus of less than 2cm in length display
three vertical stripes which separate until the length of the fish is approximately 4cm,
at which point new stripes appear between the original ones. Similarly at around 8-
9cm in length new stripes again appear between the existing ones. In this manner the
pattern changes by insertion of new stripes as the animal roughly doubles in length, to
preserve the wavelength of the pattern. In P. imperator this behaviour is maintained
in the adult fish, where horizontal stripes maintain an average spacing. This dynamic
regulation of the pattern is quite unlike the static pattern selection we have previously
discussed.

In the following chapter we present a detailed discussion of the diffusion-driven insta-
bility, including further discussion of the robustness problem, and some mathematical
properties of solutions to the model pertinent to pattern formation on growing do-
mains. In Chapter 3 we derive the governing equations for reaction and diffusion
processes on a growing domain as a problem in kinematics. Chapter 4 considers a
simplified scenario in one spatial dimension where the domain growth is uniform in
space. We investigate the effects on pattern formation of the rate at which the domain
is growing, and on the reaction kinetics. This latter problem is taken up in Chapter 5
where we examine the dynamical transitions between patterns as the domain grows
for different functional forms for the reaction term. Chapter 6 considers nonuniform
domain growth and pattern formation in two spatial dimensions. Finally, in Chapter 7
we conclude the thesis with further discussion of reaction-diffusion pattern formation

on growing domains.



1. INTRODUCTION



2. Pattern Formation in Reaction-Diffusion Systems

Under the continuum hypothesis, the spatio-temporal state of a chemical system is
described by partial differential equations derived from considerations of conservation
of matter. We consider the net production rate of a chemical species, the reaction
kinetics, within an elemental volume V' and the flux of matter through the elemental
volume boundary 0V at fixed location within the reaction space 2. The reaction space
is a bounded region which will be called the domain, with boundary 92. The rate of
change of the amount of matter within the elemental volume is given by

% /V c(x,t) dx = /6 , A0 t) - dS + /V R(c,p) dx, (2.1)

where ¢(x,t) is the concentration of a chemical species C' at position x and time ¢.
The flux j(x,t) is through the closed surface OV and R(c, p) is the net rate of creation
of concentration of species C. The reaction kinetics, R, are generally described by a
polynomial or rational function in ¢ and p represents interaction with other chemicals

and external factors. Using the divergence theorem, (2.1) may be written

% /V c(x,t)dx = /V [—V-j+ R(c,p)] dx. (22)

The domain is fixed in time and so we may differentiate through the integral. Using
the fact that the choice of elemental volume V' was arbitrary within (2, we have that
at every point (x,t) the following conservation equation holds

% =—-V.j+ R(c,p). (2.3)
If we suppose that the instantaneous flux j is due to (isotropic) Fickian diffusion then
j = —DVc¢, where the diffusivity D is a constant, and we have the reaction-diffusion
equation for species C on a fixed domain 2

% = DV?c+ R(c,p). (2.4)

Generally one is interested in the interaction of several chemical species, for ex-
ample the set {C1,Cy,...,Cp}. Equation (2.4) is then replaced by a system of
coupled equations which describe the evolution of a vector of concentrations ¢ =
(c1,¢2,...,cn), and now R(c,p) describes the interaction of the species. Various ki-
netic schemes are presented in Appendix A, and will be introduced in the discussion

of the behaviour of specific systems.

2.1 Nondimensionalisation and Boundary Conditions

To nondimensionalise the system of coupled equations we start, following Dillon et
al. [26], by writing ¢; = ¢;/C; and X = x/L. Here L is a length scale (usually taken
to be the domain length for problems in one spatial dimension) and C; is a reference

9



10 2. PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS

concentration for the chemical species C;. A reaction rate w, characteristic of the
kinetic scheme, is used to nondimensionalise the reaction term which is represented
in nondimensional form by R(€,p). In general R has the same functional form as R,
but generally has different coeflicients.

To standardise the problem (and without loss of generality) we rewrite the system
in order of decreasing diffusivity, D; for the i** species. We introduce a dimensionless
scaling parameter

el (2.5)

where D; = max{D;,}, which represents the ratio of diffusive T to kinetic Tr relax-
ation times, where
2
Tp = lI;—l and Tgp= é (2.6)
Both of these timescales could be used to nondimensionalise the time variable. For
reasons which will become evident later, we choose to nondimensionalise the equations
using the kinetic relaxation timescale. Writing ¢ = wt, and dropping the overbars for

notational convenience, we have the dimensionless equation

0 1
8_; = ;DV% +R(c,p), xe (2.7)
where D = diag[l,ds,... ,dy] is the diagonal matrix containing the ordered dimen-

sionless diffusivities where d; = D;/D; <1 and d; < d;_1,i =2,... ,n.

The full specification of the reaction-diffusion system requires that conditions be
imposed on the boundary of the solution domain, 952, and that an initial condition is
specified for the system of partial differential equations. If initial data is contained in
the vector co(x), then a typical set of boundary conditions is given by

n-V)e=P(c*—c), xe€ (2.8)
c(x,0) = co(x) (2.9)

where the fixed concentration vector c* is uniform over {2 and represents a constant ex-
ternal reference concentration for each species. The outward normal gradient operator
n - V acts component-wise on ¢(x,t), where n is the outward-pointing vector normal
to the boundary. On 992 we will restrict boundary conditions such that the matrix P
is of the form P = diag[P1, P», ... , P,], where constants 0 < P; < oo define the type
of condition imposed, specifying the rate of flux at the boundary for each species. For
scalar conditions P;; = §;;P with constant P, where ¢;; is the Kronecker delta, and
P = 0 gives zero flux (Neumann) data for each species while P = oo corresponds to
Dirichlet conditions for which there is an instantaneous equilibrium with the external
concentration, c*. The case for which ¢* = c,, where

R(cs,p) =0 (2.10)
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is called homogeneous Dirichlet conditions. The concentration vector c; is the kinetic
steady state of the reaction scheme, the stability of which we discuss below. Another
type of constraint often assumed on 0f2 is a periodic boundary condition, taken to
simulate a spatially unbounded system. On the one-dimensional domain, for z € [0, 1],
periodic conditions take the form ¢(0,¢) = c(1,t) for all ¢.

2.2 Diffusion-Driven Instability

The counterintuitive result of Turing’s celebrated paper [126] is that a spatially homo-
geneous system of interacting chemicals which is stable to perturbation in the absence
of diffusion may be driven to a persistent spatially heterogeneous state via a dynamic
instability due to diffusion. This statement defines the diffusion-driven (Turing) in-
stability (DDI), which is recognised as one example of a class of pattern forming
instabilities in systems driven far from equilibrium. In otherwise similar patterning
mechanisms (for example in fluid systems: thermal convection (buoyancy) driving the
Rayleigh-Bénard instability or the rotation of concentric cylindrical walls in the Taylor-
Couette flow system [21]) the spatial scale of pattern is determined by the geometry of
the solution domain (i.e. by physical constraints). Patterns in Turing systems, how-
ever, are characterised by a wavelength which is determined by parameters intrinsic to
the mechanism of the instability itself, as will be demonstrated in section 2.3.1. In this
respect the Turing instability is set apart from other pattern forming systems. For a
discussion of the differences between the Turing and Rayleigh-Bénard instabilities in
finite systems see Chen and Cross [15]. Next we review the standard results for the
onset of the instability in the linear regime (see, for example, Murray [88]), and go on

to consider a nonlinear analysis for longer-time behaviour.

2.2.1 Linear Analysis. The defining requirement, stability of the homogeneous
(spatially uniform) steady state cs to perturbation in the absence of diffusion, is equiv-
alent to requiring that c; must be stable to homogeneous perturbations in the presence
of the diffusion term. The diffusion-driven instability is the instability of such reaction-
diffusion systems to heterogeneous perturbation. Near to onset we study the linear
instabilities of the homogeneous steady state to classify the patterns which may grow
in terms of their wavenumber (and frequency for spatio-temporal pattern formation).

The homogeneous steady state, positive solution of R(cs,p) = 0 with no spatial
variation, exists when compatible with the imposed boundary conditions. The analysis
is thus restricted to the cases of homogeneous Dirichlet and Neumann (zero flux)
conditions. We consider bifurcations from the steady state by examining the response
of the system to an initially small perturbation w(x,t) where |w;(x,0)| < 1. Setting

c(x,t) =cs + w(x,t) (2.11)
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in the dimensionless reaction-diffusion equation (2.7) we linearise in the variable w

giving
ow 1
— = -DViw+ A 2.12
ot~ R PV W AW (2.12)
where the Jacobian (stability) matrix A is evaluated at the homogeneous steady state
OR;
;= 2.13
A5 =0, | (2.13)

We consider scalar boundary conditions
(n-V)w=—Pw on 09, (2.14)

restricting ourselves to the homogeneous case, ¢* = cs. Solutions of system (2.12)—
(2.14) take the general form w(x,t) = exp (A\t) ®(x) where ® is a vector and the growth
rate may be complex, A = a + ¢, allowing for temporal oscillation. Substituting this
solution into equation (2.12) we obtain

%DV2<I> +(A-AD)® =0 (2.15)

where 7 is the identity.

Eigenfunctions of the spatial eigenvalue problem (2.15) can be written as ®,, =
Ym®m, where y,, is a constant vector and ¢,,(x) are (scalar) eigenfunctions of the
Laplacian containing the spatial dependency of the solution, and are subject to the
scalar boundary conditions

V2¢m = -k ¢m in Q
n-Ve¢, = —P¢,, on 09, (2.16)

where k,, is a dimensionless wavenumber associated with ¢,,. The boundary conditions
acting on & restrict the spatial dependency to a discrete set of eigenfunctions of the
Laplacian, ¢,,. Clearly, for the solution on an unbounded domain, the wavenumber &
is a continuous variable. For nontrivial solutions of (2.15) we require

2
det lA - %mD - A(k?n)I] =0 (2.17)

(the characteristic polynomial) which yields the dispersion relation, A = A(k2,), an
algebraic equation for the growth rate. The solution of the linear stability problem is
then given by

wx,t) = 3 exp (AKE)E) () 219

m=0
where the vector y,, is determined by the initial data wo(x) = co(x) — ¢;. The
individual components making up the infinite sum (2.18) are linear modes and the
label m is the relevant mode number. For certain nonlinearities in the reaction term
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the amplitudes of growing modes are bounded to finite value. This is shown in the
nonlinear analysis below. We distinguish between the eigenfunctions of the Laplacian
(the linear modes) and the patterns which subsequently develop outside the linear
regime, which we will call pattern modes.

The linear stability of the homogeneous steady state to spatially heterogeneous per-
turbation of mode m is determined by the sign of the real part of A(k2,). The kinetic
steady state has neutral stability for Re A = 0, is (asymptotically) stable for Re A < 0
and is unstable (and hence a perturbing mode of appropriate wavenumber may grow)
for Re A > 0. This latter possibility describes the onset of the diffusion-driven insta-
bility. We describe any mode for which the linear stability analysis predicts instability
of the homogeneous steady state as a growing mode. Depending on the components of
Ym, determined by the initial conditions, all possible modes may not be available for
growth. The question of which mode grows to become the final long term pattern, the
pattern selection problem, will be discussed later. The requirement that the steady
state is stable in the absence of diffusion is equivalent to there being no growing mode
with wavenumber ky = 0, that is, Re A(kp = 0) < 0. This provides certain conditions
on the components of the Jacobian matrix, A, as will be demonstrated explicitly from
the linear analysis in the simple case of a two-component reaction-diffusion system in

one spatial dimension.

2.2.2 Two-Component Model System. We consider a reaction-diffusion model
of two interacting species ¢ = (u,v) in one spatial dimension, with external refer-
ence concentrations set at the homogeneous steady state of the kinetics, R(cs,p) =
(f(us,vs),g(us,vs)) = 0, and scalar boundary conditions. Linearising about the

steady state and writing w = ¢ — c; we have

ow 1_0%w
o ; B2 + Aw, z€]0,1] (2.19)
ow
with
Ju Jo 10
A lgu gv](uv) an lo d] (2.21)

Henceforth, the partial derivatives f,, fy, gu» and g, will be assumed to be evaluated
at the steady state (us,vs). From (2.17) we have det (A — k2,D/y — A(k2,)Z) = 0,
which yields the dispersion relation for this problem

0=+ (%(1 +d) - (fut gv>) + h(k2), (2.22)

where

d 1
h(kgn) = ?kfn - ; (dfu + gv) k?n + fugv - fvgu- (2'23)
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Firstly, let us address the requirement of linear stability in the absence of diffusion.
Substituting km, = 0, in the absence of diffusion (or for homogeneous perturbation),
into equations (2.22) and (2.23) we have Ao + are the roots of

N = A fu+ go) + fugo — fogu =0 (2.24)

and so linear stability, Re Ao+ < 0, is guaranteed by the two constraints

trA = fu+ 9y <0, det A= fugy — fogu > 0. (2.25)

Next we consider spatially heterogeneous perturbations for which k,,, # 0. In order
to achieve the growth of some linear mode we require that there is at least one real
k., for which Re A > 0. From the dispersion relation we see that the first requirement
of (2.25) precludes the coefficient of A\ from taking a negative value, and so we must
have h(k2,) < 0 for diffusion-driven instability. The second of (2.25) implies that this
can only be the case if

which provides a third constraint on the system. Comparing with the first of (2.25),
this implies that d # 1, which provides a necessary but not sufficient condition to
ensure Re X > 0. The criterion for h(k2,) to be negative, found by examining the
minimum of the function, Am;,, provides a fourth constraint for diffusion-driven in-

stability,
1
min = det A — = (dfu + gv)* < 0. (2.27)

Collecting together the four conditions that we have computed and which must be
satisfied for the Turing instability we have:

o fut+9,<0

L4 fugv_fvgu >0

o dfy +g, >0

b fugv _fvgu_ ﬁ(dfu'i'gv)z <0

where the partial derivatives are evaluated at the kinetic steady state.

These four conditions may be employed to deduce parameter regimes for which
specific kinetic schemes can undergo Turing bifurcation, or indeed whether such a
bifurcation is possible for a particular reaction scheme. The region of the parameter
space for a particular kinetic scheme within which the diffusion-driven instability may
give rise to pattern is known as the Turing space [88]. For anything but the simplest
form for R and hence A in (2.13), the direct algebraic calculation of the boundaries
of the Turing space (given by the above conditions) is intractable. Murray [87] has
described a parametric approach by which the problem is considerably simplified. The
existence of a Turing space does not in itself guarantee that a pattern will arise from
the dynamic instability in a finite system, where only a discrete set of linear modes is
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consistent with the domain geometry and boundary conditions, at least one of which
must have positive linear growth rate. This is discussed further in section 2.2.4

2.2.3 Configurations of the Jacobian. The two constraints (2.25), derived for the
stability of homogeneous perturbations, lead to a restriction on the configuration of
the signs of components for the Jacobian matrix A. With d < 1, the constraints
fu+ gv <0 and df, + g, > 0 require that f, < 0 and g, > 0, and det A > 0 implies
that only the following configurations are compatible with diffusion-driven instability

sgn(Ap) = l B i ] , sgn(Ae) = l I_ _T_ ] . (2.28)

The first of these is called a pure and the second a cross activator-inhibitor mechanism.
The interpretation of these two possibilities in terms of activation and inhibition may
be gleaned from an examination of the nullclines of systems with Jacobian matrix
of these general forms. A pure system is one in which v is self-activating and also
activates u, while u reciprocally inhibits v and is self-inhibiting. On the other hand,
for a cross system v is self-activating but inhibits u, while u is still self-inhibiting,
but now activates v. In both cases u is deemed to be the (self-) inhibitor and v the
(self-) activator,! and with d < 1 the inhibitor diffuses faster than the activator.? This
leads to the popular description [98, 88] of the mechanism as one of short range local
activation with long range lateral inhibition. The constraint tr.A < 0 implies that the
self-inhibition is always stronger than the self-activation in reaction-diffusion systems
of this type that are capable of forming pattern.

One important consequence of these sign configurations, and a feature distinguish-
ing the two cases, is the relative polarity, or phase, of the patterns formed in the sys-
tems. Dillon et al. [26] show analytically that if the kinetic terms of a two-component
reaction-diffusion system in one spatial dimension with zero flux boundary conditions
are of the pure variety, then near to a primary bifurcation point the spatial gradients
of the species’ concentrations will be of the same sign (spatial oscillation in phase) at
all points in the domain. For kinetics that are cross-type, the gradients are of opposite
sign (spatial oscillation in antiphase) [111]. This result, it is conjectured, is maintained
on primary bifurcating solutions away from the bifurcation point.

2.2.4 The Dispersion Relation. The quadratic form of the dispersion relation dic-
tates that the values of k2 for which the real part of A\(k?) is positive lie in a bounded
range k% < k% < k2 (of growing modes), given by the zeros of h(k?),
2d
~

KL = (dfutgo) £ /(dfutg0)? —4d det A = ALB (2.29)

!Some authors reserve the term activator-inhibitor to refer to pure kinetics and call cross systems,
where the (self-) inhibitor promotes the activator species, activator-substrate kinetics.

2If we had chosen the opposite ordering for the species, giving d; > 1 and prompting f, > 0, this
would swap the roles of u and v, amounting only to a relabelling of the two species.
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FIGURE 2.1 Intervals of instability of the homogeneous steady state to perturbation by
spatial eigenfunctions of the Laplacian for Schnakenberg kinetics. We plot the natural
logarithms of «;(d) (solid) and #,,(d) (dotted) against the ratio of diffusivities d for
modes m = 1,...,8, where k,, = mm. Points for which v} =~ 41 are marked + and

points where 'yj,;n = Y where m,, = my2" are marked by X, which lie on a line of

equal d (dashed). Note that for successively smaller d there is increasing overlap between
the ranges of instability for different modes. The curves are calculated for Schnakenberg
kinetics (see Appendix A.1) with kinetic parameters ¢ = 0.1 and b = 0.9. Note that the
bifurcation occurs at the same value d = d. independent of m (the bifurcation point is
in fact independent of k - see equation (2.34).

where A and B depend on the kinetic parameters and d but not on v.> For fixed

kinetic parameters p this condition is satisfied when the scaling parameter falls in the

interval v € [v,,,7,.], where, making the dependence on d explicit,
2dk2, 2dk2,

=@ b@ D= A - By

(2.30)

Successive ranges of instability overlap when ~,; >~ +1 and there is an interval of
stability of the homogeneous steady state when ~,, < v, 11- For zero flux boundary
conditions the spatial eigenfunctions are ¢,,(z) = cos(mmnz). The instability intervals
for k,, = mm are plotted for a particular kinetic scheme in Figure 2.1 as d varies.
In this case we have overlapping instability ranges (and intervals of stability) for,

respectively,

2m? A A
> — — . .
+2m—|—1 > B << B) (2.31)

Points where the equality holds, that is where successive modes first become desta-
bilising at the same value of d, are marked by ‘+’. We also indicate points at which

3For solutions on a bounded domain we also require that there is at least one discrete wavenumber
km in the range of instability.
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destabilising linear patterns of mode m = my2"® and m = mg2"t! first coincide,
marked by ‘x’, and from (2.30) it can be shown that for k,,, = mn the corresponding
value of d is independent of mg and n, shown by the dashed line in the figure. We
discuss this result further later in this chapter.

When the ranges of instability for two or more wavenumbers overlap, there is com-
petition between patterning modes. It is apparent from Figure 2.1 that there is in-
creasing overlap further away from the bifurcation point (for example, as d decreases),
and intervals of stability tend to disappear. The prediction from linear analysis that
the mode with fastest linear growth rate, max,, {A(k2)}, will be established proves to
be of decreasing validity further from the bifurcation point, and of little use for prob-
lems in more than one spatial dimension where there is also increasing degeneracy for
pattern orientation. The mechanism of pattern selection, by which one mode is chosen
to grow to heterogeneous steady state from many admissible modes, is an important
issue to which we will return later in this chapter.

Notably the linear solutions for zero flux conditions have an arbitrary phase shift of
m, that is, the linear modes may be reflected about the homogeneous state and remain
valid solutions. In fact linear solutions for any boundary conditions or geometry (or
spatial dimension) have an arbitrary sign to the wavevector (only the magnitude is
determined by the analysis). Thus for zero flux conditions patterns of the same spatial
mode number may take one of two polarities, where we adopt the notation that mode
+m, has positive polarity (high amplitude at the left-hand boundary) and mode —m
is of negative polarity. We also recall that pure kinetics will give the same polarity for
both species while for cross kinetics the polarities will be opposites.

2.3 Instability and Characteristic Scales

By allowing A to be complex in the previous analysis we admit the possibility of tempo-
ral or spatial oscillation, or both simultaneously. Following Cross and Hohenberg [21]
we may in general characterise pattern-forming instabilities at the bifurcation point.
For A = a + i and wavenumber k. at this critical point, where o = 0, instability is
categorised according to which of k. and 8 are non-zero:

1. k. # 0 and 8 = 0: Spatial oscillation only. Long-time solutions are stationary and
spatially heterogeneous structures.

2. k. = 0 and B # 0: Temporal-oscillation only. At large times solutions remain
spatially homogeneous.

3. ke # 0 and 8 # 0: Spatio-temporal patterns. Long-time behaviour continues to
evolve spatially and temporally.

General instabilities in systems driven far from equilibrium may be of any of the
above types. The Turing bifurcation may give rise to instabilities of type (1) and (3).
Type (2), corresponding to Hopf bifurcation in the kinetics, is excluded by the require-
ment that the homogeneous state is stable in the absence of diffusion. For the case of
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two species interaction, the dispersion relation subject to the constraints for diffusion-
driven instability precludes time-oscillating pattern solutions. We see from (2.22)-
(2.23) that A has an imaginary part when
k2 2

(7’”(1 +d) = (fut gv)> —4h(k2) < 0. (2.32)
However, for the homogeneous steady state to be unstable to heterogeneous pertur-
bation (for a particular mode to grow to a heterogeneous pattern) we require that
h(k2,) < 0. Hence, for any growing mode, A must be purely real and so time-oscillatory
diffusion-driven instability is not possible in a two-component system of this form.
For three or more interacting species, however, the dispersion relation does in gen-
eral admit such solutions, and we investigate a specific example with three species in
Chapter 4.

At a primary bifurcation point the critical wavenumber is defined to be the wave-
number at which the dispersion relation first crosses the axis into the positive half-
plane. A critical (maximum) value for the ratio of diffusivities is also determined at
this point (see Figure 2.1). We may also recover a characteristic spatial scale from
the critical wavelength, and a timescale from the growth rates predicted by the linear
analysis.

In section 2.2.4 we have shown that the scaling parameter must lie in a given
interval, v € [v,,, 7], for a particular linear mode m to grow. If we consider increasing
v from just greater than zero (there is a singular point where v = 0) then we may
define a critical value ~y. at which the homogeneous steady state first loses stability to
a growing mode, the lowest mode available to the system. For v below this value no
pattern is possible. Hence for pattern we require

V> Ve = Yom, (2.33)

where m; labels the lowest mode. For the Neumann problem, in the absence of any
reaction terms we have relaxation to an average homogeneous concentration vector,
the value of which is set by the initial conditions. We might expect the system to relax
to such a steady state whenever the relaxation time for diffusion is much smaller than
the characteristic timescale of the kinetics. Indeed this intuition is borne out by the
minimum requirement on «y. As pointed out by Arcuri and Murray [3], this condition
may be interpreted in three ways:

1. 1/~ is proportional to the largest of the diffusivities, D1, which must therefore be
smaller than some threshold value.

2. The characteristic reaction rate for the kinetics, w, which is proportional to v, must
be greater than a minimum reaction speed.

3. There is a minimum domain length, proportional to /..
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Given that -y represents the relative strengths of the reaction and diffusion mechanisms,
all of these conditions are equivalent. However, in the context of pattern formation on
growing domains the last of these interpretations is the most relevant.

At the bifurcation point the critical wavenumber is determined by equation (2.29)
when k. = k4 = k_. Thus we must have B(d) = 0 which occurs at the critical
diffusivity, d = d., given by the appropriate root, for 0 < d. < 1, of

_det A — f,gu =2/~ fygudet A
B f2

which is independent of k and . This imposes a maximum (fractional) value for d,

d=d+

(2.34)

the ratio of diffusivities, where we require 0 < d < d. for diffusion-driven instability.
However, as has been pointed out in the literature [51, 110, 26], for certain kinetic
schemes the critical ratio of diffusivities may be arbitrarily close to unity.

2.3.1 A Spatial Scale: Critical Wavenumber k.. At the bifurcation point the
critical wavenumber is given by

’Y(dcfu + gv)

ke = 2d, )

(2.35)

from which we see that k. varies as /7. Therefore the corresponding dimensional crit-
ical wavenumber is independent of the domain length and constitutes a characteristic
scale, intrinsic to the system. Turing defined the related wavelength, the chemical
wavelength, at marginal instability. For a finite bounded system, the critical wave-
number may be defined as the closest admissible wavenumber to k..

2.3.2 A Temporal Scale: Maximum Growth Rate \,,,;. From the dispersion
relation we can show that the linear prediction for the maximum growth rate Anqz
is independent of the scaling parameter v. We note that the occurrence of « in
equations (2.22)—(2.23) is such that we may consider A = A(k?/v) with v appearing
nowhere else explicitly. Thus the curve A(k2,7) as a function of v for different & is
simply scaled along the v axis, and the maximum value of the function does not change
(see Figure 2.2). Hence Anmq. is a function only of the kinetic parameters and the ratio
of diffusivities and we may take T = 1/Ajqe to define a characteristic timescale for
pattern development. The reaction-diffusion equation was nondimensionalised to have
a unit timescale for reaction, hence we expect T\ ~ O(1). In Table 2.1, values of
T\ (and equivalently, growth rates Amqz) calculated for different d for Schnakenberg
kinetics are presented, showing that the timescale for pattern formation is reduced as
d decreases from d.. This timescale is intrinsic to the linearised equations and thus
to the initial time evolution of the solution, while being independent of the scaling

parameter.
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[d [ 0.1 [0.05]0.01|

Amaz || 0.0572 | 0.263 | 0.547
Ty 17.50 | 3.80 | 1.83

TABLE 2.1 Timescale for linear pattern growth T\ = 1/A,4, (in nondimensional units)
for different values of d, the ratio of diffusivities, calculated from the dispersion relation
for Schnakenberg kinetics (illustrated in Figure 2.2). Equivalently, Apq. represents a
pattern growth rate.

2.4 Nonlinear Bifurcation Analysis

As we have shown, linear stability theory serves to analyse the response of the homo-
geneous steady state of a dissipative system to infinitesimal perturbations, allowing
determination of the critical conditions for the onset of instability. Turing consid-
ered reaction-diffusion equations with linear kinetics. In his paper he sidesteps the
issue of unbounded exponential growth by proposing that any such linear model is
only applicable to the initial stages of patterning of a real chemical system, and that
bounded steady amplitude will be achieved outside the range of applicability of the
model. However, nonlinear terms in realistic kinetic schemes can be shown to bound
the solution to finite values.

The analytical investigation of instabilities usually proceeds by identifying a con-
trol parameter in the system (here, for example, one of the kinetic parameters, the
ratio of diffusion coefficients, d, or the scaling parameter, ) which may be varied
until the homogeneous steady state loses stability to a particular heterogeneous so-
lution. The exchange of stability occurs at the bifurcation point, where the curve
Re A first moves into the positive half-plane. Close to bifurcation the structure of
the long-time solutions may be determined by a nonlinear bifurcation analysis, which
we describe here. Such analyses are described as weakly nonlinear as the perturba-
tion procedure operates about the critical point of linear stability theory [133]. The
method considers primary bifurcation branches: nontrivial solutions which bifurcate
from the homogeneous steady state (the location of which does not depend on the
bifurcation parameter). The approach that we take follows the discussion in the book
by Grindrod [46] (see also [93, 5]).

2.4.1 Multiscale Expansion Method. We choose the ratio of diffusivities, d, as
the bifurcation parameter and we wish to examine the dependence of solutions on ~.
From section 2.3 we see that bifurcation to a spatially heterogeneous state occurs when
d passes through the critical value d = d.. As d decreases through d. we anticipate a
pitchfork-type bifurcation for the state variable c(z,t), with the homogeneous steady
state ¢ losing stability to two bifurcating branches corresponding to the two polarities

available to the heterogeneous solution.
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FIGURE 2.2 Real part of linear growth rate A plotted as a function of scaling parameter
~ for the first four linear modes, showing that the maximum growth rate is independent
of mode m, where k,, = mm. We use Schnakenberg kinetics, with ¢ = 0.1, 6 = 0.9 and
ratio of diffusivities d = 0.1 such that an interval of stability is observed for v € [5, 8].

The time evolution of the bifurcating solutions may be investigated by introducing
a small parameter €, where 0 < € < 1. We set d. — d = €2 so that the system lies
just inside the region of linear instability and then consider a multiscale expansion in
time. Generally the control parameter d is expanded as a series in increasing powers
of €, but here we anticipate the pitchfork form for the bifurcation for which the second
power is the natural choice. However, the analysis would seek out this expansion had
the leading power been initially undetermined.

The Taylor expansion of A(k2,d) about d, gives

oA
Ad) = M(de) — 2= +O(eh) (2.36)
8d d=d,
with A a decreasing function of d. The first term on the right-hand side vanishes by the
definition of the bifurcation point, giving linear growth exp (At) ~ exp (O (e2) t). This

suggests that there are three timescales for pattern formation in the static problem:

t = O(1): the linear regime in which small amplitude linear modes grow from initial
data,

t = O(1/€?): the nonlinear regime in which the modes interact through the nonlin-
earities, and

t — oo: in which the long-time steady state pattern is achieved.

To investigate the nonlinear regime we introduce the long timescale 7 = €%¢, and
assume that ¢ and 7 are independent variables. Then dc¢/8t becomes dc/dt+€20c/OT.
Again, in the most general case, we could include a series of timescales, t = tg + €t1 +
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Eto+ ...+ €ty + ... , and determine which of those were relevant to the problem in
the course of the analysis.

Confinement to the finite domain allows the system under investigation to be
categorised as one of small spatial extent, i.e. the product Lk ~ O(1). The spectrum
of allowed wavenumbers, k,,, is discrete and so for d close to d. we may consider that
only one mode (or a small number of modes at worst) will destabilise the homogeneous
state. We will assume that the region of the dispersion relation for which Re A > 0
contains only one admissible mode. Therefore we suppose that the corresponding
spatial eigenfunction ¢,,(z) determines the spatial dependence in the dominant part
of the solution in the nonlinear regime. For systems of large or infinite spatial extent
one must consider initially undetermined spatial scalings which results in an envelope-
type modulation of the spatial dependency through a phase equation [93]. We will
assume that pattern evolution in the nonlinear regime is over the timescale of 7 (so
that we can consider ¢ and 7 to be independent) and seek solutions of the form

c=co+ Y €'cy(z,t,T) (2.37)

n=1
for which the ¢, = (un,vn) ~ O(1) are orthogonal. We expand the kinetic terms
R(c,p) as a Taylor series and, on rearranging, find that the O(1) solution (the homo-
geneous solution ¢y = c;) drops out of both sides of the equation. We are left with
linear equations in (u,,vy) for each order of €”
C. ( Un ) =9, (2.38)
Un
in which L is the linear differential operator defined by
o 1. 02
L=Tv — D,
ot ~ “0x?

where A is the stability matrix given by equation (2.13) and contains the linear terms

—A (2.39)

from the Taylor expansion of R, and D. = diag[l,d.]. The Q,, contain the higher

order (nonlinear) terms from R and the remaining terms from the expansion:

Q=0 (2.40)
1 2 1 2

Qs = EulRuu + uv1 Ry + §v1 Ryy (2'41)
Q3 = — 0 la%l _ %
s 1)vy0z2 Or

+ wuaRyy + (u192 + u2v1) Ry + v102Ry
1 1 1 1
+ Eu?Ruuu + Eu%leuuv + Eulv%Ruvv + gvzlivav (242)

Qs=...
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where Ry, Ry, - . . denote component-wise partial differentiation of the reaction vec-
tor field R(c,p) evaluated at the kinetic steady state ¢ = (us,vs). Such terms are
functions of (cs,p) only, and many of these terms will in fact be zero, for a particular
kinetic scheme.

At O(e) we recover the linear approximation for the chosen boundary conditions,
which is given by

2
79 _1p 9

ot ~ CW - A C1 = 0. (243)

Considering the linear analysis above, we have that the general solution of this equation
takes the form

[e o]

ci(z,t,7) = E a,,(7) exp (Amt) cos (k). (2.44)

m=0
However, the condition of small spatial extent allows us to neglect all k,, except the
destabilising mode, ks say. The functions a,,(7) contain the dependence on the slow
time 7. As t becomes large and for )\(k?) ~ 0 for d ~ d., the solution to equation (2.43)
becomes

<l

ci(z,7) = a(7) ( 5 ) cos (ksx) (2.45)

where ¢ = (@, v) is the nullvector, and )\(k%) the relevant eigenvalue, of the matrix

k2
A— 7ch. (2.46)

The signs of @ and v are the same for pure kinetics and are opposite for cross kinetics,
consistent with the concentration profile polarities in the two cases. The solution
amplitude to first order, a(7), is yet to be determined in the analysis.

At O(€?), after substituting the expressions calculated for u; and vy, the com-
ponents of Qo will contain terms with spatial dependence cos?(ksz). The Fredholm
Alternative Theorem [60] guarantees the existence and uniqueness of solutions of the
linear equation Lco = Qg if the vector Qy is orthogonal to solutions ¢* of the homo-
geneous adjoint equation

L*c* =0. (2.47)

The only solutions of the adjoint problem (with appropriate boundary conditions) have
spatial dependence c¢* = b cos(ksx). Here we may employ the trigonometric identity
2cos? @ = cos20 + 1 to show that, under an appropriately defined inner product, Qo
is always orthogonal to c*. Hence, from the solution of the homogeneous equation,
(u2,v2) will be determined only up to the addition of constant multiples of u; and v;
respectively.

On substitution of the expressions for ¢; and cy into (2.42) for the linear equa-
tion (2.38) with n = 3, we arrive at the O(€®) equation. On application of the Fredholm
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FIGURE 2.3 Schematic bifurcation diagrams for the pitchfork bifurcation (2.49) show-
ing (a) supercritical and (b) subcritical bifurcations. Solid lines represent stable solutions
and dotted lines unstable solution branches.

Alternative Theorem we find that the null vector of the adjoint c* is no longer au-
tomatically orthogonal to Q3. We require orthogonality for solutions of the O(e?®)
problem, giving a solvability condition by which secular terms (those with spatial de-
pendence cos(ksx)) in Q3 are suppressed. The structure of this condition leads to an
equation for the amplitude a(7) of the form

Z—Z = Pya(7) + Py a®(7). (2.48)
2.4.2 Amplitude Equation. Equation (2.48) is the amplitude equation for the pitch-
fork bifurcation. The absence of quadratic terms is due to symmetries in the spatial
freedom of the system (see Nicolis [93]) and ensures that the two nontrivial steady
state solutions are symmetric, corresponding to the two polarities identified for the
linear problem. Writing in terms of the physical parameters, € = v/d. — d and time

t = 7/€2, the rescaled amplitude z(t) = ea(t) satisfies

% — (de — d) Py 2(t) + Py 23(2) (2.49)
with three fixed points
20 = 0 (250)
P
2e = +4/(d — do) = (2.51)
Py

the first of which is identified with the homogeneous steady state of the reaction-
diffusion equation. The stability of the branches is easily deduced from a linear sta-
bility analysis of the amplitude equation. The homogeneous steady state zg is stable
for d > d. when P; > 0, which must therefore be the case for the Turing bifurcation.
Then if Py < 0, solutions z1 exist and are stable for d < d., giving a supercritical
bifurcation as shown schematically in Figure 2.3(a), while for P3 > 0 solutions zy exist
for d > d. and are unstable, the subcritical case, shown in Figure 2.3(b). All of the
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kinetic systems that are studied in this thesis give rise to supercritical bifurcations.

The asymptotic approximation to the long-time steady heterogeneous solution of
the reaction-diffusion equation is given by

o oux) N[ ous Nt
°<””)—(U(x)>—<us)i (¢ d>p3<

We may deduce the influence of the scaling parameter v in the nonlinear analysis

e

) cos (kfz) + O (d. —d). (2.52)

<l

without recourse to explicit calculation of P; and P3 and the null vectors for a specific
reaction scheme, all of which may depend on . One quickly sees that v appears only
in £ and Q3 and hence will be present in the expression (2.52), and in particular the
amplitude z., only as the quotient k]% /- Therefore v will have the same influence
as described in section 2.3.2 for the linear analysis. The maximum amplitude for all
choices of mode kj as +y is varied will be the same. Thus we expect all primary solution
branches to have the same form, appropriately scaled along the v axis for different kg,
and this is illustrated with concrete numerical examples below. Next we discuss the
implications of this symmetry on the pattern modes.

2.4.3 Symmetries of the Steady State Patterns. Steady heterogeneous solutions
to the reaction-diffusion equations exhibit a symmetry in the relationship between
different primary bifurcation branches, and thus between patterns of different mode.
This symmetry will prove to be a useful tool in examining patterns formed on the
growing domain, where we show that the arguments may be extended to the full PDE
system. To illustrate the symmetry we construct periodic solutions for the steady state
equations from solutions of lower mode. To simplify notation we will consider a scalar
reaction-diffusion equation, however, the result applies equally well to systems, where
heterogeneous patterns form through the Turing instability. Recently this symmetry
has also be noticed by Nishiura and Ueyama [95] and has previously been described
for the steady state problem by Kevrekidis and Brown [63], who extend the arguments
considerably to encompass the prediction of secondary (‘mixed-mode’) branches.
We consider solutions to the steady state problem

1 d%c
where v = wL?/D, with zero flux boundary conditions

de

— =0, =0,1. 2.54

o z (2.54)
Let us suppose that for v = 41 > <. the solution consists of the primary mode m,
where the linearised equations have solution with heterogeneity cos (mnz). We can

construct new solutions by scaling, translating and reflecting this pattern. To obtain



26 2. PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS

a new pattern, qgm(x), of mode 2m we use the tent map transformation

2z, 0<z< %
= 2.55
pa(z) {2(1_@, P (2.55)
such that
@2 (z;71) = c(p2(z);m), (2.56)

which satisfies the equation
1 d2q2
= —— + R(q2)-

The transformation ps(z) ensures that the zero flux conditions are satisfied at the

(2.57)

boundaries of the unit interval, and so g2(z;7) is a solution of the same equation as
¢(z;y1) when v = 4, i.e. when the domain length is doubled. The transformation
has discontinuous derivative at the point = 1/2, however, g2(z) has zero gradient
here by construction and is, therefore, twice continuously differentiable. Patterns con-
structed under the transformation ps(z) from odd modes maintain the same polarity
as the original pattern mode. Just as easily, patterns with the opposite polarity are
constructed by the complementary transformation

Do(z) = {

1-2z, 0<z<l

2.58
20 -1, 1<z<1 (2.58)

It is straightforward to see that a general transformation p,,(z) can be defined in a
similar manner to generate a pattern of mode m on the interval [0, 1] from the first
mode m = 1, and to find the corresponding equation. In general g, (z;7) = c¢(pm(z);7)
satisfies the same equation as ¢(x;y;) when vy = m?2~, or otherwise, when the domain
length increases by a factor m. This explains the structure of Figure 2.2, where linear
growth rates for different mode are simply scaled along the « axis, and is similarly
reflected in Figure 2.1 where the intersections of instability line up for modes related
by these transformations.

2.5 Pattern Selection

As the control parameter, for example d or v, is moved further past the bifurcation
point, d. or 7., an increasing range of solutions to the linear problem are admissible as
growing linear modes. Furthermore, ranges of instability of the homogeneous steady
state to different modes overlap increasingly as the system moves further from the
critical point (see Figure 2.1 for the effect of decreasing d on the intervals in 7). The
effect on pattern selection is illustrated in Figure 2.4. The conspicuous curves, which
comprise sets of points from individual numerical simulations, represent steady state
patterns of the same mode (we do not distinguish between the two polarities), with
amplitude changing as <y increases. We draw attention to several notable features.
Firstly, as predicted by linear and nonlinear analysis alike, the maximal amplitude
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FIGURE 2.4 The disappearance of intervals of stability in v and increase of multiplicity
of solutions as d is decreased (¢ = v/d. — d is increased), where (a) d = 0.115 (€ ~ 0.045),
(b) d = 0.1 (e =~ 0.13), (c) d = 0.05 (¢ =~ 0.26) and (d) d = 0.01 (e =~ 0.38). Each
point shows the final steady amplitude for the activator v on a domain of fixed size,
where the value of the scaling parameter +y is held constant during numerical simulation
(the homogeneous steady state has amplitude v = 1). The initial conditions for each
data point consist of random perturbations around the homogeneous steady state, of
amplitude 1%. We have used Schnakenberg kinetics with @ = 0.1, b = 0.9.
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(as vy varies) for each mode is the same, independent of the wavenumber. Indeed the
simple scaling of the branches for different modes can be discerned, illustrating the
symmetry that we have described.

Close to the bifurcation point (when € is smallest, in Figure 2.4(a)) there are in-
tervals of stability of the homogeneous steady state between regions where a finite
amplitude pattern is realised. These intervals rapidly disappear as d is decreased
and are replaced by increasing overlap of solution branches. Where overlap occurs in
the figure, two or more different steady solutions have been generated for domains of
(approximately) the same size, but from different initial data. Here, in the competi-
tion between different growing modes, the initial data dominates the pattern selection
(through the components of y,, in the linear analysis), rather than the linear growth
rate. This dependence on the initial conditions clearly increases as d recedes from
its critical value. In the nonlinear regime, competition between modes may be de-
scribed using amplitude equations, as derived in the previous section. This approach
is particularly appropriate for investigating the nonlinear interactions between modes
in two-dimensional (and higher) spatially-distributed systems, where the selection be-
tween patterns of different planforms may be predicted. This is discussed further in
Chapter 6.

2.5.1 Multiplicity of Solutions: the Robustness Problem. The distribution of
steady patterns achieved for different sets of initial conditions on domains of fixed
size, corresponding to fixed values of +y, is shown in Figure 2.5. From the dispersion
relation we have calculated the value of 7y for which different modes achieve maximum
linear growth rate, calling these modes m,. We have performed repeated numerical
simulations with these values of «y for different sets of random initial data and compiled
tables of the relative frequency of occurrence of different steady pattern modes for two
values of d, namely d = 0.05 in Figure 2.5(a) and d = 0.01 in Figure 2.5(b). Thus for
(b) the distributions show the relative frequencies for the different solution branches
found in Figure 2.4(d), at three different values of  (and similarly (a) corresponds
to Figure 2.4(c)). Two results are immediately apparent: firstly, the mean of the
distributions tends towards lower modes than the linearly predicted fastest growing
mode m,, becoming progressively lower for larger -y, and secondly the width of the
distribution is smaller for d nearer d. and increases with . Thus for different sets of
initial data an increasingly wide range of pattern modes my be generated as the domain
length increases. Put otherwise, for larger domain lengths the initial conditions must
be controlled with increasing sensitivity to reliably pick out one particular mode.
This encapsulates the robustness problem for reaction-diffusion pattern formation.
In order to generate patterns reliably, conditions such as the initial data and the size
of the domain must be closely controlled. This has been a major source of criticism
of the application of reaction-diffusion models to those biological situations in which
a specific number of pattern units (spatial oscillations) must be reliably produced.
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FIGURE 2.5 Relative frequency of occurrence of different modes m on domains of
various fixed sizes from random initial data. Each figure shows frequency distributions
corresponding to three values of v, each chosen so that a particular mode m, has max-
imal linear growth rate. These values of v, calculated from the dispersion relation (for
Schnakenberg kinetics), depend on d. In each case we plot the relative frequency (from
a sample of 100) against m — m,, the distance in mode number of the steady pattern
generated, m, from the linear prediction, m,. For (a) d = 0.05 and we take v = 33.4
(black) where m, = 4 has fastest linear growth rate, v = 133.4 (grey) for which m, = 8
is fastest growing and v = 533.4 (white) for m, = 16. In (b) d = 0.01 and the values
of v are 13.3, 53.2 and 212.9 respectively. We note that the two pattern polarities were
observed in roughly equal numbers (data not presented).

The problem is further compounded in higher spatial dimensions where the domain
geometry must also be sensitively controlled, and where many more pattern modes
tend to be admissible for any particular domain size and geometry.

2.5.2 Mechanisms of Pattern Selection. For equilibrium systems the pattern
selection problem is solved by minimising a free energy functional and, at least in
principle, solutions evolve towards the lowest energy state. No such general method is
available for nonequilibrium systems. We have considered the role of domain size (and
geometry) and of the initial data, which might be deemed static effectors of pattern
selection. A full discussion and examples from other pattern forming instabilities is
presented in the review article by Cross and Hohenberg [21]. Arcuri and Murray [3]
report on a study of the influence of boundary conditions on the sensitivity of hetero-
geneous pattern to various initial conditions. Dillon et al. [26] investigate mixed scalar
boundary conditions on a one-dimensional domain, and find that Dirichlet conditions
for one but not both species at the boundaries reduces the sensitivity on domain scale
and initial conditions. In general the boundaries are of greater importance in systems
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FIGURE 2.6 Pattern selection behind a travelling front, initiated in the centre of the

domain with (a) homogeneous conditions elsewhere and (b) random noise on the domain,
vo(z) = (1+0.01n(z))vs where n(z) € [-1,1] is a random variable. For these simulations

we use Schnakenberg kinetics with a = 0.1, b = 0.9, d = 0.01 and v = 1600.
of small spatial extent and zero flux conditions are found to have the weakest influence

on pattern selection.

Similarly there are dynamic processes which may determine the final steady pat-
tern. For parameters that vary with time the trajectory taken through parameter
space may contribute to pattern selection. For small variations in parameters the so-

lution may be expected to adiabatically follow a stable solution branch of the steady
state problem. Where the parameter variation is sufficiently great that the solution
moves between solution branches the manner of transitions between the branches be-

comes important. The bifurcation structure will determine whether or not there is a

continuous adiabatic connection between stable branches. These ideas are discussed

below in light of results for pattern formation on growing domains.
Murray [88] suggests that the mechanism of initiation of pattern formation on
the domain may determine the mode selected. From an initial disturbance at some
location on an otherwise homogeneous domain, spatially periodic pattern spreads out
to fill the domain behind a ‘travelling wave of initiation’. This is demonstrated in
Figure 2.6(a). The wavelength of the pattern may be calculated and lies within the
linearly destabilising band. If the domain is bounded (and especially if the domain is
small) then boundary effects will also affect the final wavelength, as the pattern relaxes
to accommodate the conditions imposed there. However, this selection mechanism
relies on the initial perturbation being restricted to some small region, and for even a
low level of random noise elsewhere on the domain the wavelength of the final pattern

cannot be reliably predicted, as demonstrated in Figure 2.6(b).
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2.5.3 Reflection and Splitting of Travelling Pulses in the Gray-Scott Model.
In general, reaction-diffusion systems can display a rich variety of spatio-temporal phe-
nomena in response to large amplitude perturbations. The nature of the kinetic terms
plays the major role in determining the solution behaviour. In this thesis we will con-
sider only kinetic schemes which have a single steady state, such that c; is the unique
solution of R(cs, p) = 0. However, for bistable systems an additional pair of solutions,
one stable and the other linearly unstable, appear in a saddle-node bifurcation as some
kinetic parameter varies. The Gray-Scott model [45] (see Appendix A.2) is an example
of a kinetic scheme which, for suitably chosen parameters, demonstrates bistability,
and has been extensively studied. In the vicinity of the bistable regime, several inter-
esting spatio-temporal phenomena have been reported. Pearson [109] first identified
self-replication of spot-like patterns in two-dimensional numerical simulations of the
Gray-Scott model, amongst various other behaviours, some exhibiting spatio-temporal
chaos (typically from the interaction of Turing and Hopf modes). This behaviour was
observed for sufficiently large perturbation away from the trivial homogeneous steady
state, and in a parameter regime in the vicinity of both a Hopf bifurcation in the
kinetics, and a subcritical Turing bifurcation for the nontrivial steady state. Many
of the patterns reported by Pearson had previously or were subsequently identified
in chemical experiments on the FIS reaction by Lee, Swinney and co-workers [70, 71]
(reviewed in [72]).

Corresponding phenomena in one-dimensional systems have been studied numeri-
cally by Petrov et al. [112], Reynolds et al. [115] and Rasmussen et al. [114]. Depending
on the precise location in parameter space (while remaining in the vicinity of the curve
bounding the bistable region) these authors have reported that finite initial pertur-
bations may produce various behaviours. Travelling pulses which are reflected from
zero flux boundaries are found in a region for which there is a unique steady state,
reproduced in Figure 2.7(a). Also it is found that these pulses are reflected during
collisions with other pulses [112]. Wave splitting (or self-replication of pulses), illus-
trated in Figure 2.7(b), is observed for small enough d in the bistable region and,
for parameters for which there is a single stable branch, in the vicinity of the saddle-
node bifurcation. For the latter case Petrov et al. have suggested that in this region
the kinetics show excitable dynamics, where small perturbations decay exponentially
to the globally stable steady state but sufficiently large perturbations result in long
excursions through the phase space before returning to the fixed point. During this
excursion the system is in a refractory (non-excitable) state (for a discussion see, for
example, Murray [88]). They suggest that by decreasing d the wave back becomes
decreasingly refractory, until finally it excites a secondary wave which moves off in
the opposite direction. However, Nishiura and Ueyama [95] have shown that the split-
ting phenomena may be recovered for d near unity, by judicious choice of the kinetic
parameters.
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(a) (b)

FIGURE 2.7 Dynamic phenomena in the Gray-Scott model: (a) travelling wave reflec-
tion at zero flux boundaries (parameters from [95]), with F' = 0.025, £ = 0.0544 (monos-
table region) and d = 0.5 with v = 12500. (b) wave-splitting (parameters from [115])
with F' = 0.059, k£ = 0.02 (bistable region) and d = 0.01 with v = 3600.

Several authors have investigated the pulse-splitting phenomenon in the Gray-
Scott model analytically. Osipov and Severtsev [97] discuss splitting and periodic
patterns on infinite domains. Reynolds et al. [116] present a heuristic explanation
for self-replication of spots and analyse equations of motion for travelling pulses in
the limit of small d. Nishiura and Ueyama provide an argument based on underlying
‘hidden’ symmetries in the bifurcation structure of such reaction-diffusion equations.
The authors show that the transient dynamics from the initial perturbation move in
the vicinity of saddle-node bifurcations for steady Turing structures, which is reflected
in the splitting process observed. Finally we note that although there is no supercrit-
ical Turing bifurcation for either solution branch, the transient splitting of travelling
pulses may lead to steady Turing-type structures, which appear in a saddle-node bi-
furcation rather than through DDI, as shown in Figure 2.8(a). However, long-time
behaviour may also give oscillating ‘mixed mode’ behaviour, as in the example shown
in Figure 2.8(b). In order to excite these spatio-temporal phenomena a sufficiently
strong initial perturbation is required to escape exponential relaxation back to the
trivial homogeneous state. Furthermore, these behaviours are restricted to narrow
regions of parameter space (in the vicinity of the bistable region) for models such as
the Gray-Scott system which have a highly complicated bifurcation structure. As we
saw previously (Figure 2.6(a)), large initial perturbations for the simpler Schnakenberg
system do not produce pulse splitting. Similar phenomena may, however, be generated
for reaction-diffusion equations with Schnakenberg kinetics (and for other comparable
systems) when pattern formation is driven by domain growth. In the following chap-
ter we derive the governing equations for reaction and diffusion on a growing domain
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and in the remainder of the thesis we go on to analyse pattern formation subject to

underlying domain growth.
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3. Incorporation of Domain Growth

In this chapter the evolution equations describing reaction and diffusion of chemicals
within a growing domain are derived and developed to consider several different ex-
amples of domain growth. These examples are examined in detail in the remainder of
this thesis.

Several assumptions will be made about the growing domain. The domain is not
treated as a realistic biological tissue: rather, we consider a general framework which
will allow for subsequent inclusion of a detailed description of the properties of any
specific tissue. Consequently the derivation of the governing equation is considered as
a problem in kinematics, and no constitutive equations are proposed. Specifically, it is
assumed that the domain undergoes deformation and expansion with no accompanying
change in density. Growth consists of local directional volume expansion (possibly
nonuniform) resulting in convection of material. Firstly we look at previous attempts
to investigate reaction and diffusion on growing domains.

3.1 Previous Models and Results

Previously several studies have incorporated some form of parameter time dependence
into reaction-diffusion equations and their numerical simulation to model pattern for-
mation on a growing domain. This has been done by a variety of ad hoc means. In
their paper on fish skin patterns, Kondo and Asai [64] do not model growth as such but
increase the numerical grid mesh spacing during a computation. Bunow et al. [10] in-
vestigate pattern formation on two-dimensional geometries for the imaginal wing disk
of Drosophila using a similar technique in a finite element calculation. Several other
authors have performed similar numerical computations. Varea et al. [127] argue that
domain growth simply reduces the effective diffusion and assume D(t) = Do/(at)?,
where domain length L is proportional to time t.

In their influential paper, which seems to be the standard reference for reaction-
diffusion on growing domains, Arcuri and Murray [3] propose a similar approach,
suggesting that the domain growth changes the relative strengths of reaction and
diffusion, as described by the dimensionless scaling parameter 7 (see also the book by
Murray [88]). The authors choose to scale the time variable with «y so that it appears
explicitly in the reaction-diffusion equation multiplying the reaction term. The scaling
parameter is then assigned a specific time dependence and the equation subsequently
studied is

2
% = D% +v(t)R(c, p) (3.1)
with appropriate boundary and initial conditions. Discussing the results of their sim-
ulations the authors note a ‘strong tendency towards frequency-doubling’, however,

35
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this behaviour seems by no means universal in their model. Eilbeck [35] studied the
same model, finding that it produced a succession of patterns with no missing modes.
Jenkins [55] has also studied this equation for the two-species Schnakenberg kinetics,
imposing time-dependence (t) = vo(1+ pt). He found that for small p (~ 0.005) with
d ~ 0.1, and under various alternative growth functions (quadratic and exponential),
a sequence of pattern modes was generated with no missing modes. Larger values
for p (~ 100) served to delay the onset of patterning to large amplitude, after which
the same incremental sequence was generated. No dependence of the sequence on the
initial data was observed. However, Jenkins also found that moving d further from its
critical value precipitated the omission of modes from the sequence of patterns. For
extreme values an initial window of frequency-doubling behaviour was generated.

3.1.1 Domain Growth in a Model for Alligator Dentition. In a paper ad-
dressing the spatio-temporal positioning of teeth primordia in the alligator Alligator
mississippiensis, Kulesa et al. [65] consider the problem of modelling an exponentially
growing domain. The lower jaw of the alligator is modelled as a one-dimensional en-
tity, with symmetry about the frontal midpoint (thus only half the jaw is considered),
and with growth due to a constant strain rate 0. They argued as follows: for a domain
of length £(t) growing under constant strain,

ds

dt
Kinetic terms are considered on a small segment of the domain of length y, ignoring

=ol, L(t) xexp(ot). (3.2)

the effects of diffusion. If @) is the quantity of reactant in length segment y then the
concentration ¢ = @/y. The change in concentration at each location over a small
time interval (¢,t+ At), At < 1, is due to dilution from the growth (y — y + Ay) and
to the action of the kinetic terms over this time interval (Q — @ + AQ). Hence
AQ
Y

where R(c) is the function describing production and degradation of the reactant.

= R(c)At (3.3)

Growth at constant strain rate gives that Ay = oyAt and so

y+Ay oy

1 /Q +yR(c)At
=§(—1+0At —Q>. (3.4)

For 0 At < 1 we have (1 + aAt)_l =1— oAt + O(At)? and so
( ¢)At — sQAL + O(At)?)
( (c) — o)At (3-5)
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which leads us, ignoring the diffusion term, to
dc Ac
— = lim — = R(c) — oec. 3.6
Q= Ay Ay = Rle) —oe (36)
The diffusion coefficient, it is then supposed, scales with the square of the domain
length, in the same manner as for Varea et al., and the equation on the unit interval
is then
dc d 0%c
— = —exp(—20t) — + R(c) — oc 3.7
5 = S exp(<200) o + R(e) o (3.7)
Painter et al. [107] have used this approach to model the chemotactic response of cells
to a reaction-diffusion prepattern on a growing domain.

Now we look at a general derivation for reaction and diffusion on a growing domain.

3.2 Kinematic Derivation

The equation for reaction and diffusion of a chemical C' through a growing domain
Q(t) with boundary 0€Q(t) may be derived from first principles. Considerations of
conservation of matter in an elemental volume V'(¢), which moves with the flow due
to domain growth, give the equation for concentration ¢(x,t) at position x and time
t as

%/V(t) c(x,t)dx = /V(t) [— V-j+ R(c,p)] dx. (3.8)
where the integrals are over any (time-varying) elemental volume. The effect of other
chemicals or factors in the tissue on the reaction rates are represented in the reaction
term R by the variable p(x,t). Application of the divergence theorem is consistent,
being instantaneously valid at all time. The Reynolds Transport theorem of elementary
fluid mechanics (reproduced in Appendix B.1) gives

d Oc
— c(x,t dx:/ [——I—V-ac]dx 3.9
3t J o0 x= [ |54V (@0 (3.9)
where a is the velocity field of the flow generated by the domain growth and
d
d—’t‘ = a(x, ). (3.10)

The usual argument as to the arbitrariness of the elemental volume requires that the
equation hold everywhere on the growing domain Q(¢). The instantaneous flux j is
taken to be due to Fickian diffusion, j = —DVc¢ where D is the diffusivity at constant
density. The equations may be nondimensionalised as before, introducing no new
dimensionless parameters. However, it is useful to point out that the incorporation of
domain growth introduces (several) new timescales into the problem. This is discussed
further below.

We introduce nondimensional variables ¢ for the concentration and position x =
x/L, where L is a length scale. As before the reaction term is characterised by reaction

rate w and time is scaled according to ¢ = wt. Taking a = a/wL, and dropping the
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over-bars for notational convenience we recover the nondimensional evolution equation
for ¢(x,t)

0 d

a—i +V.(ac)= ;V2C+R(C,p) (3.11)

x € Qt), te0,00) (3.12)

where d = D/D, for reference diffusivity D, and v = wL? /Dy is the dimensionless
scaling parameter. For a system of reaction-diffusion equations D, will be taken to be
the diffusivity of the fastest diffusing species. Boundary conditions are imposed on

x € 00(t) (3.13)

and prescription of initial conditions on the domain closes the problem.

The derivation on the growing domain introduces two new terms to the standard
reaction-diffusion equation. These terms will be discussed in more detail below, how-
ever, it will be intuitively clear that material is transported around the domain by the
term a - Ve, and that ¢V - a represents a dilution due to local volume increase.

3.2.1 Determination of the Flow. The flow a may be specified directly for certain
simple cases, however, in general it is expected that a(x, t) will be determined by some
extended system of constitutive equations describing the properties of the tissue. Here
we will assume that growth properties are determined locally in the tissue, due to
factors that are not modelled but which might include prepatterns in growth factors
and cellular and sub-cellular structures influencing the direction of growth. Such
properties will be specified on an initial domain and will be displaced, following the
flow due to subsequent tissue growth.

The movement of tissue as a result of growth can be described in terms of the
trajectories of elements of the tissue, i.e. the paths followed in time by elemental
volumes. This Lagrangian description is particularly apt as the factors determining
local growth characteristics move with the tissue as it grows. Therefore, a very natural
coordinate system in which to work is Lagrangian coordinates, (X,t) where X =
(X1, X2, X3) is the initial position of a tissue element moving with the flow a. The
movement of tissue as a result of growth can be described in terms of the trajectories
T’ of elements of the tissue such that

x =T(X,t) = (T1(X, ), [a(X, ), T3(X, t)) (3.14)

where I'(X, t) describes the trajectory® of a tissue element initially at position X. The
inverse of I' is given by

X = A(x,t) = (A1(x,t), Aa(x, 1), A3(x, 1)) (3.15)

which gives the initial location of a particle at position x at time t.

! Conventionally one writes x = x(X, t), representing the dependent variable and functional depen-
dence by the same letter, but for clarity we will make the functional dependence explicit.
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For the purposes of examining the effect of growth on pattern formation we will
not be interested in solid body translations and rotations of the domain, which leave
the pattern generated by reaction and diffusion within the tissue unaffected. The
coordinates for the domain are chosen such that there is a reference point which
is initially at the origin of the coordinate system and which remains at the origin.
Some general conditions must then be observed for the components of I'. The initial
condition is, by the definition of ', that

I'(X,0) = X. (3.16)

In the absence of solid body translations we also have the boundary condition that for
the reference point, X,, we require that I'(X,,¢) = X, and choosing the coordinate
system such that X, = 0 leads to the condition

I'0,¢) = 0. (3.17)

Furthermore the domain is supposed to remain simply connected, which requires in

one dimension (for example) that if
0< X, <X,<1, (3.18)
then
T'(X,t) < T(X,,t), Vt>0. (3.19)

This will be ensured by the approach taken here, where growth is specified locally and
then integrated up to find the global form for the domain growth, as will be shown
below.

3.2.2 Local Specification of the Growth. The deformation of the tissue due to
growth is described by the rate-of-deformation tensor £;; which can be decomposed
into symmetric and antisymmetric parts D;; and W;; respectively. The antisymmetric
part is associated with rigid body rotation, which is not relevant to pattern formation,
and so in what follows we will consider only the symmetric component of L;;, the
rate-of strain tensor D;;. Components of D;; correspond to

e D;; (i = j): the rate of extension along the axis z;
e D;; (i # j): the rate of (pure) shear along between axes z; and z; (with no accom-
panying volume change).
The trace of D;;
Dii=V-a=S5(X,t) (3.20)

(summation implied) gives the rate of volumetric change per unit volume (the rate of
volume expansion) and so, for domain growth, S(X,t) > 0. The antisymmetric part
of L;; corresponds to angular velocity %w

Vxa=w (3.21)
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for w = (w1, ws2,ws) and so we set w = 0.
The components of the rate of strain tensor D;; are determined by the local prop-
erties of the tissue, and thus we consider D;;(X,t), where

da;
D = 24 3.22
which is related to coordinates (X, t) via
9°Ty  Oa; O
=l (3.23)

0t0X;  Oz; 0Xy

(summation implied) from which in general we can calculate the function I'(X, ¢) and
thus a, the flow due to the domain growth.

Now we reconsider the terms introduced into the reaction-diffusion equation by
the incorporation of domain growth. As V-a = S(X,t) gives the local rate of volume
expansion we recognise ¢V - a = Sc as a dilution term where (ignoring production
terms in the kinetics) the local concentration is decreasing as the containing volume
increases. The convection term a - V¢ represents the transport of chemical within the
tissue as the tissue moves due to the growth (such that there is no movement of the
chemical relative to the tissue). Then we can rewrite equation (3.11) as

% +a-Ve= %VZC + R(c,p) — Sc (3.24)

In the following sections we consider several specific cases, where we assume the
form of the components of D;; and from them derive the trajectories, I', and the flow,
a. Firstly we consider the general form taken for the evolution equation for one spatial
dimension under a generalised local growth.

3.3 One-dimensional Growth

In one spatial dimension the specification of the local growth characteristics reduces
to specifying the sole component of D;;. We wish to determine the trajectories given
by

z=T(X,t) (3.25)
with inverse X = A(z,t). Equation (3.23) becomes
o’r or
— =5X,t) = 3.26
otox S, )BX (3:26)
where growth is now fully determined by the local expansion rate
0
Dy = £ = S(X,t) = S(A(z, ), t). (3.27)

The boundary conditions on I' are

r(0,t)=0, T(X,0)=X (3.28)
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and then I" may be computed directly by integrating (3.26) twice

rx = | * [exp / "5 (%,7) df] dx. (3.29)

Then the flow is determined by

dz oT
- 3.30
“Tat T o (3:30)
which fully determines the domain growth. In one dimension the evolution equation
for ¢(z,t) is
Oc 4 dc dd%
T2
ot dx vy Oz?
where S = S(A(z,t),t) and a = a(A(z,t),t) so that each term in equation (3.31) is
written in coordinates (z,t). The solution is defined on

+ R(c) — Se (3.31)

z € [0,0(t)], tel0,00) (3.32)

where £(t) is the time-dependent domain length. Following spatial nondimensional-
isation using the initial domain length as reference lengthscale, such that £(0) = 1,
then

0(t) = T(1,¢). (3.33)

3.3.1 Uniform Scaling. For the investigation of pattern formation phenomena it is
natural to transform to a time-independent domain. Here we take a uniform spatial
scaling to transform spatial coordinates to the unit interval, under

(z,t) = (§,7) = (;—t)t> (3.34)

such that £ is defined on
¢£e€o,1]. (3.35)

Under this transformation we have
dc £dc dc dc 1dc
ot~ “eoe Tor ox tde
and the transformed evolution equation is

dc d 1 &% lgé(t) a(éyt)] % . R(e) - Se (3.37)

(3.36)

() A1)

o ~ Y[ oe o T

where the dot implies differentiation with respect to time.

3.4 Lagrangian Formulation

An inherent difficulty with the formulation for the evolution equation that we have
derived for reaction and diffusion on the growing domain in coordinates (x,t) is that
for the purposes of numerical computation the form of A(x,¢) must be known explicitly
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(we are required to perform the inversion of I'(X, ¢)). This may not be possible for
anything but simple functional forms for I' (although of course the inversion may be
computed numerically, this will prove computationally expensive) and will certainly
not be possible if S is determined from some other data, or indeed if S has time and
space dependence through the chemical species themselves,

S(x,t) = S(e1(x,t),...cn(x,t)). (3.38)

which is called reactant-controlled domain growth. Thus it is useful to write the
variables as functions of the Lagrangian position and to derive the evolution equation
for ¢(X,t). In one dimension this is done below. For the flow, and using subscripts to
denote partial differentiation,

o(X,t) = T, (3.39)
aa(X,1) = Xt _ §(xX, 1) (3.40)
I'x

and the derivatives in the evolution equation are transformed as

dc Ty Oc  0Oc Oc 1 Oc 0%c I'xx Oc 1 8%

ge_ e o e o e ge T Xx 9e . (341
ot I'x 0X T oz I'x 0X 0z I'x3 0X + T'x?0X?2 (3.41)
Hence equation (3.31) for ¢(X,t) becomes
d 1 I'xx >
_ Oy — XX R(c)— 8 3.42
ct ~ (FXQ (594 T8 cx | + R(c) c (3.42)
T'x: = S(X,t)Tx (3.43)

where we have made the coupling to the equation for I'(X,t) explicit, and where of
course I' may be found explicitly by integrating as in equation (3.29). The coupled
evolution equations for ¢(X,t) and I'x (X, t) are in a form which is much more amenable
to numerical solution, and this is discussed later in Chapter 6. We have initial and
boundary conditions for ¢(X, t)

¢(X,0) = ¢co(X) (3.44)
cx(0,t) =cx(1,t) =0 (3.45)
and also for I'(X, )
IX,00=X (3.46)
r'0,t) =0. (3.47)

To recover the form of the pattern on the dimensional domain (z,t) the solution
must be scaled with the (time and space-dependent) trajectories I'( X, t) to determine
c(z,t). We have presented the Lagrangian formulation in one dimension, however,
the analogous transformation to Lagrangian coordinates may be performed in higher
spatial dimensions (W. W. Hackborn, pers. comm.).
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3.5 Uniform Domain Growth in N-Dimensions

Now we turn to discussion of the simple case when the domain growth is determined
by local expansion rates which are independent of spatial position,

D;; = (5ij0(t) (3.48)
where §;; is the Kronecker delta. Then the total volume expansion rate is
D;; = S(X,t) = 30(t). (3.49)

Direct integration with initial condition (3.16) and boundary condition (3.17) gives

t
P@@:Xmﬂ/dﬂﬂzxm) (3.50)
0
which defines r(t), and by differentiation the flow is easily determined as
a=Xr(t)o(t) =xo(t), (3.51)

which is consistent with S = V -a = 30(t). The essential feature of uniform growth is
that any two points move apart with a (relative) velocity which depends only on their
separation. Thus for two points x, and x, with separation Ax then from the above
we have that their relative velocity Aa is given by

Aa = a(xp,t) —a(xq,t) = (x, — Xq)0(t) = Axo(t). (3.52)

Now we consider the evolution equation under uniform growth. The convection
term in equation (3.24) corresponds only to uniform transport, and is expected to
vanish under a uniform spatial scaling, as given for one dimension in section 3.3. In

general the nondimensional domain length in the i** direction is given by
Li(t) =T(1,t) =r(t) (3.53)

and so we take the scaling

@ﬁ%@ﬁz&%ﬁ (3.54)

where € = (£1,&2,£3). Then the flow a = x7/r = £7(t) and the i** component of the
convection
1
£(t)

It is straightforward to see that this is in fact the only possible domain growth for

[66(t) - ai(&,t)] =0. (3.55)

which the convection term disappears under uniform scaling. Using the definitions of
¢, a and T, and rearranging, the components of (3.55) can be written as
or; 7(t)
X,t) — ——=Ty(X,t) = 0. 3.56
X0~ TR (3.56)
This implies that the components of I'(X, t) are separable functions of X and ¢, but
the conditions (3.16) and (3.17) require that I" take the form given in equation (3.50).
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Another similar case considers anisotropic domain growth for which the axial ex-
pansion rates differ, but each are uniform (having no space dependence)

D;j = 5ij0'i(t) (3.57)
(no summation). Direct integration gives
P(X,t) = (Xl’r‘l(t),X2T2(t),X3T‘3(t)) (3.58)

where the time dependences are given by
£
ri(t) = exp / oi(F) dE. (3.59)
0
In this case the local rate of volume increase is given by

S:v-azal(t)+02(t)+03(t). (360)

For general non-uniform domain growth I'(X,¢) is a non-separable function of
X and ¢t. Thus in general the convection terms are not removed under a uniform
transformation such as (3.54) and so may play a role in the formation of pattern in the
system. In order to investigate pattern formation under non-uniform domain growth
we must consider specific examples. In Chapter 6 we consider the one-dimensional
problem comprising two sub-domains each with uniform but different growth rates,
the piece-wise uniform case, to gain some insight into the complexities of pattern
sequence generation under more general growth functions.

3.5.1 Slow Uniform Growth. The evolution equations in the previous section are
derived for local expansion rates which are functions of time but not position. The
introduction of domain growth necessarily introduces a new timescale to the problem.
We denote this explicitly for the uniform case (see equation (3.49)) by writing

S(X,t) = 3po(t) (3.61)

where o(t) ~ O(1), which introduces the timescale 1/p.2 The effect of growth on
pattern formation is expected to depend on the relative magnitudes of the timescales
for domain growth and for pattern formation. One specific timescale for pattern
formation that emerges from the linear analysis was presented in Chapter 2. Having
nondimensionalised the equations appropriately, the spatial patterns are established
on a time of O(1), and hence 1/p measures the timescale for domain growth relative
to that for pattern formation.

In the following chapters we consider the effect of domain growth on pattern for-
mation when the domain changes size and shape over a much longer timescale than
that for pattern formation. This must be the relevant case for biological systems where

2The growth rate-determining parameter p introduces a timescale for domain growth, however, the
rate at which the domain grows must be calculated from dI'(1,t)/d¢ which is in general a function of
p and time ¢.
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reaction and diffusion of chemicals will be much faster than the timescales over which
the cellular machinery involved in growth will operate. Thus we study slow domain
growth, for which

0<p<l (3.62)

and initially we will concentrate on uniform growth on the one-dimensional domain.
Then the evolution equation is given by

Oc d 8%
T A A2 — po(t 3.63
ot~ ~(t) 08 + R(c) — po(t)e ( )
where 7(t) is the time-dependent scaling parameter defined by
¢
1) =00 (1) =v0exp |2 [ o (E) ] (3.64)

and o = (0) is the scaling parameter for the static domain problem when p = 0.

When p < 1 the dilution term is small, and in particular it is small compared to any
O(1) linear terms in the kinetic function. Pattern formation in this nonautonomous
equation is studied in the following chapter.

3.5.2 Modified Reaction Term. We examine the way in which the dilution term
may modify the kinetics. The extra term is in general time and space-dependent. A
modified reaction term R may be defined for S(x,t), where

R (x,t) = R(c) — S(x,t) c. (3.65)

The obvious consequence is that there may be no homogeneous steady state for kinetics
R, due to spatial dependence. The dilution term is independent of x when the local
expansion is uniform. Furthermore, the dilution term is time-independent when the
local expansion is constant (the domain grows under a constant strain rate) in each

direction, o;(t) = p;, for which
T; (X, t) = X exp p;t. (366)

For uniform growth, where R is independent of x, at the initial time the kinetics
do not have the same steady state as for the static problem. The new steady state
must be calculated according to the form and parameters of the growth function, and
perturbations taken about these values to produce the initial data.

The modification to the reaction kinetics necessarily changes the dispersion relation
and the Turing space for the onset of the instability (although standard linear analysis
cannot be performed for the nonautonomous problem). This raises the possibility
that the dilution contribution will move the Turing space so as to allow the onset of
instability where the original parameters on a static domain were incompatible, or
indeed to move the system out of the Turing space.
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FIGURE 3.1 Dispersion relation for modified kinetic scheme, with a = 0.1, b = 0.9,
d = 0.05, p = 0.15 and v = 10.0 (remembering that +y scales the wavenumber). The
real part of A\ is shown as a solid line, and the imaginary part as a dashed line. The
wavenumber is represented by a continuous mode number m where k = mm.

We now examine the modified kinetics for exponential growth, taking as an exam-
ple Schnakenberg kinetics, for which, writing R = (£, §), we have

f(u, v;p) = b — pu — uv? (3.67)
G(u,v;p) = a — (1 + p)v +uwv. (3.68)

The dispersion relation for these modified kinetics, for a particular parameter set,
is shown in Figure 3.1. Here we see that the zeroth mode has Re A > 0 and also
that Zm X\ # 0, allowing temporal oscillation when the system is subject to spatially
homogeneous perturbation, i.e. to perturbation in the absence of diffusion. Thus
the modified kinetics are no longer in the Turing space, for which the steady state
must be stable (and not oscillating) in the absence of diffusion. Numerical simulation
has verified the presence of such a Hopf bifurcation for sufficiently large p. Using
the numerical bifurcation and continuation package AUT097 [30, 31, 28, 29] we have
performed a numerical bifurcation analysis on the ordinary differential equation system

given by
du A
a f (u,v;p) (3.69)
du
a g (u,v5p). (3.70)

The bifurcation diagram is shown in Figure 3.2(a) and the waveforms for the variable
u are shown in Figures 3.2(b) and 3.2(c). It should be noted, however, that the values
of p at which these phenomena occur are large in relation to those for which the

generation of interesting spatial pattern sequences are observed.
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L2-norm
4.0

rho

FIGURE 3.2 Bifurcation diagram (a) and waveforms (b)—(c) for the modified kinetic
scheme with no diffusion: equation (3.69) with ¢ = 0.1, b = 0.9 and p as bifurcation
parameter. In (a) the filled square represents a Hopf bifurcation point and the filled
circles show stable periodic orbits. Stable (non-oscillatory) solutions for are shown by
the solid line, and unstable solutions by the dashed line. Labels refer to the waveforms
shown in (b) and (c) for the inhibitor u, where the periods of the waves are normalised
to unit time. Similar waveforms are recovered for v.
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3.6 Discussion

In this chapter we have considered the evolution equation derived for conservation of
matter undergoing reaction and diffusion on a growing domain. The domain growth
is specified in terms of local strain and shear rates, supposed to represent underlying
tissue growth and movement. Several simplified cases have been identified and these
‘reduced systems’ will be studied in the remainder of this thesis.

We have considered only very simple geometries for the domain, the interval and
the plane. Recently Varea et al. [128] have considered pattern formation on spherical
surfaces, and Chaplain et al. [14] investigate patterns on the radially growing sphere.
Clearly the formalism that we have described can be adapted to encompass these and
other geometries.

Before we turn to investigate pattern formation in our equations, we briefly recon-
sider the previous attempts in the literature to model reaction-diffusion and growth.
It is apparent from the equations derived from first principles that all of the models
discussed earlier consider only the effects of uniform domain growth on pattern for-
mation. The model we have derived is much more general and allows for the inclusion
of any space and time dependence on the growth. The equation derived by Kulesa et
al. [65] and by Painter et al. [107] corresponds to domain growth in one dimension un-
der a constant strain rate and includes the dilution term. However, our equations for
uniform growth differ significantly from the model studied by Arcuri and Murray [3]
in that the time-dependent scaling parameter appears in a different position in their
equation (also the dilution term is absent in Arcuri and Murray’s work). The signifi-
cance of this difference will be discussed in the following chapter in light of the pattern
formation properties of our equation, however, it is apparent that the difference arises
as Arcuri and Murray adopt a different procedure for nondimensionalisation, which
fails to keep separate the timescales for the distinct processes of pattern formation

and domain growth.



4. Slow Uniform Growth and Spatial Frequency-Doubling

In this chapter we investigate the patterning properties of the reaction-diffusion mech-
anism on a slow uniformly growing domain in one spatial dimension. In particular we
are interested in how the behaviour of the solution depends on the new timescale that
is introduced into the equation as a result of domain growth, and how this timescale
interacts with the timescale for pattern formation in the static reaction-diffusion prob-
lem.

Spatial frequency-doubling has been reported by several authors [3, 64, 107]. The
phenomenon consists of regular doubling of the spatial frequency of the standing wave
pattern on the unit interval. On the dimensional domain this behaviour corresponds
to regular doubling of the mode of spatial pattern. The period for frequency-doubling
(hereafter FD) will be shown to be the time taken for the dimensional domain to
double in length. In this chapter we examine this behaviour in detail, suggesting a
symmetry of the governing equation which may underly the patterning behaviour,
and we investigate dependence on parameters and the functional form describing the
growth.

4.1 Slow and Fast Dynamics

The evolution equations describing reaction and diffusion in one spatial dimension! for
two interacting species with concentrations u(z,t) and v(z,t), with uniform domain
growth may be written as

Uy = %um + f(u,v) — po(t)u (4.1)
vy = %Um + g(u,v) — po(t)v (4.2)
Ye = 2py00(t) exp [Zp /Ot o(t) dt_] (4.3)

where v is the self-activator, which is defined on
z €[0,1], te€]0,00). (4.4)
We impose zero-flux boundary conditions

Ug =0, =0 on x=0,1. (4.5)

!For convenience we adopt the notation z for the uniformly scaled position, such that z € [0,1].

49
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Initial conditions are random perturbations about the homogeneous steady state of
the kinetics, (us,vs) where

f(us,vs) = po(0)us = 0 (4.6)
9(us,vs) — po(0)vs = 0. (4.7)

For slow growth we have
0<pxl (4.8)

such that the growth timescale 1/p > 1, and we recall that pattern formation is on an
O(1) timescale. The separation of scales that this produces gives two regimes, with
evolution on a slow and a fast timescale respectively. If we introduce a slow time
variable, 7 = pt, then asymptotically as p — 0 we have the slow subsystem (when
ur,vr L O(1/p)):

dvgz = -9 (410)
/P _
Yr = Yo €Xp lzp/o o (t) dt] (4.11)

for which the quasi-steady solutions are parameterised by . This adiabatic limit holds
except where u,,v; ~ O(1/p) for which we have the fast system

1
up = ;um +f (4.12)

1
vy = d;vm +g (4.13)

where 7y is constant. The fast subsystem governs the reorganisation of patterns away
from the quasi-steady regime. The extra terms in the kinetics (the dilution terms) are
O(p) and so do not feature to leading order.

This scaling arises very naturally in the equations and for zero-flux boundary
conditions may be verified by considering the function

1
8 = o= [ futa,7sp) + ol 73 )] (4.14)
1 r1
= p/o [f(u,v) + g(u,v)]dz (4.15)

which should stay close to zero during slow dynamics, and scale as 1/p in the fast
dynamic regime. Numerically we find that ¢(7; p) remains close to zero in the quasi-
steady state and has a maximum during the reorganisation of pattern (reaching the
same maximal value independent of the particular pattern mode) where

be = max (9(rip)) ~ % (4.16)

We will present concrete examples below.
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Thus for the slow growth limit, p < 1, the analysis suggests periods of quasi-
steady behaviour interspersed with fast transitions corresponding to fast dynamical
reorganisation to a different pattern. This does not tell us anything about which
pattern modes are expected in the sequence, or whether the sequence of patterns is
sensitive to initial conditions.

Heuristically we may describe the process of generation of a pattern sequence in
the model, under these two timescales, as follows. The initial bifurcation from the
homogeneous steady state is through a diffusion-driven instability near the critical
point v = 7, which may be derived from linear stability theory. Linear growth of
the destabilising mode and subsequent saturation to a large amplitude pattern ensues.
The pattern then evolves in two dynamical regimes. The amplitude of the pattern is
gently modulated in the quasi-steady state as «y changes with time. A pattern persists
until at some point the solution undergoes a transition to a new quasi-steady pattern;
undergoing a fast dynamic reorganisation (activator peak splitting and separation for
Schnakenberg kinetics). Subsequently a pattern of higher spatial frequency (for -y
increasing) is established which in turn persists, with slow amplitude modulation,
before the solution undergoes further transitions.

4.2 Spatial Frequency-Doubling for Exponential Domain Growth

Growth at a constant strain rate, S(t) = po(t) = p, corresponds to an exponential

uniform domain growth
I['(X,t) = X exp(pt). (4.17)

Under this growth, FD is observed within a parameter regime that is to be determined.
We illustrate this with a concrete example using the Schnakenberg scheme for the
nonlinear kinetics (see Appendix A.1)

f(u,v) = b— uv? (4.18)
g(u,v) =a+uv® —v (4.19)

where g(u,v) is the kinetic function for the self-activating species v and f(u,v) is the
inhibitor kinetics.

Numerical Solution. We have computed numerical solutions of equation (4.1)-
(4.3) with Schnakenberg kinetics, zero-flux boundary conditions (4.4) and exponential
growth function (4.17) using a finite differences scheme which uses the method of lines
for spatial discretisation and Gear’s method for integration in time, as implemented
in the NAG numerical routine DO3PCF. The kinetic parameters here and in all other
simulations with Schnakenberg kinetics are a = 0.1, b = 0.9 and we take the ratio of
diffusivities d = 0.01, unless described otherwise. The initial conditions in each case
are random fluctuations about the kinetic steady state concentrations, with a uniform
distribution and maximum deviation of 0.5%. Typically we take 1001 spatial points
in [0, 1], however, in all simulations we have at least 10 spatial points per wavelength
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FIGURE 4.1 The spatial frequency-doubling sequence of patterns on an exponentially
growing domain. We plot the evolution of (a) activator v(z,t) and (b) inhibitor u(z,t)
concentrations for Schnakenberg kinetics, with d = 0.01 and p = 0.005. Pattern transi-
tions are by activator peak splitting. The inhibitor profile is in spatial antiphase with the
activator solution (the kinetics are of cross type). The accuracy in the time integration
is 1.0 x 1076,

of pattern. Typical solutions are shown in Figure 4.1 for (a) activator and (b) in-
hibitor, and in Figure 4.2 the solution profile for the activator species is plotted on
the dimensional growing domain.
In Figure 4.3(a) we plot the evolution of the maximum amplitude for each species
(activator and inhibitor) given by
ni(t) = max (ci(z,t)), i=1,2 (4.20)
z€[0,1]
which illustrates the periodic nature of the pattern sequence. The pattern changes at
intervals corresponding to the time taken for the domain to double in length, which
gives the period At = (In2)/p, where At =~ 693 for the parameters in the simula-
tion. Adding the equations for v and v written in the slow time variable 7 = pt and

integrating over the domain, we find

(ﬁ(T)E—/Ol(U-I-U)diE:%|:(a+b)—/olvd$:|, (4.21)

where in the quasi-steady state ¢ =~ 0, shown in Figure 4.3(b). Here ¢ is plotted
against t for ease of comparison with previous figures. The evolution of ¢ illustrates
the two dynamic regimes, with ¢ remaining close to zero except during the transition
between quasi-steady patterns. The dependence on the strain rate p of the maximum

value, ¢maz, is presented in Figure 4.4.
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FIGURE 4.2 Spatial frequency-doubling on the dimensional domain—evolution of the
activator v(z, t) plotted on the exponentially growing domain showing periodic transitions
as the domain length doubles. Kinetic parameters for the Schnakenberg scheme are as
in Figure 4.1, with p = 0.001. Shading is from blue at zero concentration to red at high
concentration (v = 5).

4.2.1 Symmetry Analysis. Frequency-doubling corresponds to a sequence in which
the spatial frequency of the pattern regularly doubles, and no other pattern modes
enter the sequence. Self-similarity of pattern modes can be used to predict necessary
conditions under which this sequence is expected in our model. As ~(t) is a mono-
tonically increasing function we can eliminate ¢ from the evolution equations (4.1)
and (4.2) in favour of v to give (for each species)
2

(g = s + RO - e (1.22)
where h(7y) = dvy/dt, and for the final (dilution) term we have used dvy/dt = 2po(t)(t).
Let us assume that at y = v* the solution has spatial profile ¢(z,v*). At any point in
the sequence, in particular at v = v*, a pattern of twice the spatial frequency go(z, ")
may be constructed by applying the tent map pa(z) given in section 2.4.3, where

a2 (z,7') = e(p2(2), 7). (4.23)
The transformed quantity go in turn satisfies the evolution equation
092 _ d 9°g h(v)
h(V) 7 = 1070 + Rlae) - : 4.24
(v )371 4 872 (q2) 2 q2 ( )

Also, considering equation (4.22) we can see that the quantity c¢(z,47') must satisfy
the equation

1 nOc d D% h(4~")

Than 2 = 2 9 _
4h( 7 0y 4y Ox? + R(c) 8/

c. (4.25)
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FIGURE 4.3 Periodicity in the transitions between quasi-steady patterns for exponen-
tial domain growth. We plot the evolution of (a) the maximum pattern amplitude for
activator 72(t) (solid line) and inhibitor 7; () (dotted line) species and (b) ¢(t) (as defined
in equation (4.21), here plotted against the fast time variable ¢t = 7/p for ease of compar-
ison), with parameters for the Schnakenberg kinetics as in Figure 4.1, and exponential
domain growth with p = 0.001.

Now c(z,4v") and go(z,7’) satisfy the same equation if
h(4Y') = 4h() (4.26)

so that the left hand sides are the same and the final terms from the right hand side
of the equations also match. Recalling that h(y) = dv/d¢, this demands that the time
dependence of v, and hence the domain growth, is exponential,

7(t) o exp(2pt),  r(t) = exp(pt) (4.27)

so that the strain rate is constant in time. Furthermore, if at ¥ = 4* we find that in
fact

@ (z,v") = c(z,4v%), Vz €]0,1], (4.28)

the matching condition, then the profiles are equivalent and, assuming uniqueness of
solutions to the evolution equation for given initial and boundary conditions, they will
continue to coincide for all time such that v > +*. We have made no assumptions
about v* or the spatial profile at v*: this observation holds in both quasi-steady and
fast (transition) dynamical regimes.

We have shown that under exponential growth the quantities g2(x, v) = ¢(p2(z), )
and c(z,4v) satisfy the same evolution equation. Below we investigate the con-
sequences for FD. From the spatial profile ¢(z,7*) we can construct go(z,v*) =
¢(p2(z),~*) which by definition has twice the spatial frequency. Let us suppose that
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FIGURE 4.4 The reciprocal scaling of the maximum of ¢(7) with the constant strain
rate p, for Schnakenberg kinetics on the exponentially growing domain. The log-log plot
shows that the maximum scales (approximately) as 1/p.

for given initial conditions ¢(z,~y) evolves such that for v € [y*,4v*] the solution is
initially mode m and subsequently undergoes a transition to mode 2m, such that the
matching condition (4.28) is satisfied. Then the uniqueness of solutions of the evolu-
tion equation requires that go(z,t) and c¢(z,4v) remain the same for v > v*. But by
construction g2(x,t) has twice the spatial frequency of ¢(z,~) and so, in the interval
v € [49*,16+*], the solution ¢(x, ) must consist of the sequence 2m and transition to
4m, and so on.

In this way the pattern sequence for v > 4v* may be reduced to the behaviour on
v € [v*,4v*]. We now consider this initial interval. In particular, if ¢(z,v*) consists
of a pattern of mode m = 1 and we satisfy the matching condition to mode m = 2 at
~ = 4v* then our observations suggest that FD will naturally ensue in a self-similar
cascade. Thus we need only consider the initial stages of the sequence to determine
whether FD is realised—all subsequent behaviour is equivalent. Furthermore, this
analysis predicts that such a sequence generated under exponential growth will undergo
FD every time v — 4+, and recalling that the scaling parameter v ox L? we see that
this corresponds to doubling the length of the dimensional domain.

The stability of the solutions, for which we have shown existence, must be con-
jectured from the results of numerical simulations. Of course we should not need to
have an exact matching (4.28) at any one instant and consequently we require some
stability properties of the evolution equation. In particular we require that a solution
¢(z,y) perturbed at some point subsequent to the establishment of a large amplitude
pattern remains in the vicinity of the unperturbed solution so that if ¢(z,4y) and
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FIGURE 4.5 The dependence of max,c[o,1] |c(z,7) — g2(z,v/4)| during the transition
between patterns as a function of the interpolation step size (see text for details). For
comparison purposes the activator maximum amplitude 72 =~ 3 during the transition.
On closer inspection (b) the data are seen to oscillate. This is an artifact due to the
sampling frequency and the sharpness of the transition.

g2(z,7) are close at vy = v* then they remain close during the interval v € [y*,4v*].
We have performed numerical simulations of the evolution equations and have com-
pared ¢(z,47) and go(z,v) numerically, as described below (see also Figures 4.5(a)
and 4.6), and conclude that this stability property is demonstrated by the system, at
least in some range of the growth rate-determining parameter p. If the stability crite-
rion is met then once some pattern is selected by the initial conditions the sequence is
fully determined by the dynamics of the evolution equation and the initial conditions
play no further part in determining the composition of the sequence. In this sense the
patterns contained in the sequence are generated robustly.

We have computed ga2(z,y) for a solution ¢(z, ) in order to investigate the match-
ing condition (4.28) during FD. A routine was implemented which compares the so-
lution at time ¢(y) with the profile generated by the action of the tent map po(z)
on the solution at time ¢(y/4). To do this we use linear interpolation to approxi-
mate c(z,7/4), before applying the tent map to compute g2(z,v/4) = c(p2(z),v/4).
In Figure 4.5(a) we show how the maximum deviation over space for the activator
(which is greater than the deviation for the inhibitor) depends on the time-step size.
The maximum occurs during the transition between pattern modes. The time-step
is simply the time interval between data records and hence the interval over which
we interpolate—it does not reflect the accuracy in the time integration, which is kept
constant. The figure shows that the deviation tends to zero with the step-size. This
suggests that we do have |c(z,7v) — g2(z,v/4)| — 0 during the transition, and hence
the matching condition is satisfied. The transition between modes m = 2 and m = 4
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FIGURE 4.6 The peak splitting transition for three values of strain rate p. The tran-
sitions are from mode m = 2, for Schnakenberg kinetics with (a)—(d) the FD sequence
for p = 0.001 and d = 0.01, (e)—(h) the onset of asymmetric splitting for p = 0.02 and
d = 0.01 and (i)—(1) the breakdown in splitting behaviour for p = 0.00001 < p. with
d = 0.06 (see text for details). The dotted trace shows the (symmetrical) tent map act-
ing on the solution at /4, i.e. g2(z,7) = ¢(z,y/4) (which cannot be distinguished from
the numerical solution (solid line) in (a)—(d)). At very small values of p correspondingly
small timesteps are required numerically to investigate the solution behaviour during the
transitions between patterns. Increasing d is found to raise p. (see text), and in the
figure we have taken d = 0.06 to allow a computationally reasonable timestep to be used.

is illustrated in Figure 4.6(a)—(d). Here c¢(z,~) and ga2(z,~y/4) are plotted on the same
axes and cannot be distinguished.

4.2.2 Parameter Dependence. We now look at the effect of varying parameters,
and also changing various of the functional forms in the model, on the spatial frequency-
doubling behaviour that we have described for exponential domain growth and Sch-
nakenberg kinetics.

Constant Strain Rate. Numerically we find that the FD sequence is realised over
several orders of magnitude of the strain rate p, the parameter that determines the
growth rate. Here we examine the pattern sequence under exponential growth at the
extremes of the range of validity of p. Our ability to numerically monitor FD into
higher modes is severely limited by the mesh capacity that we can obtain computa-
tionally. In the current work, patterns up to mode m = 256 are considered in sequences
of up to nine FD events. Frequency-doubling behaviour is observed under exponential
growth with Schnakenberg kinetics for over four orders of magnitude in p for d = 0.01;
approximately 1078 < p < 1072. The symmetry argument presented above would
suggest that for exponential growth the sequence should persist indefinitely or fail,
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FIGURE 4.7 The departure from two characteristic dynamic regimes with increasing
p. Timeseries for ¢ are plotted against the fast time variable ¢ for exponential domain
growth with (a) p = 0.0005, (b) p = 0.005 and (c) p = 0.05. (If plotted against the
slow variable 7 then all figures would have slow time (horizontal axis) on the interval
T €[0,5].) The early (high) peaks in (a) and (b) are initial transients.

according to whether the stability criterion is satisfied. Below we investigate this
conjecture by varying the various parameters in numerical solutions of the equations.

As we let p — 1 the timescale for domain growth converges to the timescale that
was identified for pattern formation. Numerically we find that with increasing p an
asymmetry is introduced during transition between modes of the FD sequence. For the
example of Schnakenberg kinetics we find that peaks are no longer stationary before
the transition to a higher mode and subsequent peak splitting is asymmetrical. The
solution starts to undergo the transition before reaching a quasi-steady state. A com-
parison with the construction ga(z,vy/4), illustrated in Figure 4.6(e)—(h), shows that
there is no longer matching for large p (as the tent map is by definition symmetrical).

The departure from the characteristic alternation between slow and fast dynamical
regimes is demonstrated in the behaviour of ¢(7), defined in section 4.1, which is shown
in Figure 4.7 for three different values of p. The onset of the asymmetry is gradual and
although the solution no longer enters a quasi-stationary state the strong tendency to
peak splitting remains (for Schnakenberg kinetics), with the number of turning points
on the domain continuing to double roughly periodically for some further range of p.
When p becomes very large, p ~ 1, the solution is purely transient with no patterns
recognisable as quasi-stationary modes. The changing form of the activator solutions
with increasing p is shown in Figure 4.8.

Perhaps a more surprising result is that there is an also abrupt change in behaviour
when p is decreased through a lower critical value, p.. For p below this point the
pattern sequence does not undergo FD and different sequences may be obtained for
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FIGURE 4.8 The loss of the FD sequence with increasing p. Activator solutions v(z,t)
are plotted for three values of the strain rate p for Schnakenberg kinetics and exponential
domain growth. Parameters correspond to Figure 4.7 with (a) p = 0.0005, (b) p = 0.005
and (c) p = 0.05. The duration of the transitions is approximately the same in each case.
In (c) the FD sequence is no longer observed. Shading is on a scale from white (0) to
black (5).

different sets of initial conditions. Figure 4.6(i)—(1) illustrates the manner in which this
breakdown occurs during a transition. This implies that there is a maximum timescale
for domain growth beyond which the constraint imposed by the non-autonomy is not
sufficient to generate the FD sequence. We note that for sequences for p < p., where
the FD breaks down, ¢(t) shows the same quasi-static and fast transition behaviour
as for FD, however, the transitions no longer occur periodically in time.

Ratio of Diffusivities. It is of interest to see how the lower bound on p for FD and
the onset of asymmetrical splitting as p — 1 depend on d, the ratio of activator
to inhibitor diffusivity. Numerically, we find that by increasing d (such that the
diffusivities for activator and inhibitor move closer together) we also raise the lower
bound, for example p, ~ 3 x 10~% for d = 0.05 compared to p. ~ 10~ for d = 0.01.
At the opposite end of the range of p for which FD is observed, as p — 1, we find
that as d is increased peaks move apart more quickly subsequent to splitting, thus
delaying the onset of asymmetric transitions. This increased rate of peak separation
is illustrated in Figure 4.9. We recall that d cannot be increased through the critical
value d. for the Turing bifurcation, as discussed in section 2.3. We also note that as
d is increased towards d. the peaks become wider, as can be seen in the figure.

4.2.3 Role of the Kinetics: Peak Splitting and Peak Insertion. The symmetry
analysis presented above does not depend critically on the nonlinear part of the kinetic
function. From this we might infer that FD is a generic property of reaction-diffusion
equations provided that the linearised kinetics permit diffusion-driven instability, and
that the FD pattern sequence will be realised given the initial matching of solution
and construction and the stability properties as described. Numerical solution of a
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FIGURE 4.9 The dependence of the speed of peak separation on the ratio of diffusivities
d, for peak separation subsequent to splitting in the FD sequence for Schnakenberg
kinetics. Activator solutions v(z,t) are plotted for p = 0.01 and three values of the ratio
of diffusivities d on the exponentially growing domain, with (a) d = 0.005, (b) d = 0.01
and (c) d = 0.02. We recall that increasing d brings the diffusivities of the two species
closer together. The shading scale is as for Figure 4.8.

variety of the kinetic models proposed in the literature has also produced FD se-
quences with either activator peak splitting, as was found for the Schnakenberg case,
see Figure 4.1(a), or by activator peak insertion. This latter mechanism for transition
between modes is demonstrated in Figure 4.10(a) for the model proposed by Gierer
and Meinhardt (see Appendix A.3)

f(u,v) = r1v® — pu (4.29)
v2
g(u,v) = vy -~ H2v +94 (4.30)

and evolution equation (4.1)—(4.3). However, for this kinetic scheme we have found
that when J is identically zero the kinetics preclude FD by preventing either form of
pattern reorganisation, as illustrated in Figure 4.10(b). The standard FD sequence
is recovered for non-zero 4. We will investigate the mechanisms for peak splitting
and peak insertion in the following chapter, and give an explanation for the singular
behaviour found in the Gierer-Meinhardt model for 6 = 0. Also it will be shown
that it is possible to generate a sequence of patterns in which activator peaks undergo
splitting and insertion of new peaks simultaneously. This behaviour is observed for
kinetic schemes which have purely cubic nonlinearity.

4.2.4 Influence of the Boundary Conditions. So far we have described pattern
formation with zero-flux boundary conditions. The symmetry analysis that we have
presented relies on the zero gradient at the boundary to produce solutions under the
tent-mapping that are twice-continuously differentiable. However, numerical solutions
show that the tendency for regular doubling of the number of peaks on the domain
is not reliant on these boundary conditions. First we consider the case for periodic
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FIGURE 4.10 Pattern sequence formation in the Gierer-Meinhardt model on the grow-
ing domain. Evolution of the activator species showing (a) frequency-doubling with peak
insertion for with § = 0.001 and (b) the solution for § = 0 for which pattern reorganisa-
tion is precluded. Kinetic parameters v; = pu3 = 0.02 and v = ps = 0.01,

boundaries, such that in one spatial dimension pattern formation is on the ring. In
this case we remove boundary effects from the problem. It is clear that the half-peak
pattern mode is not a solution on the periodic domain. Figure 4.11 shows the solution
to equations (4.1)—(4.3) for the activator species on a periodic domain with exponen-
tial domain growth and Schnakenberg kinetics, from which we recover FD as usual.
We have computed numerical solutions with periodic boundaries using an implicit dif-
ferences scheme, which employs the Sherman-Morrison formula [113, p.68] to solve the
sparse cyclic tridiagonal system (an augmented-tridiagonal matrix) generated by the
discretisation.

Scalar boundary conditions (see section 2.1) may be written in the form
(n-V)c=P(c"—c¢) (4.31)

where n is the unit outward normal on the boundary. For different choices of the
parameter 0 < P; < 1 and the external reference concentrations ¢* > 0 we move from
zero flux (P = 0) to Dirichlet (P = oo) conditions, which are homogeneous when
c* = cs;. For intermediate values of P we have inward or outward flux depending
on whether the concentration at the boundary is lower or higher than the external
concentration c*. This can be thought of as a leakage of chemical into or out of the
domain.

Patterns generated on a domain of fixed size under flux-leakage boundary condi-

tions are found by numerical simulation to be weakly perturbed from the zero flux
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FIGURE 4.11 The FD sequence for periodic boundaries (solution on the ring). Evo-
lution of the activator concentration profile v(z,t) with exponential growth for p = 0.01
with Schnakenberg kinetics and d = 0.01. The initial domain size is such that vy = 5.

patterns, with small lateral displacement of peaks and modification in the peak pro-
file. Inward flux at the boundaries is found to displace peaks towards the centre of
the domain, while outward flux pushes peaks towards the boundaries. This result for
outward flux is observed for ¢* = 0 for which

(n-V)c=—Pc (4.32)

where, for example, we might take P = 1/2 (and the concentrations ¢; > 0 always). For
inward flux conditions we choose c* > 0 and sufficiently large that c¢; —¢; > 0 always.
On the growing domain these boundary conditions give rise to regular doubling in the
number of peaks on the domain, and cause only small quantitative perturbations to
the FD sequence for zero flux conditions. Furthermore, for these boundary conditions
the initial pattern to develop is found to be the centralised peak, rather than the
boundary peak. For Dirichlet conditions, P = oo, with values of c¢* such that pattern
modes are admitted as solutions of the evolution equation, the same strong tendency
to frequency-doubling behaviour is observed.

4.3 Three-Species Models

In Turing’s original paper, and in most of the subsequent discussion and application of
the theory in biological and non-biological contexts alike, only two interacting species
are considered.? In two-species models it is straightforward to show that temporal
oscillations cannot occur with diffusion-driven instability. (The homogeneous steady

2For a single diffusing substance with nonlinear kinetics there can be no homogeneous state, stable to
homogeneous disturbance, which is unstable to spatially heterogeneous perturbations. Heterogeneous
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state may of course lose stability to spatially homogeneous oscillations through Hopf
bifurcation in the kinetic term.) However, for three or more interacting species it is
possible to induce spatio-temporal oscillations driven by diffusion.

Various authors have studied model systems with more than two components. Oth-
mer and Scriven [101] consider the stability of the homogeneous state in n-component
systems, allowing cross-diffusion (such that the off-diagonal elements in the matrix of
diffusivities are non-zero). The authors find that for two-species systems with cross-
diffusion then it is possible to excite oscillatory instabilities, however, there is no fastest
growing wavenumber in this case (i.e. the complex solutions to the dispersion relation,
A(k?), have positive real part which is monotonically increasing with wavenumber). In
general standard linear analysis becomes intractable for n-component systems where
n > 3 due to the fact that stability is determined by eigenvalues which are the roots
of an n*P-degree polynomial. It is interesting to consider what generalisations to the
concepts of short-range activation and long range inhibition arise in these systems.
Where three or more components interact it may be possible to divide the system
into weakly-interacting subsystems of two or three components [101]. Furthermore it
may be sufficient to consider the interaction of subsystems that behave collectively in
an inhibitory or activatory manner to derive necessary and sufficient conditions for
instability (R. Satnoianu, pers. comm.).

There is no a priori reasoning to suggest that models of putative biological in-
terest should be restricted to two-species systems. Below we take from the literature
a model describing the interaction of a three component system which gives rise to
patterns through the Turing instability and which can give stationary spatial patterns
and time-oscillating patterns as model parameters are varied. White and Gilligan [131]
propose the model for the interaction of a host-parasite-hyperparasite system, such as
a cereal root complex infested with a parasite into which a biological control agent
(hyperparasite: fungi, bacteria or other microorganism) has been introduced, to ac-
count for spatial patchiness in population density. A brief derivation of the model is
presented in Appendix A.4, however, here we are primarily interested in the solution
behaviour, rather than in the biological details.

The population dynamics is described by local interaction terms and diffusion is as-
sumed to model the spatial spread and dispersion of each species. The nondimensional
equations for host (v), parasite (w) and hyperparasite (u) on the growing domain are

1

up = %um —6(u—w) — po(t)u (4.33)
dy v

v = WUM +wv (1 — ;) —vw — po(t)v (4.34)

solutions may, however, be admitted in scalar reaction-diffusion equations, but not through the Turing
instability (see Grindrod [46]).
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du

Wy = ——~Wgg + (v v

w
g +Bw> ~ po(tyw (4.35)

where §, x, p and B are nondimensional kinetic parameters and for slow uniform

growth 7 changes, as before, according to equation (4.3). The boundary conditions
are zero flux at £ = 0,1, and we impose random initial conditions. First we consider
parameters such that on the static domain (where p = 0 so that v = ) a stationary
pattern develops through the diffusion-driven instability. Considering the Jacobian
(around the stable fixed point of the kinetic system) we find

-0 0 0
0 _D -
A= K y (4.36)

HUs HUs uB Ug

1+8 1+8 (1+p)

where the kinetic steady state values us and vs are positive. Thus the Jacobian has

the sign structure

- 0 4+
sgn(A)=1| 0 l— —] (4.37)
+ |+ +

so that w is self-activating, and in particular the interactions between v and w are
those required for DDI with cross-kinetics in the two species problem (highlighted
in the square brackets). Hence we may expect that if the diffusivities of v and w
are sufficiently different then this subsystem alone may be sufficient to give rise to
stationary heterogeneous pattern, without any further destabilising influence of w.
Indeed, if we take d,, < d, =~ 1 then we can recover stationary patterns in the three
species, as shown in Figure 4.12(a). Here w takes role of activator (and has the largest
amplitude pattern) and v is the inhibitor (which is out of phase with w for the cross-
kinetic system). We do not present any further analysis of DDI in this system here
but refer the reader to White and Gilligan [131].

Counsidering the model on the growing domain, we find that in this regime the
patterns evolve by peak splitting of species w (the activator) in an analogous manner
to the two species examples studied in the previous section. A numerical solution for
the activator species w is shown in Figure 4.12(Db).

If the ratios of diffusivities are changed so that d, and d,, are not significantly
different in magnitude but are both small (in comparison to d, = 1), then we can-
not make the above inferences. In fact it is possible to excite spatially heterogeneous
instabilities which oscillate in time under such conditions. In this case, on the static
domain the long-time behaviour of the system is oscillatory, with a timescale that is
intrinsic to the equation parameters. The time-varying solution w(z,t) for the model
under these conditions is plotted in Figure 4.13(a). The oscillations for v and w are
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(a) (b)

FIGURE 4.12 Pattern formation for non-oscillatory solutions in the three-species model
of White and Gilligan. In (a) we plot u(z) (dotted), v(z) (dashed) and w(z) (solid) steady
state patterns for the stationary domain with 79 = 10 and in (b) we plot the evolving
profile w(z,t) on the growing domain with p = 0.001 and vy = 1. Kinetic parameters
are k = 10, u = 15, § = 5 and 8 = 4 with ratios of diffusivities d,, = 1.0 and d,, = 0.05.

out of phase with those of v. The frequency of oscillation is approximately 0.1 nondi-
mensional units.® It is interesting to ask what effects the interaction of the timescale
for domain growth has with the timescales for pattern oscillation and pattern forma-
tion linear growth. The timescale for slow domain growth is much longer than that
for oscillation so that the patterns will not be quasi-stationary when transitions are
initiated. Solutions for p = 0.01 are shown in Figure 4.13(b)—(d). We choose a value
for p at the high end of ‘slow’ domain growth because the timestep required to com-
pute the oscillation is correspondingly small. Similar behaviour is observed for lower
values of p. The simulations show that the solution no longer undergoes the simple
FD behaviour shown in the previous case. The solution becomes increasingly compli-
cated, and pattern appears to move in an increasingly (oscillatory) wave-like manner
from the centre outwards. At later times the behaviour becomes quite irregular and
asymmetric. This increased complexity might be expected as the effect of introducing
a third timescale into the problem.

There are no qualitatively new phenomena which can arise from the diffusion-
driven instability when systems of more interacting components are considered. The
three-species problem illustrates both stationary and oscillatory spatial patterns, which
introduce a new timescale through the oscillation. On the growing domain, this third

3The ratios of diffusivities in Figure 4.13(a) are d, = 0.04 and d,, = 0.005, however, similar results
are recovered for d,, = 0.02, as used by White and Gilligan. The period of the oscillations is T = 11
nondimensional time units. This is contrary to the period of oscillation reported by White and
Gilligan, which is on the order of 10? too large, probably due to under sampling arising from too large
a timestep in their simulation.
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FIGURE 4.13 Oscillating patterns in the three-species model of White and Gilligan (a)
on the static domain and (b)—(d) evolution of oscillating pattern on the growing domain,
with (b) ¢ € [20,80], (c) t € [80,140] and (c) t € [140,200]. Kinetic parameters are
k=500, p = 2, § = 2 and 8 = 4 with ratios of diffusivities d, = 0.04 and d,, = 0.005.
In both cases 79 = 25 and for the growing domain p = 0.01.
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timescale interacts with those already in the problem, the timescales for pattern growth
and domain growth, and underlies the difference in behaviour between these two cases.

4.4 Other Domain Growth Functions

For a tissue expanding locally under constant strain rate the growth is exponential.
This may be considered to model a population of cells dividing at a fixed rate which is
independent of spatial or temporal coordinate. While this may be a reasonable model
of the initial stages of an unconfined growth it is not realistic for many biological
applications. We wish to know if the functional form of the domain growth has any
bearing on the pattern sequence generated. We can use the symmetry analysis to
investigate pattern formation under other functional forms for the domain growth. In
previous studies various authors have considered linear growth. Although this may not
have a strong biological motivation, studying this growth function gives further insight
into the mechanism of pattern sequence formation. We also consider the biologically
plausible scenario of logistic time dependence, where the final domain attained is

limited to some finite size.

4.4.1 Linear Growth. Uniform linear domain growth, which we define by r(¢) =
1+ pt, may be generated by the time-varying strain rate
o
S(t) = t) = ——. 4.38
(6 = polt) = 72— (4.39)
We apply the previous analysis to the problem with explicit linear growth. Again ¢ is

eliminated, writing

dy
Y(t) = (L +pt)", h(7) =2 =2pv/%07 (4.39)
so that h(4y) = 4p/77 = 2h(7), which does not satisfy the condition (4.26). For
convenience we will take g = 1. As before we examine the evolution of a pattern over
some interval [y,4v]. On eliminating ¢ the governing equation for ¢(z,4v'; p) is
Oc d 9% pc
1= _ - 7" _ .
pﬁary, 4’}// 8.’]32 + (C) 2\/,7

Again we consider the frequency-doubling construction, while this time allowing for a

(4.40)

change in p to find the equivalent equation. Now ga(z,v'; p') = ¢(p2(z),7'; p') satisfies

Og2 _ d 9%y Pa

so that g2(x,~; p/2) and c(z,47; p) are shown to satisfy the same equation.

The implication of this result is that prolonged FD behaviour is not a natural
consequence of this growth function. However, as before, if there exists a point v = v*
such that

@(z,7";p/2) = c(z, 47" p) (4.42)
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then ga(z,v; p/2) and ¢(z, 4v; p) coincide for all y > v*. This implies that if a sequence
generated with linear growth rate p undergoes N frequency-doubling events before
this sequence breaks up, then a sequence generated at growth rate 2p must complete
N + 1 such events. Again we conjecture that stability properties are inherited from
the results of numerical simulations. Numerical evidence confirming this prediction
for one such regime is presented in Figure 4.14. Although the analysis does not give
any information about the sequence after the breakdown of FD, numerical solutions
suggest that the subsequent behaviour is not robust, and the sequence may be different
for each set of initial conditions.

4.4.2 Comparisons with Exponential Domain Growth. For slow pattern evolu-
tion in the quasi-steady regime the timescale for pattern formation must be sufficiently
faster than that for domain growth. We can predict the point of breakdown of the
frequency-doubling sequence under linear growth conditions from knowledge of the
lower limit in the rate-determining parameter, p., for the sequence under exponential
growth. Comparison of growth rates then suggests that FD will occur for linear growth

while
hlin(p) > hewp(pc) (4.43)
where hegp = 2py and hyi, = 2p,/770, which gives frequency-doubling for
p\2
Y<Y =7 (p—) (4.44)

and the FD behaviour is expected to break down for v above v*. This value is indicated
by the vertical dashed line in Figure 4.15. Numerical simulations have confirmed that
for linear domain growth the value of v for breakdown varies approximately with the
square of p. From equation (4.44) we see that higher pattern modes (for which we
require large v*) may be admitted prior to the breakdown of the sequence only if p is
sufficiently larger than p.. Then from the first of (4.39) the sequence is expected to

break down for times ¢ where
t>t*5i—1zl (4.45)
Pc P Pe
which, for p, =~ 1076, gives the correct order of magnitude for the results of numerical
simulations shown in Figure 4.14.
For large p, analogously to the exponential case, breakdown of FD occurs as p — 1
through the introduction of an asymmetry during transitions between low modes. This
happens as the timescales for pattern formation and domain growth coincide and the

distinction between slow and fast dynamics regimes for the evolution is eroded.

4.4.3 Logistic Growth. If the sensitivity of the tissue to the patterning mechanism
is confined to a phase of exponential growth, then the previous results are sufficient to
predict the patterning behaviour. However, if pattern is organised during the period
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FIGURE 4.14 Pattern sequences under linear domain growth. The evolution of the
activator concentration profile v(z,t) with Schnakenberg kinetics for (a) p = 2.5 x 1076,
(b) p=5.0x 1075 (c) p=1.0 x 1073 and (d) p = 2.0 x 1075, with v = 1.0, showing
2, 3, 4 and 5 frequency-doubling transitions respectively before the sequence breaks
down. Transitions appear discontinuous because they occur over a time interval much
smaller than the total interval shown in the figures. Other simulations have shown
that subsequent to breakdown of FD the pattern sequence is non-robust both as to the
component modes in the sequence and as to when the transitions occur.
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FIGURE 4.15 Illustration of the condition (4.44). The rate of change of v is plotted
against v for exponential (straight line) and linear (curved line) growth functions. The
intersection (marked with vertical dashes) between the linear growth curve and the line
for exponential growth at the (lower) critical rate parameter p. (dotted line) gives the
approximate value of ~ after which the FD sequence is expected to break down for
linear growth. The straight solid line represents exponential growth for p > p. for which
frequency-doubling is observed.

over which the domain growth slows and saturates to achieve some final domain size
then we wish to see how this affects pattern formation, and in particular the robustness
of the sequence and final pattern that is obtained. Therefore we consider pattern
formation under a (spatially uniform) logistic growth function

t
() = ¢ exp(pt)
¢ +exp(pt) — 1
such that dr/dt = pr(1 —r/{), where ( is the ratio of final to initial length. This may
be generated from a local time varying strain rate with time dependence

S =polt) = +Z>(<§>(_ptl))— 1

In Figure 4.16(a) we show the results of a numerical simulation for logistic domain

(4.46)

(4.47)

growth in which mode m = 16 persists at the final domain size. We have chosen the
rate parameter p to be relatively large such that the transitions between patterns are
shown to be smooth. The logistic growth is initially exponential in form, but slows
to asymptotically approach the final domain length. If we are in the range for which
exponential and linear growth functions give FD then we might expect, for a given
p and for most ¢, that one constituent mode of the FD sequence will persist as the
domain tends asymptotically to its final length. However, if  is such that the sequence
begins to undergo reorganisation during the asymptotic approach to the final domain
size, then some other mode may be admitted and non-robust pattern selection may
occur. We will seek to ascertain the relative size of the interval in ¢ in which another
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FIGURE 4.16 Pattern sequences under logistic growth. Evolution of activator concen-
tration profile v(z,t) with Schnakenberg kinetics for logistic growth with (a) p = 0.01
and ¢ = 26.0 showing selection of mode m = 16 from the FD sequence. The short
interval in ¢ for which other patterns are admitted is illustrated for p = 0.001 with (b)
¢ = 6.50 =~ (" selecting m = 4, (¢) ¢ = 6.51 for which the final pattern is m = 6, not
in the FD sequence, and (d) selection of m = 8 for { = 6.52 ~ (f*'". Solutions are for
Schnakenberg kinetics.

mode, not an element of the foregoing FD sequence, is the final pattern mode selected
as the domain tends to its final size.

If, for given p, a particular mode m of the FD sequence persists to the final
domain length for the interval ¢ € [(T¥"(p),(™®(p)], then the existence of a window
of non-robust behaviour implies that (%" > (™%, The probability of observing a
final pattern which is not of the FD sequence will depend on the relative sizes of
R = (M _ (min and Nmom = min _ (maz intervals of robust and non-robust
pattern selection respectively, which will depend on m and p. Numerically we can
estimate (™% and (™" for different modes through repeated simulations for different
values of ¢ and hence calculate estimates for Nm,gm and R,,. Such estimates for
p = 0.001 and d = 0.01, taken from a series of numerical simulations, are presented in
Table 4.1. These data show that intervals of non-robust pattern selection N are over
two orders of magnitude smaller than the intervals, R, for which the final pattern is
from the FD sequence. Figure 4.16(b)—(d) illustrates the final pattern selection over
a small interval in (, with the final pattern moving from mode 4 to 8. The window of
non-robust behaviour exists but is relatively very small. We find in the window Ny, 2,

that we get modes between m and 2m, usually we see even modes (internalised peaks)
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| mode m [ 1] 2] 4] 8 [ 16 [ 32 | 64 |
(min — [1.63]3.26 | 6.52 | 13.03 [ 26.09 | 52.43

maz 1.62 | 3.25 | 6.50 | 13.00 | 26.04 | 52.33 | 106.60

Rm =™ — ™ - [1.62]3.24| 6.48 | 13.01 | 26.24 | 54.17
Niom = (gm — ¢me® 10.01 [ 0.01 [ 0.02] 0.03 | 0.05 | 0.10 | -

TABLE 4.1 Windows of non-robust pattern selection for logistic domain growth. The
table contains numerical estimates (+0.01) for the critical values of ¢ (defined in the text)
for various modes, under logistic growth with p = 0.001, d = 0.01 and Schnakenberg
kinetics. Numerical solutions were computed to large time to reliably estimate (pin-

for Schnakenberg, although much less frequently we do observe odd mode patterns.
Within the window it seems that for a given ¢ € [(™9® (I%"] one can get different
final modes between m and 2m for different sets of initial conditions.

Numerical simulations also allow us to investigate how the windows of non-robust-
ness depend on the parameters d and p. The numerical estimates of (™% and (™"
for different combinations of these two parameters for the transition between modes
4 and 8 are shown in Table 4.2. These data suggest that the window Nyg shrinks
with increasing p (as the domain growth rate is increased) while the beginning of the
window in ¢ does not move as p is varied. However, when the ratio of diffusivities
is increased towards d. the window grows, while the onset is delayed by increasing
d. Over the range of d and p tested, the window still remains much smaller than the

range of ¢ for which the pattern from the FD sequence is selected.

4.4.4 Hysteresis. The model (4.1)—(4.3) exhibits hysteretic behaviour, which ap-
pears to be generic and not dependent on the particular kinetic scheme, and which
is manifest in two ways. Firstly the equations show the simple hysteretic effect of
an S-shaped bifurcation curve, giving bistability over some range of the parameter
(here 7). Secondly, the actual sequence of patterns generated changes for a shrinking
as opposed to a growing domain, over some wider range of v. We investigate these
phenomena with a concrete example, by considering an explicit time dependence. An

exponentially increasing and decreasing domain size is given by

o exp (2pt) t<t

0= { Y0 exp 22/) ()2t’ —t), =t (49
so that y(0) = v(2t') = o. Firstly we show hysteresis in the transition between two
modes. For this purpose we consider the transition between modes m = 1 and m = 2,
which avoids the complication of intervening modes. The amplitude of the activator
profile v(z,t), n2(7y), while increasing and decreasing 7 according to (4.48) through
the transition between modes, is plotted in Figure 4.17. The beginning and end points
are the same, but the onset of the down-mode transition is delayed on decreasing ~,
showing the hysteretic effect.
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L p [ d [ [ & | N |
0.001 | 0.01 | 6.500 | 6.512 | 0.012
0.0001 | 0.01 || 6.499 | 6.559 | 0.060
0.01 | 0.01 | 6500 | 6.507 | 0.007
0.001 | 0.005 | 6.335 | 6.338 | 0.003
0.001 | 0.02 | 6.789 | 6.852 | 0.063

TABLE 4.2 The dependence of the onset and interval length of windows of non-robust
pattern selection on model parameters. The table shows numerical estimates for (j***
and (§*" under logistic domain growth with various p and d. The approximate error in
the ¢ values is £0.001, and in the calculated A is £0.002.

For transitions at higher mode, where intervening modes are skipped, there is no
guarantee that on decreasing - the same sequence will be followed. In fact we find
that in general a different set of patterns is observed, with a tendency to include a
greater number of modes sequentially. An example is presented in Figure 4.18. The
reasons underlying these hysteretic effects will be discussed in the next chapter.

4.5 Domain Growth is a Mechanism for Reliable Pattern Selection

The FD sequence that we have studied for slow uniform domain growth in one spatial
dimension provides a mechanism by which pattern modes may be selected robustly.
Our numerical results suggest that the frequency-doubling behaviour (whether by
splitting or insertion) is generic to reaction-diffusion systems which generate spatial
pattern through the Turing instability, and that the sequence is not destroyed by
varying the boundary conditions from zero-flux. The sense in which patterns in the
sequence are robustly generated is that once initiated, the sequence of patterns unfolds
with no dependence on the initial conditions. Once a large amplitude pattern is
established the dynamics are governed by the change in 4. We have shown that
logistic domain growth can reliably (although not perfectly) select one pattern from a
sequence which persists as the domain tends asymptotically to its final size.
Semi-scale Invariance. On a domain of fixed size, pattern selection depends strongly
on the domain length and multiple patterns may be admissible for a particular length
for different sets of initial data. For the FD sequence the situation is quite different.
The pattern sequences capture a degree of insensitivity to domain length, with each
pattern element in the sequence persisting while the domain doubles in length. This
semi-scale invariance is particularly significant in that it allows regulation, whereby
a specific number of pattern elements is laid down despite significant variation in the
domain size and without need to finely tune parameter values. Previous attempts to
achieve scale invariance in reaction-diffusion systems have all required feedback from
the domain size to the kinetic parameters in the model [100, 52]. The semi-scale in-
variance demonstrated on the growing domain arises as a natural consequence of the
mechanism by which pattern sequences are formed.
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FIGURE 4.17 Hysteresis in a single transition for exponential domain growth and
contraction. The maximum amplitude, 72(t), for the activator is plotted for increasing
(solid) and decreasing (dotted) 7, both parameterised by time ¢. The domain growth and
contraction has p = 0.001 for «(t) given by equation (4.48) with 7o = 1 and ' = 1000.
We use Schnakenberg kinetics and d = 0.01.
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FIGURE 4.18 Hysteresis in the pattern modes comprising the sequence for exponential
domain growth and contraction, for the same initial and final domain size, vo. Activator
v(z,t) profiles are plotted for (a) increasing and (b) decreasing domain size (). The
domain grows until time ¢’ = 2500 from which point the domain is contracting. In
the simulation we take p = 0.001 for «(¢) given by equation (4.48) with o = 1, with
Schnakenberg kinetics and d = 0.05.
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4.6 Discussion

The slow growth limit that we have considered in this chapter seems reasonable in the
context of biological pattern formation. When the spatial domain is changing length on
a timescale which is commensurable with the time taken for pattern formation there is
no quasi-steady behaviour, and the resulting evolving spatial profile appears to be quite
disorganised. We have seen that the pattern sequence may depend on the rate and
functional form of the change in v with time. This indicates that the solution does not
adiabatically follow steady solution branches during transitions between patterns. The
dynamics which take the evolving spatial profile from the vicinity of one bifurcation
branch to another is investigated in the following chapter. Under slow growth a
dilution term appears which slightly modifies the kinetics. This term has a magnitude
which is on the order of the slow rate of change of the domain size. In fact the
symmetry argument and the conclusions that have been drawn are equally valid if this
modification to the kinetics is neglected.

The symmetry analysis that allowed us to predict FD for exponential domain
growth and conditions on the growth rate parameter p for linear domain growth re-
flects the symmetry in the underlying solutions to the steady state problem. Similar
arguments have been proposed recently by Nishiura and Ueyama [95] for the bistable
Gray-Scott model, to explain the closely related phenomenon of self-replicating pat-
terns on the fixed domain. Numerically it is found that a pattern initiated in some
region of a domain spreads to fill the domain by splitting of the outermost peaks (see
Figure 2.7(b)). The authors suggest that the symmetry in the steady state equations
that we have demonstrated in Chapter 2, which they call ‘folding-up’, causes related
inhomogeneous solution branches to line up in the bifurcation diagram, so that the
saddle-node bifurcation points at which they are created line up at the same value
of the control parameter. The authors call this the ‘edge of hierarchy structure of
limiting points’. The trajectory of the PDE solution from suitably chosen initial data
passes close to each of these limiting points of the branches so that transient pat-
terns approximating the steady solutions are observed for the full PDE system. In
the present work the situation is somewhat different in that we have a time dependent
v, which may be thought of as the control parameter. However, it seems that the
symmetry identified in the steady state problem may be responsible for both results.
Furthermore, we have been able to show that in our model the symmetry argument
can be extended into the full PDE system.

Linear analysis identifies a minimum domain length (and hence a minimum =) for
each pattern mode. The critical domain length for solutions corresponding to patterns
of the lowest mode (the half- or boundary-peak) gives a minimum domain length
below which no Turing bifurcation is possible (however, for subcritical bifurcation,
inhomogeneous solution branches may exist below this point). For the numerical
computations in this chapter the initial domain length has been taken to be smaller
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than the critical domain length. As the domain grows the first destabilising mode,
the lowest admissible pattern, is excited as the domain length increases through the
critical point (v = 7.). However, if the initial domain is sufficiently large that patterns
of higher mode may be excited, then the FD sequence which ensues may be based on
a different initial mode. In general, if the initial mode to be excited through the
Turing bifurcation is mode m = mg then the sequence will comprise modes mqg x 2".
However, we reiterate that pattern selection becomes increasingly unreliable as the
domain length increases, and close control of initial data and domain length is required
to select initial patterns of large mode number mg. For this reason the mechanism
that we have described in this chapter for uniform domain growth is not well suited to
reliably generating patterns with an odd number of peaks, which require higher my.
We will reconsider this later in the context of nonuniform domain growth.

We have demonstrated that a reaction-diffusion mechanism on a growing one-
dimensional domain can reliably generate patterns with multiple periodic peaks. This
is contrary to the conclusions of Saunders and Ho [118] which are based on the nu-
merical simulations of the model by Arcuri and Murray [3] (AM). Here the authors
nondimensionalise time using T, the diffusive relaxation time (see (2.6), by writing
t = wt/v and subsequently impose time dependence on + where it appears explicitly
in the evolution equation (3.1). The timescales for pattern formation and for domain
growth, the importance of which we have emphasised, thus become conflated. This
distorts the evolution of pattern sequences in the AM model, which fails to produce
the robust sequences we have found. Neglecting the dilution term, one may transform
the AM equations into our model by defining a new time variable z = [J dt/v(t). The
time dependence for v in the AM equations which corresponds to an exponentially
growing domain may then be found, namely v(z) = 79/ (1 — 2py0z). Numerical so-
lutions of equation (3.1) with this form for v(z) show that FD behaviour is observed
in the AM model with the appropriate time dependence, for z < 1/2pyy where v(z)
becomes singular.

The strong tendency to splitting of activator peaks (and insertion for the Gierer-
Meinhardt kinetics) is striking. Following breakdown of the FD sequence for linear
growth, subsequent patterns still develop by splitting (for Schnakenberg kinetics) of a
subset of the peaks on the domain, to give activator patterns with internalised peaks.
In the following chapter we examine this tendency for splitting and insertion of new
peaks in more detail.
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Two mechanisms for transition between quasi-steady patterns in sequences generated
on the slowly growing domain are observed for the kinetic models in the literature
admitting DDI. In the previous chapter these mechanisms were illustrated with Sch-
nakenberg kinetics for activator peak splitting, shown in Figure 4.1(a), and by the
Gierer-Meinhardt model for peak insertion, see Figure 4.10(a). In this chapter we
seek to understand these properties of the equations and in particular establish what
determines the mode of transition for a particular choice of kinetic scheme. To these
ends we simplify the problem by introducing a piece-wise linear approximation to the
reaction-diffusion system.

In Chapter 4 it was shown that for slow domain growth the evolution of solutions to
the PDE separates into two distinct timescales. Here we make use of this separation of
scales and consider the parameterisation by - of quasi-steady patterns which evolve on
the slow timescale. In the limit as p tends to zero these patterns are well approximated
by the steady state patterns for the reaction-diffusion equation on the fixed domain.
Furthermore, for small d the spatial behaviour of the reaction-diffusion system is
separated into regions where the solution varies on two distinct spatial scales. It is
convenient to write d = €2 where ¢ < 1. Then in the limit ¢ — 0 the spatial variation
of solutions in the steady state is determined by the outer equations

Ugz = —f(u,v) (5.1)
0 = g(u,v) (5.2)

suggesting that the solution must lie on the nullcline for v, except in the vicinity of
large spatial gradients in v, where we expand the independent variable, £ = z/e, to
obtain the inner approximation

uge = 0 (5.3)
vee = —79(w,v). (5.4)

Our method is to exploit the ratio of diffusivities d as a small parameter in a
singular perturbation expansion in which we look for solutions in the limit as d tends
to zero. In particular we can find closed form approximate solutions of the system,
showing that the slow dynamics carry the system to a point, which can be calculated,
where a solution of a given mode ceases to exist and where reorganisation of the pattern
ensues on the fast timescale. From this analysis we also identify a novel behaviour,
frequency-tripling, which is characteristic of a symmetry in the kinetic equations.

The steady patterns arising from the Turing instability in reaction-diffusion equa-
tions may be grouped into two classes, according to the asymptotic behaviour as the

T
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ratio of diffusivities tends to zero. Spike patterns, such as those generated by the Sch-
nakenberg and Gierer-Meinhardt systems, consist of periodic peaks in the activator
profile for which the amplitude increases (and becomes unbounded) and the width
decreases as d is reduced to zero. Thus spike patterns approximate §-functions in the
limit. Transition-layer patterns develop discontinuous jumps between two activator
levels, becoming step-functions as d tends to zero. The difference between these two
pattern-types is determined by the manner in which the kinetics saturate the growth
of destabilising modes, in particular by the shape of the nullcline for the activator ki-
netics (see, for example, Kerner and Osipov [62]—we take a similar approach to theirs
below).

Reaction-diffusion models for spatial patchiness in population levels for predator-
prey interactions have been proposed by Segel and Jackson [121] and Levin and
Segel [73], in which the spatial distribution is generated by DDI. In many such ecolog-
ical settings it is desirable that the subdivision of the domain into regions of high and
low population density is maintained when the prey species is effectively stationary,
such as herbivore-plant interactions (herbivorous copepods, zooplankton, and grazing
phytoplankton [73]) or various host-parasite systems [121]. In this case the ratio of
prey to predator diffusivity is reduced to zero. Mimura and Murray [83] showed that
for these models the spatial extent of regions of high population tended to zero with
the ratio of diffusivities (the kinetics are spike-type), and proposed that a cubic form
is required for the nullclines for pattern which continues to subdivide the domain as d
is decreased.

Much of the theory of large amplitude patterns of transition-layer type was de-
veloped by Fife [39, 40]. Kerner and Osipov discuss these patterns and their stabil-
ity [62] and also discuss spike-type kinetics. Spike patterns, or point condensations,
are the subject of much current interest (see Ni [92] for a recent review). Doelman
and co-workers have used geometric singular perturbation theory to investigate the
existence [33] and stability [32] of spike patterns in the Gray-Scott model, also studied
by Muratov and Osipov [86]. Alternatively, Ward et al. [53, 54| consider the stability
of spike solutions to the Gierer-Meinhardt system and the motion of spike solutions

in two and three dimensions.

5.1 Transition-Layer Theory

Fife [38] showed the existence of large amplitude stationary solutions in a class of
coupled reaction-diffusion equations, characterised by narrow transition regions which
subdivide the domain into two phases (high and low activator concentrations), requir-
ing one component to diffuse much faster that the other. Fife’s discussion of these
solutions depends on global properties of the system, rather than on the local be-
haviour of the system close to a bifurcation point, as do Turing’s analysis and the
weakly nonlinear bifurcation analysis presented in Chapter 2. Large amplitude weak
solutions to the steady state problem may be constructed in the limiting case € = 0 by
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allowing a jump discontinuity in the solution, which for € # 0 is smoothed out to give
a continuously differentiable graph. In the singular limit solutions are deemed weak
as they admit a jump discontinuity. In comparison to a bifurcation-type approach,
here we are nowhere near a fixed point in phase space. In fact the conditions derived
for Turing bifurcation from a homogeneous state, described in Chapter 2, are not nec-
essary requirements. Large amplitude solutions may be formed where a sufficiently
strong perturbation from a stable fixed point in the phase space takes the solution to a
branch of stationary inhomogeneous solutions, so-called Turing branches, as discussed
for the bistable Gray-Scott model in section 2.5.3.

The argument we present below is based in part on a discussion in the book by
Grindrod [46], where a population model for ecological patchiness (predator-prey type
interaction with diffusion) is considered. Conway [18] has a fuller discussion (see also
Murray and Mimura [83]). In this chapter we use singular perturbation theory to
construct heterogeneous solutions, showing existence of large amplitude patterns for
a concrete example, and then examine the dependence of these solutions on 7. We
will not pursue the analytical study of stability of the solutions, but rather refer to
the arguments presented for transition-layer solutions by Fife [39] and also the work
of Kerner and Osipov [62].

Transition-layer patterns may form in systems for which the activator nullcline
takes a cubic form in the (u,v) phase plane, so that g(u,v) = 0 must have three
solutions v = k(u). The shape of the inhibitor nullcline f = 0 is not crucial for the
existence of large amplitude patterns as long as the kinetics are monostable (such that
the curves f = 0 and g = 0 intersect only at one point). We will discuss variations of
this nullcline later. The two essential ingredients are the specific form of the activator
nullcline and that the ratio of diffusivities is a small parameter. Below we illustrate
the basic idea and show how it helps understand splitting and insertion. In a follow-
ing section we pursue a specific example, where the analysis has been dramatically
simplified by assuming a piece-wise linear form for the kinetics.

We study the coupled reaction-diffusion system for two species

1
62
Ut = ;'Uzz + g(u, U) (56)

with zero flux boundary conditions
Ug =1y, =0 on z=0,1 (5.7)

where the nullcline ¢ = 0 has cubic form. The steady states of this equation are
equivalent to the quasi-steady patterns for the problem on a growing domain, given
by equations (4.9)—(4.10).
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First we consider the possibility of solutions when ¢ = 0. Consider the activator
kinetics

v = g(u,v), (5.8)

which has three stationary branches (the nullcline g(u,v) = 0) in the phase space, v =
k;(u) where ¢ = 1,2, 3. In order to have transitions between two phases (corresponding
to two branches of the nullcline) it must be the case that two of the branches, ¢ = 1
and 3, are stable with respect to the dynamical system (5.8), for which we require
gy < 0. Following our ordering of the species in decreasing diffusivity, for DDI we
must have g, > 0 (self-activation of v) at the fixed point of the kinetics, which for
consistency must lie on the unstable branch.! However, we note that the existence of
the large amplitude transition-layer patterns does not depend on this condition, and
below we discuss the implications of the kinetic steady state lying elsewhere. Simple
considerations on the gradient of the nullcline at the fixed point (branch ¢ = 2) dictate
that for pure kinetics the nullcline is a negative cubic in v while for cross kinetics the
nullcline has positive cubic form.

Firstly we consider the case of pure kinetics for which the nullcline is a negative
cubic function of v, and so kj is defined on u € [umin,00) while k2 is defined on
U € [Umin, Umaz] and k3 on u € (—00, Umaz|. Here Umin and Umq, are the values of u at
the turning points of the curve g(u,v) = 0 in the phase plane. From the phase plane
it is straightforward to show that there are no nontrivial solutions with v = k;(u)
satisfying both the conditions imposed at the boundaries. Next we consider solutions
which are continuous in u(z) and its derivative uz(x) but which allow a discontinuity
in v(z) at = z* € [0, 1] where u = u* € [Umin, Umaz| satisfying the reduced system

0 = ugz + vh(u) (5.9)
where
) = [ (u, k1(w)), u < u*
hw) { f(u, k3(uw)), u>u* (5.10)

and for a pure system f(u,ki(u)) < 0 and f(u,ks3(u)) > 0 (for cross kinetics the
signs are reversed). Assuming monostability, h(u) has no roots (f(u,k2(u)) = 0 at
u = us which is on branch ¢ = 2). We look for orbits of this equation in the phase
plane starting and finishing on u; = 0. A schematic of a typical phase plane for
equation (5.9) is shown in Figure 5.1. Here we construct a solution such that v = k1 (u)
for 0 <z < z* and v = k3(u) for z* < z < 1. Evidently we could reverse the polarity,
and jump from branch ¢ = 3 to branch ¢ = 1 as z increases, for which we would have

!'We note that the so-called ‘unstable’ branch (i = 2) is unstable w.r.t. equation (5.8), however, it is
consistent that the fixed point of the kinetics (us,vs) which lies on this branch is stable w.r.t. the
dynamical system u: = f(u,v), v« = g(u,v), as required in the definition of the Turing bifurcation
(and may be driven unstable by spatially heterogeneous perturbation for the full reaction-diffusion
equation).
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<Y

(a) (b)

FIGURE 5.1 Schematics of (a) the phase plane for equation (5.9), the outer problem for
transition-layer patterns, and (b) the solution (bold) and the curve g(u,v) = 0, showing
the solution lying on the nullcline away from the jump in v at w = v* and the limiting
points corresponding to case (i) and for case (ii) (see text for details).

h(u) replacing h(u) in equation (5.9) where

) — f(u, ks(w), w<u*
h( )_{ flu, ki(w), u>u* (5.11)

Multiplying by u, and integrating along orbits from 0 to z, we have the first integral

s’ 47 H (u(a)) ~ Hu(0)] =0 (5.12)

where

u(z)
H(u(z)) = / h(w) dw (5.13)
0
so that from (5.12) with boundary conditions (5.7)
H(u(1)) = H(u(0)). (5.14)
We can find x from the so-called ‘time-map’
1 u(z) dw
V21 )\ [H (u(0)) — H(w)

x

(5.15)

where in particular for z = 1

2
1| e dw
T2 [/u(o) VH (u(0) - H(w)] (5:16)

and we see that  parameterises the orbits in the (u,u,) phase space. In fact it can

be shown for a class of kinetic functions of the form we consider here that the time-
map (5.16) is a monotonically decreasing function of (0). This is shown explicitly in a
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result by Smoller and Wasserman [124]. Hence we can treat vy and u(1) as functionals
of u(0).

There are three possibilities for the solution, depending on the precise form of the
kinetics:

1. If H(umin) < H(Umaz) then for every u(0) € [Umin,u*] there is a <y such that
u(l) € [u*, ug] exists satisfying (5.14), where H(u3) = H(umsn). This is the case
shown in Figure 5.1(a).

2. If H(umin) > H(Umaz) then for every u(0) € [u1,u*] there is a v such that u(1) €
[U*, Umaz] exists satisfying (5.14), where H(41) = H (Umaz)-

3. If we have the symmetric case, where H(Umin) = H (Umaz), then for every u(0) €
[min,u*] there is a 7 such that u(1) € [u*, umaez] exists satisfying (5.14).

In each case 7y is determined by the time-map (5.16). In fact there is an infinite set of
~ satisfying (5.16) for particular «(0) and u(1) corresponding to different numbers of
cycles of the orbit, which give solutions of different mode.

Put otherwise, for a given  one can find u(0) and u(1l) satisfying the time
map (5.16) along with equation (5.14) for a particular number of cycles, where valid
solutions have u(0),u(1) € [Umin, Umaz|- Thus v parameterises the quasi-steady solu-
tions. Now u(0) is a monotonically decreasing function of 7, and so as -y increases the
solution may evolve towards a critical point v = ¢ at which the solution can no longer
be constructed (the solution ceases to exist) and at which point reorganisation to a
different mode must occur. For case (i) the critical point will occur at u(0) = Umin,
shown in Figure 5.2(a), while for case (ii) the critical point is reached for u(0) = @
(when u(1) = Umaz), as in Figure 5.2(b) (see also Figure 5.1(b)). Both these condi-
tions are reached simultaneously for case (iii). This analysis is pursued below with a
concrete example.

For € # 0 these discontinuous solutions do not have sufficient smoothness to satisfy
the equations. We treat the equations as a singular perturbation problem and expand
about z* in the stretched variable £ = (z — z*)/e for which we have the inner problem
for U(§) and V (§) describing the transition-layer,

0=Ug + e f(U,V) (5.17)
0="Vee +79(U,V) (5.18)

and so as |{| = oo we must have U — v* and V; — 0 (and thus V' — k;(u*) for
i = 1,3). Therefore we consider the reduced system where we let ¢ — 0 and take

U = u* giving
0= Ve +v9(u", V) (5.19)
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0) u(0)

(a) (b)

FIGURE 5.2 Evolution towards critical points as 7y varies for solutions in the limit as
€ — 0. In (a) H(tmin) < H(Umaz) so that the solution can no longer be constructed as
u(0) decreases through w;,;, with increasing v (case (i)), and in (b) H(Umin) > H(Umaz)
for which the solution ceases to exist when increasing -y causes u(0) to decrease below 4,
when u(1) = Upqq (case (ii)). When H(wmin) = H(Umaqz) these points coincide (case

(iii)).

and we seek a heteroclinic orbit connecting V' = ki(u*) and V' = k3(u*). Multiplying
equation (5.19) by V¢ and integrating over —oo < £ < oo we have

k3(u*)
G(u*) E/k :(3 ; g(u,w)ydw=0 (5.20)
1lu

and from considerations of the sign of g in different regions of the phase space we have
for pure kinetics

G(umin) >0 and G(Umaz) <0 (5.21)
while, for g(u,v) a decreasing function of u,
dG
.22
du* <0 (5.22)

so that the integral equation uniquely defines u*, and hence x*. For cross kinetics the
inequalities in (5.21) are reversed and for g(u,v) an increasing function of u then u*
is similarly uniquely determined.

Formally this analysis is equivalent to the leading order calculation in a matched
asymptotic expansion. The leading order behaviour is sufficient to establish existence
and the basic properties of the large amplitude solutions, including the location of
the transition-layer (and dependence on +). Similarly, periodic patterns may be con-
structed on the real line. We have said nothing about evolution from initial data or,
other than of the outer problem, the stability of the solutions that we construct, and
we will generally appeal to the results of numerical simulations for this purpose. How-
ever, in the literature various studies have been made of the stability of transition-layer
problems. In a similar problem, Fife [39] considers a transition-layer as a travelling
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wavefront with zero velocity and shows that a large spatial gradient may evolve from
smooth initial data. Furthermore he shows that near the transition region (z = z*) a
perturbed wavefront may move back towards #* under certain conditions.

Next we examine a specific and much simplified model and then investigate the
mechanisms for transitions between patterns at the critical points identified above,

determining how splitting and insertion are initiated.

5.2 Cubic Autocatalysis Model for Transition-Layer Patterns

Various schemes have been proposed in the literature as models of biochemical re-
actions with the prerequisites for the Turing bifurcation in a reaction-diffusion sys-
tem. We consider reaction schemes of polynomial type, and seek to understand the
influence of the nonlinearities on transitions between patterns on growing domains.
Ermentrout [37] considered the role of quadratic and cubic nonlinearities in reaction
terms in the generation of spotted and striped patterns on the two-dimensional do-
main. Following this example, we will consider the influence of cubic and quadratic
nonlinearities in the transitions between patterns. It is informative to expand the ki-
netic function about the steady state so that the order of different terms is established.

For concentration vector ¢ = ¢ — ¢s = (¢1,C2, . - - , ) the transformed kinetics are
R(c) = R(c +c;) = Ac + N (c) (5.23)
= Ac + Ns(c,¢) + N3(c,c,c) + ... (5.24)

and we will assume that R can be expanded in this way. We note, however, that
we no longer expect everywhere positive solutions for ¢, and the physically significant
quantities ¢ are recovered by the addition of the steady state concentrations c;. In this
form the linearised equation contains simply the Jacobian .4, which should satisfy the
conditions for Turing bifurcation, and the nonlinearities N5 and N3 are respectively
quadratic and cubic combinations of the ¢;. Hereinafter for notational convenience
we drop the over-bars, remembering that solutions may be negative legitimately. We
will restrict discussion to include quadratic and cubic nonlinearities only, as these
are the highest order terms associated with kinetics such as the Schnakenberg [119],
glycolysis [122, 4] and Gray-Scott [45] models. The system may be further simplified by
supposing that the nonlinear terms are in v and appear only in the activator equation
(in g(u,v)). Then considerations in the phase plane on the orientation of the nullcline
curve dictate that the cubic term in the kinetics must be negative (for both pure and
cross kinetics). Below it is shown numerically that this kinetic model can give rise to
Turing bifurcation to finite amplitude pattern, and that a sequence of patterns may
form on the growing domain as normal. We will consider reaction terms which consist
solely of odd powers of the dependent variables such that the reaction-diffusion system

is invariant under the parity transformation

(u,v) = (—u, —v) (5.25)
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and investigate the effect on pattern formation of quadratic perturbations which break
the symmetry.

We can choose the linear part of the reaction term to admit the Turing bifurcation
(although this is not required for the existence of large amplitude patterns of the
form we have described) and specify the relative polarities of the spatial profiles for
activator and inhibitor species according to the signs of the entries in the matrix A.
Initially we choose a pure kinetic system, in which the Fourier modes destabilising the
spatially homogeneous state are spatially in phase for the activator and inhibitor. The
nonlinear kinetics are given by f and g where

f(u,v) = —ou+wv (5.26)
g(u,v) = —u + pv + 6v* — v* (5.27)

where the positive constants ¢ and p are such that the linearised system,

—0o 1
e oo

satisfies the conditions for DDI. The effect of quadratic terms on the behaviour of a
system which is predominantly cubic is examined by introducing a small quadratic
contribution, |§| < 1. In chemically oriented discussions of cubic autocatalysis the
cubic term is usually given by wv?. This form generates the same qualitative be-
haviour, while begin less easily studied analytically, and so to examine the role of the
nonlinearities we proceed with the cubic in v.

In practice, even with this simple form, the nonlinearities in the equations are
such that construction of the transition-layer solutions is a nontrivial exercise. The
inner equations are easily integrated, but the k;(u) are the roots of a cubic and for the
outer equations a simple closed form solution cannot be found. However, the essential
features of the kinetic system are well approximated by a piece-wise linear version of

the reaction term.

5.2.1 Piece-wise Linear Approximation. The use of a piece-wise linear approxi-
mation to a nonlinear function is a means of rendering a nonlinear system analytically
tractable (see for example Rinzel and Keller [117] and Lane et al. [68]). We introduce
a piece-wise linear scheme which retains the qualitative features of the nullclines of
the nonlinear system (5.26)—(5.27), defined so that for § = 0 the turning points in the
v-nullcline coincide with those for the full nonlinear problem. If we insist that the
steady state of the kinetics is at the origin (so that the linearised system is simply
the linear part of the kinetics) then it is desirable that the nullcline be continuous
here. Therefore we approximate the nullcline by three linear regions. We will consider
the effect of introducing a non-zero quadratic contribution by removing the symmetry
of the nullcline, as will be shown in detail later. In general the gradient of the null-
cline can be different in each of the linear regions, but to preserve the symmetry we
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take equal gradients modulo their sign. For a pure kinetic system (5.26)—(5.27) the

piece-wise linear reaction term is

f(u,v) = —ou+wv (5.29)
g1 —u —n(v+ 26y), v < —0

g(u,v) =¢; =% g2 =< —u-+nv, -6 <v<0s (5.30)
g3 —u —n(v — 263), v > 03

where ¢ = 1,2, 3 define the three branches of the v-nullcline, dividing (u, v) space into
3 regions at the turning points where v = —f#; and v = 03 respectively, where 6; and
03 are positive constants. We will use subscripts to refer to these three regions. The
piece-wise linear kinetics are such that the reaction term is continuous at v = —6#; and
v = 03 for all u, and exhibit a unique fixed point (at the origin) for no < 1. In order
that the turning points for the v-nullcline with § = 0 are at the same locations as for
the nonlinear kinetics, we modify one of the parameters in the linearised equations,
defining the positive constant
2p
=5
This does not qualitatively change the behaviour of the equations. Furthermore, we

(5.31)

approximate the turning points for § # 0 by

1
0173 = g (\/3#4—(52 ¢5) (532)

which takes the appropriate values for v but not, therefore, for u.
We have chosen parameters such that the Turing bifurcation is still admitted in
the linearised system with

—].’I’]

Activator solutions on the slow uniformly growing domain for the full nonlinear ki-

A = l o 1 ] . (5.33)

netics (5.26)—(5.27) and for the piece-wise linear scheme (5.29)—(5.30) are compared
in Figure 5.3. All three possible sequence types are illustrated: frequency-doubling
by peak splitting in (a) and (b) and by peak insertion for (e) and (f), while (c) and
(d) show frequency-tripling, where peak splitting and insertion occur simultaneously.
The frequency-doubling sequences are recovered by the addition of small quadratic-like
perturbations to the kinetics, the sign of which determines the method of transition be-
tween quasi-steady patterns. In these cases the parity symmetry is broken by moving
one turning point for the v-nullcline relative to the other, according to equation (5.32).
In each case the nonlinear and piece-wise linear kinetics are shown to give qualitatively
similar results.
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FIGURE 5.3 Comparison of activator pattern sequences generated with nonlinear kinet-
ics (5.26)—(5.27), shown in the left-hand figures, and piece-wise linear kinetics (5.29-5.30),
shown on the right-hand, with ¢ = 1.0 and ¢ = 0.8 (so that n = 2x/3 = 0.533). For
(a) and (b) § = —0.01 giving frequency-doubling by peak splitting, while for (e) and (f)
d = 0.01 and the sequence is generated by peak insertion. For (c) and (d) 6 = 0 (the
nonlinearities are cubic) and the sequence generated exhibits frequency-tripling.
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FIGURE 5.4 Nullclines for piece-wise linear kinetics (5.34)—(5.35). Superimposed is
the v-nullcline for the nonlinear cubic autocatalysis system (5.27) (dashed line), with

dotted line).

o =1.0and = 0.8 (n=0.533). In (a) we plot the symmetric case (§ = 0) and in (b)

we introduce a quadratic perturbation (§ = 0.2) (the symmetric case is shown by the

Nullclines for this system, given by

f(u7 1)) =0,

g(u7 U) = Oa

nonlinear system (5.27).

are plotted in Figure 5.4, where we have superimposed the v-nullcline for the full

1
U= —0 (5.34)
—n(v + 2641), v < —b6
u=4q 1, —0; <v <63 (5.35)
—77(” - 203)7

v > 03

The piece-wise linear reaction-diffusion system may, naturally, be solved exactly

in each of the three regions of the reaction term, and the undetermined constants

eliminated by matching solution segments together appropriately. However, such an
undertaking is algebraically challenging, sufficiently so to obscure the insights to be

gained from the approximation. Indeed we quickly find that the solution cannot be

expressed in closed form. Therefore we pursue an asymptotic approximation where
we will consider only the leading order terms in an expansion in €.

5.3 Matched Asymptotic Analysis for the Piece-wise Linear System

Initially we will consider a solution with a single transition-layer on the domain (cor-
responding to a pattern of lowest mode) at

z=2x"€[0,1].

(5.36)
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From our discussion of pattern symmetries in Chapter 2 we recognise this as the basic
building block for steady state patterns of higher mode. Away from the transition-
layer itself, solutions lie on the nullcline g = 0 in regions ¢ = 1 and 7 = 3, the former
corresponding to v < 0 and the latter to v > 0. Therefore we take v = ki(u) near
z = 0, so that h(u) is defined as in section 5.1, and the transition-layer is a step
increase in v (corresponding to a pattern of negative polarity). Formally we assume

an expansion in powers of €

u(z,€) ~ Z dul)(z), v(z,€) ~ Z dvl)(z). (5.37)
§=0 =0

For the leading order problem we will drop the superscripts. Substituting the ex-
pansions into the steady state equations and collecting leading order terms we recover
equation (5.9), which determines the variation of u across the domain, where for region
1,

Uge — VA2 = 29601,  ug(0) =0 (5.38)
with solution
260,
u1(z) = a1 cosh (A /yz) — 2 (5.39)

where

= Josl
A= a—i—n. (5.40)

Similarly in region ¢ = 3 of the phase plane

ug(z) = azgcosh (A\\/y (1 —z)) + 2)\7023

which satisfies the zero flux condition at x = 1. These equations also determine the

(5.41)

activator profiles in the outer regime through the relations v;(z) = k;(u;(z)),

200

vi(x) = —% cosh (A\/yzx) — S¢E (5.42)

2003
A2
Taking as the inner variable £ = (z — z*) /¢, the solution, (U, V), in the vicinity of

v3(z) = —% cosh( A\ (1—1z)) + (5.43)

the transition-layer is written as a power series in €
§=0 §=0

(again, in the leading order calculation we will omit the superscript). The leading
order term in U is determined by equation (5.3). Linear dependence on ¢ will not
match with the outer solution, as calculated above, and so in the inner region we
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assume

U=u". (5.45)

This constant is determined by the integral (5.20) which we can evaluate easily enough,
giving

o = %n (05— 61). (5.46)

Thus we find that the value of u in the transition-layer does not depend on 7.
Construction of the inner solution for V is complicated by the fact that we must
piece together solutions for regions ¢ = 1,2 and 3, requiring continuity of the solution

where the kinetics change abruptly for V = —60; at a spatial location we denote as 19
and again where V' = 63, at the point £23. In region i = 1, for which g = g1 (u*, V), we
have
Vi — 1V = 2y (361 +0s) (5.47)
and we take the solution which decays as £ - —o0
Vi(€) = by exp (A7) — 5 (301 +0s). (5.48)
Similarly in region 3 we find
Va(€) = by exp (/7€) + 5 (61 + 365) (5.49)
which decays as £ — co. In region i = 2 the leading order term in V satisfies
Vee +ynV = %vn (03 — 61) (5.50)
for which
Va(€) = by sin (y7E + ) + % (65— 01). (5.51)
For continuity we require
Vi(&12) = Va(612) = —61 (5.52)
V2(€23) = V3(€23) = 63 (5.53)
Vil (€12) = Vol (€12),  [Val, (62s) = [Val, (62) (5.54)

and we seek to determine the six unknowns b;, for ¢ = 1,2, 3, £12, £23 and 8. However,
solving these equations we find
1 s 1 T
§12 = —— (—— - 5) , o Cz=— (— - 5) (5.55)
AR Vn \4
so that the intersection locations are known up to undetermined phase 5. This means
that in the leading order calculation we cannot determine the points &2 and &a3 within
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the transition-layer.? However, for 3 ~ O(1) this introduces only O(e) error in the
location of the transition layer x = x*. Taking f = 0, which is reasonable in particular
for #; = 03 where the transition is symmetrical about £ = 0, we find on substituting
U=vu*

Va(€) = 5 (61 + B0)exp | VAT + | — 5 (361 +64) (5.56)
Vale) = = (61 + 6a)sin [y ] + 5 (6 — ) (557)
V3(§) = —% (61 + 63) exp [—\/v_ng + ﬂ + % (61 + 3653) (5.58)

and the inner solution is determined up to the unknown position z*, which may vary
with ~.

To find the constants a1 and a3 we match the leading order inner and outer solu-
tions. Writing the outer solution for w in the inner variable, x = e¢£ + z*, and letting
€ — 0 we find

1 20

a1(z*) = O] (u + A;) (5.59)
o 1 . 204

as3(e”) = cosh (A\/7 (1 —z*)) <u a 7) (5:60)

and matching in v follows automatically. Thus we obtain composite solutions, noting
explicitly the dependence on v (and hence dimensional domain length)

260,

u(z) ~ ai1(y)cosh (A\/yz) — 2 0<z<z*(y) (5.61)
~ ag(y)cosh (A\/7(1—z)) + 2)%3, z*(y) <z <1 (5.62)
and
(@) ~ —‘“7(77) cosh (\/7e)
+%(91+03)exp [%4-\/%(:6_:2*(7))] —2(;31, 0 <z <za(y)

(5.63)

a17(7’)’) cosh (A/yz)

+ (61 + 63) l% sin [\/'W (ﬂ)] + 1] — 2‘;#, z12(7) <z < z*()
(5.64)

2We could simplify the analysis somewhat, at the expense of introducing an error in the inner region
which may not be O(e), by neglecting the inner solution in region 2 completely and matching solutions
in regions 1 and 3. Then continuity at £ = 0 determines the constants b1 and bs.



92 5. SPIKES AND TRANSITION-LAYERS: PIECE-WISE LINEAR MODELS

~ —a?’fj) cosh (Ay/7(1 — z))

+ (61 + 63) l\}i sin [\/% (W)] - 1] + 2%203, 2" () < @ < w23(7)

(5.65)

~ —a?’?(:) cosh (A\\/A(1 — z))
—%(01+03)exp E—\/w_n(w_f*(”)] +2i203’ wos(7) <z <1
(5.66)

where the points x12 and za3 correspond to the locations at which the kinetic term
changes between regions 1 and 2, and 2 and 3 respectively, and are given by

€T () *() ET
Wk $23Y—$)|l,—-

The final condition required to determine the location of the transition-layer comes

z12(y) = 2*(7) - (5.67)

from integrating equation (5.9). As u(z) is continuous across the domain

1
/ h(w)dz = 0 (5.68)
0
obtains for h(u) defined as in equation (5.10). Evaluating to leading order gives
a1 sinh (A\/7z*) = —agsinh (A\/7y (1 — z*)) (5.69)

which states, consistently, that the gradient of v is continuous across the transition-
layer. Eliminating constants a; and ag using (5.59) and (5.60) we have for z*(7)
61 tanh(A\/yz*) = O3 tanh(\/~(1 — z*)) (5.70)
where we have defined
— 291 1 203
QlEv-i-u*, 93Ev—

which are independent of 4. Clearly for the symmetric case, ; = 63, * = 1/2 and

u* (5.71)

the transition-layer does not move with v (and hence changing domain length). For
the general case we solve by writing * = (In z)/2\,/7 and expanding (5.70) to obtain
the quadratic in z

(él + 9_3) 22 + (9_1 — §3) (exp (2)\ﬁ) — 1) Z — exp (2)\ﬁ) (0_1 + ég) =0 (572)

for which we take the positive solution z4 (7). In order that z*(v) € [0,1] we must
have 1 < zy () < exp (2A/7), for which we require

03 — 01 <1

- _ 5.73
Os+601| ( )
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FIGURE 5.5 Numerical solution (solid) and asymptotic approximation (dashed) for
piece-wise linear kinetics with o = 1.0, p = 0.8 (n = 0.533) and § = 0 (the symmetric
case) on the fixed domain. Activator solutions have larger amplitude than inhibitor
solutions (both are shown). Figures (a) and (b) have e = 0.1 while (¢) and (d) have
€ = 0.05. For the left-hand figures v = 2.0; for the right-hand plots v = 6.0. The
analytical approximation improves as € is decreased.

and this inequality holds always for 61,603 > 0 along with the condition for monosta-
bility, no < 1. Also, it follows that when 63 > 61, z* > 1/2, and similarly the reverse
is also true.

This completes the construction of the solution to the steady state problem. In
Figures 5.5 and 5.6 we plot steady state numerical solutions of equations (5.5)—
(5.6) with piece-wise linear kinetics (5.29)-(5.30) and the analytical solutions given in
equations (5.61)—(5.66). For the analytical solutions the location of the transition-layer
x*(7y) is calculated as above, and we compare the solutions for two values of the small
parameter €. In Figure 5.5 we take § = 0 such that §; = 63 and the location of the
transition-layer is shown to be independent of 7, while comparing left- to right-hand
plots we see that the transition becomes narrower (and increasingly steep) for larger
~v. When é > 0 then 63 > 6; and the transition-layer moves to the right for increasing
values of «, as shown in Figure 5.6. These figures suggest that the analytical solution
that we have constructed converges to the true solution as € is decreased. In Figure 5.7
we plot the L? error for each of these § and v parameter combinations.

Using the symmetry argument for steady state solutions, presented in Chapter 2,
patterns of higher spatial mode may be constructed by piecing together sections corre-
sponding to the lowest mode pattern, appropriately reflected and scaled. Alternatively
we can interpret this result to identify each half-wavelength section of a pattern of
higher mode (with zero flux boundaries) with the lowest mode pattern (with + scaled
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FIGURE 5.6 Numerical solution (solid) and asymptotic approximation (dashed) for
piece-wise linear kinetics with 6 = 0.2 and other details as for Figure 5.5. In (a) and (b)
we have € = 0.1 while for (c) and (d) € = 0.05. For the left-hand figures v = 2.0; for the
right-hand plots v = 5.0.

appropriately). This may also be understood by considering the time-map (5.16) where
patterns of higher mode correspond to multiple circuits of the orbit in the (u, u;) plane
for the lowest-mode pattern, so that a solution consisting of m circuits of the same
orbit exists when 7 is scaled by a factor m?2. Thus for the time-independent problem
each half-wavelength section will vary with « in the same manner. For slow uniform
domain growth, the evolving PDE solution in the quasi-steady regime remains in the
vicinity of these steady state solutions. Thus we may seek to understand the behaviour
of higher pattern modes when <y increases with time by considering only the simplest
pattern on the domain.

5.4 Transitions Between Patterns on the Growing Domain

We have constructed an approximate solution to the time-independent problem which
is valid for « less than a critical value, v¢, which we calculate below. For 7 greater
than this value the steady solution of lowest pattern mode no longer exists. On the
slowly growing domain, p small, this analytical solution approximates the quasi-steady
pattern and is valid up to the point at which a pattern of higher spatial frequency
is established for the PDE. The limiting feature for the construction of the analyti-
cal solution, as <y increases through the critical value, determines the mechanisms of
breakdown for the full reaction-diffusion system. Furthermore, once the critical value
e
breakdown for higher modes m through the scaling by the factor m2.

is established for the lowest mode, the symmetry analysis tells us the values for
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FIGURE 5.7 L2 error, E(e), for the analytical expressions for the activator solution v
compared to numerical solutions with v = 2.0, § = 0.0 (solid), v = 5.0, § = 0.0 (dotted),
v =2.0, 5§ = 0.2 (dashed) and v = 5.0, § = 0.2 (dot-dashed). Before calculating E(e) it
was verified that the numerical solutions were in the steady state.

5.4.1 Peak Splitting and Insertion. In the steady state the outer solution is con-
strained to lie on the v-nullcline. For slow uniform domain growth the quasi-steady
solution evolves until this condition can no longer be satisfied. As < increases the
solutions are limited by the turning points of the v-nullcline,

Umin = —No1, Umaz = N03. (5.74)

For the lowest pattern mode u(z) is monotonically increasing and the maximum and
minimum occur at the domain boundaries. As < is increased, one of these boundary
values increases through one of the turning points. Activator peak splitting or peak
insertion ensues, according to which of the points Umin O Umas 1S reached first. In
the symmetric case, where 1 = 03, both points are reached for the same value of
~ and simultaneous splitting and insertion follows, as demonstrated in the numerical
simulations shown in Figures 5.3(c) and 5.3(d), described as frequency-tripling. For
particular parameter sets we can use the values of u at the boundaries to predict
the critical v at which the transition between pattern modes occurs, and by which
mechanism.

At the domain boundaries, from equations (5.61)—(5.62) we have u(0) and u(1) as
functions of v

u(0) = a1(y) — 2)%1, u(1l) = a3(y) + 2)%3 (5.75)
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Now if u(0) = wmin at v = 7§ then substituting for a;(7) in the first of (5.75) we find

. _ 20,
Aﬁ$ ('Y) = cosh 1 lm] = ¢1 (576)

where ¢; is independent of . Substituting this into equation (5.72) with z = 2z; =
exp 2¢1, after some algebra we find

o [ 1, (B +85)22 — (6 —b5)z \]”
= [ (G280 o

Similarly, substituting into the second equation of (5.75),

* - >\2é3
)\ﬁm (’7) = cosh 1 lm] = ¢3 (578)

where ¢3 is independent of v, and we find that u(1) = wmqer at ¥ = 7§ where

1 (01 +03)23 + (0 — 03)z\ ]
22 In ( (51 + 9_3) + (51 — 53)Z3 )] (5'79)

for z3 = exp 2¢3. From the discussion of the time-map (5.16) in section 5.1, if v is a

C

V3 =

monotonically decreasing function of u(0) (see Figure 5.2),

du_(O) <0, (5.80)
dy

then the quasi-steady approximation breaks down as u(0) decreases through umin
where the solution branch disappears. Then locally g < 0 and so from equation (5.8),
which determines the dynamics in the outer part of the solution, we have v; < 0 (in the
fast timescale). For u below wpn, branch 3 of the nullcline g = 0 is attracting for this
dynamical system and the v-solution relaxes to this branch on the fast timescale, giving
a sudden growth of activator at the boundary (where there had been a minimum in the
solution profile). This is pattern transition via insertion of a new activator peak (see
the dashed arrow (i) in Figure 5.1(b)). By a similar argument on the time-map (5.16),
v may be shown to be an monotonic increasing function of u(1) (see [124]) so that

du(1) >0 (5.81)
dy

and the solution ceases to exist if u(1) increases through wmq, before um;y, is reached.
Here g > 0 and v; > 0 and so the v-solution relaxes to branch 1 of the nullcline on
the fast timescale giving a sudden collapse at the activator peak, producing pattern
change by activator peak splitting (see the dashed arrow (ii) in Figure 5.1(b)). When
the boundary values pass through these critical points at the same value of v, due to

the symmetry of the kinetics, both splitting and insertion occur simultaneously.
These critical points are functions of the kinetic parameters and in particular 6
and 3. In Figure 5.8 we plot the analytical predictions as functions of §, such that 6;
and 03 vary according to equation (5.32), where 6; < 03 for 6 > 0 and correspondingly
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FIGURE 5.8 Figures showing the analytical prediction of critical v for pattern transi-
tions by peak splitting, 75, (dotted) and insertion, {, (dashed) given in equations (5.79)
and (5.77) respectively, as functions of §. Other kinetic parameters are as in Figure 5.5.
In (a) points for splitting (marked x) and insertion (+) and simultaneous splitting and
insertion (marked ) are shown for numerical solutions with piece-wise linear kinetics on
the growing domain with p = 0.0001. The darts indicate points for transitions in the
full nonlinear system via splitting (marked V) and insertion (A) (with both marks for
simultaneous splitting and insertion). For both sets of data we have ¢ = 0.1. In (b)
we plot points for the onset of activator peak insertion for numerical solutions with the
piece-wise linear scheme for € = 0.1 (x) and € = 0.05 (circled symbols), showing conver-
gence to the analytical predictions as € — 0. There is an inherent error introduced in
judging when the onset of the transition occurs for the numerical simulations. However,
for small p the onset is very sudden, and we have taken a sufficiently small timestep for
the numerical integration that ¢ can be identified to within +0.05.

we have insertion for § > 0 (dashed line) and activator peak splitting for § < 0
(dotted line). Both curves, 7{(5) and v§(8), extend on either side of § = 0 and we
expect to observe the behaviour which occurs at lower 7.2 In Figure 5.8(a) we plot
points for splitting and insertion obtained from numerical simulations for both piece-
wise linear kinetics (crosses) and for the full nonlinear system (darts) on the slowly
growing domain, showing qualitatively similar behaviour for small §. Previously, in
Figure 5.3, it was shown that the evolution of pattern sequences on the growing domain
is similar for the nonlinear scheme and its piece-wise linear approximation, and this
is reinforced here in the transition behaviour at the critical v, from which we infer
that the piece-wise linear approximation is a reasonable one. In Figure 5.8(b) we plot
points obtained from numerical simulations for the onset of activator peak insertion for
the piece-wise linear scheme for two values of €, showing that the numerically derived
values approach the analytical prediction as € is decreased. For the growing domain

3In fact the curves do not extend very far on opposite sides of § = 0 as the curves tend to their
asymptotes where the denominators in equations (5.77) and (5.79) go to zero.



98 5. SPIKES AND TRANSITION-LAYERS: PIECE-WISE LINEAR MODELS

we expect that there is also a contribution to the error from the rate of slow domain
growth, and that as € is decreased the numerical ¢ for onset of the transition will
approach the analytically predicted value as p — 0.

5.4.2 Spatial Frequency-Tripling. We have described a new phenomenon, spatial
frequency-tripling, which is realised on the slowly growing domain when the reaction-
diffusion equation is symmetric under the transformation (u,v) — (—u, —v).* We have
shown previously that steady state solutions with three times the spatial frequency may
be constructed from lower-mode solutions of the time-independent problem. However,
it is also useful to show that the symmetry argument in the full PDE system, outlined
in section 4.2.1 for spatial frequency-doubling, also accommodates this sequence. It
is straightforward to show that the full reaction-diffusion equation (4.22) is invariant
under the transformation (z,v) — (p3(x),~y/9) where the map

1— 3z, 0<z<i
p3(z) =<¢ 3z —1, 1<a<? (5.82)
3(1 —z), 2<z<1

corresponds to frequency-tripling, and the factor of /9 for the transformation corre-
sponds to the dimensional domain length changing by a factor of three. The same ar-
guments may then be applied as previously, such that if the solution ¢(z, 9v*) matches
the construction at three times the spatial frequency, g3(z,v*) = c(ps(x),v*), for
some 7y = * (rather than matching a construction with twice the spatial frequency at
4~*) then the frequency-tripling sequence should ensue, subject to the same proviso

concerning stability, which again we must conjecture from numerical results.

5.5 Discussion

Considering a piece-wise linear model of reaction and diffusion generating patterns of
transition-layer type, we have been able to determine the method of pattern reorgan-
isation on the growing domain and predict the onset of transitions by considering the
existence of solutions to the associated steady-state problem. Thus far we have not
considered the stability of these solutions (see the work of Kerner et al. for a lengthy
discussion [62]). The heterogeneous solutions which we have constructed disappear
when still at large amplitude (rather than with amplitude decaying to zero as v in-
creases through a bifurcation point of the homogeneous steady state). Furthermore,
numerical simulations for the growing domain problem have shown that the quasi-
steady solutions are stable as v increases up to the value, v¢, where the steady state
solution branch ceases to exist, at which point transitions to higher pattern mode
take place. This suggests that the branch of steady state heterogeneous solutions that

Tt is interesting to note that the symmetry required for frequency-tripling is the same as that required
for preferential selection of stripes over spots in two-dimensional pattern formation in reaction-diffusion
systems [37, 74].
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we have constructed is stable up to a point where the solution branch disappears in
a saddle-node bifurcation, and that there is no earlier exchange of stability with a
secondary bifurcating branch of solutions or otherwise. Thus from the construction
of solutions to the steady state problem and the numerical simulations we are able to
deduce features of the bifurcation structure of the underlying reaction-diffusion equa-
tion. Furthermore, in Chapter 4 we extended the symmetry argument to the full PDE
system (rather than considering only the time-independent problem) and so we expect
the same stability properties for solutions of higher pattern mode.

The bifurcation structure elaborated here explains the hysteretic behaviour re-
ported in the previous chapter. On increasing « the transition between solution
branches occurs at the saddle-node point. However, on decreasing v there is no rea-
son why the reverse transition should take place at this same value of v which does
not correspond to a bifurcation point of the higher mode solution, or indeed that the
downward transition should find the original primary bifurcation branch.

We have computed the critical values ¢ for the transition from lowest mode. The
critical value of v for any higher mode m is then determined from the symmetry
analysis to be m24°. The analytical expressions that we have constructed are approx-
imations to the lowest-mode pattern with negative polarity. Our arguments might
just as easily be based on patterns of positive polarity, where the outer part of the
lowest-mode solution would be determined by equation (5.9) with h(u) given by the
expression (5.11). Similarly, we have chosen a pure kinetic scheme such that solutions
for activator and inhibitor are in phase, but could equally have chosen cross kinetics
for the cubic autocatalysis model by swapping the signs of the two off-diagonal ele-
ments of the matrix A given in (5.28). The construction of solutions to the piece-wise
linear problem in the limit of small d and the analyses for pattern transitions on the
growing domain would follow with only minor modifications in this case.

For the kinetic scheme we have considered, heterogeneous solutions bifurcate from
the homogeneous steady state as patterns of initially infinitesimal amplitude in a super-
critical bifurcation. This was not required for the analysis. Transition-layer solutions
with different behaviour on the growing domain can be generated by relaxing the con-
dition that the kinetics admit the Turing bifurcation. In this case we no longer require
the fixed point of the kinetics to lie on the middle (unstable) branch of the nullcline.
When the kinetic steady state falls on one of the stable branches, either by chang-
ing g or shifting the u-nullcline (f = 0), sufficiently large amplitude perturbations of
the homogeneous solution (now locally stable to small amplitude perturbation) are
required to produce large amplitude patterns, which can be constructed in the limit
as we have described. However, if the extremal point of the solution on the v-nullcline
(at the domain boundary) reaches the fixed point then it will remain at this point,
also fixing the value at the other boundary, even as v increases with domain growth.
Then pattern transition at either of the turning points is precluded and the pattern
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mode will remain unchanged on the growing domain (although the transition-layer
region may move and will get progressively narrower on the unit interval).

Many of the models in the literature for biological pattern formation, including the
Schnakenberg and Gierer-Meinhardt models discussed in previous chapters, generate
spike-type patterns. Some analysis has already been carried out on spike solutions
to reaction-diffusion equations, where the form of the nullclines and accordingly the
asymptotic structure is different and somewhat less transparent than for the transition-
layer phenomena. In the following sections we consider some of the asymptotic prop-
erties of spike solutions, in particular the dependence of solutions on .

5.6 Analysis of Spike Patterns

Large amplitude patterns also exist as solutions in systems where the activator nullcline
has only one stable branch. Such patterns are characterised by the behaviour of the
width and height of the activator peak as € — 0 where, in contrast to transition-layer
patterns, the activator peak amplitude varies as some negative power of € and the peak
width is decreasing as € tends to zero. In this section we consider the Schnakenberg
kinetic scheme as a paradigm for spike patterns, and therefore we study kinetics of
cross-type. However, similar results may be obtained for pure systems (for example
the Gray-Scott model, see Doelman et al. [33]). Also we will consider a single activator
peak located within the domain, rather than simply the transition from low to high
concentration, as for the previous case.

Initially we consider the construction of solutions (existence) in the general setting.
The outer (5.1)—(5.2) and inner (5.3)—(5.4) scalings follow as before. For the case e = 0
then as before the activator v is governed by

vy = g(u,v) (5.83)

where the nullcline g(u,v) = 0 has two branches; v = k;(u) for ¢ = 1,2, where only
branch ¢ = 1 is stable (in comparison with the transition-layer problem there is no
stable branch v = k3(u)). For cross kinetics, to generate spike solutions® we require
that ki(u) is defined for u € (—00, Umaz] and ka(u) is defined for u € (00, Umqz]. In
fact for the Schnakenberg system (and many others) ka(u) is defined on u € [Uoo, Umaz)
where, as v — 00, u tends to the asymptote u — o, but this will not be important for
existence arguments. Furthermore, under the conditions required for the kinetics to
admit the Turing bifurcation, the kinetic steady state (us,vs) must lie on the unstable
branch 7 = 2. As for transition-layer patterns, the outer solution lies on the stable
part of the v-nullcline g(u,v) = 0, here branch ¢ = 1. The outer solution is governed
by

0 = ugg +vf(u, k1 (u)) (5.84)

Srather than inverted spikes, or gullies, see later discussion.
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FIGURE 5.9 Schematic of the phase plane for the (a) outer and (b) inner problems for
spikes with cross kinetics. In (a) the centralised peak corresponds to the trajectory A
to B and then at v = u* a jump to D, returning to A where u = u(0) at A (= u(1))
for symmetric steady solutions. Increasing 7 corresponds to larger orbits such that u(0)
is increasing with v (for pure schemes the figure is effectively reflected in © = 0 and
then u(0) is decreasing with +). The jump from B to D represents a discontinuity in u,
which corresponds to an excursion in the inner variable, shown in (b), where spikes are
homoclinic orbits in (v, v).

which is valid away from the location of the spike, x = z*, where u = u*. The

phase plane for equation (5.84) is shown schematically in Figure 5.9(a). The func-
tion f(u, ki (v)) has no roots and, for cross kinetics, is everywhere positive so that
trajectories in the (u,u;) resemble the form shown in the figure.

In the limit € — 0 there is a discontinuity in u, across the spike (where u is
continuous). Multiplying equation (5.84) by u, and integrating we have

o = £/2y(H(u(0)) — H (u)) (5.85)
where H(u) is defined, equivalently to equation (5.13), by
H(u) = /0 " fw, by (w)) dw (5.86)

and u(0) is the inhibitor concentration at the left-hand boundary, where u, = 0. Given
that f(u,k1(u)) > 0 (and is a monotonically decreasing function of u), H(u) is positive
and monotonically increasing and for real values of u, we must have u(0) > u(z)
everywhere on the domain (and similarly for u(1)) so that v is maximised at the
boundaries. Hence |u,| increases away from the boundaries and is greatest at the
spike, where v = u*. Thus u; takes opposite signs on either side of the peak and the
jump in the gradient across the spike is

Auy = 2¢/29(H(u(0)) — H (u*)) (5.87)
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and hence u, is discontinuous.
For ¢ # 0 we require a connecting trajectory to smooth out the discontinuity,
which is found by expanding in the inner variable £ = x /¢, giving

0="Vee+79(u",V) (5.88)

which has two fixed points, a saddle point at (V, V) = (k1(u*),0) where g, < 0 and a
centre at (ka(u*),0) where g, > 0. The centre is preserved for the nonlinear problem
due to the symmetry about V¢ = 0. We seek a solution which for periodic patterns
takes us from, and returns us to, the vicinity of the point (u*,k; (u*)), which is an
orbit in the (V,V¢) phaseplane homoclinic to the saddle at V' = k;(u*). The phase
plane for the inner problem is shown schematically in Figure 5.9(b).

In this way, by matching solutions for the inner and outer problems, we can show
the existence of large amplitude solutions in the form of spikes in the activator con-
centration. Next we construct such solutions for the Schnakenberg problem. The
time-independent reaction-diffusion problem with Schnakenberg kinetics, where the
kinetic parameter a is small, is given by

0 =gy +7 (b u0?) (5.89)
0= €vap +7 <6ﬂd + uv? — v) (5.90)

where 8 > 0. It is convenient to consider single spike solutions on the interval [—1, 1],
with zero flux conditions at the boundaries. The symmetry of the time-independent
problem, as discussed in Chapter 2, and in particular the symmetry of these equations
under z — —x suggests that we look for a spike centred at z* = 0.7 Half-peak solutions
follow immediately by considering the interval [0, 1].

Taking a regular series expansion for the outer region in variable x

u(z,€) = i ¢ u) (z), v(z,€) = i o) (z) (5.91)
j=0 j=0
to leading order we have

ul, = b (5.92)
0 =ul(@w%)?% - " (5.93)

with zero flux boundaries, which is solved to obtain
v’ =0 (5.94)
u®(z) = b <|a:| — ;:1:2> +c (5.95)

5The analysis follows with only minor modifications for a ~ O(1).

"Determination of the location of the transition-layer was found to be nontrivial, and is equivalent to
finding the width of the activator peak. For spike patterns the width of the peak tends to zero with
¢, and the location is assumed from symmetry arguments, thus no further assumptions are made here
than were employed for the transition-layer problem.
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where ¢ is a constant.?
Expanding about the peak by introducing the inner variable £ = z/¢ (for * = 0),
the inner region is governed by

0=Ug + ey (b—UV?) (5.96)
0="Vee +7(fa+UV-V) (5.97)

and again seeking a regular expansion
U e =Y U (€, V(o= V(g (5.98)

3=0 j=0
we find to leading order

Uk =0 (5.99)
Ve =y(V0-U"(V9)?). (5.100)

Given that we do not want U° to blow up as U ~ 1/¢ away from the spike, we choose
U? to be constant,

U0 = u, (5.101)
which may depend on . Solving equation (5.100) for V° we find
3 i
0(¢) = =~ sech® (—) 102
VE(€) 5 5¢C 5 (5.102)

which is in the form of a spike, homoclinic to (V,V) = (0,0) for £ € [—o0,00].
Matching inner to outer solutions is automatic for v and for u we find ¢ = u* so that
the leading order composite solutions are

1

u(z) ~ u* + b <|:c| - 53:2) (5.103)
3 9 (T fy)

o(z) ~ 5 sech ( ). (5.104)

Previously, for the transition-layer problem, we have evaluated the constant in-
hibitor concentration, u*, for the inner solution with the integral condition (5.20),
G(u*) = 0, which requires that the gradient Vg tends to zero away from the inner
region. However, we have effectively used this condition in the integration of equa-
tion (5.100), from which we deduce the form of the spike (5.102). For activator spike
amplitude vy then the integral is

G(u*) = /Ovpk g (u*,w) dw = 0. (5.105)

8Therefore we have du(z)/dy > 0 everywhere on the domain, and particularly at the boundaries, and
hence u(0) is an increasing function of v here.
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FIGURE 5.10 The relationship between activator amplitude vy, and inhibitor con-
centration u* in spikes for Schnakenberg kinetics. The solid line shows the analytical
expression (5.106) and the crosses show values obtained from numerical simulations for
different values of €, with € decreasing from right to left.

Evaluating the integral (for small a) we recover simply
o 3
Pk — 2u*

which is consistent with our composite solutions. We plot this relation in Figure 5.10,

(5.106)

along with data obtained from numerical simulations for different values of €, showing
close agreement to the analytical curve. However, thus far we have assumed uniform
expansions for the dependent variables which, from this figure, are not O(1) in the
inner region. This suggests that we rescale the equations to find variables which are
O(1) before taking the expansion in e. The following scaling of the equations is similar
to one used in a recent paper by Doelman et al. [33] who consider the spike solutions
in the Gray-Scott model.

We consider general scalings for the various terms in the inner equations, writing
u=¢€*0, and v=c¢€¢ "0 (5.107)

where «,r > 0. The time independent activator equation (5.4) becomes
0 =g+ (¢Pa+ @ Map? — 5) . (5.108)

To obtain solution in the form of a homoclinic orbit of the saddle point we must have
balance between the final two terms (otherwise the equation is linear and certainly
will not admit such a solution). Thus we require o = r, and we seek an inner solution
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(U (€),V(€)) for the equations

0= Uge + 207y (e — UV2) (5.109)
0="Tie+7 (cPa+0V2-V). (5.110)

For 0 < a < 1 we have €2(1=9) is small and the equations decouple (giving distinguished
subsystems describing inner and outer regimes). For o > 1, then from (5.109) we must
have U = 0 for which there is no homoclinic solution for V. If, however, o = 1 then
we recover a coupled second order ODE system for the inner region, so that in the
asymptotic limit the problem does not simplify in the manner described above.

If we assume that 0 < @ < 1, then expanding in powers of (1=

g, =3 = 00 (), V(=3 i PO (g) (5.111)
3=0 j=0

we recover the same leading order problem as was solved above, for which U0 is
constant, as in (5.101), and V0 is given by (5.102). Matching to the leading order
expressions for the outer problem, the composite solutions are

1
u(z) ~ €*ug + vb <|a:| — 2a:2> (5.112)

_a 3 xﬁ)
~ e h? (2 11
v(z) ~ € 23 sec ( o (5.113)

showing the scaling of the spike width and amplitude with e.

From this analysis we are not able to evaluate the parameter o, which determines
the scaling with €. In fact for Schnakenberg kinetics numerical simulations suggest
that the correct scaling in the inner region is a = 1, the situation in which there is no
simplification of the time-independent equations. Nevertheless, we can compare the
form of our approximate analytical solutions to the results of numerical simulations
by taking the numerical value of v,;, and calculating u* accordingly. In Figure 5.11 we
compare the analytical expressions (5.112) and (5.113) to numerical solutions for two
values of e. From these figures and from the part of the composite solutions on the
unit interval [0, 1] we may recover a mode m = 1 (half-peak) approximation. However,
it is apparent that the composite solution is not uniformly valid in this case, as the
zero-flux boundary condition for the inhibitor u is not satisfied at x = 0, where the
half-spike is located, as the gradient in the inhibitor u, is discontinuous (and hence
ill-defined) here. It is for this reason that we chose to construct a centralised spike on
[—1,1]. For € # 0 the discontinuity in u, is removed and the boundary condition can
be satisfied, so that the half-peak is a valid solution of the steady state problem.

5.6.1 Splitting and Insertion. The mechanism described previously for transi-
tions between quasi-steady patterns under slow uniform domain growth is sufficient
to explain transitions via peak insertion for spike patterns, demonstrated for Gierer-
Meinhardt kinetics in Figure 4.10(a). Here u(0) (the boundary value of w) increases
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(a) (b)

FIGURE 5.11 Numerical solution (solid) and asymptotic approximation (5.103)—(5.104)
(dotted) for spike solutions with Schnakenberg kinetics for two values of e. We plot
steady state solutions with v = 4.0 and (a) € ~ 0.0316 (d = 0.001) while in (b) ¢ = 0.01
(d = 0.0001). Note the different scales on the u and v axes.

with + until reaching umq, at the critical value of 7. At this point v locally increases
rapidly, giving a pattern transition on the fast timescale by activator peak insertion.
Similarly, spike systems with pure kinetics for which the v-nullcline has a stable branch
v = k1(u) € [Umin,o0) and an unstable branch v = ka(u) € [tumin, 00) undergo activa-
tor peak insertion when u(0), now decreasing with ~y, reaches iy, beyond which the
solution ceases to exist.

However, our numerical simulations have shown that spike-type patterns may
demonstrate both peak insertion and peak splitting on the growing domain. Spike
splitting is realised for Schnakenberg kinetics, shown in Figure 4.1(a). For transition-
layer patterns the mechanisms for splitting and insertion are essentially equivalent.
From the differences in the nullclines and, correspondingly, in the asymptotic be-
haviour of spike and transition-layer solutions, it is evident that an explanation of
spike splitting must take a different form. This is due to the fact that spikes are
homoclinic orbits in the (v,v;) plane, and do not connect two distinct branches of
the v-nullcline, as do transition-layers. However, a similar explanation in terms of
the existence of solutions as < increases might be expected. In fact, plotting spike
solutions in the (u,v) plane one notices that the approximation of constant u in the
spike region becomes less and less reasonable as v increases. This suggests that the
essential features responsible for spike splitting may not be captured in the leading
order expansion. Various other authors have sought to understand spike splitting, fol-
lowing the observation of splitting phenomena in the Gray-Scott model, as discussed in
Chapter 2. Doelman et al. [33] study two-pulse solutions to the Gray-Scott model and
consider existence and stability results for pairs of pulses on the unbounded domain.
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They identify the region of parameter space in which one-pulse solutions cease to exist
and show numerically that the self-replication process may occur in the vicinity of the
boundary of the stable one-pulse region. Further, they find that a pair of pulses will
separate with decreasing velocity, and evolve towards one of the stable multi-peak so-
lutions which act as attractors during the self-replication process. Reynolds et al. [116]
consider the splitting of moving pulses in terms of the balances of flux into the spike
region. However, at present we know of no transparent explanation of the splitting of
static spikes.

5.6.2 Pattern Sequences in the Gierer-Meinhardt Model. In the previous
chapter we noted that the kinetic model proposed by Gierer and Meinhardt, equa-
tions (4.29)—(4.30) (see Appendix A.3), can give a singular solution behaviour on the
growing domain, where transition between pattern modes appears to be precluded,
by setting the constant term in the activator kinetics, §, to zero. For non-zero val-
ues, pattern sequences are formed as usual, via activator peak insertion. These two
behaviours are illustrated in Figure 4.10.
For non-zero § the v-nullcline is given by

Vo2

(5.114)

uz,uzv—(s

where v and p9 are positive constants. Thus we have the standard arrangement in the
phase plane for pure kinetics with stable u = k;j(v) and unstable u = ka(v) branches
defined on u € [Upmin, 00), Where Uy, is the minimum value of (5.114). Insertion of new
peaks in the activator concentration profile occurs when u(0), decreasing as -y increases
(for pure kinetics) reaches this minimum value. However, when § is identically zero,
the v-nullcline becomes

v=0 (5.115)
u=ky(v) = 2o (5.116)
M2

where the former is the stable branch. Therefore, in the limit ¢ — 0, the outer part of
the solution lies on v = 0 in the phase space, and as v increases u(0) decreases towards
u(0) = 0. However, in the fast timescale, u(z,t) is governed by the equation
U = %um +110% — (5.117)
where v; and pq are positive constants. In the outer regime v is exponentially small
(and for € = 0 then v = 0). For zero flux conditions u is a minimum at the boundary
and so the second spatial derivative near the boundary is positive. Therefore the time
derivative at the boundary is bounded from below by
du(0)
dt

= —p1 u(0) (5.118)



108 5. SPIKES AND TRANSITION-LAYERS: PIECE-WISE LINEAR MODELS

and for finite time u(0) is bounded away from zero. Thus the quasi-steady solutions
never obtain the minimum value for u for any finite value of v and the critical point
for insertion is never reached. For any non-zero § then the minimum point moves away
from u = 0 and we recover insertion as 7y increases through its critical value.

The somewhat surprising implication of this result is that the initial pattern mode
established from random initial data must persist with slowly increasing v. We have
identified the critical point in 7 as the point at which the solution ceases to exist
and hence infer that for § = 0 the solution branch exists for all . Furthermore, for
different choices of initial domain length and initial data, any pattern mode may be
established initially and so this result holds for all pattern modes (this is also evident
from the scaling of different solution branches with 7 as discussed in Chapter 2).
Finally, we have performed numerical simulations in which we added small amplitude
random noise to the solution at each integration timestep and found that the pattern
appears to remain stable with increasing . This singular property of the solutions
when § = 0 may be important as several authors (see for example Ni [92]) ignore the
constant terms when investigating the behaviour of solutions to the Gierer-Meinhardt

equations.

5.6.3 Piece-wise Linear Spikes. The necessary ingredients for spike solutions pre-
sented at the start of this section suggest that spikes should be possible in a piece-wise
linear kinetic scheme with the requisite features of the nullclines. To this end we in-
vestigate solutions of the piece-wise linear scheme introduced in section 5.2 when the
gradient of activator nullcline in region ¢ = 3 is varied.

To expedite comparison to the cross-kinetic Schnakenberg system, we study piece-
wise linear kinetics of cross-type

f(u,v) = —ou—w (5.119)
g1 u—n(v+ 2604), v < —61

gu,v)=gi=1{ g2 =1 u+n, —0; <v <63 (5.120)
g3 u— ¢n(v — 03) +nbs, v > 03

where we have introduced the parameter ¢ which will be varied to change the gradient
of the second stable branch of the v-nullcline, shown in Figure 5.12(a) for various
choices of ¢. The corresponding steady state numerical solutions for the half-peak
located at the right-hand boundary are shown in Figure 5.12(b). As ¢ is changed
from positive to zero and then to negative values, such that there are two and then
only one stable branches, the asymptotic behaviour of the solutions changes from
transition-layer to spike type, as expected.

The natural transition behaviour for this system on growing domains is to undergo
transitions by insertion of new activator peaks, shown in Figure 5.13(a), resembling
the pattern sequence in the Gierer-Meinhardt model. However, if 03 is also allowed to
vary, the splitting of peaks may be recovered for the piece-wise linear problem when 63
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(2) (b)

FIGURE 5.12 Spike solutions in the piece-wise linear model (5.119)—(5.120): evolution
from transition-layers to spikes as the second stable branch is removed. We use cross
kinetics with o = 1.0, y = 0.8 (so that n = 2u/3 =~ 0.533) and 61,3 = £+/1/3. The
nullclines are shown in (a) for (i) ¢ = 1.0 (dashed line, as previously studied), (ii)
¢ = 0.5, (ili) # = 0.1, (iv) ¢ = 0 where the branch is no longer stable and (v) ¢ = —0.1.
The corresponding steady state solution profiles for the activator v are plotted in (b)
with d = 0.01 and = 1.0, showing the transition to spike-type solutions as ¢ decreases
through zero.

is reduced towards zero, illustrated in Figure 5.13(b). Further analysis of these pattern
sequences has not been carried out, however, the simplification in the analysis of the
equations engendered by the introduction of the piece-wise linear approximation may
yield an understanding of the peak splitting phenomenon in spike solutions.

We have only considered the case when the homoclinic orbit in the (v,v,) plane
produces a spike increasing in v. If, however, the v-nullcline is the other way up in the
phase space, so that for cross kinetics the unstable, v = k1(u), and stable, v = ka(u),
branches are defined for u € [wmin,0), then inverted spikes or gullies are formed.
Similarly, this is the case for pure kinetics where the two branches of the v-nullcline
are defined on u € (—00,Umqz]- The results of a numerical simulation for such a
kinetic scheme are shown in Figure 5.13(c), where for slow domain growth the solution
undergoes splitting of the plateaus of high activator concentration (or, equivalently,
insertion of new gullies). Similarly, it should be possible to vary the nullclines such
that the gullies split as the domain grows (and new activator plateaus are inserted).
We do not know of any nonlinear kinetic schemes proposed in the literature which
generate these types of patterns, however, this behaviour is generic to the class of
reaction terms with nullclines of the form that we have described.

5.6.4 Discussion. The investigation of spike solutions has raised several interesting
questions. Firstly, during the construction of spike solutions to the Schnakenberg
model in the asymptotic limit ¢ — 0 we found that the formal expansion was only
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241/3 ~ 0.533). We take ¢ = —0.01

w/3 while in (b) 3 = 61/10. In (c) the parameters are as for (a)

0, =

but we have transformed the kinetics under (u,v) — (—u, —v).

model (5.119)—(5.120) with o = 1.0 and p = 0.8 (n

and (a) 63
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valid for 0 < a < 1. This parameter cannot be found analytically, however, numer-
ical simulations suggest @ ~ 1. Despite this apparent contradiction, the analytical
solutions give a good approximation to numerical simulations (see Figure 5.11). Sec-
ondly, although insertion of activator peaks (and the failure to do so when § = 0) in
the Gierer-Meinhardt model can be well understood, the analysis that we have pre-
sented does not give an explanation for spike splitting, as realised for Schnakenberg
kinetics. Furthermore, numerical simulations suggest that the leading order inner ap-
proximation, where u is constant, is not sufficient to understand the phenomenon.
The piece-wise linear model that we have described may prove useful as a simplified
system in which to explore this behaviour.
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6. Nonuniform Domain Growth and Higher Dimensions

6.1 Nonuniform Domain Growth

Thus far our investigation and analysis has been restricted to situations in which the
domain growth is uniform, determined for the one-dimensional problem by the local
strain rate which is independent of position (but may depend on time, as for the
linear and logistic growth cases studied in Chapter 4). However, as was discussed
during the derivation of the model, it is possible and generally desirable to consider a
domain which is growing with different rates at different localities. For many biological
systems growth is restricted to some region of a tissue, or does not occur at a uniform
rate throughout the region of interest. We wish to investigate the formation of pattern
sequences in the reaction-diffusion model under nonuniform conditions. In particular
we would like to know whether introducing weak nonuniformity (where there is slow
quantitative change in the growth across the domain) disrupts the FD sequence, or
whether the sequence is robust to such changes. Furthermore, we are interested in
whether suitably chosen and sufficiently strong nonuniformity (such that one section
of the domain is growing in a quite different manner or rate to another part) can
produce reliable sequences other than frequency-doubling.

Nonuniformity in the domain growth introduces terms with explicit spatial depen-
dence into the evolution equation. In its original formulation, and in most subsequent
development, the theory of pattern formation in reaction-diffusion equations assumes
homogeneity in parameters throughout the domain, for the good reason that DDI gen-
erates inhomogeneity where before there was none. Indeed, this is the source of much
of the theoretical interest in such pattern forming instabilities. One exception is the
analytical study of a reaction term with explicit space-dependence by Auchmuty and
Nicolis [5] (see also the numerical simulations of Herschkowitz-Kaufman [49]). Also,
the recent interest in the modelling of chemical pattern formation in gel reactors leads
to the study of spatial gradients in certain reaction terms. In the Gel Strip reactor
the feed of the reactants, held at fixed concentrations at the boundaries, establishes
steady gradients across the domain of pattern formation. Theoretical studies prior
to the experimental realisation of Turing patterns in gel reactors are given by Dewel
and Borckmans [25] and modelling of the structures experimentally observed in these
ramped systems is presented by Borckmans et al. [9] and Dulos et al. [34].

In several applications of the theory to problems in biological pattern formation,
authors have considered some underlying spatial dependence. For example, Gierer
and Meinhardt [41] include a shallow source gradient in their model for morphogenesis
and regeneration in Hydra to orient patterns (by removing degeneracy in the spatial
modes). Benson [7] and coauthors have demonstrated that inhomogeneous reaction-
diffusion equations may generate patterns with continuously varying amplitude [77]

113
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(see also [81]) and wavelength [8] when one or both diffusion parameters are varying in
space. In our equations for nonuniform domain growth the spatially-dependent terms
are small, due to the small parameter arising from the different timescales, and so we
do not expect strong influence on the amplitude or wavelength of patterns generated
by the model.

Biologically there may be many underlying reasons for nonuniformity in domain
growth. For example, signalling cues which determine the local growth rates (such
as growth factors, or other chemicals) may not be uniformly distributed throughout
the tissue. In such cases the local strain rate for the one-dimensional problem will
depend on position (as well as time). In a simplified scenario for nonuniform growth,
the domain comprises a number of subdomains each of which is undergoing growth at
a different constant strain rate. Below we consider pattern formation for piece-wise
uniform domain growth with two adjoining subdomains. Also, it is biological plausible
that the reacting and diffusing chemicals may themselves be responsible for the local
determination of the growth, so that the local expansion rate is a function of their

concentrations, that is,
S(z,t) = S({ci(z,t)}), i=1,...,n (6.1)

a situation we call reactant-controlled growth.

The general reaction-diffusion model for nonuniform growth in one dimension is
given by equation (3.31). Scaling the spatial dependence to the unit interval, writing
& = z/L(t) € [0,1] for nondimensional domain length #(¢), we recover the evolution

equations for two species u(&,t) and v(&,?)

= st +x(6 ) e + f(w) = S(E.H)u (6.2
= ~svee + X(Et) v+ 9(u0) = S(E.1) (63)

where y(t) = o [¢ (¢)]* and
X&) = g5 [0 - ate.n)] (6.4

(where the dot represents a time derivative). Local growth S(&,t) determines the
local velocity field a(&,t) via equation (3.27). Generally S is specified in terms of
the Lagrangian variables (X,¢). The position z of a particle at time ¢ originally
at position X at time ¢t = 0 is given by z = I'(X,t), so that the uniformly scaled
position £ =T'(X,t)/£(t). To calculate S we must be able to compute the value of X
corresponding to particular £ and ¢ (hence we are required to invert T').

6.1.1 Piece-wise Uniform Domain Growth. To investigate the role of nonuni-
formity in the domain growth we firstly consider the example of a one-dimensional
domain comprising two subdomains undergoing slow uniform domain growth but with
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different (slow) growth rates. This problem is studied in detail with the aim of gain-
ing insight into the possibilities and complexities of pattern sequence formation under
more general nonuniform growth conditions.

For slow uniform growth, from equation (3.61) we have S(t) = po(t) giving the
global growth function

z =T(X,t) = Xr(t) (6.5)

where

r(t) = exp [p /0 () dt] (6.6)

and for slow growth 0 < p < 1. For the simplest example of piece-wise uniform
domain growth we define S on the two subdomains by

B | S1(@), 0<X<®©
§=50) = { Sa(t), 0<X<1 (6.7)

where O is the initial position of the interface between the two subdomains. For slow
growth S;(t) = po;(t), i = 1,2, and by straightforward calculation from equation (3.29)
we recover

Xri(t), 0<X<®©

O(ri(t) — ra(t)) + Xra(t), ©<X<1 (6.8)

z=T(X,t) = {

where the r; are calculated as in equation (6.6). Due to the growth of the left-hand
subdomain (¢ = 1) the interface between the subdomains 6(t) € [0, £(¢)] moves as

o(t) = Or1(t) (6.9)

and is a moving internal boundary. Similarly, from equation (3.33) along with the
second of (6.8) the total domain length is given by

L(t) = Ori(t) + (1 — ©) ra(t) (6.10)
and the rate of change E(t) follows accordingly. We may now calculate the flow, a, for
the piece-wise uniform case from the expression for I', where a = 9I'/0t, giving

X71(t), 0<X<®

a(X,t) = { O(r1(t) — ro(t)) + Xra(t), ©<X<1 (6.11)

Writing as a function of z and ¢ we have

a(z,t) = ’r'1 S 7:2> . T B (6.12)
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and in the uniformly scaled coordinates (&, t)

R

ae) | & 0<€<h()

= . . . 6.13
£(t) a(t) (” - ”) +e2 Gy <e<1 (6:49)

™ T2 T2

IN

where after the uniform scaling the interface between subdomains moves as é(t) =
0(t)/L(t) € [0,1], which is easily written as a function of O, r1(¢) and ra(t) only. Now
we have all the components required to specify the evolution equations (6.2)—(6.2) for
piece-wise uniform growth.!

We require the continuity of the solutions u(¢,t) and v(&,t) and of their fluxes at
the moving internal boundary ¢ = 6(t) between the two subdomains. The diffusion
constants are now effectively functions of time through v(¢) but are independent of ¢
and so continuity of flux requires that the first spatial derivative is continuous across
¢ = 6(t) for each species. Thus we require at every time ¢

6+ (1) 6+ (2)

lue(&,)], =0 (6.14)

0

(&, )]

and similarly for v(¢,t).

. =0,
6=(1)

The advective terms in the equations arise despite the uniformity of growth for each
subdomain because of the choice of spatial transformation, the differing growth rates
necessitating the consideration of the internal moving boundary. A different approach
to nondimensionalisation would consider two semi-domains, each transformed to the
half-unit interval. Then there would be no moving boundary, the junction being
fixed at £ = 1/2, but the (time-dependent) diffusivities would be different on the two
semi-domains. Clearly different spatial rescalings would be required for the two semi-
domains in order to examine the form of the pattern on the dimensional domain, and
these rescalings would change with time. This process would replace, and is equivalent
to, the advective terms. The advective nature of the equations is thus rendered more
transparent in the formulation chosen above which includes these terms explicitly.

For slow piece-wise uniform domain growth we must specify growth parameters
p < 1 and O, and the initial domain size through 7o along with functions o1 (¢) and
o2(t). We restrict discussion to the case where the o; are constant and to simplify

notation we write
Si=p;, 1=12 (6.15)

where both p; and ps are of order p and hence are small parameters. Then r;(t) is

given by the simple expression
ri =exp(pit), t=1,2 (6.16)
LAt each step in the discussion the equations reduce to the form derived for reaction-diffusion on

a uniformly growing domain, equation (3.63), when the two subdomains have the same growth, i.e.
when o1 (t) = o2(¢) such that 71(t) = r2(¢).
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such that

() 0(t) (p1 — p2) +p2b,  B(t)<€<1 (6.17)

For slow growth we notice that a ~ O(p) and, from equation (6.10) along with (6.16),

that £(t) ~ O(p). Given that £(t) > 1 and ¢ € [0,1] we also find that x ~ O(p) or
smaller, so that the advection component is small.

a(é,t) _ { pr&, 0<&<O(t)

6.1.2 Numerical Solution for Slow Piece-wise Uniform Growth. Equations
(6.2)—(6.4) along with (6.10) and (6.17) with initial data and boundary conditions at
& = 0,1 for both species, fully determine the problem to be solved numerically. The
time-dependent internal boundary ¢ = 6(t) introduces a further level of complexity
into the numerical simulation of the system. We cannot simply reduce the problem to
a set of ordinary differential equations by a naive spatial discretisation and standard
central finite differences as the governing equations differ on the two subdomains.
Therefore we must adapt the discretisation to incorporate the internal boundary.
The spatial interval is discretised with a uniform mesh, as for the uniform growth

case, writing U;(t) =~ u(&;,t) as the approximate values of the solution w({,t) at the
mesh points &, ¢ = 1,2,..., N, and similarly v is approximated by V;(¢t) = v(&;,1).
The first spatial derivative is taken as the standard central difference,

@(5_ B ~ Uita(t) — Ui-1(2)

aE™" 2h

where h is the spatial mesh size. When this expression straddles the internal boundary

(6.18)

the requirement of conservation of the first spatial derivative is invoked, and so the
expression is universally valid on the interval. However, while central differences may
also be used for the second spatial derivative within the two subdomains, the expression
will not be valid across the internal boundary. Here we must adapt the expression when
points in the central difference formula {&; 1,&;,&;+1} straddle the boundary é(t)
When this occurs we adopt the strategy often used to deal with conditions imposed on
curved boundaries for finite differences (see Morton and Mayers [85]). We introduce
an extra spatial mesh point, & = 9~(t) at the internal boundary. When &; < & < &;41
we proceed by calculating an approximation, Uy, to the solution at position &y using
linear interpolation between the approximations at points surrounding &g, given by U;
and U;;1. Then we modify the central differences formula for the second derivative
by foreshortening the range in the direction of the boundary

= - (o=¢) (e=e")
o€ |, (fogﬁi)+<§i —2&1)

“grallsme)(gza)]  ow
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(omitting the time dependence for notational simplicity). A similar expression can be
derived for the case &1 < & < &;. Furthermore we approximate Uy for §; < &g < &1
by linear interpolation between the known points

Up ~ (§i+1h— &) U + (&6 ; &) Uiis
where
§o —&i
A= >——>. 21
+ 3 (6.21)
Then from the above we find the difference approximation for the second derivative
0%u 2
— | ~—=U;s1—2U; +U;_ 6.22
[afsQL. DR (6:22)

where A = A;+. The same expression is derived for the case &1 < & < &;, where we
have A = A_ with

&=
A=t (6.23)

Using these expressions and similar expressions for v, and with appropriate conditions

at the fixed boundaries £ = 0, 1, we recover a system of ordinary differential equations
in the U; and V; which may then be integrated in time with a suitable numerical
routine, for example Gear’s method, as employed for the uniform case.

Numerical Results. The results of numerical simulations under a variety of param-
eter regimes are presented below. Each of the two subdomains for piece-wise uniform
growth undergoes spatially uniform exponential growth (at constant strain rate) such
that if zero flux conditions were imposed at both ends of each subdomain then the
frequency-doubling sequence would develop for both. However, the continuity of flux
condition at the interface permits communication between the two regions. Pattern
formation on each subdomain will influence the solution behaviour on the other. Thus
we may expect that the pattern sequence will differ from the case of uniform expo-
nential growth across the whole domain.

In Figure 6.1(a) we plot activator solutions for p; = 0.01, p2 = 0.02 with 7y = 1,
and with subdomains of initially equal length. In comparison to the pattern formed
under uniform growth, as shown in Figure 6.1(b), the solution shows asymmetry in the
temporal sequence of peak splitting and subsequently in the separation of peaks. The
location of the interface between the uniformly growing subdomains is shown by the
dashed line. In these and in subsequent figures the initial mode to form gives a bound-
ary peak on the right hand boundary. Further numerical simulations have shown that
the ensuing pattern sequence and asymmetry are the same for an initial peak located
on the left-hand boundary. We have solved the uniform domain growth problem in
Figure 6.1(b) using both the numerical scheme for the uniform equations (4.1)—(4.3)
and for the piece-wise uniform growth formulation, and have found that the same
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(a) (b)

FIGURE 6.1 Asymmetric peak splitting for Schnakenberg kinetics on the piece-wise
uniformly growing domain. Numerical solutions for the activator species v(&,t) are shown
for (a) piece-wise uniform domain growth with p; = 0.01, p2 = 0.02 and o =1 and (b)
uniform domain growth with p = 0.0172 and v, = 1 giving (approximately) the same
dimensional domain length at time ¢ = 200. The dashed line shows the interface 6(t)
which is stationary for the uniform case. Shading is 0 (white) to 4 (black). In this and
later figures we assume that the faster-growing subdomain is on the right hand side,
however, this is for ease of comparison and is not required by the model formulation.

result is recovered in each case. The (stationary) location of the interface 0 = 0.5 is
plotted for uniform growth as an aid to comparison. The activator concentration is
plotted (in pseudo-colour, gray-scale) as a function of time and scaled spatial coordi-
nate £, and therefore the relative separations of peaks on the dimensional domain at
each time, found by uniform rescaling, are preserved.

At this relatively high value for the strain rate p the asymmetry in the peak split-
ting is reminiscent of the asymmetrical behaviour observed for the uniform growth case,
described in section 4.2.2. Each peak in the activator concentration profile undergoes
peak splitting and separation, and in this sense the evolving solution profile repre-
sents a perturbed frequency-doubling sequence. However, for slower domain growth
peaks occasionally fail to undergo splitting, even when the growth rates on the two
subdomains are in very close proximity. In Figure 6.2(a) the solution is plotted for
p1 = 0.001 and p2 = 0.0011, for initially equal subdomain lengths. The solution fol-
lows closely the pattern for the uniform growth case, shown in Figure 6.2(b), until the
4-peak stage undergoes splitting at ¢ ~ 2500, where the peak nearest the interface on
the slower-growing subdomain fails to split. Subsequently the pattern reorganises so
that the peak separation is again approximately equal across the whole domain. This
defect in the peak splitting is reminiscent of the breakdown of the frequency doubling
sequence for very slow uniform growth and for linear domain growth.
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FIGURE 6.2 Missing peaks for piece-wise uniform domain growth. We plot numerical
solutions for the activator v(&,t) for (a) piece-wise uniform domain growth with p; =
0.001, p = 0.0011 and vy = 1 and (b) uniform domain growth with p = 0.0010544 and
Yo = 1 giving (approximately) the same dimensional domain length at time ¢ = 3500.
Other remarks as for Figure 6.1.

When only one of the subdomains is growing, which may be considered to be an
extreme case of the piece-wise uniform growth problem, then numerical simulations
suggest that there is a strong tendency to peak splitting on the growing subdomain.
This situation is illustrated in Figure 6.3(a), where p; = 0 and the initial domain size
is such that the first pattern to form is the (right-hand) boundary peak. The FD-like
pattern sequence which is generated has peaks restricted to the growing subdomain,
and is asymmetric in a manner similar to the solution in Figure 6.1(a). For an initially
left-hand boundary peak the same behaviour is found with all peaks moving into the
growing region. If the initial domain size is increased so that patterns of higher mode
are initially excited, then activator peaks may form simultaneously on the growing and
non-growing subdomains, as shown in Figure 6.3(b) where the initial domain size was
chosen to be g = 20. Here one can get different sequence behaviour. In the example,
two peaks become three via splitting on the growing subdomain, and subsequently
six peaks are formed, with peak splitting on the stationary subdomain close to the
interface. However, the tendency for peaks to split on the growing part is retained.

When the growing subdomain has a slower growth rate the distinction between
growing and non-growing regions appears even more distinct. In Figure 6.4(a) we plot
the results of a repetition of the simulation in Figure 6.3(b), where we keep p; = 0
but take a smaller value for p3. The transition from a two-peak pattern to three peaks
is unambiguous and no peak splitting is observed on the non-growing part. However,
the influence of the non-growing subdomain can be seen in the failure of peak splitting
on the growing region later on. Similar results are found for an initial pattern of four
peaks, shown for v9 = 80 in Figure 6.4(b).
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FIGURE 6.3 Pattern sequences generated from larger initial domains. We show the
activator v(&,t) for piece-wise uniform domain growth with p; = 0.0, p2 = 0.02 and (a)
~o = 1.0 so that the initial mode m = 1 and (b) with 9 = 20.0 where the initial pattern
is mode m = 4. Other remarks as for Figure 6.1.
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FIGURE 6.4 Pattern sequences generated from larger initial domains. Numerical solu-
tions for activator v(&,t) are shown for piece-wise uniform domain growth with p; = 0.0,
p2 = 0.001 and (a) 79 = 20.0 so that the initial mode to grow is mode m = 4 and (b)
Yo = 80.0 where the initial pattern is m = 8. Other remarks as for Figure 6.1.
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In this section we have considered only the example of Schnakenberg kinetics, and
as a result we have discussed the consequences of piece-wise uniform domain growth
for activator peak splitting. Similar results are found for kinetics which give rise to
insertion of new activator peaks. In the following section we consider the problem for
more general nonuniform domain growth which will provide a framework to validate

the results we have presented for piece-wise uniform growth.

6.1.3 Lagrangian Formulation for Nonuniform Growth. The simple form of
I'(X,t) for piece-wise uniform growth enabled us to invert I' explicitly to find X =
A(z,t) and hence calculate a and S as functions of z and ¢. A can be found immedi-
ately for any uniform domain growth, where I' is a separable function of X and ¢. For
nonuniform growth the function I' is not a separable function and it may not be possi-
ble to find A analytically. Therefore to compute numerical solutions for the evolution
equations (6.2)—(6.3) it would be necessary to invert I" numerically each time we re-
quire a(A(z,t),t) and S(A(z,t),t) during the computation. However, if the equations
are recast in Lagrangian coordinates, (X,t), the inversion need only be performed
when interpolating the results to find a solution at equally spaced £. In Lagrangian
coordinates the evolution equation for u(X,t) and v(X,t) under nonuniform domain
growth in one dimension with local growth S(X,t) is given by

11 1
_ 117t _ 24
Ut o Tx [FXuX]X+f(u,v) Su (6.24)

d 1 1
vp=—— |— + g(u,v) — Sv 6.25
"7 yTx [FX X:|X 9(uv) (6.25)
Tx],=STx (6.26)

with zero flux boundary conditions for v and v and the zero translation boundary
condition for '

ux(X,t) =vx(X,t)=0, X =0,1 (6.27)
T(0,¢) =0 (6.28)

and initial conditions
u(X,0) = uo(X), v(X,0) = vo(X), I'(X,0) = X. (6.29)

These equations may be written as a system of first order PDEs in the variables
(u,ux,v,vx,T,Tx). Numerical solutions are found by discretising the first order
system using the Keller box scheme [85], as implemented in the NAG library routine
DO3PEF. Solutions at equally spaced £ or x may be calculated by interpolating from
the solutions at equally spaced X, for example using routine CO5AZF to invert I' and
EO1BFF to interpolate.

We can use this more general formulation for solving the nonuniform domain
growth equations to corroborate our results for piece-wise uniform domain growth.
The function S(X,t) we chose to approximate the step discontinuity in p across the
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FIGURE 6.5 The tanh function, (6.30), illustrated for S; = 0 and So =1 with © = 0.5
and (i) e = 0.2, (ii) e = 0.1, (iii) € = 0.01 and (iv) € = 0.001 showing successively closer
approximations to a discontinuous step-function.

domain is the tanh function given by
Sa(t) — S1(t X-0
S(X,1) = Si(t) + M [1 + tanh (7>] (6.30)
€
and shown in Figure 6.5, which as € — 0 tends to a step-function between S; and Sa
(which may vary with time) centred on X = ©. In particular if we choose S; and Sy
to be constant, as in the previous case,

Sit)=p1,  Sa(t) =p2 (6.31)

then as € — 0 we recover the piece-wise uniform S.

Numerical Results. Using the nonuniform equations with S given by (6.30) we can
use the Lagrangian formulation to confirm our results for the piece-wise uniform case
and to investigate the solution behaviour when there is a more gradual change of strain
rate p over the domain.

For high values of the strain rate, i.e p ~ 0.01, there is little difference between the
solutions for piece-wise uniform and nonuniform domain growth with smooth change
in p across the domain, even when the change is very gradual (e ~ 1). As p is decreased
we find that in the limit ¢ — 0 we recover the behaviour displayed on the piece-wise
uniformly growing domain. Interestingly, it seems that certain of the features that
we observed are dependent on the sharpness of the interface between subdomains for
the piece-wise uniform case. In Figure 6.6 we plot activator solutions for decreasing ¢
corresponding to successively closer approximations to the piece-wise uniform problem,
for which the corresponding solution is shown in Figure 6.2(a). When the change in S

is gradual then all peaks undergo splitting (up to time ¢ = 3500 at least), in a manner
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FIGURE 6.6 Pattern formation with nonuniform domain growth: as € is reduced so-
lutions resemble the piece-wise uniform case shown in Figure 6.2(a). Here we plot nu-
merical solutions for the activator v(&,t) with the tanh function for the domain growth
and p; = 0.001, po = 0.0011 and ® = 0.5. The initial domain length vy = 1 and we
plot solutions for (a) e = 0.1, (b) € = 0.01 and (c) e = 0.001 giving successively better
approximations to the piece-wise uniform case.

similar to the uniform case (Figure 6.2(b)). As S becomes steeper then certain peaks
fail to split at successively lower values of ¢ (at correspondingly lower pattern modes).

Simulations for larger initial domains are shown in Figure 6.7, where we plot
activator solutions for decreasing e. We recover the piece-wise uniform behaviour,
corresponding to Figure 6.4(a), as € — 0. These results indicate that the transition
from two activator peaks to three on the growing domain, when only the peak in the
faster-growing region splits, is not strongly dependent on the exact nonuniformity.
When ¢ ~ 1, § > 0 on almost every part of the domain. We would expect splitting
to be possible on the left-hand part of the domain except when ¢ is sufficiently small
that S = 0 there. This is supported by the results in Figure 6.7 where it is only for
very small € that the splitting is restricted to the growing right-hand region, and not
the left, as seen for the piece-wise uniform case.

Next we use the same model formulation to investigate reactant-controlled domain
growth by choosing the local growth be a function of the local concentration of one or
both of the reactants (the chemical species u or v).

6.1.4 Reactant-Controlled Growth. In this section we illustrate that the La-
grangian formalism may be used when explicit functional dependence for S on X
and t is unknown, but rather .S is a function of the dependent variables u and v. This
will also be the appropriate formulation for numerical solution of the equations when
S is determined by some extended system of constitutive laws describing the tissue
growth. In the literature several models have been proposed in which domain growth
is determined by reaction-diffusion variables. Dillon and Othmer [27] study pattern
formation in the growing limb bud, modelled as an incompressible fluid with a dis-
tributed source term, S, which is a function of the local chemical composition. In their
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FIGURE 6.7 Pattern formation under nonuniform domain growth for larger initial
domains. Numerical solutions are shown for the activator v(&,t) with the tanh function
for the domain growth and p; = 0, p2 = 0.001 and ® = 0.5. The initial domain length
is 7o = 20 and we plot (a) e = 0.1, (b) e = 0.01 and (c) e = 0.001.

model there are two chemical components which react and diffuse through the growing
fluid region, however, their system is not of Turing-type and only simple gradients in
the chemicals are formed. Modelling the morphogenesis of certain species of green
algae, Harrison and coworkers [48, 50] couple a reaction-diffusion mechanism, which
does generate Turing patterns, to domain growth. However, they also include a feed-
back mechanism to the kinetics such that DDI operates only within history-dependent
boundaries separated by ‘inert’ regions for which there is no pattern formation.

The coupling of domain growth to the chemical kinetics provides a feedback be-
tween the pattern formation process and the mechanism that generates sequences of
patterns. As an example, we consider a model for which domain growth is controlled
by ‘growth factor’ v, the self-activating component, for which the reaction-diffusion
dynamics are governed by

up = 7—10% [%ux]X + f(u,v) —uS(v) (6.32)
vy = %% [%Ux]X + g(u,v) — v S(v) — A(v) (6.33)
I'x],=Sw)I'x (6.34)

where A(v) is a function describing the uptake of the growth factor by the tissue
and is a further modification to the reaction term for species v. We wish to consider
reasonable forms for the uptake of v and the response function which determines
the local growth S(v). In biological systems such processes are governed by highly
complicated biochemical pathways. We will not attempt to model these processes
fully, rather we will assume a ‘black box’ type approach and assume functional forms
which have reasonable properties.
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The simplest approach is to assume that the uptake of growth factor by the tissue
is proportional to its concentration. Then for constant tissue (cell) density the uptake
will be a linear term in v. However, if the chemical binds to cell-surface receptors then
the signal received by the cell will be saturating at high concentrations. If the inactive
receptor R; binds chemical C' to form active receptor R, then the rate equation for
binding is

kt
R, +C k‘:: R, (6.35)

with rate constants kT and k~. The Michaelis-Menten form for the fraction of bound
(active) receptors Fy is given by
Ta c

Fy, = = .
b Ta + 75 K4+c (6.36)

where r, and r; are receptor concentrations (or densities) and k = k™ /k% is the
Michaelis-Menten constant. If binding of ¢ to the receptors is cooperative then the
sigmoidal expression for the bound fraction will contain the concentration ¢ raised
to the power m, reflecting the degree of cooperativity. In this case the uptake, with
constant of proportionality «, is given by

Aw) =~ (6.37)

The response of the cell to the fraction of bound receptors is far from trivial, in-
volving complex signalling and intracellular machinery in the translation from chem-
ical signal to cell growth and proliferation. A similar problem arises in the biolog-
ical chemostat (or continuously-stirred tank reactor, CSTR, see for example Smith
and Waltman [123]). In this experimental apparatus nutrient is supplied to a well-
mixed tank containing a micro-organism population (with possibly several interacting
species) and the run-off monitored to determine the rate of uptake of nutrient. This
information, tallied with the population density increase, provides an empirical rela-
tionship between population growth and nutrient uptake. Here it has been noticed
(Monod [84]) that the consumption of nutrient has the same sigmoidal relationship
to the amount of nutrient supplied, and that the response of population growth is
proportional to the uptake of the nutrient. The physiology of microbial uptake of nu-
trient and growth is a undoubtedly very complicated, however, the empirical sigmoid
appears to be a remarkably good approximation, suggesting that the uptake is the
limiting process involved. Similarly, in the absence of other detailed information, we
suggest that the binding of the growth factor may in this respect be the important
process for the tissue growth problem, and so we will assume a sigmoidal form for the
local growth rate (in one spatial dimension) S(v). Thus we suppose that the cellular
interpretation of the number of bound receptors is proportional to the bound fraction.

The key features for this response function are the monotonicity and saturation of
the sigmoid. In fact certain factors may produce non-monotonic response, for example
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if a nutrient is essential at low concentration but inhibiting to growth (or toxic) at
higher concentration. This is studied for the chemostat by Butler and Wolkowicz [11]
and by Wolkowicz and Lu [132]. A similar biphasic response is observed in phototaxis
for algae which are attracted toward sources of light but repelled by strong light [129].
The sigmoid dependence is also found in the chemotaxic response of certain organisms
as the function that determines the bias in the random walk [61], the so-called receptor
law [120, 102].

The assumption that tissue density remains constant implies that the result of
tissue growth, increased cell size or proliferation, is expansion of the domain. The
growth factor is removed sigmoidally (uptake) and the domain growth is then sigmoidal
in response (proportional) with some delay, the time taken for the cellular response to
produce new tissue, and the local growth S is given by

pv(X,t—T)
S(X,t)=Sw(X,t—71)) = et E—1)

For simplicity we will assume that there is no delay, 7 = 0, so that tissue growth in

(6.38)

response to the bound chemical is instantaneous. Although physically unrealistic, this
approximation is reasonable in the context of reaction-diffusion patterns given that
the solution is for the most part in quasi-steady state. Also we assume that p, which
determines the ratio between the fraction of bound receptors and the growth rate
(rather than biomass produced, as for the chemostat), will be small, so that domain
growth remains slow in the sense that we have discussed. Furthermore, it is reasonable
to assume that only a small amount of the growth factor is taken up by the receptors,
so that the constant of proportionality « is also small. Finally, therefore, we consider
the model

11 1 pUY
_ _ 6.39
W= n [FXUX]X+f(u’v) . (6.39)
d 11 (pv+a)v
_ _prtajv 6.40
o Yo I'x [FXUX]X () K+ (6.40)
pvU
I'x|, = I'x. 41
Ixly =, Tx (6.41)

We have solved this system numerically using the same computational routine as
for the general nonuniform domain growth problem. The Lagrangian framework is
preferred as it does not require explicit calculation of the local kinematic velocity for
the domain, involving the inversion of I". A typical numerical solution for the activator
species is shown in Figure 6.8(a), where the solution is interpolated to equally spaced
points in £. The value of the local growth rate S is plotted as a function of time and
scaled space in Figure 6.8(b), where those parts of the domain which are growing are
shaded dark, and are seen to correspond closely to the evolving activator profile. The
trajectories of particles embedded in the domain (flow lines) are plotted in Figure 6.9,
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FIGURE 6.8 Pattern formation with reactant-controlled domain growth. We plot (a)
the activator (the ‘growth factor’) solution on the scaled domain and (b) the local strain
rate (rate of volumetric change), for Schnakenberg kinetics and with vy = 1, d = 0.01,
p = 0.005 and k = 1. We have taken a = 0 although we have found no qualitative change
to the results for small non-zero a. The numerical mesh has 1000 space points and no
change to the solution is found by halving the mesh size.

uniformly scaled to the unit interval, given by
Zx(t) = T(X,1)/T(L,2) (6.42)

which we plot for different values of X. For clarity twice as many lines are plotted for
X €[1/2,1] asfor X € [0,1/2]. In the figure the relative expansions of different regions
of the domain are clearly seen. Numerical solutions were also computed with sigmoidal
response functions for higher cooperativity, m > 1, giving qualitatively similar results.

The pattern sequence that is recovered is frequency-doubling in nature, through
regular peak splitting (for the Schnakenberg kinetics). This result is perhaps unsur-
prising as the growth has the same symmetry as the pattern. However, this example
illustrates that coupling between the domain growth and the reaction-diffusion pattern
itself is sufficient to drive formation of the FD pattern sequence.

6.1.5 Discussion. The simulations presented in this section have all considered Sch-
nakenberg kinetics, and pattern transitions have been through splitting of existing
peaks in the solution profile. Naturally, similar results may be obtained for kinetic
schemes for which transitions are through the insertion of new peaks. There is no
significant effect on pattern amplitude or wavelength from the spatial dependence of
terms in the equation for nonuniform growth. When domain growth is slow the advec-
tive term is correspondingly small, and peaks in the activator concentration reorganise
continuously to maintain separation which is roughly independent of position. In Fig-
ures 6.1 and 6.3 the asymmetry in the pattern is due to the relatively high value of
p. Here peaks do not reach their stationary positions during separation subsequent
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FIGURE 6.9 Flow lines, Zx (t), for reactant-controlled domain growth. The lines repre-
sent the trajectories of particles initially separated at regular intervals in X. For clarity
twice as many points are taken in the second half as in the first half of the interval
X €[0,1]. Parameters and other details as in Figure 6.8.

to splitting, before the domain is sufficiently large for the peaks to undergo the next
transition. For slower domain growth (Figures 6.2 and 6.4) the nonuniformity of the
domain growth is reflected in the failure of some peaks to split, giving an asymmetric
sequence of patterns.

We have employed the Lagrangian formulation for nonuniform growth, and have
described the numerical solution of the equations. However, the calculations proceed
on a grid which is equally spaced in X, while patterns are approximately equally
spaced in £. During growth of regions of the domain, any particular interval in X may
expand to become a large interval in £&. Hence in order to achieve reliable results a large
number of grid points may be required. This is the trade-off against the computational
effort saved in not being required to invert I' during the calculation. In the simulations
presented we have in each case performed computations with twice the number of grid
points as shown, to ensure that the simulation has converged onto the true solution. A
more sophisticated approach might be to periodically refine the computational mesh,
to take the variable regional expansion into account.

We now reassess the two questions that were posed at the beginning of the chap-
ter. We have shown that for small spatial perturbation, which we interpret as gentle
gradients in the spatial dependence, we recover FD-type sequences (at least for the low
modes that we have monitored). For more strongly nonuniform growth (for steeper
change in S) at high p we have observed asymmetry, as for the uniform case, and for
lower p selected peaks fail to undergo transitions, akin to the failure of FD for uniform
linear growth. For highly nonuniform domain growth, and in particular when one
region of the domain is not growing, other sequences may be formed by the failure of
peak splitting (or insertion) at particular locations, specifically for those peaks on the
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stationary part. This mechanism also appears to some degree robust, suggesting that
it may be possible to choose the nonuniformity such that a specific pattern is selected
during domain growth (as part of an evolving sequence) and furthermore, that the

same pattern will be selected for some amount of variation of the nonuniformity.

6.2 Pattern Formation in Higher Dimensions

Much experimental research on biological and chemical pattern formation concerns
patterning on surfaces or in relatively thin sheets. Correspondingly, in the literature
concerned with biological problems as well as in chemical and physical systems there
is a vast amount of work on theoretical aspects and modelling of pattern formation
in higher spatial dimensions. Murray [88] considers reaction-diffusion as a model
for animal coat markings and discusses linear stability and some effects of domain
geometry on pattern formation. Meinhardt [82] discusses pattern formation in two
dimensions in models for various aspects of embryology. Much of the work on pattern
formation in chemical and physical systems centres around describing the detailed
bifurcation structure near to the point of instability. The book by Walgraef [130]
typifies this approach, discussing the use of amplitude equations to generate bifurcation
diagrams near onset of instability in two spatial dimensions and in the investigation
of the dynamics and properties of defects in the patterns. In a similar vein the article
by Cross and Hohenberg [21] presents a wide review of pattern forming instabilities,
including reaction-diffusion equations, as studied by amplitude and phase equations,
including physically relevant aspects such as imperfections and issues related to pattern
selection.

The major new feature for pattern formation in two dimensions is the influence
of the geometry of the domain, and the conditions applied on the closed curve which
bounds it. The increase in the number of spatial degrees of freedom gives rise to a
corresponding escalation in the pattern selection problem, and hence pattern robust-
ness. Kauffman et al. [59] considered pattern formation on the ellipse in reference
to segmentation of the Drosophila embryo early in its development, and the sequen-
tial compartment formation in Drosophila wing disks, aiming to show that linear
reaction-diffusion theory could account for the experimentally observed patterns in
gene expression. Bunow et al. [10] have disputed these modelling results showing the
strong sensitivity of the patterns to the precise geometry of the domain.

For reaction-diffusion systems, diffusion-driven instability may be studied in two
dimensions with linear stability analysis of the homogeneous steady state, as for the
one-dimensional case presented in section 2.2. The analysis proceeds as before, however
the linear spatial modes are now eigenfunctions of the Laplacian in the higher spatial
dimension, satisfying the conditions imposed on the domain boundary. The planforms
of these patterns are discussed below (see also the book by Murray [88] for a full
discussion).
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There has been some work on pattern formation on curved surfaces. In his original
paper on DDI, Turing discusses pattern formation on the sphere in the context of
gastrulation. Recently Varea et al. [128] have studied pattern formation on the sphere
and Chaplain et al. [14] have considered this problem in the context of solid tumour
growth.

There are also some interesting results for three-dimensional chemical patterns
(see Callahan and Knoblock [12] for a group theoretic analysis of pattern formation
in three dimensions). Some general analytical results and concrete numerical simula-
tions for three-dimensional patterns (and competition between modes) are presented
by De Wit et al. [24]. So-called ‘black-eye’ patterns, which exhibit a hexagonal sym-
metry where the repeated element is a bright ring (surrounding a darker black-eye),
have been observed in chemical reactors and it has been suggested by Gomes [42]
that these apparently two-dimensional patterns in fact result from the projection of a
three-dimensional lattice in a thin domain, viewed at the requisite orientation. Such
patterns are observed elsewhere in nature and so these results may have implications
for biological pattern formation.

In the present work we restrict discussion to the rectangular domain,

Q=[0,L] x [0, L], (6.43)

and consider only growth in directions parallel to the axes of the rectangle. This is,
of course, a great simplification but will serve to illustrate how the results we have
obtained in one dimension extend to the higher dimensional problem. The nondimen-
sionalised reaction-diffusion system on a domain of fixed size is given by

up = %V2u + f(u,v) (6.44)

d
vy = ;VQU + g(u,v) (6.45)
defined on
Q=[0,1] x [0,q]
with zero flux boundary conditions imposed on the closed curve
x € 00 (6.46)

where v o< L2 and o = L, /L, is the ratio of the sides of the rectangle.

Linear Analysis. The linear analysis presented in Chapter 2 may be extended to
two-dimensional domains with boundary conditions prescribed on the bounding curve
0. We seek solutions to the spatial eigenvalue problem

V2 + k=0 (6.47)

where ¢(z,y) satisfies the boundary conditions on Q and k = |k| is the magnitude
of the wavevector of the linear mode (the dimensionless wavenumber). On the plane
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the general form of solutions in which we are interested is

M
dr(z,y) = Re Z Ajexp (ik; - x) (6.48)
=1
to which solutions come in pairs for each j with wavenumbers +k, where |k;| = k.

For M = 1 patterns are essentially one dimensional and we recover stripes (rolls)
perpendicular to wavevector k and, for the isotropic case on the plane, with arbitrary
orientation. For M > 2 periodic planforms may be generated, built on superposition
of the pairs of wavevectors at angles which are multiples of w/M. Rhombic planforms
may be produced, for which the wavevectors do not intersect perpendicularly.

When boundary conditions are imposed on the rectangular domain only a discrete
set of wavenumbers is admissible. The exploration of the dispersion relation and de-
termination of characteristic spatial scales in sections 2.2.4 and 2.3.1 may be extended
similarly, i.e. k must lie in some interval k& € [k_, k4] which may be determined from
the dispersion relation, and a minimum domain size may be calculated for a particular
linear mode. For M = 1 the directional degeneracy is eliminated, and we must have
k -x = kz or ky, corresponding to stripes parallel to one or other axis. There are two
cases of interest for M = 2, giving different planform orientations: firstly solutions
that we will refer to as p-type, for which A; = Ay = ax/2 and

ki -x=kex+kyy, ko x=kxt—kyy (6.49)
such that the spatial eigenfunction may be written

ér(z,y) = ay cos (kzz) cos (kyy) (6.50)

with k; = mgm, ky = myn/a and k2 = k2 + ki giving a diagonal lattice of spots, and
secondly s-type patterns,? where

ki-x=kz, ke -x=ky (6.51)

and from the boundary conditions k = mg,m = my7/a, which gives a square planform
which intersects the axes perpendicularly. The latter planform is admissible as a
solution of the linearised problem when the domain may be tessellated by a square tile
of appropriate size, for which a lower bound is determined by the minimum domain
length calculated from the dispersion relation. For M = 3 the planform is hexagonal
and corresponds to a hexagonal lattice of spots or a honeycomb structure. These
structures cannot satisfy the zero flux boundary conditions on the rectangular domain.
However, in the full nonlinear problem defects in the pattern allow distortion of the
planform such that the boundary conditions may be satisfied. This is increasingly true
for larger aspect ratio situations (the ratio of the domain size to the intrinsic pattern
wavelength). Similarly, in the nonlinear regime the square planform may be distorted
to give a rectangular lattice to satisfy the boundary conditions.

2We use the notation m = [mg, my], for p-type solutions and m = [my, my]s for s-type patterns.
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Linear analysis does not give any insight into pattern selection between these dif-
ferent planforms. The relative stabilities of these bifurcating solutions are studied in
the weakly nonlinear regime by amplitude equations that describe the evolution of
the A; as functions of time. These equations, derived by asymptotic expansion about
the bifurcation point, are strictly valid only in the vicinity of the bifurcation. Nev-
ertheless, good insight into the competition between different patterns can be gained
by studying these equations and there is now a large literature concerning the bifur-
cation structures characterising different models and, more recently, in reproducing
phenomena from the experimental Turing patterns. In two dimensions, consideration
of solutions to the amplitude equations generated for one, two or three interacting
destabilising modes allows one to find the relative stabilities of bifurcating stripe,
square and hexagonal symmetric structures. Furthermore, amplitude equations may
be used to examine the dynamics of defects in patterns and the transitions to more
stable patterns (for example, Eckhaus and zigzag instabilities [21, 130]). A generic re-
sult for many reaction-diffusion systems, such as those studied here, is that hexagons
appear first in a subcritical bifurcation, and then lose stability to squares or stripes
depending on the relative size of the quadratic and cubic terms in the reaction kinet-
ics.> It is now well documented that quadratic terms favour squares and hexagonal
patterns over stripes. The competition between striped and spotted patterns (squares
or hexagonal planform) has been investigated by Ermentrout [37] and Lyons and Har-
rison [74, 75] where it is shown that quadratic terms favour spots. Some numerical
results supporting this conclusion are presented below. We will consider the Schnak-
enberg system, the quadratic nature of which becomes apparent after expanding the
reaction terms around the kinetic steady state (see Appendix A.1), for which the solu-
tion on a fixed domain is shown in Figure 6.13(d), and we take the cubic autocatalysis
model from Chapter 5 as a canonical stripe-generating system, showing the solution
on a fixed domain in Figure 6.14(c).

6.2.1 Numerical Solution in Two Dimensions. The reaction-diffusion model in
two dimensions can be solved numerically using standard methods for parabolic equa-
tions on rectangular grids (see Morton and Mayers [85]). The simplest finite difference
method is the fully explicit Euler scheme which works well enough but, as in one
spatial dimension, is subject to a prohibitively restrictive stability condition. In one
dimension this restriction is circumvented by the semi-implicit Crank-Nicolson scheme,
which gives a linear system of near-tridiagonal form which is easily (and inexpensively)
solved. However the direct extension of this scheme to two dimensions results in the
loss of the tridiagonality of the matrix equation to be solved, which greatly slows
down the computation. The tridiagonal form is retained by the Alternating-Direction
Implicit (ADI) scheme of Peaceman and Rachford [108] for which the integration is

3The relevant nonlinear terms here are those found by expanding the functions about the kinetic
steady state concentration values—see section 5.2.
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explicit in one direction and implicit in the other for one half-timestep, and for the
second half-timestep the order is reversed.

We seek a numerical solution on the spatial grid (z;,y;) with z; = (¢ — 1)Az,
i=1,...,Nyand y; = (j —1)Ay, j=1,... , Ny, where Az = Ay for a uniform grid,

and time t; = kAt, k = 0,1,2,... with timestep At. For numerical approximation
Ui’fj ~ u(z;, yj, tk) we have
At k1/2 _ At ol ok kovk
1- 562| U, 1+ — 6| U +— Uk, v; 6.52
- s ] a7 1 (0m) (652
At At k+1/2 ¢ k+1/2
1_ s2l ot = |1 5 82 kt1/2 , 20 o - i
l 2 g7 y] Uk +5 (A 28| U4 S (U2, V) (6.53)
where 5in’fj = Ui’fH /25~ Ui’“_ 1/2,] is the central difference operator, and a similar

expression holds for ;. An equivalent formula gives the numerical approximation
VZ{“] ~ v(Ti, Y5, th)-

The resulting scheme is unconditionally stable (as for the Crank-Nicolson scheme),
although there is still a condition for convergence [85]. The tridiagonal linear system
of equations is efficiently solved using LU decomposition (see Press et al. [113]).

6.3 Two-Dimensional Slow Uniform Domain Growth

We restrict our attention to uniform domain growth, where the strain rates are inde-
pendent of position, although we may allow different rates along the two axes to give
anisotropic domain growth, which is specified by

D;; = 5ij0'z'(t), 1=1,2 (6.54)

(no summation implied) where o1 # o2 for anisotropic uniform growth. Transforming
the rectangular growing domain to the unit square,

_(_* Yy
(z,y) = (§&n) = <T1() r2(t)> (6.55)
where
ri(t) = exp /0lt oi(t)dt (6.56)
such that Q = [0, 1] x [0, 1], we recover the equations
Ut = % (“E& + [a(lt)]zunn) + f(u,v) = S(t)u (6.57)
vy = % (U& + [a(t)] vnn) + g(u,v) — S(t)v (6.58)
where we define
ro(t)

(1) =y [ri(®)]® and a(t) = ag (6.59)
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so that a(t) is the time-varying ratio of the sides, and ag = Ly/ L, is the initial ratio.
The rate of volume expansion S is given by

S(t) = o1(t) + o2 (t). (6.60)

In light of the results presented in previous chapters for pattern sequences on the
growing one-dimensional domain, two central issues must be resolved for the model in
two dimensions:

1. Do the one-dimensional results hold for two-dimensional domains undergoing uni-
arial domain growth: does the splitting and insertion of peaks observed in the
one-dimensional study have an analogous behaviour for the two-dimensional prob-
lem, or does the higher dimensionality destroy the sequences of patterns?

2. What qualitative changes occur for biazial growth in two-dimensions: what pattern
sequences are formed and are the patterns robustly generated?

In the following section we present the results of numerical simulations of the model
assuming various forms for the kinetics and with several choices of o7 and o3. The
system is solved numerically using the ADI method described above, incorporating the
relevant functional dependence for those parameters in the equations which change

with time.

6.3.1 The Quasi-One-Dimensional Problem. Firstly we examine the pattern se-
quences generated on a narrow strip, with growth parallel to the long axis only (along
the z-direction). Taking an initial domain with ratio of sides & < 1 we set

Ul(t) = p1, Ug(t) =0 (6.61)

where p; < 1 so that domain growth is slow. The numerical solution for the activator
v(z,y,t) is shown in Figure 6.10. The solution is plotted as a function of z and y at
various times t, so that the changing shape of the domain with time is apparent. The
reaction terms f(u,v) and g(u,v) in equations (6.57) and (6.58) were taken to be the
spot-selecting Schnakenberg kinetics. The width of the strip (the y-extent) was taken
to be half of the initial length. The solution shows the standard spatial frequency-
doubling behaviour as was obtained for the one-dimensional studies presented above.

In this example the width of the domain is sufficiently small (and is unchanging)
that the only admissible patterns are of zeroth mode in the y-direction: the patterns
generated in the sequence are all of mode m = [-,0],. Thus there is no dependence of
the solution on gy, and the solution behaviour is truly one-dimensional.

6.3.2 Uniaxial Domain Growth. If we choose the initial domain geometry such
that a genuinely two-dimensional pattern, one with spatial dependence on z and y, is
established initially then we may examine how the pattern evolves under anisotropic
growth (along one axis only). As in the previous case, we take 01 = p and o3 = 0 such
that the domain is growing parallel to the z-direction only, but here « is increased
to give a wider elongating strip. In Figure 6.11 the domain is initially square, and



136 6. NONUNIFORM DOMAIN GROWTH AND HIGHER DIMENSIONS

0 0 0
0 05 1 0 1 2 0 1 2 3 4

(a) (b) ()
0.5
i i 4F 4 i)
0 1 2 3 4 5 6 7 8
(d)

FIGURE 6.10 Spatial frequency-doubling via peak splitting for Schnakenberg kinetics
on a thin elongating strip, with 79 = 1, ap = 0.5 and p; = 0.002 (p2 = 0). The activator
solution v(z,y,t) is shown at times (a) t = 10, (b) ¢ = 350, (¢) ¢t = 700 and (d) ¢ = 1050,
corresponding to a doubling in z-extent at each step. Pseudo-colour scale is from 0 (blue)
to 4 (red).

from random initial conditions with Schnakenberg kinetics the initial pattern to form
is of mode m = [+1, —2];, equivalent to a half-spot, shown in 6.11(a). During the
subsequent growth along the z-axis the solution evolves as a sequence of spot-patterns
with rapid transitions between quasi-steady spatial profiles, comprising pattern modes
m = [+1,-2]s, [-2,—2]s, [-4,—2]s, [-8,—2]s,.... The sequence is generated in a
similar manner to the pattern sequence in the one-dimensional case, with transitions
by splitting and separation of the spots as the domain doubles in length in the z-
direction.

The transition between two quasi-steady pattern modes is shown in detail in Fig-
ures 6.12(a)—(c). In Figures 6.12(d)—(h) the profile along the midpoint in y and parallel
to the z-axis, v(z,1/2), is plotted for various times ¢ corresponding to the full patterns
in Figures 6.11(b), 6.12(a)—(c) and 6.11(c) respectfully. These graphs are strongly rem-
iniscent of the peak-splitting phenomenon for solutions on the one-dimensional growing
domain (Figure 4.6(a)—(d)), although it is interesting to note that the two-dimensional
patterns have approximately twice the amplitude of the one-dimensional solutions.

In this example it is apparent that the domain remains too narrow to allow sig-
nificant reorganisation of the arrangement of spots through relaxation into a different
lattice type. Furthermore it is unclear whether the line of spots observed corresponds
more closely to a narrow band along the axis of a square lattice or a similar thin strip
along the vertices of a hexagonal planform. Further numerical simulations on domains
of different initial size and geometry indicate that uni-directional growth favours the
symmetry of the square lattice. In Figure 6.13(a) we have chosen the initial domain
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FIGURE 6.11 Spot splitting for Schnakenberg kinetics on an elongating strip, with
Y =1, a9 =1 and p; = 0.002 (p = 0). We plot the activator pattern v(z,y,t) at times
(a) t =60, (b) t =200, (c) t = 550 and (d) ¢ = 900, corresponding to doubling the strip
length during the intervals between (b) and (d). In these and in subsequent spot-type
patterns the pseudo-colour scale is from 0 (blue) to 8 (red).

length such that the destabilising pattern is mode m = [—2, —6]s;. For uniaxial do-
main growth along the z-axis the regular splitting of spots is found to occur, giving
frequency-doubling in the z-direction, with the final pattern shown in Figure 6.13(b)
after two such transitions. On this wider domain the arrangement of spots is not found
to relax into a hexagonal lattice, the planform favoured on a static domain, which is
shown in Figure 6.13(d). Here the fixed domain is of identical size and geometry to
the growing domain at the time shown in the previous frame. The distortion of the
hexagonal lattice is due to the relatively small aspect ratio, however, on larger fixed
domains a truer hexagonal lattice is recovered, albeit with some defects to allow the
boundary conditions to be satisfied.

Now we turn to examine pattern behaviour for kinetic schemes which select stripe
patterns through dominance of the cubic terms in the expanded kinetics. As an
example we take the system studied in detail in Chapter 5, with kinetics given by
equation (5.26)—(5.27). Initially it will be our purpose to investigate whether, as in
the previous example, domain growth can generate a pattern of greater symmetry
than is generated on a static domain. For a small initial domain with ag > 1 stripes
preferentially align parallel to the shorter axis, as shown in Figure 6.14(a). Here
the initial domain geometry is such that the first pattern to form is m = [0, —6],.
During subsequent growth along the direction of the z-axis, such that at some later
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FIGURE 6.12 Detail of spot splitting for Schnakenberg kinetics, at times (a) ¢t = 470,
(b) t = 480 and (c) t = 490, and cross section profile, v(z,1/2,t), at times (d) ¢ = 200,
(e) t =470, (f) t =480, (g) t = 490, and (h) ¢ = 550. Parameters as for Figure 6.11.

time the ratio of the sides a < 1, the stripe pattern is essentially unchanged, shown
in Figure 6.14(b). The pattern mode remains m = [0, —6], although the size and
geometry of the domain has changed significantly, as is reflected by the change of «
where now a = 1/2. In Figure 6.14(c) we show the activator solution generated from
random initial data on a fixed domain of equal size and geometry to the previous
frame. The intrinsic spatial scale (pattern wavelength) is clearly approximately the
same, however, the simple symmetry of the pattern on the growing domain is not
recaptured. Thus the effect of the uniaxial growth in this case is to stabilise a parallel
stripe pattern. We have considered the kinetic system with small a positive quadratic
term. Further simulations indicate that this behaviour is independent of the precise
form of the kinetics, requiring only that stripes are strongly preferred. Variations on
the kinetics with this proviso serve only to modify the cross-sectional profile of the
stripes (which resemble the profiles for patterns on the one-dimensional domain).

6.3.3 Biaxial Domain Growth. In the previous section we examined the pattern
sequences generated on a two-dimensional domain subject to growth along one axis
only, and under various conditions on the domain geometry and reaction kinetics. Now
we consider a two-dimensional rectangular domain with slow uniform domain growth
along both axes, with

o1(t) =p1,  02(t) = p2 (6.62)
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FIGURE 6.13 Selection of the square lattice through spot splitting on the uniaxially
growing domain compared to the hexagonal lattice for pattern formation on a domain of
fixed size. In (a)—(c) we plot activator solutions v(z,y,t) for Schnakenberg kinetics on
the growing domain with vy = 4, ap = 3 and p; = 0.002 at times (a) t = 10, (b) ¢ = 300
and (c) t = 650. For (d) the domain is static (p;1 = p2 = 0) and we plot a steady state
pattern for vp = 64 with a = 0.75, giving the same domain size and geometry as (c).

where p; and py are both small. When p; = p2 the domain growth is isotropic.
Within this same framework we could also assume some time dependence for the
domain growth, as for several examples in Chapter 4.

Stripe Patterns. Firstly we reconsider stripe formation. Previously we found that
stripes parallel to the direction of uniaxial growth remain aligned to the growth direc-
tion. However, of great interest is the stability of stripe patterns when domain growth
is also in the direction perpendicular to the stripe orientation. Here elongation and
separation of stripes occur simultaneously and, referring to the first question that we
posed, the crucial issue is whether the stripes split in a manner similar to the one-
dimensional problem (see Figure 5.3). The results of numerical simulations, presented
in Figure 6.15, confirm this to be the case. In the figure the growth is isotropic, and
so « retains its initial value, @y = 1. Thus the vertices plotted are (£,7), showing
the activator patterns v(£,n,t) in the unit square, at various times ¢. The direction
of a stripe pattern on a square domain will be parallel to one or other axis, the ori-
entation determined by the initial data alone. In these simulations we use the cubic
autocatalytic kinetic scheme (5.26)—(5.27) to study the subsequent evolution of striped
pattern sequences under isotropic uniform domain growth.

In Chapter 5 it was shown that the perturbation of pure cubic kinetics with
small quadratic terms determines whether evolving solution sequences on the one-
dimensional domain gave rise to transitions through splitting or insertion of new peaks
(or both simultaneously in the absence of the quadratic term). The same appears to be
true for the transitions between pattern modes in two dimensions. In Figures 6.15(a)—
(c) the sequence of patterns for the pure cubic case (6 = 0) is shown. Here we see the
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FIGURE 6.14 Domain growth parallel to stripes maintains the orientation of the striped
pattern. Numerical solution for cubic autocatalysis kinetics with § = 0.1 on the uniaxially
growing domain (a)—(b), compared with the steady state pattern generated on a fixed
domain (c) of the same size as figure (b). Parameters for domain growth are vy = 1,
ap = 6 and p; = 0.005 with final time (b) ¢ = 500. In these and in subsequent stripe
patterns the pseudo-colour scale is from —0.8 (blue) to 0.8 (red).

mode-tripling sequence that was described previously for the one-dimensional prob-
lem. The initial pattern is m = [+1,0],, with subsequent patterns in the sequence
m = [—=3,0]p, [+9,0]p,..., and with transitions each time the side perpendicular to
the axis of the stripes triples in length. This sequence is the two-dimensional realisa-
tion of the frequency-tripling in the z-direction. In Figures 6.15(d)—(g) the kinetics
are perturbed with a small positive quadratic term, such that stripes are selected but
pattern transitions occur via insertion of new stripes each time the perpendicular side
doubles in length, as for the one-dimensional case. Similar sequences are generated
for anisotropic growth and for initially rectangular domains, where the ratio of the
sides may bias the initial orientation of the stripe pattern. Painter [106] found, for
one particular kinetic mechanism, that the parallel stripe structure may break down
under domain growth, evolving to labyrinthine patterns. We have not observed similar
behaviour here, and assume that the kinetic scheme that was used does not strongly
select for stripes.

These results are simple two-dimensional extensions of the one-dimensional results
discussed earlier. However, new phenomena emerge for the spot patterns under biaxial
domain growth.

Spot Patterns. Using Schnakenberg kinetics we study the formation of spot patterns
on isotropically growing domains, taking p; = ps for the domain growth rates (6.62).
The pattern sequence for an initially square domain (e = 1) is shown in Figure 6.16.
The novel feature demonstrated in this figure is the splitting of a single spot into
four. As usual, spot splitting occurs when the axial length doubles. The symmetry
of this sequence is certainly due to the square domain and the isotropic growth. If
the domain is not square initially, or for anisotropic growth such that p; # p2, then
spot splitting events along the two perpendicular axes occur at different times. This
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FIGURE 6.15 Sequences of stripe patterns generated under biaxial domain growth for
cubic autocatalysis kinetics (5.26)—(5.27) showing (a)—(c) frequency-tripling of stripes
for 6 = 0 and (d)—(g) frequency-doubling by stripe insertion for § = 0.1. The domain
remains square as it grows, although this is not a requirement for the pattern sequences
shown. The orientation of the stripes is in this case arbitrary, chosen by the random
initial conditions. Similar behaviour is observed in the perpendicular orientation for
stripes which are initially parallel to the z-axis. Parameters are 79 = a9 = 1 and growth
rates p; = p2 = 0.002 with solutions for the activator v(§,n,t) shown on the scaled
domain [0, 1] x [0,1] at times (a) ¢t = 200, (b) ¢ = 600 and (c) ¢t = 1200, and (d) t = 250,
(e) t =600, (f) t = 950 and (g) t = 1300. For plots (a)—(c) the domain sides triple and
for (d)—(e) the sides double in length between each plot.

is because the axial length in one direction reaches its critical value before that of the
other direction. The results of a numerical simulation for the latter of these two cases
is shown in Figure 6.17. Here we plot v(z,y) for various times ¢ to show the changing
shape of the domain. The domain is initially square but growth is faster parallel to
the y-axis and spots separate more quickly in this direction. The figure illustrates
that on removing the square symmetry the quadruple splitting is lost, however, the
rectangular planform is retained.

Transitions between patterns for Schnakenberg kinetics are through splitting of
peaks in one dimension, and spot splitting for two-dimensional patterns, the details
of which depend on the symmetries in the domain and its growth. Details of the
spot splitting are shown in Figure 6.12 and in Figure 6.16 for the square-symmetric
domain. Alternative kinetic schemes which also select spot patterns were shown in one
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FIGURE 6.16 Symmetric splitting of spots generating a square lattice pattern for
Schnakenberg kinetics on the isotropically growing domain. Parameters are v9 = g = 1
and growth rates p; = p = 0.002 with solutions for the activator v(¢,n,t) shown at
times (a) t = 50, (b) ¢t = 100, (c) t = 150, (d) ¢t = 350, (e) t = 400, (f) t = 420, (g)
t = 500, (h) ¢ = 750 and (i) ¢ = 850. The domain length scale doubles between (c), (g)
and (i).
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FIGURE 6.17 Generation of the rectangular lattice for Schnakenberg kinetics under
anisotropic growth. Here p; = 0.001 and p, = 0.002 while vy = a9 = 1. The activator
solution v(z,y,t) is shown at times (a) t = 10, (b) t = 200, (c) ¢t = 400, (d) ¢t = 500, (e)
¢ =700, (£) t = 900, (g) ¢t = 1200 and (h) t = 1400.

spatial dimension to undergo transitions via insertion of new peaks, the example we
have used being the Gierer-Meinhardt equations (see Appendix A.3) with § nonzero.
In Figure 6.18 we plot the pattern sequence generated for Gierer-Meinhardt kinetics
on an initially square, isotropically growing domain. Interestingly, a new phenomenon
emerges for spot insertion. The patterns are found to alternate between two different
orientations of the square lattice, what we have called p-type (diagonal) and s-type
(square) planforms. For example in Figure 6.18(d) the pattern mode is m = [+2, +2]p,
which persists until the domain side is long enough to accommodate new peaks, at
which point insertion of peaks generates mode [+4, +4];, shown in Figure 6.18(e). This
mode, in turn, persists until the diagonals are long enough to accommodate insertion
of new peaks, giving pattern mode m = [+4,+4], (Figure 6.18(f)). This regular
alternation takes place with time period corresponding an increase in the length of
the domain side by a factor of /2. Thus between Figures 6.18(c) and 6.18(e), and
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FIGURE 6.18 Spot insertion leading to alternation between orientations of the square
lattice for Gierer-Meinhardt kinetics under isotropic domain growth. Between successive
patterns the domain sides increase by a factor of v/2. In this figure the ratio of diffusivities
d = 0.025, and other parameters are v = a9 = 1 and p; = p2 = 0.005. Numerical
solutions for the activator v(£,n,t) are shown at times (a) ¢ = 110, (b) ¢t = 180, (c)
t =250, (d) t = 320, (e) t = 390, (f) t = 460, (g) t = 530, (h) t = 600 and (i) ¢t = 670.
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between Figures 6.18(d) and 6.18(f) the domain sides and diagonals respectively double
in length. Essentially there are two intercalating frequency-doubling sequences here,
one sequence lagging the other. We have observed similar behaviour in numerical
simulations on rectangular lattices, where the square symmetry and isotropic growth
are relaxed (data not shown).

6.3.4 Discussion. These results indicate that pattern formation in two spatial di-
mensions can give rise to essentially one-dimensional pattern sequences, both for thin
domains and for regular stripe patterns on squarer geometries. We have shown that
domain growth may in fact stabilise parallel stripe patterns on domains of a size that
would generate labyrinthine patterns for the static problem. Furthermore, we have
shown that for spot-favouring kinetics the domain growth selects the square (or rect-
angular) lattice, rather than the hexagonal planform which is selected in the static
case. An interesting observation for spike-type kinetics generating spot patterns is
that the amplitude of the two-dimensional patterns is approximately twice that of
one-dimensional structures. This is not the case for transition-layer systems where the
amplitude is determined by the location of the two stable branches of the activator
nullcline in the (u,v) plane.

The generation of patterns with increasing numbers of spots retaining the regular
square symmetry is achieved when the initial domain is sufficiently small that regular
patterns are generated initially. However, if the domain is initially large so that a dis-
ordered pattern forms initially (such as in Figure 6.13(d) or, for stripes, Figure 6.14(c))
then during subsequent domain growth the patterns do not relax to the regular lattice
of spots (or to parallel stripe structures). In this sense the two-dimensional pattern
sequences are unlike those observed in one dimension, where for exponential growth a
frequency-doubling sequence will ensue from any initial pattern mode.

The preference for the square lattice seems to be generic for the different kinetic
schemes and domain growth functions that we have considered. The higher symmetry
afforded by square domains undergoing biaxial isotropic growth is certainly reflected
in the pattern of peak splitting, viz. one peak splitting into four. This raises the
interesting question of what patterns of peak splitting would be observed for other
symmetries imposed on the domain geometry and growth. Lacalli [67] describes a
numerical simulation of a reaction-diffusion equation on a circular disc with radially
symmetric growth, where a central peak is found to split into six in a manner similar
to the expanding ring which collapses into four peaks in Figure 6.16. However, the
lattice generated under such symmetry is not reported. It is conceivable that the
circular symmetry of radially symmetric growth will select the hexagonal planform.
This is an interesting possibility which we have not yet explored, however, we would
not expect the six-fold splitting to be recovered for perturbations of either the circular
domain geometry or the radial symmetry of the growth.
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The symmetry arguments presented in Chapter 2 for the steady state solutions
and extended in Chapter 4 to the full PDE system hold equally well in two space
dimensions. The transitions occur when the relevant spatial dimension doubles. How-
ever, for spot-inserting kinetics we have found a novel behaviour whereby two patterns
exhibiting this symmetry intercalate. The pattern on the domain alternates between
two different planforms as the domain grows. There are two important dimensions for
the insertion mechanism due to the lattice structure, one parallel to the axes and the
other the length of the diagonals. Insertions occur at the appropriate points, either
midway between existing spots on lines parallel to the domain edges or on lines parallel
to the diagonal, as these lengths double.

The results we have presented are confined to the highly restricted case of rect-
angular domains and growth out along one or both rectangular axes. Furthermore
we have considered only growth at constant strain rate, and have not considered time
dependence or indeed spatial nonuniformity in the growth. Time-dependence for the
strain rates is easily incorporated into the numerical methods that we have discussed,
and we would expect the results to be equivalent to those for the one-dimensional
problem. In order to explore pattern formation on two-dimensional domains with
more general geometries it is expedient to employ the finite element method for nu-
merical solution of the equations, and this is currently under investigation [76]. Our
formulation of the problem for numerical solution on rectangular domains may be
extended to include nonuniform growth by writing the equations in Lagrangian form
and modifying the numerical scheme to cope with convective terms, using an upwind
method (see Morton and Mayers [85]).



7. Summary

It has been our aim in this thesis to characterise the effect of domain growth on
pattern formation in reaction-diffusion systems. While motivated by the recent pa-
per by Kondo and Asai concerning dynamic patterns in fish skin [64] (discussed in
section 1.4) we have sought to explore general features of pattern formation on grow-
ing domains, rather than to discuss any specific patterning events from the biological
realm. We have found, in particular for uniform domain growth, that the set of pos-
sible behaviours is severely limited. Such results may prove useful when trying to
identify which biological pattern formation events might arise as a consequence of the
reaction-diffusion mechanism, and where it may be more prudent to seek alternative
explanations.

One key finding is the role of the various timescales in the problem. We have argued
that slow domain growth (where growth is on a long timescale relative to pattern
formation) is the appropriate model for biological scenarios, and this turns out to be
the case for which a sequence of recognisable patterns is generated. For three-species
reaction schemes exhibiting oscillatory patterns a third timescale is introduced and
the evolution of solutions on the growing domain is found to be disorganised, even
for slow domain growth. The interaction of the third timescale destroys the regular
behaviour found previously.

Our investigation of the symmetry between different time-independent solutions
on domains of fixed size found that a scaling law in the parameter v (and hence in the
domain length L) relates the different pattern modes. We have been able to extend
this idea to the full time-dependent problem with domain growth to predict frequency-
doubling and the novel frequency-tripling behaviour. Transitions between patterns
are driven by the domain growth. Pearson’s discovery of splitting and replication of
structures in the bistable Gray-Scott model [109] (discussed in section 2.5.3) is all
the more remarkable in that there is no such process driving the system. The kinetic
schemes admitting the diffusion-driven instability that we have studied do not show
this splitting behaviour without domain growth. However, the mechanism of peak
(or spot) splitting in either class of kinetic schemes is not well understood and lacks
satisfactory explanation.

One as yet unexplained feature of the simple two-species solutions on the uniformly
growing domain is the effect of reducing the growth rate p through a lower critical
value, below which the regular frequency-doubling breaks down. Corroborating evi-
dence for this phenomenon is provided by the study of the linear growth case, where the
breakdown of the regular sequence after several successful frequency-doubling events
was shown to be consistent with the lower critical p. The implication of this result
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is that if a domain grows too slowly then there is not sufficient coupling between do-
main growth and the pattern formation mechanism to produce the regular sequence.
This runs counter to the intuitive idea that for slow domain growth the transitions
between patterns are triggered simply by the peak separation exceeding some critical
value. Nishiura et al. [95] have found that pattern for Gray-Scott kinetics close to the
bistable regime develops, on a domain of fixed size, by splitting of the outermost peaks
only (see Figure 2.8(a)) presumably for the reason that internal peaks do not achieve
a minimum critical separation. For our system, however, peak separation is driven by
the domain growth and it seems that the rate at which peaks move apart is important
in determining the transitions between patterns, rather than just their instantaneous
separation. For the uniform case all peaks on the domain separate at the same rate.
With constant strain rate the time dependence is exponential and in one dimension
the rate of expansion of any interval, d Az/dt = (X3 — X1)pexp(pt) = p Az, is in-
dependent of time ¢t. Evenly spaced peaks separate at the same rate, independent of
time. Thus it seems that if peak separation is not fast enough then frequency-doubling
does not result. For linear domain growth, peak separation d Az/dt = p Az/(1 + pt)
is a decreasing function of ¢ and frequency-doubling breaks down when peaks are sep-
arating at what was found to be the minimum separation rate for the exponential case.

In this thesis we have focused on patterns on one-dimensional growing domains.
The extension of these results to higher dimensions is non-trivial. The two-dimensional
patterns on the angelfish undergo transitions by insertion of stripes as the domain
length perpendicular to the stripe orientation doubles, in a manner similar to the sim-
ulations shown in Figure 6.15(d)—(g). This is seemingly good circumstantial evidence
that a mechanism such as reaction-diffusion is at work, however, the experimental
observations may also be consistent with any other mechanism which has an intrinsic
pattern wavelength. We have found that domain growth can stabilise parallel stripes
in two dimensions, as well as giving rise to stripe splitting or insertion. Many more
phenomena have been observed in the experimental system, including the formation
and movement of Y-shaped branching points where one stripe divides into two. A
wider range of behaviours may be possible in two dimensions under nonuniform do-
main growth. Frequency-doubling generates an even number of repeating elements
and we found in one dimension that a low odd number of peaks could be generated
with nonuniform growth, where peak splitting or insertion is restricted to one part of
the domain. It would be of great interest to explore what further pattern behaviours
are possible under nonuniform growth in two dimensions.

The rectangular lattice of spots would seem to be the only planform that can be
selected by domain growth for kinetics containing quadratic terms. Thus hexagonal
structures occurring in biology, for example the arrangement of feather primordia
in the chick [57], are unlikely to be generated in this way. However, in many such
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patterns robustness is not a requisite, and hexagonal patterns are favoured on the
static domain.

One important feature of growth and form that we have overlooked in this thesis is
curvature of the domain. The bowing and folding of sheets of tissue is as important in
developmental systems as their migration and expansion. Translation without chang-
ing geometry (curvature or size) has no influence on the reaction-diffusion mechanism
within a tissue, however, curved surfaces and in particular curvature changing with
growth may be an important factor in pattern formation. To our knowledge there
is, at present, little work discussing the interaction of curvature and domain growth
in pattern formation. One notable exception is the paper by Chaplain et al. [14] in
which the results of a simulation of reaction-diffusion on the surface of a radially grow-
ing sphere are reported, however, there are not sufficient data presented to ascertain

whether or not similar phenomena are observed in their system.

We have been able to address the robustness problem, one of the major criticisms
of reaction-diffusion theory [6, 10], having found that the incorporation of domain
growth into the reaction-diffusion model drives the system to generate sequences of
patterns [19]. Component patterns of the frequency-doubling sequence display semi-
scale invariance, remaining established while the domain doubles in length, an im-
portant feature in the context of regulation. The frequency-doubling mechanism is
an efficient manner in which to reliably generate patterns containing even numbers of
elements.

The implication of this result is that arguments dismissing reaction-diffusion the-
ory because of its perceived robustness failure must be reconsidered. Saunders and
Ho [118] conclude that for reliable segmentation a sequential mechanism is required, in
which the domain is successively divided into separate subdomains which are patterned
independently. This relies on the result that small domains are patterned more reliably
than large ones. We use this same result to select an initial pattern on a small do-
main, which then determines the modes in the ensuing frequency-doubling sequence.
Pattern formation through frequency-doubling is a sequential process, whereby in-
creasingly complicated patterns develop from simpler ones within a single dynamical
system. This mechanism has already been proposed in the context of segmentation by
Nagorka [91] for the early development of Drosophila (however, see earlier comments
on current state of knowledge of molecular regulation in this system [2]). Our results
support the view of Murray and coauthors [43], who have proposed that if several
mechanisms are coupled together in hierarchical systems, whereby the steady state
output of one pattern formation mechanism serves as the input or locally determines
parameters for the next, then robustness with respect to initial data may be achieved.

Below we restate our results on the various ways in which pattern selection via
domain growth can be said to be robust. Once an initial pattern is generated the
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frequency-doubling sequence is insensitive to initial conditions. For exponential do-
main growth the mode composition of the sequence does not change over several
orders of magnitude of the domain growth rate p, while for linear growth a number of
frequency-doubling events is observed unless p is very much smaller than the charac-
teristic linear growth rate of the patterns. Under logistic domain growth one of these
patterns persists except when the final domain size lies in a small interval of values
for which some other pattern mode is admitted. We have also shown that the precise
form of the boundary conditions is unimportant (however, the symmetric choice of
zero flux conditions greatly simplifies the analysis). These properties are due to the
fact, shown in Chapter 5, that sequences are generated because of the dynamics of
each element of the pattern, which for the exponential case are all equivalent. Tran-
sitions between patterns are dynamically driven and are not induced by fluctuations
(as is the Turing bifurcation) and so the mechanism is robust to the presence of noise
in the system. Finally, we have shown that the precise form of the kinetic functions
for systems admitting the diffusion-driven instability determines the transition mech-
anism. The sequence, however, seems generic, except for some cases which we have
highlighted.

This last point raises the question as to whether the behaviour we have described
is particular to reaction-diffusion systems or is generic to all global pattern genera-
tion mechanisms, such as chemotaxis and mechanochemical models. In terms of the
phenomenology of patterns generated on fixed domains, such mechanisms are diffi-
cult to distinguish, all having a range of destabilising modes which present the same
pattern selection issues and similar robustness problems. As is discussed by Oster
and Murray [99], the underlying mathematical structure of these biologically distinct
models may be very similar indeed. If such mechanisms are found to differ then the
predicted behaviour on the growing domain will provide a useful means to distinguish
between them. Whether these other models exhibit qualitatively different behaviour
in response to domain growth is the subject of current investigation.



A. Reaction Schemes: Chemical and Population Kinetics

In this appendix we briefly introduce the various reaction schemes used in this thesis.
Employing the notation introduced in Chapter 2, the nondimensionalised concentra-
tions are labelled u,v,... and written in order of decreasing diffusivity, so that for
two-species models u represents the inhibitor and v the activator.

A.1 The Schnakenberg System

Schnakenberg [119] introduced a kinetic scheme derived from a hypothetical autocat-

alytic set of chemicals involving a trimolecular step:
X=A, B-=Y, 2X+4+Y —3X. (A.1)

The quantities A and B are external reactants, assumed to be of constant concentra-
tion. Application of the law of mass action and definition of appropriate nondimen-
sional quantities (see Murray’s book [88]), with u(¢) and v(t) representing the variation

over time of the concentrations Y and X respectively, gives

du 2

—p— = A2
&b w? = flu) (A2)
i—: =a+w? —v=g(uv) (A.3)

where a and b are nondimensional parameters, and usually a is small (~ b/10).
The Schnakenberg kinetic scheme is of cross activator-inhibitor type (see Sec-
tion 2.2.3) and has a unique kinetic steady state, (us,vs), for which

f(us,vs) = g(us,vs) =0, (A.4)
given here by
b
s = ’ s — . A.
u @10 vs=a+b (A.5)

We can expand the kinetic functions in powers of u and v about this steady state,
writing @ = u — us and ¥ = v — vs, and then, dropping the over-bars,
f(u,v) = —v2u — 2uvsw — 2vuv — uv® (A.6)
g(u,v) = v2u+ (2usvs — 1) v + 20uv + uev? + uv? (A7)

showing the presence of quadratic as well as cubic terms for both f and g (see sec-
tion 5.2).
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A.2 The Gray-Scott Model

The Gray-Scott [45] model,! a variant of the autocatalytic model of glycolysis proposed
by Sel’kov [122], considers the autocatalytic production of chemical B which decays
to form product P in the irreversible reactions

A+2B 3B, B—P. (A.8)

Here B is self-activating (autocatalytic) while A is a substrate for which higher con-
centrations increase the rate of its own removal. In a closed reactor, for which initial
concentrations of A and B are specified and no material is allowed to enter or leave
the reactor, eventually all of the reactants would be converted to product. However,
nonequilibrium conditions may be maintained by a constant feed of the reactant A and
removal of the product P. After nondimensionalisation, under these nonequilibrium
conditions, the (cross-) kinetics are given by

f(u,v) = F(1 — u) — uv? (A.9)
g(u,v) = —(F + k)v + uv? (A.10)
where u is the nondimensional concentration of the substrate (A) and v of the activator
(B). Here F is the (nondimensional) flow rate of substrate A into the reactor and k is

effectively the rate constant for decay of B to form the product P. By varying these
two parameters the kinetics may have a single (trivial) steady state

up=1, v, =0 (A.11)

known as the the red state, or may exhibit bistability when the discriminant A =
1 — 4(F + k)?/F > 0, giving two additional steady states arising in a saddle-node

bifurcation

1 F
szi(l—\/g)y Ub:m<

1 F
ui:§(1+\/Z), v,-:m@—x/ﬂ) (A.13)

where the intermediate state (u;,v;) is unstable and the blue state (up, vp) is stable.

1+VA) (A.12)

This model has been widely studied, both as the simplest chemically plausible
model which gives oscillations in the continuously stirred reactor and also in the con-
text of chemical pattern formation in reaction-diffusion equations. In the vicinity of
the bistable regime the Gray-Scott model has been studied in the context of self-

replicating phenomena, as is discussed in Chapter 2.

'Known by its originators as the cubic autocatalysis model
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A.3 Gierer-Meinhardt Kinetics

Gierer and Meinhardt proposed several kinetic models based on biologically plausible
arguments in their paper on biological pattern formation [41], including activator-
inhibitor (pure) and activator-substrate (cross) kinetic schemes. The scheme which
has come to be known in the literature as the Gierer-Meinhardt model?® considers
autocatalytic activation of A and self-inhibition of H

0A AP 0%A
5p = Pop + P g nA+ DA—B:L'2 (A.14)
OH AT o°H

where 0 < (p —1)/q < r/(s + 1), which is postulated to explain the regenerative
properties of hydra observed in various transplantation experiments. Here the authors
consider inhomogeneous distributed source terms p(z) and p'(z), usually taken to be
simple gradients across the solution domain. However, for constant parameters these
kinetics may admit the diffusion-driven instability. The standard values assumed for
the powers in the quotients are p = r = 2, ¢ = 1 and s = 0, and the nondimensionalised

kinetics may be written as

f(u,v) = 1v* — pu (A.16)
v2
g(u,v) = vy T 2V +94 (A.17)

where u is the inhibitor (or substrate) and v the activator.

A.4 A Three-Species Model Arising in Population Dynamics

White and Gilligan [131] propose a model for the population dynamics of a host-
parasite-hyperparasite system, to account for persistent spatio-temporal patterns in
population densities in a homogeneous environment. The population dynamics is
described by local interaction terms and diffusion is assumed to model the spatial
spread and dispersion of each species. (Diffusion is commonly used as a model for the
spatial spread of root systems and for the dispersal of spores.) In the field, patchiness
has been observed for timescales much longer than those one would associate with
stochastic heterogeneities (where eventually a uniform infestation of parasite would be
expected). Phenomena monitored experimentally include drifting disease ‘hot-spots’
and periodic occurrence of disease at a particular spatial location.

?Denoted in their paper as Activator-Inhibitor Model with Different Sources



154 A. REACTION SCHEMES: CHEMICAL AND POPULATION KINETICS

In dimensional form the local dynamics are governed for host (H), parasite (P)
and hyperparasite (Q) by the system

dH H

dP cP

o =PPH - e (A.19)
d@

— =[P — A2
T [P —dQ (A.20)

where the host plant H grows logistically and is removed by the parasite P at a
rate a per unit parasite and has conversion factor b per unit host. Predation of the
hyperparasite () on the parasite is a saturating function of parasite population, with
conversion at a rate [ per unit parasite, and the hyperparasite has a natural decay
rate d.

Nondimensionalising in the manner described in Chapter 2, we reorder the system
with decreasing diffusivity. In their paper White and Gilligan assume Dg > Dy > Dp,
i.e. the hyperparasite is fastest dispersing and the parasite is the slowest. Following the
authors we scale the population densities with their steady state values when k = oo,
namely (Q°, H®, P°), such that u = Q/Q%, v = H/H® and w = P/P and then
for dy = Dg/Dg and d, = Dp/Dg we have

1

U = ;um - (u—w) (A.21)
dy v

Vg = —Upp +V (1 — —> —vw (A.22)
y K

wy = d—ww + (v v Uu v ) (A.23)

where the rescaled variables § = d/r, k = k/Hs, u = cQs/r and B = bPs. Time is
nondimensionalised with the rate parameter r. Here, as elsewhere, v is the dimen-
sionless scaling parameter which uniformly transforms the one-dimensional solution
domain to the unit interval. Labelling the kinetic functions f, g and h we find that
for this model f = f(u,w), g = g(v,w) and h = h(u,v,w). Naturally, in general for
the interaction of three species each kinetic function may depend on u, v and w.



B. Some Results from Fluid Mechanics

The results we reproduce below may be found in many elementary texts on fluid me-
chanics (see, for example, Acheson [1] or Chorin and Marsden [16]) and are employed
in Chapter 3 to derive a reaction-diffusion-advection equation.

Firstly we recall the definition of the material derivative. If for some scalar quantity
of interest, G = G(x,t) = G(z1,z2,x3,t), then G/t is the rate of change of G at
constant x = (z1,z2,x3) and the material derivative, DG/Dt, is the rate of change of
G following a fluid element

d oG DG
&G(wl(t),wg(t),:cg,(t),t) 5 T2 VG = D’

with z1(t), z2(t), z3(t) changing with time due to a flow velocity field a(x,t).

(B.1)

B.1 Reynolds Transport Theorem

This theorem concerns the rate of change of volume integrals over the finite but time
varying fluid element V().

di G(x,t) dx:/

[% +GV - a] dx (B.2)
tJv() V(1)

where G(x,t) is any scalar or vector function, and V(¢) is a region of space occupied
by a finite deforming fluid element. The range of integration implies ‘following the
fluid’ as the fluid element V(¢) is moving with the flow. The theorem may be proved
by considering a change of variables to the Lagrangian description of the flow, in
which spatial position x, with respect to some Cartesian coordinates, is parameterised
by position at time ¢t = 0, X = (X1, X2, X3), giving x = x(X,¢). Then the range of
integration is no longer a function of time, and the differential operator can be brought

inside the integral as a rate of change following the flow, giving

d

g v G(x,t)dx; dze dzs =

G(X,t)J(X,t)dX;dX2dX3
dt V(0)

- / [ +GE] dX;1 dXp dXs (B.3)
v(0)

where J(X,t) is the Jacobian for the transformation

Oz1 Oz1 Oz1

0X1 0Xo 0X3

J = Oza Oz Oz
- 0X1 0Xo 0X3
Oz3 Oz3 Oz3

0X1 0Xo 0X3

and V(0) is the volume of the flowing fluid element at time ¢ = 0. The computation
of the derivative D.J/Dt is achieved using Euler’s identity
- . B.4
2 = (Y -a) (B.4)

155



156 B. SOME RESULTS FROM FLUID MECHANICS

which is proved in the following section. This allows us to write
DG DJ DG

- | == . B.

T+ G [Dt +G(V a)]J (B.5)

which on substitution into equation (B.3) and transforming back into coordinates (x, t)
gives the transport theorem (B.2). Using the definition of the material derivative (B.1)

this may be written as

d
— G(x,t)dx = /
dt /V(t) (3, 1) dx V(t)

B.2 Euler’s Identity

oG
[E + V- aG] dx. (BG)

The material derivative of the Jacobian determinant J(X, t) may be reduced to a sim-
ple form by the following considerations. Starting from the definition of the material

derivative, we have

DJ (&7) B1)
Dt ot)’ '
We use the multilinearity of the determinant to write
621‘1 62:1)1 6211:1 8.’1)1 8:131 8(131 8:131 8z1 811
BJ o0t0X, 0tdXs Ot0X3 0X1 0Xo 0X3 0X1 0Xo 0X3
Yy dxa Oza Oza + 0%zy  0%zy  0%zs + Oza Oza Oza
6t - 0X1 0Xo 0X3 0t0X1 0tdXs 0t0Xs 0X1 0Xo 0X3
Ozz  Oz3  Ozs Ozg O3  Ozs ’x3  8°z3  0’x3
0X1 0Xo 0X3 0X1 0Xo 0X3 otdX, OtdXs OtdXs
80.1 8(11 8(11 8391 8:171 02}1 8:171 02}1 6:1)1
0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 00Xy 0X3
_ | O=z2 Oza Oza + Oaa day dag + Oza Oza Oza (B 8)
- 0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3 : :
Oz3 Oz3 Oz3 Oz3 Oz3 Oz3 das das das
0X1 0Xa 0X3 0X1 0Xa 0X3 0X1 0Xs 0X3

Now a; = a;(z1,z2,z3) and by the chain rule

0X; 0z10X;  Oz20X;  Oz30X;

Oa; Oa; Ox1 =~ Oa; Oy  Oa; Ox3 (B.9)

Hence we may write the first term of (B.8) as

Oz o0z oz Oza Oz Ozo Oz3 Oz3 Oz3

0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3

80'1 8:132 81‘2 6.’1:2 aa'l 8(1)2 6.’1}2 8:132 aa'l 8392 6:132 6m2
o 0X1 0Xo 0X3 o 0X1 0Xo 0X3 Oz 0X1 0Xo 0X3
1 Oz3 Oz3 Oz3 2 Oz3 Oz3 Oz3 3 Oz3 Oz3 Oz3

0X1 0Xo 0X3 0X1 0Xo 0X3 0X1 0Xo 0X3
(B.10)
for which the second and third terms are identically zero as two rows of the determinant
are repeated. Similarly computing the other terms of (B.8) we find
DI _ (22
Dt \ ot
8(11 6&2 8(13
=—J+—J+—J
0zx1 + 0z + Ozxs
=(V-a)J (B.11)

which is Euler’s identity.
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