1. Introduction

Structural and functional ideas in developmental biology have been somewhat eclipsed
by the recent advent of developmental genetics. The role of genetic information in de-
termining the development of organised and differentiated structures from a single cell
is commonly deduced by studying the effects of gene mutations, determining that a
certain gene is mecessary for the correct development of a particular structure. The
revolution in molecular genetics has led to unprecedented discoveries and advances,
however, there is a danger that something has been lost in the thrust of this research.
While nobody would dispute that genes and gene products act in concert, our un-
derstanding of the mechanisms by which differentiated structures emerge from the
interaction of genes and their products is at risk of being overlooked in the drive
to identify (and label) the genetic components involved in the process. The implicit
assumption that all growth and form of an organism can be explained in terms of
gene instructions, that organisms are ‘genetically programmed’, is opposed by the al-
ternative view that spatial organisation, illustrated by the adaptive and regulatory
properties of developing organisms, must be explained otherwise.

The study of physical aspects of growth and form has a long and distinguished
history. D’Arcy Thompson’s celebrated book [125] draws parallels between biological
forms and structures arising in physical systems. That physical laws constrain what is
possible (in terms of morphology or pattern) is indisputable. However, to understand
how morphology is determined and regulated it is necessary to postulate physical
mechanisms that may plausibly coordinate the spatio-temporal emergence of structure.

This thesis is concerned with one such class of mechanism, based on simple physical
principles, which can generate spatial pattern from initial homogeneity. In the context
of morphogenesis, Alan Turing [126] proposed that a set of chemicals which react and
diffuse within a substrate could lead to the spontaneous symmetry breaking of an
initially homogeneous distribution of the chemical concentrations, and the generation
of spatial patterns. Before discussing this model in more detail, we consider pattern
formation in biological systems, and various alternative modelling approaches.

1.1 Models for Biological Pattern Formation

Any instance of a heterogeneous distribution of gene product or differentiated tissue
constitutes a pattern, and any such scenario may be interrogated as to the mechanisms
of organisation and regulation of the pattern. A multitude of different morphologies
in many different areas of biology have been the subject of mathematical modelling.
Several biological systems have attained status of paradigm in theoretical work in
this field, including the segmentation of the insect embryo [58, 118], limb develop-
ment [79, 26|, the formation of animal coat markings [88] and the arrangement of hair
follicles and feather primordia in skin [90, 89]. Certain unicellular organisms have also
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been studied experimentally and theoretically in the context of pattern formation,
for example the generation of whorls in the marine alga Acetabularia [44] and the
branched and star-shaped morphologies of Micrasterias [66, 48, 50]. For these species
(where each organism has only one nucleus) it is most apparent that structure must
develop through spatially distributed physical processes occurring within the cell. At
the other end of the scale, patterns in population density (often called ‘patchiness’)
are studied in ecological settings [121, 83, 96, 80].

These examples raise an important theoretical consideration. For the patterning
of animal skins, a greater or lesser degree of variation is often displayed between
members of the same species and even between closely (genetically) related animals.
However, the mechanisms regulating segmentation and limb development, for example,
must be able to reliably generate the same number of pattern elements despite normal
biological variation, for example in the size or geometry of the region in which the
pattern develops. Models whose purpose it is to describe the mechanisms of spatial
organisation must be able to account for whichever of these alternative features is
observed in the biological system under scrutiny. We return to this crucial issue in the
discussion of reaction-diffusion models below.

Two general categories for models of pattern formation may be described, which
encompass most theoretical research to date, namely chemical prepattern and cell
motility (or mechano-chemical) models. The latter consider the aggregation of cell
populations subject to chemical signals and mechanical forces, where it is supposed
that cell differentiation occurs in response to increased cell density (see the book
by Murray [88] and references therein). In this thesis we are primarily concerned
with models of the chemical prepattern type. Here it is argued that a pattern is
first established in the concentration of certain chemicals (termed morphogens), and
subsequent differentiation into different tissue types occurs according to whether or
not the concentration exceeds some threshold locally. Thus it is implicitly assumed
that the chemical pattern is established on a faster timescale than the response of the
cellular machinery, so that the formation and interpretation of the pattern decouple.

The idea of threshold-mediated response to morphogen concentration gradients is
developed in Wolpert’s notion of positional information [134, 135]. Much of this work
considers cellular response to (possibly multiple) simple gradients. Crick [20] estab-
lished that gradients could form on realistic timescales over distances of a millimetre
or less under the mechanism of passive or facilitated diffusion of morphogen from a
localised source.

Theoretical approaches may also be divided into discrete (cellular) and continuum
descriptions. Turing’s original discussion of the reaction-diffusion mechanism considers
both possibilities, however, the analysis is restricted to the case of diffusive coupling
between cells (or through the tissue), which is by no means the only mechanism of
cellular communication demonstrated in biology. Much is known at the molecular
level about intercellular signalling. Cells can demonstrate active regulation of signals
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and passage of substances, which are ignored in diffusion-based models. In some
instances signalling molecules are held in the cell membrane and bind to receptors on
adjacent cells only, a process known as juxtacrine signalling. Lateral inhibition, for
which ligand binding down-regulates ligand and receptor expression, generates fine-
grained patterns where the wavelength is two cell diameters (high and low expression
levels of the ligand are found on alternate cells). This mechanism is observed in the
Delta- Notch signalling pathway [17], and typically selects a subset of cells from an
initially equivalent field which adopt a different cell fate. A recent model due to Owen
et al. [104, 105] considers lateral induction, where signalling results in up-regulation of
ligand and receptor expression (positive feedback), and has demonstrated that longer
wavelength patterns may be generated in a mechanism with only nearest-neighbour
cell communication. In two dimensions spot and stripe patterns may be generated by
this model.

Before going on to discuss the reaction-diffusion mechanism in more detail, we
briefly discuss the justification for such modelling, as well as some of the pitfalls. In
this context it is useful to distinguish between modelling and simulation of a natural
phenomenon. It would be a tall order (if not impossible) to describe all of the detailed
processes involved in any single biological pattern forming event. However, such an
all-encompassing mathematical description (or some approximation to it) would con-
stitute a simulation of the system. This is not the intention of the sorts of models
we have described above; rather the aim is to discover whether some smaller set of
processes may in themselves be sufficient to account for the phenomenon. The model
is built to encapsulate only those mechanisms of interest, and is analysed to deter-
mine qualitatively whether the phenomenon may be attributed to the interaction of
these mechanisms. In this sense we are constructing and testing theories of pattern
formation. Furthermore, a simple model, such as a reaction-diffusion system, may
be considered to represent a caricature of some more complicated (and unidentified)
system, which captures the dynamics of the higher dimensional system. In this sense
different classes of model may be studied as paradigms for pattern formation, rep-
resenting some level of mathematical abstraction from the physical reality. Clearly
this is only satisfactory from the biological point of view if connections can be made
from the mathematical analysis to physically measurable quantities. Of course a suc-
cessful comparison between model behaviour and the natural phenomenon does not
guarantee that the model constitutes the correct explanation. It may be the case
that several models with different underlying assumptions generate similar behaviour.
This is found to be the case for reaction-diffusion models and certain mechano-chemical
models for pattern formation, where the underlying mathematical structure of the pat-
tern forming bifurcation are similar, both mechanisms generating an intrinsic pattern
wavelength. Hence it may be difficult to distinguish between the predictions of models
describing very different mechanisms purely in terms of phenomenology.
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1.2 Reaction-Diffusion Theory

In 1952, Turing proposed that pattern formation during morphogenesis might come
about through an instability in systems of reacting chemicals, driven by diffusion. The
resulting chemical prepatterns, states the hypothesis, are subsequently interpreted as
positional information by competent cells and cell fates are determined via prepattern-
dependent differentiation. As will be shown in the following chapter, a set of two or
more chemicals is required to interact in a well defined manner in order that hetero-
geneous patterns may arise in their concentrations. Significantly, the diffusion-driven
instability (DDI) requires disparity between the diffusivities of the chemicals.

This mechanism for spatial and spatio-temporal pattern formation is of great theo-
retical interest as it represents a spontaneous spatial symmetry-breaking phenomenon
in a simple physical system. Any thermodynamically closed system, where there is no
transfer of matter or heat into or out of the system, must evolve towards thermody-
namic equilibrium. Pattern formation in such systems can be only transient. However,
Prigogine and Nicolis [94] showed that if nonequilibrium (or far-from-equilibrium) ther-
modynamic conditions are maintained in an open reactor, e.g. by providing a constant
supply of reactant, then heterogeneous patterns may be sustained. In the mecha-
nism described by Turing these patterns have an intrinsic wavelength which does not
depend on the physical size of the reactor, and patterns tend to demonstrate period-
icity. Turing’s theory has found application in fields far removed from developmental
biology—see for example the book by Walgraef [130].

Turing’s ideas have been applied to a wide variety of pattern formation problems
in biology. However, the theory has received important criticism on several fronts.
Firstly, although many molecules have been identified which appear to act as diffusive
signals, some of which may act as morphogens in the Wolpertian sense, no set of
chemicals has been demonstrated to operate in the manner that Turing described in a
biological system. In fact, it is only relatively recently that Turing patterns have been
demonstrated conclusively under controlled conditions in artificial chemical systems,
discussed in the following section.

We have already hinted at the second major source of criticism of Turing’s theory
of pattern formation in biology. In many situations the number of pattern elements
(for example the number of wavelengths generated in one dimension) is crucial. Tur-
ing patterns have been shown to display strong sensitivity to the size and geometry
of the solution domain. This criticism, which has come to be known as the robustness
problem, was first brought to light concerning the segmentation of Drosophila. Kauff-
man [59] suggested that periodic gene expression patterns observed during the early
development of insects could be explained by a reaction-diffusion model, which ap-
peared to give qualitatively similar patterns on regular and rather symmetric domains.
Subsequent work [10] showed that patterns which do not resemble those occurring nat-
urally are obtained for minor perturbations of the size and shape of the domain. In
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fact it was subsequently discovered that the segmentation of the Drosophila embryo is
achieved in a manner much closer to that described by Wolpert, where each individual
element of the apparently periodic pattern is separately controlled and regulated, and
the pattern is generated in a cascade of gene switching [2].

The root of this problem is in the fact that for domains of anything but very
small aspect ratio (the ratio of domain size to intrinsic pattern wavelength) there are
many different patterned solutions which may be generated, the number increasing
as the domain size is increased, and the selection between these different patterns
depends sensitively on initial data and domain geometry. Bard and Lauder [6] draw
the same conclusion, finding in a series of numerical experiments that patterns in
discrete cellular simulations are sensitive to the number of cells, concluding that only
unpredictable mosaic patterns are possible. More recently Saunders and Ho [118]
have considered segmentation of growing systems, concluding once again that reaction-
diffusion does not constitute a reliable pattern generation mechanism. Dillon et al. [26]
have shown that the multiplicity of solutions may be reduced by varying the boundary
conditions. We will demonstrate that the consideration of domain growth during
pattern formation may have important consequences for the robustness issue.

An alternative way of viewing the robustness issue is to argue that the reaction-
diffusion mechanism fails to demonstrate the regulatory properties that we described
earlier. While for given initial conditions it may be possible to select the desired
pattern by judicious choice of domain size, in general biological systems are subject to
natural variation in such parameters and reliable pattern generation requires a certain
degree of scale invariance. To achieve this regulatory property, various modifications
to the theory have been proposed, requiring some form of feedback from the domain
size to the parameters in the function describing the reaction rates [100, 52]. We will
discuss scale invariance later, in light of results we will present for pattern formation on
growing domains. Before turning to consider domain growth we discuss the realisation
of chemical patterns in laboratory experiments.

1.3 Chemical Pattern Formation

Travelling waves in chemical systems have been known for some time in the Belousov-
Zhabotinsky reaction, however, reactions demonstrating the stationary patterns pre-
dicted by Turing have only been discovered within the last decade. General reviews of
spatio-temporal phenomena in chemistry can be found in Epstein and Showalter [36]
and Johnson and Scott [56] and, for spatial patterns, Maini et al. [78].

The experimental realisation of Turing patterns was precipitated by the develop-
ment of gel reactors where reactants undergo diffusive transport through an aqueous
gel, which serves to suppress any convective motion. First introduced by De Kepper
and Boissonade in Bordeaux, the Gel Strip reactor has two reservoirs containing chem-
ically inert sets of reactants which are allowed to diffuse into a thin rectangular ribbon
of gel from opposite sides. In the middle of the ribbon both sets of chemicals are
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present and may react. The concentrations in the two reservoirs can be held constant
to maintain nonequilibrium conditions. The first unambiguous experimental observa-
tion of Turing patterns was reported by this group in the CIMA reaction! [13, 23].
Here the gel was loaded with starch primarily to aid visualisation. Starch, a large
molecule with low mobility in the gel matrix, forms a complex with iodide, one of
the reacting species, effectively reducing its diffusion coefficient to provide the neces-
sary conditions for Turing patterns to form. Subsequent observations were reported
by Ouyang and Swinney [103] using a variation on the design, the Gel Disk reactor,
where patterns form in the plane perpendicular to the concentration gradients so that
larger patterned domains can be observed. A vast amount of theoretical work has been
done to develop analytical models of these complicated reactions, the aim being to re-
produce the phenomena and to calculate phase and bifurcation diagrams describing
the chemical systems.

Stationary patterns have also been recorded in the FIS reaction? when initiated
with sufficiently large perturbation away from equilibrium. Here pattern formation
is achieved by propagating chemical (redox) fronts which halt when they approach
each other. In this case labyrinthine patterns [69] have been observed as well as
self-replicating phenomena [70], where a localised spot grows, divides and separates,
repeating to fill domain. Other phenomena include breathing spot patterns, where
the spot radius oscillates [47]. Recently, similar structures have also been reported in
the CIMA reaction [22]. However, these patterns are not of Turing type in the strict
sense, as we shall see in the following chapter.

1.4 Domain Growth

The motivation for consideration of domain growth in developmental systems is appar-

ent. Most pattern formation takes place during the growth of the organism. However,
what may not be immediately clear is whether underlying growth, which is expected to
take place over much longer timescales than the generation of pattern via reaction and
diffusion, may be considered to decouple from the reaction-diffusion mechanism, as are
other cellular processes. Furthermore, it is unclear how the incorporation of domain
growth might influence pattern selection. The following is a quote from Cross and Ho-
henberg’s comprehensive review of pattern formation in nonequilibrium systems [21,
p-1052]:

‘A natural procedure for biological systems is to consider the spatial domain (2 to be a function
of time €2(t). Then the dynamics of the [reaction-diffusion] equations will be supplemented by
the stretching of the domain. In the simplest case one might assume that the timescale for

variation of Q(t) is slow, but never the less the final pattern obtained might be very different

! Chlorine-Todide-Malonic Acid
2Ferrocyanide-Iodide-Sulfite
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from the one which would be produced by specifying an initial condition on the fully grown
domain Q(tfinal)-,

It is our intention in this thesis to present a systematic study of the influence of domain
growth on pattern formation in reaction-diffusion systems.

Domain growth has previously been considered in reaction-diffusion models for
the sequence of emergence of tooth primordia in the developing jaw [65] and for the
branching morphology of growing Micrasterias [66]. New impetus was recently pro-
vided by Kondo and Asai [64], who suggested that a reaction-diffusion mechanism
could be responsible for the dynamic changes in pigmentation patterns of the marine
angelfish Pomacanthus. Unlike mammalian coat markings, the pattern in the skin
of these fish changes dynamically during growth of the animal, rather than simply
enlarging in proportion to the body size. Juvenile P. imperator display concentric
stripes and P. semicirculatus have a regular array of vertical stripes which increase in
number during growth. Juvenile P. semicirculatus of less than 2cm in length display
three vertical stripes which separate until the length of the fish is approximately 4cm,
at which point new stripes appear between the original ones. Similarly at around 8-
9cm in length new stripes again appear between the existing ones. In this manner the
pattern changes by insertion of new stripes as the animal roughly doubles in length, to
preserve the wavelength of the pattern. In P. imperator this behaviour is maintained
in the adult fish, where horizontal stripes maintain an average spacing. This dynamic
regulation of the pattern is quite unlike the static pattern selection we have previously
discussed.

In the following chapter we present a detailed discussion of the diffusion-driven insta-
bility, including further discussion of the robustness problem, and some mathematical
properties of solutions to the model pertinent to pattern formation on growing do-
mains. In Chapter 3 we derive the governing equations for reaction and diffusion
processes on a growing domain as a problem in kinematics. Chapter 4 considers a
simplified scenario in one spatial dimension where the domain growth is uniform in
space. We investigate the effects on pattern formation of the rate at which the domain
is growing, and on the reaction kinetics. This latter problem is taken up in Chapter 5
where we examine the dynamical transitions between patterns as the domain grows
for different functional forms for the reaction term. Chapter 6 considers nonuniform
domain growth and pattern formation in two spatial dimensions. Finally, in Chapter 7
we conclude the thesis with further discussion of reaction-diffusion pattern formation

on growing domains.
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