2. Pattern Formation in Reaction-Diffusion Systems

Under the continuum hypothesis, the spatio-temporal state of a chemical system is
described by partial differential equations derived from considerations of conservation
of matter. We consider the net production rate of a chemical species, the reaction
kinetics, within an elemental volume V' and the flux of matter through the elemental
volume boundary 0V at fixed location within the reaction space 2. The reaction space
is a bounded region which will be called the domain, with boundary 92. The rate of
change of the amount of matter within the elemental volume is given by

% /V c(x,t) dx = /6 , A0 t) - dS + /V R(c,p) dx, (2.1)

where ¢(x,t) is the concentration of a chemical species C' at position x and time ¢.
The flux j(x,t) is through the closed surface OV and R(c, p) is the net rate of creation
of concentration of species C. The reaction kinetics, R, are generally described by a
polynomial or rational function in ¢ and p represents interaction with other chemicals

and external factors. Using the divergence theorem, (2.1) may be written

% /V c(x,t)dx = /V [—V-j+ R(c,p)] dx. (22)

The domain is fixed in time and so we may differentiate through the integral. Using
the fact that the choice of elemental volume V' was arbitrary within (2, we have that
at every point (x,t) the following conservation equation holds

% =—-V.j+ R(c,p). (2.3)
If we suppose that the instantaneous flux j is due to (isotropic) Fickian diffusion then
j = —DVc¢, where the diffusivity D is a constant, and we have the reaction-diffusion
equation for species C on a fixed domain 2

% = DV?c+ R(c,p). (2.4)

Generally one is interested in the interaction of several chemical species, for ex-
ample the set {C1,Cy,...,Cp}. Equation (2.4) is then replaced by a system of
coupled equations which describe the evolution of a vector of concentrations ¢ =
(c1,¢2,...,cn), and now R(c,p) describes the interaction of the species. Various ki-
netic schemes are presented in Appendix A, and will be introduced in the discussion

of the behaviour of specific systems.

2.1 Nondimensionalisation and Boundary Conditions

To nondimensionalise the system of coupled equations we start, following Dillon et
al. [26], by writing ¢; = ¢;/C; and X = x/L. Here L is a length scale (usually taken
to be the domain length for problems in one spatial dimension) and C; is a reference

9



10 2. PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS

concentration for the chemical species C;. A reaction rate w, characteristic of the
kinetic scheme, is used to nondimensionalise the reaction term which is represented
in nondimensional form by R(€,p). In general R has the same functional form as R,
but generally has different coeflicients.

To standardise the problem (and without loss of generality) we rewrite the system
in order of decreasing diffusivity, D; for the i** species. We introduce a dimensionless
scaling parameter

el (2.5)

where D; = max{D;,}, which represents the ratio of diffusive T to kinetic Tr relax-
ation times, where
2
Tp = lI;—l and Tgp= é (2.6)
Both of these timescales could be used to nondimensionalise the time variable. For
reasons which will become evident later, we choose to nondimensionalise the equations
using the kinetic relaxation timescale. Writing ¢ = wt, and dropping the overbars for

notational convenience, we have the dimensionless equation

0 1
8_; = ;DV% +R(c,p), xe (2.7)
where D = diag[l,ds,... ,dy] is the diagonal matrix containing the ordered dimen-

sionless diffusivities where d; = D;/D; <1 and d; < d;_1,i =2,... ,n.

The full specification of the reaction-diffusion system requires that conditions be
imposed on the boundary of the solution domain, 952, and that an initial condition is
specified for the system of partial differential equations. If initial data is contained in
the vector co(x), then a typical set of boundary conditions is given by

n-V)e=P(c*—c), xe€ (2.8)
c(x,0) = co(x) (2.9)

where the fixed concentration vector c* is uniform over {2 and represents a constant ex-
ternal reference concentration for each species. The outward normal gradient operator
n - V acts component-wise on ¢(x,t), where n is the outward-pointing vector normal
to the boundary. On 992 we will restrict boundary conditions such that the matrix P
is of the form P = diag[P1, P», ... , P,], where constants 0 < P; < oo define the type
of condition imposed, specifying the rate of flux at the boundary for each species. For
scalar conditions P;; = §;;P with constant P, where ¢;; is the Kronecker delta, and
P = 0 gives zero flux (Neumann) data for each species while P = oo corresponds to
Dirichlet conditions for which there is an instantaneous equilibrium with the external
concentration, c*. The case for which ¢* = c,, where

R(cs,p) =0 (2.10)
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is called homogeneous Dirichlet conditions. The concentration vector c; is the kinetic
steady state of the reaction scheme, the stability of which we discuss below. Another
type of constraint often assumed on 0f2 is a periodic boundary condition, taken to
simulate a spatially unbounded system. On the one-dimensional domain, for z € [0, 1],
periodic conditions take the form ¢(0,¢) = c(1,t) for all ¢.

2.2 Diffusion-Driven Instability

The counterintuitive result of Turing’s celebrated paper [126] is that a spatially homo-
geneous system of interacting chemicals which is stable to perturbation in the absence
of diffusion may be driven to a persistent spatially heterogeneous state via a dynamic
instability due to diffusion. This statement defines the diffusion-driven (Turing) in-
stability (DDI), which is recognised as one example of a class of pattern forming
instabilities in systems driven far from equilibrium. In otherwise similar patterning
mechanisms (for example in fluid systems: thermal convection (buoyancy) driving the
Rayleigh-Bénard instability or the rotation of concentric cylindrical walls in the Taylor-
Couette flow system [21]) the spatial scale of pattern is determined by the geometry of
the solution domain (i.e. by physical constraints). Patterns in Turing systems, how-
ever, are characterised by a wavelength which is determined by parameters intrinsic to
the mechanism of the instability itself, as will be demonstrated in section 2.3.1. In this
respect the Turing instability is set apart from other pattern forming systems. For a
discussion of the differences between the Turing and Rayleigh-Bénard instabilities in
finite systems see Chen and Cross [15]. Next we review the standard results for the
onset of the instability in the linear regime (see, for example, Murray [88]), and go on

to consider a nonlinear analysis for longer-time behaviour.

2.2.1 Linear Analysis. The defining requirement, stability of the homogeneous
(spatially uniform) steady state cs to perturbation in the absence of diffusion, is equiv-
alent to requiring that c; must be stable to homogeneous perturbations in the presence
of the diffusion term. The diffusion-driven instability is the instability of such reaction-
diffusion systems to heterogeneous perturbation. Near to onset we study the linear
instabilities of the homogeneous steady state to classify the patterns which may grow
in terms of their wavenumber (and frequency for spatio-temporal pattern formation).

The homogeneous steady state, positive solution of R(cs,p) = 0 with no spatial
variation, exists when compatible with the imposed boundary conditions. The analysis
is thus restricted to the cases of homogeneous Dirichlet and Neumann (zero flux)
conditions. We consider bifurcations from the steady state by examining the response
of the system to an initially small perturbation w(x,t) where |w;(x,0)| < 1. Setting

c(x,t) =cs + w(x,t) (2.11)
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in the dimensionless reaction-diffusion equation (2.7) we linearise in the variable w

giving
ow 1
— = -DViw+ A 2.12
ot~ R PV W AW (2.12)
where the Jacobian (stability) matrix A is evaluated at the homogeneous steady state
OR;
;= 2.13
A5 =0, | (2.13)

We consider scalar boundary conditions
(n-V)w=—Pw on 09, (2.14)

restricting ourselves to the homogeneous case, ¢* = cs. Solutions of system (2.12)—
(2.14) take the general form w(x,t) = exp (A\t) ®(x) where ® is a vector and the growth
rate may be complex, A = a + ¢, allowing for temporal oscillation. Substituting this
solution into equation (2.12) we obtain

%DV2<I> +(A-AD)® =0 (2.15)

where 7 is the identity.

Eigenfunctions of the spatial eigenvalue problem (2.15) can be written as ®,, =
Ym®m, where y,, is a constant vector and ¢,,(x) are (scalar) eigenfunctions of the
Laplacian containing the spatial dependency of the solution, and are subject to the
scalar boundary conditions

V2¢m = -k ¢m in Q
n-Ve¢, = —P¢,, on 09, (2.16)

where k,, is a dimensionless wavenumber associated with ¢,,. The boundary conditions
acting on & restrict the spatial dependency to a discrete set of eigenfunctions of the
Laplacian, ¢,,. Clearly, for the solution on an unbounded domain, the wavenumber &
is a continuous variable. For nontrivial solutions of (2.15) we require

2
det lA - %mD - A(k?n)I] =0 (2.17)

(the characteristic polynomial) which yields the dispersion relation, A = A(k2,), an
algebraic equation for the growth rate. The solution of the linear stability problem is
then given by

wx,t) = 3 exp (AKE)E) () 219

m=0
where the vector y,, is determined by the initial data wo(x) = co(x) — ¢;. The
individual components making up the infinite sum (2.18) are linear modes and the
label m is the relevant mode number. For certain nonlinearities in the reaction term
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the amplitudes of growing modes are bounded to finite value. This is shown in the
nonlinear analysis below. We distinguish between the eigenfunctions of the Laplacian
(the linear modes) and the patterns which subsequently develop outside the linear
regime, which we will call pattern modes.

The linear stability of the homogeneous steady state to spatially heterogeneous per-
turbation of mode m is determined by the sign of the real part of A(k2,). The kinetic
steady state has neutral stability for Re A = 0, is (asymptotically) stable for Re A < 0
and is unstable (and hence a perturbing mode of appropriate wavenumber may grow)
for Re A > 0. This latter possibility describes the onset of the diffusion-driven insta-
bility. We describe any mode for which the linear stability analysis predicts instability
of the homogeneous steady state as a growing mode. Depending on the components of
Ym, determined by the initial conditions, all possible modes may not be available for
growth. The question of which mode grows to become the final long term pattern, the
pattern selection problem, will be discussed later. The requirement that the steady
state is stable in the absence of diffusion is equivalent to there being no growing mode
with wavenumber ky = 0, that is, Re A(kp = 0) < 0. This provides certain conditions
on the components of the Jacobian matrix, A, as will be demonstrated explicitly from
the linear analysis in the simple case of a two-component reaction-diffusion system in

one spatial dimension.

2.2.2 Two-Component Model System. We consider a reaction-diffusion model
of two interacting species ¢ = (u,v) in one spatial dimension, with external refer-
ence concentrations set at the homogeneous steady state of the kinetics, R(cs,p) =
(f(us,vs),g(us,vs)) = 0, and scalar boundary conditions. Linearising about the

steady state and writing w = ¢ — c; we have

ow 1_0%w
o ; B2 + Aw, z€]0,1] (2.19)
ow
with
Ju Jo 10
A lgu gv](uv) an lo d] (2.21)

Henceforth, the partial derivatives f,, fy, gu» and g, will be assumed to be evaluated
at the steady state (us,vs). From (2.17) we have det (A — k2,D/y — A(k2,)Z) = 0,
which yields the dispersion relation for this problem

0=+ (%(1 +d) - (fut gv>) + h(k2), (2.22)

where

d 1
h(kgn) = ?kfn - ; (dfu + gv) k?n + fugv - fvgu- (2'23)
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Firstly, let us address the requirement of linear stability in the absence of diffusion.
Substituting km, = 0, in the absence of diffusion (or for homogeneous perturbation),
into equations (2.22) and (2.23) we have Ao + are the roots of

N = A fu+ go) + fugo — fogu =0 (2.24)

and so linear stability, Re Ao+ < 0, is guaranteed by the two constraints

trA = fu+ 9y <0, det A= fugy — fogu > 0. (2.25)

Next we consider spatially heterogeneous perturbations for which k,,, # 0. In order
to achieve the growth of some linear mode we require that there is at least one real
k., for which Re A > 0. From the dispersion relation we see that the first requirement
of (2.25) precludes the coefficient of A\ from taking a negative value, and so we must
have h(k2,) < 0 for diffusion-driven instability. The second of (2.25) implies that this
can only be the case if

which provides a third constraint on the system. Comparing with the first of (2.25),
this implies that d # 1, which provides a necessary but not sufficient condition to
ensure Re X > 0. The criterion for h(k2,) to be negative, found by examining the
minimum of the function, Am;,, provides a fourth constraint for diffusion-driven in-

stability,
1
min = det A — = (dfu + gv)* < 0. (2.27)

Collecting together the four conditions that we have computed and which must be
satisfied for the Turing instability we have:

o fut+9,<0

L4 fugv_fvgu >0

o dfy +g, >0

b fugv _fvgu_ ﬁ(dfu'i'gv)z <0

where the partial derivatives are evaluated at the kinetic steady state.

These four conditions may be employed to deduce parameter regimes for which
specific kinetic schemes can undergo Turing bifurcation, or indeed whether such a
bifurcation is possible for a particular reaction scheme. The region of the parameter
space for a particular kinetic scheme within which the diffusion-driven instability may
give rise to pattern is known as the Turing space [88]. For anything but the simplest
form for R and hence A in (2.13), the direct algebraic calculation of the boundaries
of the Turing space (given by the above conditions) is intractable. Murray [87] has
described a parametric approach by which the problem is considerably simplified. The
existence of a Turing space does not in itself guarantee that a pattern will arise from
the dynamic instability in a finite system, where only a discrete set of linear modes is
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consistent with the domain geometry and boundary conditions, at least one of which
must have positive linear growth rate. This is discussed further in section 2.2.4

2.2.3 Configurations of the Jacobian. The two constraints (2.25), derived for the
stability of homogeneous perturbations, lead to a restriction on the configuration of
the signs of components for the Jacobian matrix A. With d < 1, the constraints
fu+ gv <0 and df, + g, > 0 require that f, < 0 and g, > 0, and det A > 0 implies
that only the following configurations are compatible with diffusion-driven instability

sgn(Ap) = l B i ] , sgn(Ae) = l I_ _T_ ] . (2.28)

The first of these is called a pure and the second a cross activator-inhibitor mechanism.
The interpretation of these two possibilities in terms of activation and inhibition may
be gleaned from an examination of the nullclines of systems with Jacobian matrix
of these general forms. A pure system is one in which v is self-activating and also
activates u, while u reciprocally inhibits v and is self-inhibiting. On the other hand,
for a cross system v is self-activating but inhibits u, while u is still self-inhibiting,
but now activates v. In both cases u is deemed to be the (self-) inhibitor and v the
(self-) activator,! and with d < 1 the inhibitor diffuses faster than the activator.? This
leads to the popular description [98, 88] of the mechanism as one of short range local
activation with long range lateral inhibition. The constraint tr.A < 0 implies that the
self-inhibition is always stronger than the self-activation in reaction-diffusion systems
of this type that are capable of forming pattern.

One important consequence of these sign configurations, and a feature distinguish-
ing the two cases, is the relative polarity, or phase, of the patterns formed in the sys-
tems. Dillon et al. [26] show analytically that if the kinetic terms of a two-component
reaction-diffusion system in one spatial dimension with zero flux boundary conditions
are of the pure variety, then near to a primary bifurcation point the spatial gradients
of the species’ concentrations will be of the same sign (spatial oscillation in phase) at
all points in the domain. For kinetics that are cross-type, the gradients are of opposite
sign (spatial oscillation in antiphase) [111]. This result, it is conjectured, is maintained
on primary bifurcating solutions away from the bifurcation point.

2.2.4 The Dispersion Relation. The quadratic form of the dispersion relation dic-
tates that the values of k2 for which the real part of A\(k?) is positive lie in a bounded
range k% < k% < k2 (of growing modes), given by the zeros of h(k?),
2d
~

KL = (dfutgo) £ /(dfutg0)? —4d det A = ALB (2.29)

!Some authors reserve the term activator-inhibitor to refer to pure kinetics and call cross systems,
where the (self-) inhibitor promotes the activator species, activator-substrate kinetics.

2If we had chosen the opposite ordering for the species, giving d; > 1 and prompting f, > 0, this
would swap the roles of u and v, amounting only to a relabelling of the two species.
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6 T T

|n(u\§])
/

0 0.05 0.1 0.15

FIGURE 2.1 Intervals of instability of the homogeneous steady state to perturbation by
spatial eigenfunctions of the Laplacian for Schnakenberg kinetics. We plot the natural
logarithms of «;(d) (solid) and #,,(d) (dotted) against the ratio of diffusivities d for
modes m = 1,...,8, where k,, = mm. Points for which v} =~ 41 are marked + and

points where 'yj,;n = Y where m,, = my2" are marked by X, which lie on a line of

equal d (dashed). Note that for successively smaller d there is increasing overlap between
the ranges of instability for different modes. The curves are calculated for Schnakenberg
kinetics (see Appendix A.1) with kinetic parameters ¢ = 0.1 and b = 0.9. Note that the
bifurcation occurs at the same value d = d. independent of m (the bifurcation point is
in fact independent of k - see equation (2.34).

where A and B depend on the kinetic parameters and d but not on v.> For fixed

kinetic parameters p this condition is satisfied when the scaling parameter falls in the

interval v € [v,,,7,.], where, making the dependence on d explicit,
2dk2, 2dk2,

=@ b@ D= A - By

(2.30)

Successive ranges of instability overlap when ~,; >~ +1 and there is an interval of
stability of the homogeneous steady state when ~,, < v, 11- For zero flux boundary
conditions the spatial eigenfunctions are ¢,,(z) = cos(mmnz). The instability intervals
for k,, = mm are plotted for a particular kinetic scheme in Figure 2.1 as d varies.
In this case we have overlapping instability ranges (and intervals of stability) for,

respectively,

2m? A A
> — — . .
+2m—|—1 > B << B) (2.31)

Points where the equality holds, that is where successive modes first become desta-
bilising at the same value of d, are marked by ‘+’. We also indicate points at which

3For solutions on a bounded domain we also require that there is at least one discrete wavenumber
km in the range of instability.
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destabilising linear patterns of mode m = my2"® and m = mg2"t! first coincide,
marked by ‘x’, and from (2.30) it can be shown that for k,,, = mn the corresponding
value of d is independent of mg and n, shown by the dashed line in the figure. We
discuss this result further later in this chapter.

When the ranges of instability for two or more wavenumbers overlap, there is com-
petition between patterning modes. It is apparent from Figure 2.1 that there is in-
creasing overlap further away from the bifurcation point (for example, as d decreases),
and intervals of stability tend to disappear. The prediction from linear analysis that
the mode with fastest linear growth rate, max,, {A(k2)}, will be established proves to
be of decreasing validity further from the bifurcation point, and of little use for prob-
lems in more than one spatial dimension where there is also increasing degeneracy for
pattern orientation. The mechanism of pattern selection, by which one mode is chosen
to grow to heterogeneous steady state from many admissible modes, is an important
issue to which we will return later in this chapter.

Notably the linear solutions for zero flux conditions have an arbitrary phase shift of
m, that is, the linear modes may be reflected about the homogeneous state and remain
valid solutions. In fact linear solutions for any boundary conditions or geometry (or
spatial dimension) have an arbitrary sign to the wavevector (only the magnitude is
determined by the analysis). Thus for zero flux conditions patterns of the same spatial
mode number may take one of two polarities, where we adopt the notation that mode
+m, has positive polarity (high amplitude at the left-hand boundary) and mode —m
is of negative polarity. We also recall that pure kinetics will give the same polarity for
both species while for cross kinetics the polarities will be opposites.

2.3 Instability and Characteristic Scales

By allowing A to be complex in the previous analysis we admit the possibility of tempo-
ral or spatial oscillation, or both simultaneously. Following Cross and Hohenberg [21]
we may in general characterise pattern-forming instabilities at the bifurcation point.
For A = a + i and wavenumber k. at this critical point, where o = 0, instability is
categorised according to which of k. and 8 are non-zero:

1. k. # 0 and 8 = 0: Spatial oscillation only. Long-time solutions are stationary and
spatially heterogeneous structures.

2. k. = 0 and B # 0: Temporal-oscillation only. At large times solutions remain
spatially homogeneous.

3. ke # 0 and 8 # 0: Spatio-temporal patterns. Long-time behaviour continues to
evolve spatially and temporally.

General instabilities in systems driven far from equilibrium may be of any of the
above types. The Turing bifurcation may give rise to instabilities of type (1) and (3).
Type (2), corresponding to Hopf bifurcation in the kinetics, is excluded by the require-
ment that the homogeneous state is stable in the absence of diffusion. For the case of
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two species interaction, the dispersion relation subject to the constraints for diffusion-
driven instability precludes time-oscillating pattern solutions. We see from (2.22)-
(2.23) that A has an imaginary part when
k2 2

(7’”(1 +d) = (fut gv)> —4h(k2) < 0. (2.32)
However, for the homogeneous steady state to be unstable to heterogeneous pertur-
bation (for a particular mode to grow to a heterogeneous pattern) we require that
h(k2,) < 0. Hence, for any growing mode, A must be purely real and so time-oscillatory
diffusion-driven instability is not possible in a two-component system of this form.
For three or more interacting species, however, the dispersion relation does in gen-
eral admit such solutions, and we investigate a specific example with three species in
Chapter 4.

At a primary bifurcation point the critical wavenumber is defined to be the wave-
number at which the dispersion relation first crosses the axis into the positive half-
plane. A critical (maximum) value for the ratio of diffusivities is also determined at
this point (see Figure 2.1). We may also recover a characteristic spatial scale from
the critical wavelength, and a timescale from the growth rates predicted by the linear
analysis.

In section 2.2.4 we have shown that the scaling parameter must lie in a given
interval, v € [v,,, 7], for a particular linear mode m to grow. If we consider increasing
v from just greater than zero (there is a singular point where v = 0) then we may
define a critical value ~y. at which the homogeneous steady state first loses stability to
a growing mode, the lowest mode available to the system. For v below this value no
pattern is possible. Hence for pattern we require

V> Ve = Yom, (2.33)

where m; labels the lowest mode. For the Neumann problem, in the absence of any
reaction terms we have relaxation to an average homogeneous concentration vector,
the value of which is set by the initial conditions. We might expect the system to relax
to such a steady state whenever the relaxation time for diffusion is much smaller than
the characteristic timescale of the kinetics. Indeed this intuition is borne out by the
minimum requirement on «y. As pointed out by Arcuri and Murray [3], this condition
may be interpreted in three ways:

1. 1/~ is proportional to the largest of the diffusivities, D1, which must therefore be
smaller than some threshold value.

2. The characteristic reaction rate for the kinetics, w, which is proportional to v, must
be greater than a minimum reaction speed.

3. There is a minimum domain length, proportional to /..
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Given that -y represents the relative strengths of the reaction and diffusion mechanisms,
all of these conditions are equivalent. However, in the context of pattern formation on
growing domains the last of these interpretations is the most relevant.

At the bifurcation point the critical wavenumber is determined by equation (2.29)
when k. = k4 = k_. Thus we must have B(d) = 0 which occurs at the critical
diffusivity, d = d., given by the appropriate root, for 0 < d. < 1, of

_det A — f,gu =2/~ fygudet A
B f2

which is independent of k and . This imposes a maximum (fractional) value for d,

d=d+

(2.34)

the ratio of diffusivities, where we require 0 < d < d. for diffusion-driven instability.
However, as has been pointed out in the literature [51, 110, 26], for certain kinetic
schemes the critical ratio of diffusivities may be arbitrarily close to unity.

2.3.1 A Spatial Scale: Critical Wavenumber k.. At the bifurcation point the
critical wavenumber is given by

’Y(dcfu + gv)

ke = 2d, )

(2.35)

from which we see that k. varies as /7. Therefore the corresponding dimensional crit-
ical wavenumber is independent of the domain length and constitutes a characteristic
scale, intrinsic to the system. Turing defined the related wavelength, the chemical
wavelength, at marginal instability. For a finite bounded system, the critical wave-
number may be defined as the closest admissible wavenumber to k..

2.3.2 A Temporal Scale: Maximum Growth Rate \,,,;. From the dispersion
relation we can show that the linear prediction for the maximum growth rate Anqz
is independent of the scaling parameter v. We note that the occurrence of « in
equations (2.22)—(2.23) is such that we may consider A = A(k?/v) with v appearing
nowhere else explicitly. Thus the curve A(k2,7) as a function of v for different & is
simply scaled along the v axis, and the maximum value of the function does not change
(see Figure 2.2). Hence Anmq. is a function only of the kinetic parameters and the ratio
of diffusivities and we may take T = 1/Ajqe to define a characteristic timescale for
pattern development. The reaction-diffusion equation was nondimensionalised to have
a unit timescale for reaction, hence we expect T\ ~ O(1). In Table 2.1, values of
T\ (and equivalently, growth rates Amqz) calculated for different d for Schnakenberg
kinetics are presented, showing that the timescale for pattern formation is reduced as
d decreases from d.. This timescale is intrinsic to the linearised equations and thus
to the initial time evolution of the solution, while being independent of the scaling

parameter.
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[d [ 0.1 [0.05]0.01|

Amaz || 0.0572 | 0.263 | 0.547
Ty 17.50 | 3.80 | 1.83

TABLE 2.1 Timescale for linear pattern growth T\ = 1/A,4, (in nondimensional units)
for different values of d, the ratio of diffusivities, calculated from the dispersion relation
for Schnakenberg kinetics (illustrated in Figure 2.2). Equivalently, Apq. represents a
pattern growth rate.

2.4 Nonlinear Bifurcation Analysis

As we have shown, linear stability theory serves to analyse the response of the homo-
geneous steady state of a dissipative system to infinitesimal perturbations, allowing
determination of the critical conditions for the onset of instability. Turing consid-
ered reaction-diffusion equations with linear kinetics. In his paper he sidesteps the
issue of unbounded exponential growth by proposing that any such linear model is
only applicable to the initial stages of patterning of a real chemical system, and that
bounded steady amplitude will be achieved outside the range of applicability of the
model. However, nonlinear terms in realistic kinetic schemes can be shown to bound
the solution to finite values.

The analytical investigation of instabilities usually proceeds by identifying a con-
trol parameter in the system (here, for example, one of the kinetic parameters, the
ratio of diffusion coefficients, d, or the scaling parameter, ) which may be varied
until the homogeneous steady state loses stability to a particular heterogeneous so-
lution. The exchange of stability occurs at the bifurcation point, where the curve
Re A first moves into the positive half-plane. Close to bifurcation the structure of
the long-time solutions may be determined by a nonlinear bifurcation analysis, which
we describe here. Such analyses are described as weakly nonlinear as the perturba-
tion procedure operates about the critical point of linear stability theory [133]. The
method considers primary bifurcation branches: nontrivial solutions which bifurcate
from the homogeneous steady state (the location of which does not depend on the
bifurcation parameter). The approach that we take follows the discussion in the book
by Grindrod [46] (see also [93, 5]).

2.4.1 Multiscale Expansion Method. We choose the ratio of diffusivities, d, as
the bifurcation parameter and we wish to examine the dependence of solutions on ~.
From section 2.3 we see that bifurcation to a spatially heterogeneous state occurs when
d passes through the critical value d = d.. As d decreases through d. we anticipate a
pitchfork-type bifurcation for the state variable c(z,t), with the homogeneous steady
state ¢ losing stability to two bifurcating branches corresponding to the two polarities

available to the heterogeneous solution.
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FIGURE 2.2 Real part of linear growth rate A plotted as a function of scaling parameter
~ for the first four linear modes, showing that the maximum growth rate is independent
of mode m, where k,, = mm. We use Schnakenberg kinetics, with ¢ = 0.1, 6 = 0.9 and
ratio of diffusivities d = 0.1 such that an interval of stability is observed for v € [5, 8].

The time evolution of the bifurcating solutions may be investigated by introducing
a small parameter €, where 0 < € < 1. We set d. — d = €2 so that the system lies
just inside the region of linear instability and then consider a multiscale expansion in
time. Generally the control parameter d is expanded as a series in increasing powers
of €, but here we anticipate the pitchfork form for the bifurcation for which the second
power is the natural choice. However, the analysis would seek out this expansion had
the leading power been initially undetermined.

The Taylor expansion of A(k2,d) about d, gives

oA
Ad) = M(de) — 2= +O(eh) (2.36)
8d d=d,
with A a decreasing function of d. The first term on the right-hand side vanishes by the
definition of the bifurcation point, giving linear growth exp (At) ~ exp (O (e2) t). This

suggests that there are three timescales for pattern formation in the static problem:

t = O(1): the linear regime in which small amplitude linear modes grow from initial
data,

t = O(1/€?): the nonlinear regime in which the modes interact through the nonlin-
earities, and

t — oo: in which the long-time steady state pattern is achieved.

To investigate the nonlinear regime we introduce the long timescale 7 = €%¢, and
assume that ¢ and 7 are independent variables. Then dc¢/8t becomes dc/dt+€20c/OT.
Again, in the most general case, we could include a series of timescales, t = tg + €t1 +
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Eto+ ...+ €ty + ... , and determine which of those were relevant to the problem in
the course of the analysis.

Confinement to the finite domain allows the system under investigation to be
categorised as one of small spatial extent, i.e. the product Lk ~ O(1). The spectrum
of allowed wavenumbers, k,,, is discrete and so for d close to d. we may consider that
only one mode (or a small number of modes at worst) will destabilise the homogeneous
state. We will assume that the region of the dispersion relation for which Re A > 0
contains only one admissible mode. Therefore we suppose that the corresponding
spatial eigenfunction ¢,,(z) determines the spatial dependence in the dominant part
of the solution in the nonlinear regime. For systems of large or infinite spatial extent
one must consider initially undetermined spatial scalings which results in an envelope-
type modulation of the spatial dependency through a phase equation [93]. We will
assume that pattern evolution in the nonlinear regime is over the timescale of 7 (so
that we can consider ¢ and 7 to be independent) and seek solutions of the form

c=co+ Y €'cy(z,t,T) (2.37)

n=1
for which the ¢, = (un,vn) ~ O(1) are orthogonal. We expand the kinetic terms
R(c,p) as a Taylor series and, on rearranging, find that the O(1) solution (the homo-
geneous solution ¢y = c;) drops out of both sides of the equation. We are left with
linear equations in (u,,vy) for each order of €”
C. ( Un ) =9, (2.38)
Un
in which L is the linear differential operator defined by
o 1. 02
L=Tv — D,
ot ~ “0x?

where A is the stability matrix given by equation (2.13) and contains the linear terms

—A (2.39)

from the Taylor expansion of R, and D. = diag[l,d.]. The Q,, contain the higher

order (nonlinear) terms from R and the remaining terms from the expansion:

Q=0 (2.40)
1 2 1 2

Qs = EulRuu + uv1 Ry + §v1 Ryy (2'41)
Q3 = — 0 la%l _ %
s 1)vy0z2 Or

+ wuaRyy + (u192 + u2v1) Ry + v102Ry
1 1 1 1
+ Eu?Ruuu + Eu%leuuv + Eulv%Ruvv + gvzlivav (242)

Qs=...
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where Ry, Ry, - . . denote component-wise partial differentiation of the reaction vec-
tor field R(c,p) evaluated at the kinetic steady state ¢ = (us,vs). Such terms are
functions of (cs,p) only, and many of these terms will in fact be zero, for a particular
kinetic scheme.

At O(e) we recover the linear approximation for the chosen boundary conditions,
which is given by

2
79 _1p 9

ot ~ CW - A C1 = 0. (243)

Considering the linear analysis above, we have that the general solution of this equation
takes the form

[e o]

ci(z,t,7) = E a,,(7) exp (Amt) cos (k). (2.44)

m=0
However, the condition of small spatial extent allows us to neglect all k,, except the
destabilising mode, ks say. The functions a,,(7) contain the dependence on the slow
time 7. As t becomes large and for )\(k?) ~ 0 for d ~ d., the solution to equation (2.43)
becomes

<l

ci(z,7) = a(7) ( 5 ) cos (ksx) (2.45)

where ¢ = (@, v) is the nullvector, and )\(k%) the relevant eigenvalue, of the matrix

k2
A— 7ch. (2.46)

The signs of @ and v are the same for pure kinetics and are opposite for cross kinetics,
consistent with the concentration profile polarities in the two cases. The solution
amplitude to first order, a(7), is yet to be determined in the analysis.

At O(€?), after substituting the expressions calculated for u; and vy, the com-
ponents of Qo will contain terms with spatial dependence cos?(ksz). The Fredholm
Alternative Theorem [60] guarantees the existence and uniqueness of solutions of the
linear equation Lco = Qg if the vector Qy is orthogonal to solutions ¢* of the homo-
geneous adjoint equation

L*c* =0. (2.47)

The only solutions of the adjoint problem (with appropriate boundary conditions) have
spatial dependence c¢* = b cos(ksx). Here we may employ the trigonometric identity
2cos? @ = cos20 + 1 to show that, under an appropriately defined inner product, Qo
is always orthogonal to c*. Hence, from the solution of the homogeneous equation,
(u2,v2) will be determined only up to the addition of constant multiples of u; and v;
respectively.

On substitution of the expressions for ¢; and cy into (2.42) for the linear equa-
tion (2.38) with n = 3, we arrive at the O(€®) equation. On application of the Fredholm
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amplitude
amplitude
\

(a) (b)

FIGURE 2.3 Schematic bifurcation diagrams for the pitchfork bifurcation (2.49) show-
ing (a) supercritical and (b) subcritical bifurcations. Solid lines represent stable solutions
and dotted lines unstable solution branches.

Alternative Theorem we find that the null vector of the adjoint c* is no longer au-
tomatically orthogonal to Q3. We require orthogonality for solutions of the O(e?®)
problem, giving a solvability condition by which secular terms (those with spatial de-
pendence cos(ksx)) in Q3 are suppressed. The structure of this condition leads to an
equation for the amplitude a(7) of the form

Z—Z = Pya(7) + Py a®(7). (2.48)
2.4.2 Amplitude Equation. Equation (2.48) is the amplitude equation for the pitch-
fork bifurcation. The absence of quadratic terms is due to symmetries in the spatial
freedom of the system (see Nicolis [93]) and ensures that the two nontrivial steady
state solutions are symmetric, corresponding to the two polarities identified for the
linear problem. Writing in terms of the physical parameters, € = v/d. — d and time

t = 7/€2, the rescaled amplitude z(t) = ea(t) satisfies

% — (de — d) Py 2(t) + Py 23(2) (2.49)
with three fixed points
20 = 0 (250)
P
2e = +4/(d — do) = (2.51)
Py

the first of which is identified with the homogeneous steady state of the reaction-
diffusion equation. The stability of the branches is easily deduced from a linear sta-
bility analysis of the amplitude equation. The homogeneous steady state zg is stable
for d > d. when P; > 0, which must therefore be the case for the Turing bifurcation.
Then if Py < 0, solutions z1 exist and are stable for d < d., giving a supercritical
bifurcation as shown schematically in Figure 2.3(a), while for P3 > 0 solutions zy exist
for d > d. and are unstable, the subcritical case, shown in Figure 2.3(b). All of the
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kinetic systems that are studied in this thesis give rise to supercritical bifurcations.

The asymptotic approximation to the long-time steady heterogeneous solution of
the reaction-diffusion equation is given by

o oux) N[ ous Nt
°<””)—(U(x)>—<us)i (¢ d>p3<

We may deduce the influence of the scaling parameter v in the nonlinear analysis

e

) cos (kfz) + O (d. —d). (2.52)

<l

without recourse to explicit calculation of P; and P3 and the null vectors for a specific
reaction scheme, all of which may depend on . One quickly sees that v appears only
in £ and Q3 and hence will be present in the expression (2.52), and in particular the
amplitude z., only as the quotient k]% /- Therefore v will have the same influence
as described in section 2.3.2 for the linear analysis. The maximum amplitude for all
choices of mode kj as +y is varied will be the same. Thus we expect all primary solution
branches to have the same form, appropriately scaled along the v axis for different kg,
and this is illustrated with concrete numerical examples below. Next we discuss the
implications of this symmetry on the pattern modes.

2.4.3 Symmetries of the Steady State Patterns. Steady heterogeneous solutions
to the reaction-diffusion equations exhibit a symmetry in the relationship between
different primary bifurcation branches, and thus between patterns of different mode.
This symmetry will prove to be a useful tool in examining patterns formed on the
growing domain, where we show that the arguments may be extended to the full PDE
system. To illustrate the symmetry we construct periodic solutions for the steady state
equations from solutions of lower mode. To simplify notation we will consider a scalar
reaction-diffusion equation, however, the result applies equally well to systems, where
heterogeneous patterns form through the Turing instability. Recently this symmetry
has also be noticed by Nishiura and Ueyama [95] and has previously been described
for the steady state problem by Kevrekidis and Brown [63], who extend the arguments
considerably to encompass the prediction of secondary (‘mixed-mode’) branches.
We consider solutions to the steady state problem

1 d%c
where v = wL?/D, with zero flux boundary conditions

de

— =0, =0,1. 2.54

o z (2.54)
Let us suppose that for v = 41 > <. the solution consists of the primary mode m,
where the linearised equations have solution with heterogeneity cos (mnz). We can

construct new solutions by scaling, translating and reflecting this pattern. To obtain
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a new pattern, qgm(x), of mode 2m we use the tent map transformation

2z, 0<z< %
= 2.55
pa(z) {2(1_@, P (2.55)
such that
@2 (z;71) = c(p2(z);m), (2.56)

which satisfies the equation
1 d2q2
= —— + R(q2)-

The transformation ps(z) ensures that the zero flux conditions are satisfied at the

(2.57)

boundaries of the unit interval, and so g2(z;7) is a solution of the same equation as
¢(z;y1) when v = 4, i.e. when the domain length is doubled. The transformation
has discontinuous derivative at the point = 1/2, however, g2(z) has zero gradient
here by construction and is, therefore, twice continuously differentiable. Patterns con-
structed under the transformation ps(z) from odd modes maintain the same polarity
as the original pattern mode. Just as easily, patterns with the opposite polarity are
constructed by the complementary transformation

Do(z) = {

1-2z, 0<z<l

2.58
20 -1, 1<z<1 (2.58)

It is straightforward to see that a general transformation p,,(z) can be defined in a
similar manner to generate a pattern of mode m on the interval [0, 1] from the first
mode m = 1, and to find the corresponding equation. In general g, (z;7) = c¢(pm(z);7)
satisfies the same equation as ¢(x;y;) when vy = m?2~, or otherwise, when the domain
length increases by a factor m. This explains the structure of Figure 2.2, where linear
growth rates for different mode are simply scaled along the « axis, and is similarly
reflected in Figure 2.1 where the intersections of instability line up for modes related
by these transformations.

2.5 Pattern Selection

As the control parameter, for example d or v, is moved further past the bifurcation
point, d. or 7., an increasing range of solutions to the linear problem are admissible as
growing linear modes. Furthermore, ranges of instability of the homogeneous steady
state to different modes overlap increasingly as the system moves further from the
critical point (see Figure 2.1 for the effect of decreasing d on the intervals in 7). The
effect on pattern selection is illustrated in Figure 2.4. The conspicuous curves, which
comprise sets of points from individual numerical simulations, represent steady state
patterns of the same mode (we do not distinguish between the two polarities), with
amplitude changing as <y increases. We draw attention to several notable features.
Firstly, as predicted by linear and nonlinear analysis alike, the maximal amplitude
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FIGURE 2.4 The disappearance of intervals of stability in v and increase of multiplicity
of solutions as d is decreased (¢ = v/d. — d is increased), where (a) d = 0.115 (€ ~ 0.045),
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point shows the final steady amplitude for the activator v on a domain of fixed size,
where the value of the scaling parameter +y is held constant during numerical simulation
(the homogeneous steady state has amplitude v = 1). The initial conditions for each
data point consist of random perturbations around the homogeneous steady state, of
amplitude 1%. We have used Schnakenberg kinetics with @ = 0.1, b = 0.9.
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(as vy varies) for each mode is the same, independent of the wavenumber. Indeed the
simple scaling of the branches for different modes can be discerned, illustrating the
symmetry that we have described.

Close to the bifurcation point (when € is smallest, in Figure 2.4(a)) there are in-
tervals of stability of the homogeneous steady state between regions where a finite
amplitude pattern is realised. These intervals rapidly disappear as d is decreased
and are replaced by increasing overlap of solution branches. Where overlap occurs in
the figure, two or more different steady solutions have been generated for domains of
(approximately) the same size, but from different initial data. Here, in the competi-
tion between different growing modes, the initial data dominates the pattern selection
(through the components of y,, in the linear analysis), rather than the linear growth
rate. This dependence on the initial conditions clearly increases as d recedes from
its critical value. In the nonlinear regime, competition between modes may be de-
scribed using amplitude equations, as derived in the previous section. This approach
is particularly appropriate for investigating the nonlinear interactions between modes
in two-dimensional (and higher) spatially-distributed systems, where the selection be-
tween patterns of different planforms may be predicted. This is discussed further in
Chapter 6.

2.5.1 Multiplicity of Solutions: the Robustness Problem. The distribution of
steady patterns achieved for different sets of initial conditions on domains of fixed
size, corresponding to fixed values of +y, is shown in Figure 2.5. From the dispersion
relation we have calculated the value of 7y for which different modes achieve maximum
linear growth rate, calling these modes m,. We have performed repeated numerical
simulations with these values of «y for different sets of random initial data and compiled
tables of the relative frequency of occurrence of different steady pattern modes for two
values of d, namely d = 0.05 in Figure 2.5(a) and d = 0.01 in Figure 2.5(b). Thus for
(b) the distributions show the relative frequencies for the different solution branches
found in Figure 2.4(d), at three different values of  (and similarly (a) corresponds
to Figure 2.4(c)). Two results are immediately apparent: firstly, the mean of the
distributions tends towards lower modes than the linearly predicted fastest growing
mode m,, becoming progressively lower for larger -y, and secondly the width of the
distribution is smaller for d nearer d. and increases with . Thus for different sets of
initial data an increasingly wide range of pattern modes my be generated as the domain
length increases. Put otherwise, for larger domain lengths the initial conditions must
be controlled with increasing sensitivity to reliably pick out one particular mode.
This encapsulates the robustness problem for reaction-diffusion pattern formation.
In order to generate patterns reliably, conditions such as the initial data and the size
of the domain must be closely controlled. This has been a major source of criticism
of the application of reaction-diffusion models to those biological situations in which
a specific number of pattern units (spatial oscillations) must be reliably produced.
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FIGURE 2.5 Relative frequency of occurrence of different modes m on domains of
various fixed sizes from random initial data. Each figure shows frequency distributions
corresponding to three values of v, each chosen so that a particular mode m, has max-
imal linear growth rate. These values of v, calculated from the dispersion relation (for
Schnakenberg kinetics), depend on d. In each case we plot the relative frequency (from
a sample of 100) against m — m,, the distance in mode number of the steady pattern
generated, m, from the linear prediction, m,. For (a) d = 0.05 and we take v = 33.4
(black) where m, = 4 has fastest linear growth rate, v = 133.4 (grey) for which m, = 8
is fastest growing and v = 533.4 (white) for m, = 16. In (b) d = 0.01 and the values
of v are 13.3, 53.2 and 212.9 respectively. We note that the two pattern polarities were
observed in roughly equal numbers (data not presented).

The problem is further compounded in higher spatial dimensions where the domain
geometry must also be sensitively controlled, and where many more pattern modes
tend to be admissible for any particular domain size and geometry.

2.5.2 Mechanisms of Pattern Selection. For equilibrium systems the pattern
selection problem is solved by minimising a free energy functional and, at least in
principle, solutions evolve towards the lowest energy state. No such general method is
available for nonequilibrium systems. We have considered the role of domain size (and
geometry) and of the initial data, which might be deemed static effectors of pattern
selection. A full discussion and examples from other pattern forming instabilities is
presented in the review article by Cross and Hohenberg [21]. Arcuri and Murray [3]
report on a study of the influence of boundary conditions on the sensitivity of hetero-
geneous pattern to various initial conditions. Dillon et al. [26] investigate mixed scalar
boundary conditions on a one-dimensional domain, and find that Dirichlet conditions
for one but not both species at the boundaries reduces the sensitivity on domain scale
and initial conditions. In general the boundaries are of greater importance in systems
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FIGURE 2.6 Pattern selection behind a travelling front, initiated in the centre of the

domain with (a) homogeneous conditions elsewhere and (b) random noise on the domain,
vo(z) = (1+0.01n(z))vs where n(z) € [-1,1] is a random variable. For these simulations

we use Schnakenberg kinetics with a = 0.1, b = 0.9, d = 0.01 and v = 1600.
of small spatial extent and zero flux conditions are found to have the weakest influence

on pattern selection.

Similarly there are dynamic processes which may determine the final steady pat-
tern. For parameters that vary with time the trajectory taken through parameter
space may contribute to pattern selection. For small variations in parameters the so-

lution may be expected to adiabatically follow a stable solution branch of the steady
state problem. Where the parameter variation is sufficiently great that the solution
moves between solution branches the manner of transitions between the branches be-

comes important. The bifurcation structure will determine whether or not there is a

continuous adiabatic connection between stable branches. These ideas are discussed

below in light of results for pattern formation on growing domains.
Murray [88] suggests that the mechanism of initiation of pattern formation on
the domain may determine the mode selected. From an initial disturbance at some
location on an otherwise homogeneous domain, spatially periodic pattern spreads out
to fill the domain behind a ‘travelling wave of initiation’. This is demonstrated in
Figure 2.6(a). The wavelength of the pattern may be calculated and lies within the
linearly destabilising band. If the domain is bounded (and especially if the domain is
small) then boundary effects will also affect the final wavelength, as the pattern relaxes
to accommodate the conditions imposed there. However, this selection mechanism
relies on the initial perturbation being restricted to some small region, and for even a
low level of random noise elsewhere on the domain the wavelength of the final pattern

cannot be reliably predicted, as demonstrated in Figure 2.6(b).
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2.5.3 Reflection and Splitting of Travelling Pulses in the Gray-Scott Model.
In general, reaction-diffusion systems can display a rich variety of spatio-temporal phe-
nomena in response to large amplitude perturbations. The nature of the kinetic terms
plays the major role in determining the solution behaviour. In this thesis we will con-
sider only kinetic schemes which have a single steady state, such that c; is the unique
solution of R(cs, p) = 0. However, for bistable systems an additional pair of solutions,
one stable and the other linearly unstable, appear in a saddle-node bifurcation as some
kinetic parameter varies. The Gray-Scott model [45] (see Appendix A.2) is an example
of a kinetic scheme which, for suitably chosen parameters, demonstrates bistability,
and has been extensively studied. In the vicinity of the bistable regime, several inter-
esting spatio-temporal phenomena have been reported. Pearson [109] first identified
self-replication of spot-like patterns in two-dimensional numerical simulations of the
Gray-Scott model, amongst various other behaviours, some exhibiting spatio-temporal
chaos (typically from the interaction of Turing and Hopf modes). This behaviour was
observed for sufficiently large perturbation away from the trivial homogeneous steady
state, and in a parameter regime in the vicinity of both a Hopf bifurcation in the
kinetics, and a subcritical Turing bifurcation for the nontrivial steady state. Many
of the patterns reported by Pearson had previously or were subsequently identified
in chemical experiments on the FIS reaction by Lee, Swinney and co-workers [70, 71]
(reviewed in [72]).

Corresponding phenomena in one-dimensional systems have been studied numeri-
cally by Petrov et al. [112], Reynolds et al. [115] and Rasmussen et al. [114]. Depending
on the precise location in parameter space (while remaining in the vicinity of the curve
bounding the bistable region) these authors have reported that finite initial pertur-
bations may produce various behaviours. Travelling pulses which are reflected from
zero flux boundaries are found in a region for which there is a unique steady state,
reproduced in Figure 2.7(a). Also it is found that these pulses are reflected during
collisions with other pulses [112]. Wave splitting (or self-replication of pulses), illus-
trated in Figure 2.7(b), is observed for small enough d in the bistable region and,
for parameters for which there is a single stable branch, in the vicinity of the saddle-
node bifurcation. For the latter case Petrov et al. have suggested that in this region
the kinetics show excitable dynamics, where small perturbations decay exponentially
to the globally stable steady state but sufficiently large perturbations result in long
excursions through the phase space before returning to the fixed point. During this
excursion the system is in a refractory (non-excitable) state (for a discussion see, for
example, Murray [88]). They suggest that by decreasing d the wave back becomes
decreasingly refractory, until finally it excites a secondary wave which moves off in
the opposite direction. However, Nishiura and Ueyama [95] have shown that the split-
ting phenomena may be recovered for d near unity, by judicious choice of the kinetic
parameters.



32 2. PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS

(a) (b)

FIGURE 2.7 Dynamic phenomena in the Gray-Scott model: (a) travelling wave reflec-
tion at zero flux boundaries (parameters from [95]), with F' = 0.025, £ = 0.0544 (monos-
table region) and d = 0.5 with v = 12500. (b) wave-splitting (parameters from [115])
with F' = 0.059, k£ = 0.02 (bistable region) and d = 0.01 with v = 3600.

Several authors have investigated the pulse-splitting phenomenon in the Gray-
Scott model analytically. Osipov and Severtsev [97] discuss splitting and periodic
patterns on infinite domains. Reynolds et al. [116] present a heuristic explanation
for self-replication of spots and analyse equations of motion for travelling pulses in
the limit of small d. Nishiura and Ueyama provide an argument based on underlying
‘hidden’ symmetries in the bifurcation structure of such reaction-diffusion equations.
The authors show that the transient dynamics from the initial perturbation move in
the vicinity of saddle-node bifurcations for steady Turing structures, which is reflected
in the splitting process observed. Finally we note that although there is no supercrit-
ical Turing bifurcation for either solution branch, the transient splitting of travelling
pulses may lead to steady Turing-type structures, which appear in a saddle-node bi-
furcation rather than through DDI, as shown in Figure 2.8(a). However, long-time
behaviour may also give oscillating ‘mixed mode’ behaviour, as in the example shown
in Figure 2.8(b). In order to excite these spatio-temporal phenomena a sufficiently
strong initial perturbation is required to escape exponential relaxation back to the
trivial homogeneous state. Furthermore, these behaviours are restricted to narrow
regions of parameter space (in the vicinity of the bistable region) for models such as
the Gray-Scott system which have a highly complicated bifurcation structure. As we
saw previously (Figure 2.6(a)), large initial perturbations for the simpler Schnakenberg
system do not produce pulse splitting. Similar phenomena may, however, be generated
for reaction-diffusion equations with Schnakenberg kinetics (and for other comparable
systems) when pattern formation is driven by domain growth. In the following chap-
ter we derive the governing equations for reaction and diffusion on a growing domain
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and in the remainder of the thesis we go on to analyse pattern formation subject to

underlying domain growth.
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2. PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS



